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Abstract
In this paper, a class of E-differentiable vector optimization problems with both ine-
quality and equality constraints is considered. The so-called vector mixed E-dual 
problem is defined for the considered E-differentiable vector optimization problem 
with both inequality and equality constraints. Then, several mixed E-duality theo-
rems are established under (generalized) V-E-invexity hypotheses.
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1 Introduction

Multiobjective programming duality has been of much interest in the recent past. 
Many authors have  established duality results for various classes of multiobjec-
tive programming problems (see, for example, [1–3, 5, 7–11, 13–15, 17, 19–23], 
and others). Youness [24] introduced the concepts of an E-convex set and an  
E-convex function. Megahed et al. [18] presented a new concept of an E-differentiable  
convex function and they established optimality conditions for mathemati- 
cal programming problems in which the functions involved are E-differentiable.  
Abdulaleem [4] introduced a new concept of generalized convexity as a 
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generalization of the notion of E-differentiable E-convexity and the notion of  
differentiable invexity introduced by Hanson [12]. Namely, Abdulaleem defined 
the concept of E-differentiable E-invexity in the case of (not necessarily) differ-
entiable vector optimization problems with E-differentiable functions. Recently, 
Abdulaleem [5] introduced a new concept of generalized convexity as a gener-
alization of the E-differentiable E-invexity notion and the concept of V-invexity 
given by Jeyakumar and Mond [16]. Namely, Abdulaleem defined the concept of 
E-differentiable V-E-invexity in the case of (not necessarily) differentiable vec-
tor optimization problems with E-differentiable functions and used this concept to  
prove sufficient optimality conditions for a new class of nonconvex E-differentiable  
vector optimization problems.

In this paper, a class of E-differentiable V-E-invex vector optimization prob-
lems with both inequality and equality constraints is considered. A mixed  
E-dual problem is defined for the considered E-differentiable V-E-invex vector 
optimization problem with both inequality and equality constraints. Then, various 
mixed E-duality theorems are established between the considered E-differentiable 
multicriteria optimization problem and its vector mixed E-dual problem under 
appropriate (generalized) V-E-invexity hypotheses.

2  Definitions and Preliminaries

Let Rn be the n-dimensional Euclidean space and Rn
+
 be its nonnegative orthant. 

The following convention for equalities and inequalities will be used in the paper. 
For any vectors x =

(
x1, x2, ..., xn

)T and y =
(
y1, y2, ..., yn

)T in Rn , x > y means that 
the vector x is componentwise greater than the vector y. Similarly, the same con-
vention has been used for x = y , x ≧ y and x ≥ y.

First, we recall for a common reader the definition of E-differentiable function 
introduced by Megahed et al. [18].

Definition 1 [18] Let E ∶ Rn
→ Rn and f ∶ Rn

→ R be a (not necessarily) differenti-
able function at a given point u ∈ Rn . It is said that f is an E-differentiable function 
at u if and only if f◦E is a differentiable function at u (in the usual sense), that is,

where �(u, x − u) → 0 as x → u.

Now, we give the definition of a V-E-invex function introduced by Abdulaleem 
[5].

Definition 2 [5] Let E ∶ Rn
→ Rn and f ∶ Rn

→ Rk be an E-differentiable func-
tion on Rn . It is said that f is a V-E-invex function (a strictly V-E-invex function) 
with respect to � at u ∈ Rn on Rn if, there exist functions � ∶ Rn × Rn

→ Rn and 
�i ∶ Rn × Rn

→ R+ ⧵ {0}, i = 1, 2, ..., k, such that, for all x ∈ Rn (E(x) ≠ E(u)) , the 
inequalities

(1)(f ◦E)(x) = (f ◦E) (u) + ∇(f ◦E) (u) (x − u) + �(u, x − u) ‖x − u‖,
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hold. If inequalities (2) are fulfilled for any u ∈ Rn (E(x) ≠ E(u)) , then f is a V-E-invex  
(strictly V-E-invex) function at u on Rn . Each function fi , i = 1, ..., k, satisfying (2), 
is said to be �i-E-invex (strictly �i-E-invex) with respect to � at u on Rn.

Remark 1 Note that the Definition 2 generalizes and extends several generalized 
convexity notions, previously introduced in the literature. Indeed, there are the fol-
lowing special cases: 

(a) In the case when �i(x, u) = 1 , i = 1, ..., k, then the definition of a V-E-invex func-
tion reduces to the definition of an E-invex function introduced by Abdulaleem 
[4].

(b) If f is differentiable and E(x) ≡ x (E is an identity map), then the definition of a 
V-E-invex function reduces to the definition of a V-invex function introduced by 
Jeyakumar and Mond [16].

(c) If f is differentiable, E(x) ≡ x (E is an identity map) and �i(x, u) = 1 , k = 1 , then 
the definition of a V-E-invex function reduces to the definition of an invex func-
tion introduced by Hanson [12].

(d) If  � is defined by �(x, u) = x − u and �i(x, u) = 1, i = 1, ..., k, then we obtain the 
definition of an E-differentiable E-convex vector-valued function introduced by 
Megahed et al. [18].

(e) If f is differentiable, E(x) = x and �(x, u) = x − u and �i(x, u) = 1, i = 1, ..., k, then 
the definition of a V-E-invex function reduces to the definition of a differentiable 
convex vector-valued function.

(f) If f is a differentiable scalar function, �(x, u) = x − u and �i(x, u) = 1 , then we 
obtain the definition of a differentiable E-convex function introduced by Youness 
[24].

Now, we give various classes of generalized E-differentiable V-E-invex functions.

Definition 3 Let E ∶ Rn
→ Rn and f ∶ Rn

→ Rk be an E-differentiable function on 
Rn . It is said that f is a V-E-pseudo-invex function with respect to � at u ∈ Rn on Rn if, 
there exist functions � ∶ Rn × Rn

→ Rn and �i ∶ Rn × Rn
→ R+ ⧵ {0}, i = 1, 2, ..., k, 

such that, for all x ∈ Rn, the relations

hold. If (3) are fulfilled for any u ∈ Rn , then f is V-E-pseudo-invex with respect to 
� on Rn . Each function fi , i = 1, ..., k, satisfying (3) is said to be �i-E-pseudo-invex 
with respect to � at u on Rn.

(2)fi(E(x)) − fi(E(u)) ≧ 𝛼i(E(x),E(u))∇fi(E(u))𝜂(E(x),E(u)) (>)

(3)

k∑

i=1

𝛼i(E(x),E(u))fi(E(x)) <

k∑

i=1

𝛼i(E(x),E(u))fi(E(u))

⇒

k∑

i=1

∇fi(E(u))𝜂(E(x),E(u)) < 0
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Definition 4 Let E ∶ Rn
→ Rn and f ∶ Rn

→ Rk be an E-differentiable function on 
Rn . It is said that f is a V-E-quasi-invex function with respect to � at u ∈ Rn on Rn if 
there exist functions � ∶ Rn × Rn

→ Rn and �i ∶ Rn × Rn
→ R+ ⧵ {0}, i = 1, 2, ..., k, 

such that, for all x ∈ Rn, the relations

hold. If (4) are fulfilled for any u ∈ Rn , then f is V-E-quasi-invex on Rn . Each  
function fi , i = 1, ..., k, satisfying (4) is said to be �i-E-quasi-invex with respect  
to � at u on Rn.

In this paper, we consider the following (not necessarily differentiable)  
multiobjective programming problem (MOP) with both inequality and equality con- 
straints defined as follows:

where fi ∶ Rn
→ R , i ∈ I = {1, ..., p} , gj ∶ Rn

→ R , j ∈ J , ht ∶ Rn
→ R , t ∈ T  , are 

real-valued functions defined on Rn. We shall write g ∶=
(
g1, ..., gm

)
∶ Rn

→ Rm and 
h ∶=

(
h1, ..., hq

)
∶ Rn

→ Rq for convenience. Let

be the set of all feasible solutions of (MOP). Further, we denote by J(x) the 
set of inequality constraint indices that are active at a feasible solution x, that is, 
J(x) =

{
j ∈ J ∶ gj(x) = 0

}
.

Definition 5 A feasible point x is said to be a weak Pareto (weakly efficient) solution 
of (MOP) if and only if there exists no feasible point x such that

Definition 6 A feasible point x is said to be a Pareto (efficient) solution of (MOP) if 
and only if there exists no feasible point x such that

Let E ∶ Rn
→ Rn be a given one-to-one and onto operator. Throughout the 

paper, we shall assume that the functions constituting the considered problem 
(MOP) are E-differentiable at any feasible solution.

(4)

k∑

i=1

�i(E(x),E(u))fi(E(x)) ≦

k∑

i=1

�i(E(x),E(u))fi(E(u))

⇒

k∑

i=1

∇fi(E(u))�(E(x),E(u)) ≦ 0

minimize f (x) =
(
f1(x), ..., fp(x)

)

subject to gj(x) ≦ 0, j ∈ J = {1, ...,m}, (MOP)

ht(x) = 0, t ∈ T = {1, ..., q},

Ω ∶=
{
x ∈ X ∶ gj(x) ≦ 0, j ∈ J, ht(x) = 0, t ∈ T

}

f (x) < f (x).

f (x) ≤ f (x).
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Now, for the considered problem (MOP), we define its associated differenti-
able vector optimization problem (VPE ) as follows:

We call the problem (VPE ) an E-vector optimization problem associated to 
(MOP). Let

be the set of all feasible solutions of (VPE ). Further, we denote by JE(x) the set of 
inequality constraint indices that are active at a feasible solution x ∈ ΩE , that is, 
JE(x) =

{
j ∈ J ∶

(
gj ◦E

)
(x) = 0

}
.

Definition 7 A feasible point E(x) is said to be a weak E-Pareto (weakly E-efficient) 
solution of (MOP) if and only if there exists no feasible point E(x) such that

Definition 8 A feasible point E(x) is said to be an E-Pareto (E-efficient) solution of 
(MOP) if and only if there exists no feasible point E(x) such that

Lemma 1 [1] Let E ∶ Rn
→ Rn be a one-to-one and onto. Then E

(
ΩE

)
= Ω.

Lemma 2 [1] Let z ∈ ΩE be a weak Pareto solution (a Pareto solution) of the 
E-vector optimization problem (VPE ). Then E

(
z
)
 is a weak Pareto solution (a 

Pareto solution) of the considered multiobjective programming problem (MOP).

Now, we give the Karush-Kuhn-Tucker necessary optimality conditions for a  
feasible solution x to be a weak Pareto solution in (VPE ). These conditions are, at 
the same time, the so-called E-Karush-Kuhn-Tucker necessary optimality condi-
tions for E

(
x
)
 to be a weak E-Pareto solution in (MOP).

Theorem  1 [4] (E-Karush–Kuhn–Tucker necessary optimality conditions). Let 
x ∈ ΩE be a weak Pareto solution of the E-vector optimization problem (VPE ) (and, 
thus, E

(
x
)
 be a weak E-Pareto solution of the considered problem (MOP)). Further, 

f, g, h be E-differentiable at x and the E-Guignard constraint qualification [4] be 
satisfied at x . Then there exist Lagrange multipliers � ∈ Rp , � ∈ Rm , � ∈ Rq such 
that

minimize f (E(x)) =
(
f1(E(x)), ..., fp(E(x))

)

subject to gj(E(x)) ≦ 0, j ∈ J = {1, ...,m}, (VPE)

ht(E(x)) = 0, t ∈ T = {1, ..., q}.

ΩE ∶=
{
x ∈ Rn ∶ gj(E(x)) ≦ 0, j ∈ J, ht(E(x)) = 0, t ∈ T

}

f (E(x)) < f (E(x)).

f (E(x)) ≤ f (E(x)).

(5)
p∑

i=1

�i∇fi
(
E(x)

)
+

m∑

j=1

�j∇gj
(
E(x)

)
+

q∑

t=1

�t∇ht
(
E(x)

)
= 0,
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3  Mixed E‑Duality

In this section, a vector mixed E-dual problem is defined for the considered 
E-differentiable problem (MOP) with inequality and equality constraints.

Let the index set J be partitioned into two disjoint subset J1 and J2 such that 
J = J1 ∪ J2 and the index set T be partitioned into two disjoint subset T1 and T2 
such that T = T1 ∪ T2 . Let J1 be an index set such that J1 = J�J2 and J2 = J�J1, let 
�JK

gJK =
∑

j∈Jk
�jgj, k = 1, 2 and, moreover, ||J1|| and ||J2|| denote the cardinality of the 

index sets J1 and J2 , respectively. Further, let T1 be an index set such that T1 = T�T2 
and T2 = T�T1, let �TKhTK =

∑
t∈Tk

�tht, k = 1, 2 and, moreover, ||T1|| and ||T2|| denote 
the cardinality of the index sets T1 and T2 , respectively. Let us denote the set

Now, for the define E-differentiable problem (MOP), we introduce the definition 
of the scalar Lagrange function L ∶ Ω × R

p

+ × R
|J1|
+ × R|T1| → R as follows

Further, let E ∶ Rn
→ Rn be a given one-to-one and onto operator. Further, let 

us define the following set

Now, we define the following vector mixed E-dual problem (VMDE ) for the 
considered E-differentiable problem (MOP):

where all functions are defined in the similar way as for the considered vector opti-
mization problem (MOP). Further, let ΓE denote the set of all feasible solutions of 
(VMDE ), that is,

(6)�jgj
(
E(x)

)
=0, j ∈ J

(
E
(
x
))
,

(7)� ≥0, � ≧ 0.

Ω2 =
{
x ∈ Rn ∶ gj(x) ≦ 0, j ∈ J2, ht(x) = 0, t ∈ T2

}
.

(8)L(x, �,�, �) ∶=

p∑

i=1

�i fi(x) +
∑

j∈J1

�jgj(x) +
∑

t∈T1

�tht(x).

Ω2
E
∶=

{
x ∈ Rn ∶

(
gj ◦E

)
(x) ≦ 0, j ∈ J2,

(
ht ◦E

)
(x) = 0, t ∈ T2

}
.

maximize f (E(y)) +

[
�J1

(
gJ1◦E

)
(y) + �T1

(
hT1◦E

)
(y)

]
e

subject to �∇f (E(y)) + �∇g(E(y)) + �∇h(E(y)) = 0,

�J2

(
gJ2◦E

)
(y) ≧ 0, (VMDE)

�T2

(
hT2◦E

)
(y) = 0,

� ∈ Rp, � ≥ 0, �e = 1,� ∈ Rm,� ≧ 0, � ∈ Rq,
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Further, YE = {y ∈ Rn ∶ (y, �,�, �) ∈ ΓE} . We call (VMDE ) the vector mixed 
E-dual problem for the E-differentiable multiobjective optimization problem (MOP).

Note that if set J1 = ∅ and T1 = ∅ in (VMDE ), then we get a vector Mond-
Weir E-dual problem for (MOP) [7] and, moreover, if we set J2 = ∅ and T2 = ∅ in 
(VMDE ), then we obtain a vector Wolfe E-dual problem for (MOP) (see, for exam-
ple, [1, 6]).

Now, we shall prove several mixed duality results between E-vector optimization 
problems (VPE ) and (VMDE ) under (generalized) V-E-invexity assumptions. Then, 
we use these duality results in proving several mixed E-duality results between vec-
tor optimization problems (MOP) and (VMDE).

Theorem 2 (Mixed weak duality between (VPE ) and (VMDE)). Let x and (y, �,�, �) 
be any feasible solutions of the problems (VPE ) and (VMDE ), respectively. Further, 
assume that at least one of the following hypotheses is fulfilled: 

(a) each objective function fi , i ∈ I , is �i-E-invex with respect to � at y on ΩE ∪ YE , 
each constraint function gj , j ∈ J , is �j-E-invex with respect to � at y on 
ΩE ∪ YE , the functions ht , t ∈ T+(E(y)) =

{
t ∈ T ∶ 𝜉t > 0

}
 and the functions 

−ht , t ∈ T−(E(y)) =
{
t ∈ T ∶ 𝜉t < 0

}
 , are �t-E-invex with respect to � at y on 

ΩE ∪ YE.

(b) (f◦E)(⋅) +

[
�J1

(
gJ1◦ E

)
(⋅) + �T1

(
hT1◦ E

)
(⋅)

]
e is V-E-pseudo-invex at y on 

ΩE ∪ YE , �J2

(
gJ2◦ E

)
(⋅) is �j-E-quasi-invex at y on ΩE ∪ YE , �T2

(
hT2◦ E

)
(⋅) is �t

-E-quasi-invex at y on ΩE ∪ YE . 
  Then 

Proof Let x and (y, �,�, �) be any feasible solutions of the problems (VPE ) and 
(VMDE ), respectively. 

The proof of this theorem under hypothesis (a). By means of contradiction, sup-
pose that

ΓE =

{
(y, �,�, �) ∈ Rn× Rp × Rm × Rq ∶

�∇f (E(y)) + �∇g(E(y)) + �∇h(E(y)) = 0,

∑

j∈J2

�j

(
gj ◦ E

)
(y) ≧ 0,

∑

t∈T2

�t
(
ht ◦ E

)
(y) = 0, � ≥ 0, �e = 1, � ≧ 0

}
.

(9)(f ◦E)(x) ≮ (f ◦E)(y) +

[
𝜇J1

(
gJ1◦E

)
(y) + 𝜉T1

(
hT1◦E

)
(y)

]
e.

(f◦E )(x) < (f ◦E)(y) +

[
𝜇J1

(
gJ1◦E

)
(y) + 𝜉T1

(
hT1◦E

)
(y)

]
e.
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Thus,

Multiplying each inequality (10) by �i and then adding both sides of the resulting 
inequalities, we get

Since 
∑p

i=1
�i = 1 , the following inequality

holds. By x ∈ ΩE and (y, �,�, �) ∈ ΓE , we have

Combining (11)−(14), we get

(10)
(
fi ◦ E

)
(x) <

(
fi ◦ E

)
(y) +

[∑

j∈J1

𝜇j

(
gj ◦ E

)
(y) +

∑

t∈T1

𝜉t
(
ht ◦ E

)
(y)

]
, i ∈ I.

p∑

i=1

𝜆i
(
fi ◦ E

)
(x) <

p∑

i=1

𝜆i
(
fi ◦ E

)
(y)

+

[∑

j∈J1

𝜇j

(
gj ◦ E

)
(y) +

∑

t∈T1

𝜉t
(
ht ◦ E

)
(y)

] p∑

i=1

𝜆i.

p∑

i=1

𝜆i
(
fi ◦ E

)
(x) <

p∑

i=1

𝜆i
(
fi ◦ E

)
(y)

+
∑

j∈J1

𝜇j

(
gj ◦ E

)
(y) +

∑

t∈T1

𝜉t
(
ht ◦ E

)
(y)

(11)

p∑

i=1

𝜆i
(
fi ◦ E

)
(x) +

∑

j∈J1

𝜇j

(
gj ◦ E

)
(x) +

∑

t∈T1

𝜉t
(
ht ◦ E

)
(x) <

p∑

i=1

𝜆i
(
fi ◦ E

)
(y) +

∑

j∈J1

𝜇j

(
gj ◦ E

)
(y) +

∑

t∈T1

𝜉t
(
ht ◦ E

)
(y),

(12)
p∑

i=1

𝜆i
(
fi ◦ E

)
(x) <

p∑

i=1

𝜆i
(
fi ◦ E

)
(y),

(13)
∑

j∈J2

�j

(
gj ◦ E

)
(x) ≦

∑

j∈J2

�j

(
gj ◦ E

)
(y),

(14)
∑

t∈T2

�t
(
ht ◦ E

)
(x) =

∑

t∈T2

�t
(
ht ◦ E

)
(y).
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By assumption, (y, �,�, �) is feasible in (VMDE ). Hence,

Since x ∈ ΩE and y ∈ ΩE, one has

Since the functions fi , i ∈ I , gj , j ∈ J , ht , t ∈ T+ , and −ht, t ∈ T− , are V-E-invex 
at y on ΩE ∪ YE , by Definition 2, the following inequalities

hold, respectively. Combining (12) and (18), we have

Since 𝛼i(E(x),E(y)) > 0 , i = 1, 2, ..., p, the above inequalities yield

Multiplying (23) by the corresponding Lagrange multipliers, we get that the  
following inequality

holds. Multiplying inequalities (19)−(21) by the corresponding Lagrange multipli-
ers, respectively, we obtain

(15)

p∑

i=1

𝜆i
(
fi ◦ E

)
(x) +

m∑

j=1

𝜇j

(
gj ◦ E

)
(x) +

q∑

t=1

𝜉t
(
ht ◦ E

)
(x) <

p∑

i=1

𝜆i
(
fi ◦ E

)
(y) +

m∑

j=1

𝜇j

(
gj ◦ E

)
(y) +

q∑

t=1

𝜉t
(
ht ◦ E

)
(y).

(16)
m∑

j=1

�jgj(E(x)) ≦

m∑

j=1

�jgj(E(y)).

(17)
q∑

t=1

�tht(E(x)) =

q∑

t=1

�tht(E(y)).

(18)fi(E(x)) − fi(E(y)) ≧ �i(E(x),E(y))∇fi(E(y))�(E(x),E(y)), i ∈ I,

(19)gj(E(x)) − gj(E(y)) ≧ �j(E(x),E(y))∇gj(E(y))�(E(x),E(y)), j ∈ J(E(y)),

(20)ht(E(x)) − ht(E(y)) ≧ �t(E(x),E(y))∇ht(E(y))�(E(x),E(y)), t ∈ T+(E(y)),

(21)
−ht(E(x)) + ht(E(y)) ≧ −�t(E(x),E(y))∇ht(E(y))�(E(x),E(y)), t ∈ T−(E(y))

(22)𝛼i(E(x),E(y))𝜆i∇
(
fi ◦ E

)
(y)𝜂(E(x),E(y)) < 0.

(23)𝜆i∇
(
fi ◦ E

)
(y)𝜂(E(x),E(y)) < 0.

(24)

[
p∑

i=1

𝜆i∇
(
fi ◦ E

)
(y)

]
𝜂(E(x),E(y)) < 0

(25)
�jgj(E(x)) − �jgj(E(y)) ≧ �j(E(x),E(y))�j∇gj(E(y))�(E(x),E(y)), j ∈ J(E(y)),

Operations Research Forum (2021) 2: 32 Page 9 of 18    32



Operations Research Forum (2021) 2: 32

1 3

Combining the above inequalities with (16)−(17), we obtain that the inequalities

hold. Since 𝛽j(E(x),E(y)) > 0 , j = 1, 2, ...,m, 𝛾t(E(x),E(y)) > 0, t = 1, 2, ..., q, the 
above inequalities yield, respectively

Adding both sides of the inequalities (31)−(33) and (24), we obtain that the 
inequality

holds, contradicts the first constraint of the vector mixed E-dual problem (VMDE ). 
This means that the proof of the mixed weak duality theorem between the E-vector 
optimization problems (VPE ) and (VMDE ) is completed under hypothesis (a).

The proof of this theorem under hypothesis (b). We proceed by contradiction. 
Suppose, contrary to the result, that (10) holds. Since the function 

(f ◦ E)(⋅) +

[
�J1

(
gJ1◦ E

)
(⋅) + �T1

(
hT1◦ E

)
(⋅)

]
e is V-E-pseudo-invex at y on 

ΩE ∪ YE , by Definition 3, the inequality

holds. By x ∈ ΩE and (y, �,�, �) ∈ ΓE , it follows that the relations (12)−(14)  
are fulfilled. Since �J2

(
gJ2◦ E

)
(⋅) and �T2

(
hT2◦ E

)
(⋅) are V-E-quasi-invex at y on 

ΩE ∪ YE , by the foregoing above relations, Definition 4 implies that the inequalities

(26)
�tht(E(x)) − �tht(E(y)) ≧ �t(E(x),E(y))�t∇ht(E(y))�(E(x),E(y)), t ∈ T+(E(y)),

(27)
�tht(E(x)) − �tht(E(y)) ≧ �t(E(x),E(y))�t∇ht(E(y))�(E(x),E(y)), t ∈ T−(E(y)).

(28)�j(E(x),E(y))�j∇gj(E(y))�(E(x),E(y)) ≦ 0, j ∈ J(E(y)),

(29)�t(E(x),E(y))�t∇ht(E(y))�(E(x),E(y)) ≦ 0, t ∈ T+(E(y)),

(30)�t(E(x),E(y))�t∇ht(E(y))�(E(x),E(y)) ≦ 0,t ∈ T−(E(y))

(31)�j∇gj(E(y))�(E(x),E(y)) ≦ 0, j ∈ J(E(y)),

(32)�t∇ht(E(y))�(E(x),E(y)) ≦ 0, t ∈ T+(E(y)),

(33)�t∇ht(E(y))�(E(x),E(y)) ≦ 0, t ∈ T−(E(y)).

(34)

[ p∑

i=1

𝜆i∇
(
fi ◦ E

)
(y) +

m∑

j=1

𝜇j∇gj(E(y)) +

q∑

t=1

𝜉t∇ht(E(y))

]
𝜂(E(x),E(y)) < 0

(35)

[ p∑

i=1

𝜆i∇
(
fi ◦ E

)
(y) +

∑

j∈J1

𝜇j∇
(
gj ◦ E

)
(y) +

∑

t∈T1

𝜉t∇
(
ht ◦ E

)
(y)

]
𝜂(E(x),E(y)) < 0
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hold, respectively. Combining (35), (36) and (37), it follows that the inequality  
(34) is fulfilled, contradicting the first constraint of the vector mixed E-dual problem 
(VMDE ). This means that the proof of the mixed weak duality theorem between the 
E-vector optimization problems (VPE ) and (VMDE ) is completed under hypothesis (b).

Theorem  3 (Mixed weak E-duality between (MOP) and (VMDE)). Let E(x) and 
(y, �,�, �) be any feasible solutions of the problems (MOP) and (VMDE ), respec-
tively. Further, assume that all hypotheses of Theorem 2 are fulfilled. Then, mixed 
weak E-duality between (MOP) and (VMDE ) holds, that is,

Proof Let E(x) and (y, �,�, �) be any feasible solutions of the problems (MOP) and 
(VMDE ), respectively. Then, by Lemma 1, it follows that x is any feasible solu-
tion of (VPE ). Since all hypotheses of Theorem  2 are fulfilled, the mixed weak 
E-duality theorem between the problems (MOP) and (VMDE ) follows directly from 
Theorem 2.

If some stronger V-E-invexity hypotheses are imposed on the functions constitut-
ing the considered E-differentiable problem, then the following result is true.

Theorem 4 (Mixed weak duality between (VPE ) and (VMDE)). Let x and (y, �,�, �) 
be any feasible solutions of the problems (VPE ) and (VMDE ), respectively. Further, 
assume that at least one of the following hypotheses is fulfilled: 

(A) each objective function fi , i ∈ I , is strictly �i-E-invex with respect to � at y on 
ΩE ∪ YE , each constraint function gj , j ∈ J , is �j-E-invex with respect to � at y 
on ΩE ∪ YE , the functions ht , t ∈ T+(E(y)) and the functions −ht , t ∈ T−(E(y)) , 
are �t-E-invex with respect to � at y on ΩE ∪ YE.

(B) (f ◦ E)(⋅) +

[
�J1

(
gJ1 ◦ E

)
(⋅) + �T1

(
hT1 ◦ E

)
(⋅)

]
e is strictly V-E-pseudo-invex at 

y on ΩE ∪ YE , �J2

(
gJ2 ◦ E

)
(⋅) is �j-E-quasi-invex at y on ΩE ∪ YE , �T2

(
hT2 ◦ E

)
(⋅) 

is �t-E-quasi-invex at y on ΩE ∪ YE . 
  Then 

(36)
∑

j∈J2

�j∇
(
gj ◦ E

)
(y)�(E(x),E(y)) ≦ 0,

(37)
∑

t∈T2

�t∇
(
ht ◦ E

)
(y)�(E(x),E(y)) ≦ 0.

(f ◦ E)(x) ≮ (f ◦ E)(y) +

[
𝜇J1

(
gJ1◦ E

)
(y) + 𝜉T1

(
hT1◦ E

)
(y)

]
e.

(38)(f ◦ E)(x) ≰ (f ◦ E)(y) +

[
𝜇J1

(
gJ1 ◦ E

)
(y) + 𝜉T1

(
hT1◦ E

)
(y)

]
e.
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Theorem  5 (Mixed weak E-duality between (MOP) and (VMDE)). Let E(x) and 
(y, �,�, �) be any feasible solutions of the problems (MOP) and (VMDE ), respec-
tively. Further, assume that all hypotheses of Theorem  4 are fulfilled. Then, mixed 
weak E-duality between (MOP) and (VMDE ) holds, that is,

Theorem  6 (Mixed strong duality between (VPE ) and (VMDE ) and also strong 
E-duality between (MOP) and (VMDE)). Let x ∈ ΩE be a weak Pareto solution (a 
Pareto solution) of the E-vector optimization problem (VPE ) and the E-Guignard 
constraint qualification [4] be satisfied at x. Then there exist � ∈ Rp , � ≠ 0 , � ∈ Rm , 
� ≧ 0 , � ∈ Rq , � ≧ 0 such that 

(
x, �,�, �

)
 is feasible for the problem (VMDE ) and 

the objective functions of (VPE ) and (VMDE ) are equal at these points. If also weak 
duality (Theorem 2) holds between (VPE ) and (VMDE ), then 

(
x, �,�, �

)
 is a (weak) 

maximum point for (VMDE).In other words, if E(x) ∈ Ω is a (weak) E-Pareto solu-
tion of the problem (MOP), then 

(
x, �,�, �

)
 is a (weak) efficient solution of a maxi-

mum type in the vector mixed dual problem (VMDE ). This means that the mixed 
strong E-duality holds between the problems (MOP) and (VMDE).

Proof Since x ∈ ΩE is a (weak) Pareto solution of the problem (VPE ) and the E-Guignard 
constraint qualification [4] is satisfied at x , by Theorem  1, there exist � ∈ Rp , � ≠ 0 , 
� ∈ Rm , � ≧ 0 , � ∈ Rq , � ≧ 0 such that 

(
x, �,�, �

)
 is a feasible solution of the problem 

(VMDE ). This means that the objective functions of (VPE ) and (VMDE ) are equal. If we 
assume that weak duality (Theorem 2) holds between (VPE ) and (VMDE ), 

(
x, �,�, �

)
 is 

a (weak) maximum point for (VMDE ) in the sense of mixed. 
Moreover, we have, by Lemma 1, that x ∈ ΩE . Since  x ∈ Ω

E
 is a weak Pareto  

solution of the problem (VPE ), by Lemma 2, it follows that E
(
x
)
 is a weak E-Pareto 

solution in the problem (MOP). Then, by the strong duality between (VPE ) and 
(VMDE ), we conclude that also the mixed strong E-duality holds between the prob-
lems (MOP) and (VMDE ). This means that if E

(
x
)
∈ Ω is a weak E-Pareto solution 

of the problem (MOP), there exist � ∈ Rp , � ≠ 0 , � ∈ Rm , � ≧ 0 , � ∈ Rq , � ≧ 0 such 
that 

(
x, �,�, �

)
 is a weakly efficient solution of a maximum type in the mixed dual 

problem (VMDE).

Theorem 7 (Mixed converse duality between (VPE ) and (VMDE)). Let 
(
x, �,�, �

)
 be 

a (weakly) efficient solution of a maximum type in mixed E-dual problem (VMDE ) 
such that x ∈ ΩE . Moreover, that the objective functions fi , i ∈ I , are �i-E-invex with 
respect to � at x on ΩE ∪ YE , the constraint functions gj , j ∈ J , are �j-E-invex with 
respect to � at x on ΩE ∪ YE , the functions ht , t ∈ T+

(
E
(
x
))

 and the functions −ht , 
t ∈ T−

(
E
(
x
))

 , are �t-E-invex with respect to � at x on ΩE ∪ YE . Then x is a (weak) 
Pareto solution of the problem (VPE).

(f ◦ E)(x) ≰ (f ◦ E)(y) +

[
𝜇J1

(
gJ1◦ E

)
(y) + 𝜉T1

(
hT1◦ E

)
(y)

]
e.
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Proof Let 
(
x, �,�, �

)
 be a (weakly) efficient solution of a maximum type in mixed 

E-dual problem (VMDE ) such that x ∈ ΩE . By contradiction, suppose that

Thus,

Multiplying each inequality (39) by �i and then adding both sides of the  
resulting inequalities, we get

Since 
∑p

i=1
�i = 1 , the following inequality

holds. By x ∈ ΩE and 
(
x, �,�, �

)
∈ ΓE , we have

Combining (40)−(43), we get

(f ◦ E)(x) < (f ◦ E)(x) +

[
𝜇J1

(
gJ1◦ E

)
(x) + 𝜉T1

(
hT1◦ E

)
(x)

]
e.

(39)
(
fi ◦ E

)
(x) <

(
fi ◦ E

)
(x) +

[∑

j∈J1

𝜇j

(
gj ◦ E

)
(x) +

∑

t∈T1

𝜉t
(
ht ◦ E

)
(x)

]
, i ∈ I.

p∑

i=1

𝜆i
(
fi ◦ E

)
(x) <

p∑

i=1

𝜆i
(
fi ◦ E

)
(x) +

[∑

j∈J1

𝜇j

(
gj ◦ E

)
(x) +

∑

t∈T1

𝜉t
(
ht ◦ E

)
(x)

] p∑

i=1

𝜆i.

p∑

i=1

𝜆i
(
fi ◦ E

)
(x) <

p∑

i=1

𝜆i
(
fi ◦ E

)
(x) +

∑

j∈J1

𝜇j

(
gj ◦ E

)
(x) +

∑

t∈T1

𝜉t
(
ht ◦ E

)
(x)

(40)

p∑

i=1

𝜆i
(
fi ◦ E

)
(x) +

∑

j∈J1

𝜇j

(
gj ◦ E

)
(x) +

∑

t∈T1

𝜉t
(
ht ◦ E

)
(x) <

p∑

i=1

𝜆i
(
fi ◦ E

)
(x) +

∑

j∈J1

𝜇j

(
gj ◦ E

)
(x) +

∑

t∈T1

𝜉t
(
ht ◦ E

)
(x),

(41)
p∑

i=1

𝜆i
(
fi ◦ E

)
(x) <

p∑

i=1

𝜆i
(
fi ◦ E

)
(x),

(42)
∑

j∈J2

�j

(
gj ◦ E

)
(x) ≦

∑

j∈J2

�j

(
gj ◦ E

)
(x),

(43)
∑

t∈T2

�t
(
ht ◦ E

)
(x) =

∑

t∈T2

�t
(
ht ◦ E

)
(x).
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By assumption, 
(
x, �,�, �

)
 is feasible in (VMDE ). Hence,

Since x ∈ ΩE and x ∈ ΩE, one has

Since the functions fi , i ∈ I , gj , j ∈ J , ht , t ∈ T+ , and −ht, t ∈ T− , are V-E-invex 
at x on ΩE ∪ YE , by Definition 2, the following inequalities

hold, respectively. Combining (41) and (47), we have

Since 𝛼i(E(x),E(x)) > 0 , i = 1, 2, ..., p, the above inequalities yield

Multiplying (52) by the corresponding Lagrange multipliers, we get that the  
following inequality

holds. Multiplying inequalities (48)−(50) by the corresponding Lagrange mul- 
tipliers, respectively, we obtain

(44)

p∑

i=1

𝜆i
(
fi ◦ E

)
(x) +

m∑

j=1

𝜇j

(
gj ◦ E

)
(x) +

q∑

t=1

𝜉t
(
ht ◦ E

)
(x) <

p∑

i=1

𝜆i
(
fi ◦ E

)
(x) +

m∑

j=1

𝜇j

(
gj ◦ E

)
(x) +

q∑

t=1

𝜉t
(
ht ◦ E

)
(x).

(45)
m∑

j=1

�jgj(E(x)) ≦

m∑

j=1

�jgj(E(x)).

(46)
q∑

t=1

�tht(E(x)) =

q∑

t=1

�tht(E(x)).

(47)fi(E(x)) − fi
(
E
(
x
))

≧ �i(E(x),E(x))∇fi
(
E
(
x
))
�
(
E(x),E

(
x
))
, i ∈ I,

(48)
gj(E(x)) − gj(E

(
x
)
) ≧ �j(E(x),E(x))∇gj

(
E
(
x
))
�
(
E(x),E

(
x
))
, j ∈ J

(
E
(
x
))
,

(49)
ht(E(x)) − ht(E

(
x
)
) ≧ �t(E(x),E(x))∇ht

(
E
(
x
))
�
(
E(x),E

(
x
))
, t ∈ T+

(
E
(
x
))
,

(50)
−ht(E(x)) + ht(E

(
x
)
) ≧ −�t(E(x),E(x))∇ht

(
E
(
x
))
�
(
E(x),E

(
x
))
, t ∈ T−

(
E
(
x
))

(51)𝛼i(E(x),E(x))𝜆i∇
(
fi ◦ E

)(
x
)
𝜂
(
E(x),E

(
x
))

< 0.

(52)𝜆i∇
(
fi◦E

)(
x
)
𝜂
(
E(x),E

(
x
))

< 0.

(53)

[
p∑

i=1

𝜆i∇
(
fi ◦ E

)(
x
)
]
𝜂
(
E(x),E

(
x
))

< 0
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Combining the above inequalities with (45)−(46), we obtain that the inequalities

hold. Since 𝛽j(E(x),E(x)) > 0 , j = 1, 2, ...,m, 𝛾t(E(x),E(x)) > 0, t = 1, 2, ..., q, the 
above inequalities yield, respectively

Adding both sides of the inequalities (60)−(62) and (53), we obtain that  
the inequality

holds, contradicts the first constraint of the vector mixed E-dual problem (VMDE ). 
This means that the proof of this theorem is completed.

Theorem 8 (Mixed converse E-duality between (MOP) and (VMDE)). Let 
(
x, �,�, �

)
 

be a (weakly) efficient solution of a maximum type in mixed dual problem (VMDE ). 
Further, assume that all hypotheses of Theorem 7 are fulfilled. Then E(x) ∈ Ω is a 
(weak) E-Pareto solution of the problem (MOP).

Proof The proof of this theorem follows directly from Lemma 2 and Theorem 7.

(54)
�jgj(E(x)) − �jgj(E(y)) ≧ �j(E(x),E(x))�j∇gj

(
E
(
x
))
�
(
E(x),E

(
x
))
, j ∈ J

(
E
(
x
))
,

(55)
�tht(E(x)) − �tht(E

(
x
)
) ≧ �t(E(x),E(x))�t∇ht

(
E
(
x
))
�
(
E(x),E

(
x
))
, t ∈ T+

(
E
(
x
))
,

(56)
�tht(E(x)) − �tht(E

(
x
)
) ≧ �t(E(x),E(x))�t∇ht

(
E
(
x
))
�
(
E(x),E

(
x
))
, t ∈ T−

(
E
(
x
))
.

(57)�j(E(x),E(x))�j∇gj
(
E
(
x
))
�
(
E(x),E

(
x
))

≦ 0, j ∈ J
(
E
(
x
))
,

(58)�t(E(x),E(x))�t∇ht
(
E
(
x
))
�
(
E(x),E

(
x
))

≦ 0, t ∈ T+
(
E
(
x
))
,

(59)�t(E(x),E(x))�t∇ht
(
E
(
x
))
�
(
E(x),E

(
x
))

≦ 0, t ∈ T−
(
E
(
x
))

(60)�j∇gj
(
E
(
x
))
�
(
E(x),E

(
x
))

≦ 0, j ∈ J
(
E
(
x
))
,

(61)�t∇ht
(
E
(
x
))
�
(
E(x),E

(
x
))

≦ 0, t ∈ T+
(
E
(
x
))
,

(62)�t∇ht
(
E
(
x
))
�
(
E(x),E

(
x
))

≦ 0, t ∈ T−
(
E
(
x
))
.

(63)

[ p∑

i=1

𝜆i∇
(
fi ◦ E

)(
x
)
+

m∑

j=1

𝜇j∇gj
(
E
(
x
))

+

q∑

t=1

𝜉t∇ht
(
E
(
x
))]

𝜂
(
E(x),E

(
x
))

< 0
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Theorem 9 (Mixed restricted converse duality between (VPE ) and (VMDE)). Let x 
and 

(
y, �,�, �

)
 be feasible solutions for the problems (VPE ) and (VMDE ), respec-

tively, such that

Moreover, assume that �i fi , i ∈ I , are �i-E-pseudo-invex at y on ΩE ∪ YE , the func-
tions �J2

(
gJ2◦ E

)
(⋅) is �j-E-quasi-invex at y on ΩE ∪ YE , �T2

(
hT2◦ E

)
(⋅) is �t-E- 

quasi-invex at y on ΩE ∪ YE . Then x = y , that is, x is a (weak) Pareto solution of the prob- 
lem (VPE ) and 

(
y, �,�, �

)
 is a (weakly) efficient point of maximum type for the  

problem (VMDE).

Proof The proof of this theorem follows directly from Theorem 2 and Theorem 4.

Theorem 10 (Mixed restricted converse E-duality between (MOP) and (VMDE)). Let (
y, �,�, �

)
 be a feasible solution of the problem (VMDE ). Further, assume that there 

exist E
(
x
)
∈ Ω such that x = y . If all hypotheses of Theorem  9 are fulfilled, then 

E
(
x
)
 is an E-Pareto solution of the problem (MOP) and 

(
y, �,�, �

)
 is a weakly effi-

cient solution of maximum type for the problem (VMDE).

Proof The proof of this theorem follows directly from Lemma 2 and Theorem 9.

4  Conclusion

This paper analyzes mixed E-duality results for E-differentiable V-E-invex multiob-
jective programming problems with both inequality and equality constraints. The 
so-called vector mixed E-dual problem has been formulated for such nonconvex 
(not necessarily)differentiable multiobjective programming problems. Then, various 
mixed E-duality theorems between the considered E-differentiable vector optimi-
zation problem and its mixed dual problem have been proved under (generalized) 
V-E-invexity hypotheses. The results established in this paper for E-differentiable 
vector optimization problems extend and generalize similar duality results in the 
sense of mixed established under other concepts of E-differentiable (generalized) 
convexity and also duality results in the sense of Mond-Weir and in the sense of 
Wolfe established for such multicriteria optimization problems.

However, some interesting topics for further research remain. It would be of 
interest to investigate whether it is possible to prove similar results for other classes 
of E-differentiable vector optimization problems. We shall investigate these ques-
tions in subsequent papers.
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(64)(f ◦ E) (x) < (f ◦ E) (y) +

[∑

j∈J1

𝜇j

(
gj ◦ E

)
(y) +

∑

t∈T1

𝜉t
(
ht ◦ E

)
(y)

]
e. (≤)
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