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Abstract
We provide an exact optimization algorithm for the electric vehicle routing problem 
with multiple recharge technologies. Our branch-and-cut-and-price algorithm relies 
upon a path-based formulation, where each column in the master problem repre-
sents a sequence of customer visits between two recharge stations instead of a whole 
route. This allows for massive decomposition, and parallel implementation of the 
pricing phase, exploiting the large number of independent pricing sub-problems. 
The algorithm could solve instances with up to thirty customers, nine recharge sta-
tions, five vehicles and three technologies to proven optimality. Near-optimal heu-
ristic solutions were obtained with a general-purpose MIP solver from the columns 
generated at the root node.

Keywords Electric vehicle routing · Column generation · Cutting planes · Dynamic 
programming

1 Introduction

The electric vehicle routing problem (EVRP) is a variation of the vehicle routing 
problem (VRP) in which the fleet is made of electric vehicles (EVs). The use of 
EVs in distribution logistics has been extensively investigated by Pelletier et al. [22]. 
New research on optimization techniques is required because of the specific charac-
teristic of EVs, especially their limited autonomy: EVs may need to recharge their 
batteries to be able to serve all customers assigned to their routes. The recharge can 
be achieved by visiting suitable recharge stations, available at known sites in the 
road network. Section 1.
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The EVRP is by far harder than the classical VRP, both because recharge deci-
sions must be taken in addition to routing decisions and because distance minimiza-
tion is no longer the only optimization criterion but more complex objective func-
tions must be considered.

The scientific literature on the EVRP has rapidly developed, starting from the 
seminal papers by Conrad and Figliozzi [9] and Erdogan and Miller-Hooks [11]. An 
up-to-date and comprehensive survey can be found in Keskin, Laporte and Catay 
[16], where the authors list 49 EVRP papers, classifying them according to the 
assumptions on the recharge policy, the consumption function, the fleet composi-
tion, the presence of multiple recharge technologies, the objective function terms 
and the constraints such as time windows and capacities.

In this paper, we concentrate on the EVRP with multiple recharge technologies, 
first introduced by Felipe et al. [13], where each recharge station may be equipped 
with one or more recharge technologies and each technology is characterized by a 
different recharge rate and energy price, so that faster recharges are possible but they 
are more expensive. The need of selecting the optimal technology for each recharge 
operation adds significant complexity to the problem. In presence of time con-
straints, such as constraints on the maximum duration of routes, it may be necessary 
to select a faster recharge technology even if it is more expensive; on the contrary, 
using a cheaper technology may allow for cost reduction when time is not a binding 
resource.

The relevance of this variation of the EVRP has been shown in the literature. In 
their survey Keskin, Laporte and Catay [16] mention several papers dealing with 
the EVRP with multiple technologies and all of them proposed heuristic algorithms: 
Sassi, Cherif and Oulamara [23], Li-Ying and Yuan-Bin [19], Sweda, Dolinskaya 
and Klabjan [27] (single-vehicle), Montoya et  al. [21], Keskin and Catay [15], 
Villegas et al. [28] and Koc, Jabali and Laporte [17].

In this paper, we propose an exact optimization branch-and-cut-and-price algo-
rithm for the EVRP with multiple technologies. In addition, we also consider a cost 
term due to battery amortization, represented by a fixed cost for each recharge oper-
ation, as well as constraints on maximum route duration, maximum number of avail-
able vehicles and vehicle capacity.

The BCP algorithm we have developed relies upon a path-based formulation, 
where each column in the master problem represents a sequence of customer visits 
in between two recharge stations instead of a whole route; such an unusual approach 
allows us to get insights into the properties of such an interesting combinatorial sub-
structure. Indeed, similar philosophies have been exploited in the context of airline 
transportation since seminal papers like [2]: sequences of connected flights that 
begin and end at maintenance stations, usually termed strings, play the role of our 
paths. Furthermore, our formulation allows massive decomposition and is therefore 
amenable to be solved with a parallel column generation algorithm. Our computa-
tional results show that it provides an appealing trade-off between the quality of the 
bounds and the computing effort. In particular, our algorithms prove to scale very 
well in the number of CPU cores available for computations.

Our computational tests have been done on benchmark instances from the VRP 
literature, suitably modified to include multiple technologies. The BCP algorithm 
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could solve instances with up to thirty customers, nine recharge stations, five vehi-
cles and three technologies to proven optimality. We also evaluated the quality of the 
heuristic solutions that can be obtained from the BCP algorithm with rounding tech-
niques, benchmarking them against tailored local search algorithms from the litera-
ture. The results show that the presence of multiple technologies makes the EVRP 
considerably harder and that the performances of the BCP algorithm heavily depend 
on the structure of the instances (e.g., clustered vs non-clustered customers) and not 
only on their size.

2  Problem Description

Let G = (N ∪R, E) be a given weighted undirected graph whose vertex set is the 
union of a set N  of N customers and a set R of R recharge stations. A distinguished 
station in R is the depot, numbered 0, where vehicle routes start and terminate.

All customer vertices in N  must be visited by a single vehicle; split delivery is 
not allowed. Each customer i ∈ N  is characterized by a demand qi.

Stations, i.e., vertices in R , can be visited at any time if needed. Multiple visits 
to them (also simultaneously) and partial recharges are also allowed. We consider a 
set H of different technologies for battery recharge. For each technology h ∈ H we 
assume a given recharge speed �h and a given recharge unit cost �h . At each visit to 
a recharge station, vehicles are allowed to use only one of the technologies available 
at the station. We denote as Hj ⊆ H the set of technologies available at each station 
j ∈ R.

All vertices i ∈ R ∪N  are also characterized by a service time si . In the case of 
customers, it represents the time taken by delivery operations; in the case of recharge 
stations, it represents a fixed time to be spent to set up the recharge operations, indepen-
dently of the amount of recharge. It does not include the actual recharging time.

Non-negative coefficients ta and ea are associated with each edge a ∈ E , to, 
respectively, represent the time and the energy consumption for traveling along a in 
either direction.

We consider a fleet made of a set K of K identical vehicles with given capac-
ity Q and equipped with batteries of given capacity B. The duration of each route 
is required to be within a given limit T representing the duration of drivers’ work 
shifts.

A feasible route is a closed walk complying with the following set of constraints:

– the route must include the depot;
– the sum of the demands of the customers visited along the route must not exceed 

the vehicle capacity;
– the total duration of the route must not exceed the total allowed duration T; the 

route duration is given by three terms:

– traveling time, i.e., the sum of the terms  ta for each edge  a ∈ E in the route;
– service time, i.e., the sum of the terms  si for each vertex  i ∈ N ∪R visited 

along the route;
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– recharge time at the stations (which is a decision variable, owing to the pos-
sibility of partial recharges), excluding the depot;

– the level of battery charge must be kept between 0 and B at any time, taking into 
account that:

– the amount of energy consumed by a vehicle along a path is the sum of the 
terms  ea for each edge  a ∈ E in the path;

– the amount of energy recharged at any station  i ∈ R is given by  �i times the 
(variable) recharge time at  i ∈ R.

A set of feasible routes is a feasible solution if all customers are visited once and no 
more than K vehicles are used.

As opposed to classical vehicle routing problems, where one wants to minimize 
the overall distance traveled, the objective to be optimized is the overall recharge 
cost, consisting of a fixed cost and a variable cost. Since batteries allow for a limited 
number of recharge cycles during their operational life, we associate a fixed cost 
with each recharge operation; this cost, indicated by f, is given by the cost of a bat-
tery divided by the estimated number of recharge cycles after which the battery must 
be replaced. The variable cost represents the usual objective function depending on 
the total distance traveled, but it also depends on the recharge technology selected at 
each visited station. At any station i ∈ R the variable cost associated with a recharge 
operation is proportional to the amount of recharged energy, but it also depends on 
the chosen recharge technology h ∈ Hi through a coefficient �h.

3  The Model

Branch-and-cut-and-price (BCP) algorithms have been proposed to solve different 
variations of the EVRP. Recent contributions include Desaulniers et al. [10], Hiermann 
et  al. [14], Andelmin and Bartolini [1], Breunig et  al. [6], Bruglieri, Mancini and 
Pisacane [7]. All these papers consider the problem with single technology and 
sometimes with even more simplistic assumptions, as in the cases with no partial 
recharge allowed and with fixed recharge time. In these BCP algorithms, each column 
corresponds to a feasible route, which is common in the VRP literature.

In this paper, we investigate a different formulation, that exploits the particular 
structure of the EVRP. In our model each column corresponds to a feasible path, 
i.e., a sequence of vertices visited between two recharge stations without any other 
recharge station in between. This choice is motivated by two main observations.

First, each feasible route can be decomposed into feasible paths and feasible paths 
can be computed independently for each pair of recharge stations. Therefore, the 
pricing sub-problem can be solved in parallel and independently for each pair of 
recharge stations. As shown in Section 5, our computational results show that the 
features of the path-based formulation nicely fit the advantages offered by a parallel 
implementation.

Second, customers must be visited only once while recharge stations can be visited 
multiple times, also by the same vehicle. A possible approach is therefore to develop 
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models with node duplication in which several copies of each station are included in 
the graph, to correctly distinguish different recharge operations of a same vehicle at a 
same station. Another option is to develop models based on arc duplication, where each 
pair of customers is linked by several arcs, each one corresponding to a path visiting 
only recharge stations; this generates a multi-graph whose size must be taken under 
control by suitable dominance tests. The two alternatives have been extensively com-
pared by Koyuncu and Yavuz [18]. Notably, the approach investigated in this paper 
needs neither node duplication nor arc duplication. In principle, a tailored node dupli-
cation operation could be needed for some specific station if all branching techniques 
described in the remainder fail to produce an integer solution, but this never occurred in 
our computational tests.

3.1  Feasible Paths

We define a path to be a sequence of customers visited by the same vehicle between 
two recharge stations (including the depot). For the sake of clarity, it is worth 
remarking the difference with respect to path-based models (e.g., Andelmin and 
Bartolini [1]) where a path is defined as a sequence of recharge stations between two 
customers.

An “empty path” is a path that directly connects two recharge stations without 
visiting any customer in between. We indicate with Λ the set of all feasible paths and 
with Λ[u,v] the set of all feasible paths between vertices u ∈ R and v ∈ R ; the two 
endpoints can coincide, because it is allowed for a vehicle to leave a station, to visit 
some customers and to go back to the same station. We indicate by �u the minimum 
travel time between the depot and vertex u. Assuming P to be an arbitrary subset 
of vertices, notation EP indicates the subset of edges in E with both endpoints in P. 
Notation Δi indicates the subset of edges in E with an endpoint in vertex i. Binary 
variables yl

i
 take value 1 if and only if customer i ∈ N  is visited along path l ∈ Λ[u,v] ; 

they are decision variables in the pricing subproblem and fixed coefficients for each 
column in the master problem. Binary variables zl

a
 are edge variables for each edge 

a ∈ E and each path l ∈ Λ[u,v] . With this notation, we can now state the formal defi-
nition of the set of paths for each pair of stations [u, v].

(1)Λ[u,v] = {(yl, zl) ∶
∑
a∈Δi

zl
a
= 2yl

i
∀i ∈ N

(2)
∑
a∈Δu

zl
a
=

∑
a∈Δv

zl
a
= 1 if u ≠ v

(3)
∑
a∈Δu

zl
a
=

∑
a∈Δv

zl
a
= 2 if u = v

(4)
∑
a∈Δj

zl
a
= 0 ∀j ∈ R�{u, v}
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Constraints (1) are degree constraints; constraints () state that u and v must be the 
endpoint of one selected arc if they are different; constraints (3) state that a self-loop 
must be incident to a station twice; constraints (4) forbid visits to stations differ-
ent from u and v; constraints (5) are subtour elimination constraints; constraints (6), 
(7) and (8) impose limits on the consumption of capacity, time and energy, respec-
tively, on each path independently. According to constraints (9), zl

a
 are allowed to 

take value 2, to include those paths with the same endpoint station and including 
only one customer.

For each path, that is for each column in the master problem, we also need some 
additional information. Coefficients ql indicate the amount of demand served along 
path l:

Coefficients tl indicate the traveling and service time spent along path l:

That is, in tl we account for traveling time and customer service time, and half of 
the service time in the endpoint stations, as the remaining half is accounted in the 
adjacent paths while linking them into full routes. Coefficients el indicate the energy 
consumption along path l:

Finally cl indicates the fixed cost for recharge for each path l ∈ Λ[u,v]:

(5)
∑
a∈EP

zl
a
≤ |P| − 1∀S ⊆ N ∪R�{u, v}, P ≠ �

(6)
∑
i∈N

qiy
l
i
≤ Q

(7)
∑
a∈E

taz
l
a
+
∑
i∈N

siy
l
i
+ su + sv + �u + �v ≤ T

(8)
∑
a∈E

eaz
l
a
≤ B

yl
i
∈ {0, 1}∀i ∈ N

(9)zl
a
∈ {0, 1, 2}∀a ∈ E}.

(10)ql =
∑
i∈N

qiy
l
i
.

(11)tl =
∑
a∈E

taz
l
a
+
∑
i∈N

siy
l
i
+

1

2
(su + sv).

(12)el =
∑
a∈E

eaz
l
a
.
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We associate a binary variable �lk with each feasible path l ∈ Λ =
⋃

[u,v] Λ[u,v] and 
each vehicle k ∈ K : �lk takes value 1 if and only if path l is selected to be part of the 
solution and is assigned to vehicle k. It is necessary to have as many copies of the 
path variables as the number of different vehicles in order not to allow capacity, time 
and energy to be traded between vehicles. Unfortunately this introduces symmetry, 
i.e., dual degeneracy, in the master problem

3.2  The Master Problem

In our notation wl
j
 indicates how many times vertex j ∈ R is an endpoint of path l ∈ Λ . 

Extending the notation above, for an arbitrary S ⊆ R , we indicate as ΛS the set of paths 
with both endpoints in subset S (that is, ΛR = Λ).

Suffixes e and ne stand for “empty” and “non-empty,” respectively: so, Λe (see con-
straints (27)) is the set of empty paths, while Λne

S
 (see constraints (26)) is the set of non-

empty paths with both endpoints in S. Finally, LS indicates the set of paths with one 
endpoint in subset S.

Each continuous non-negative variable �jhk indicates the amount of energy recharged 
by vehicle k ∈ K at station j ∈ R with technology h ∈ Hj . Each discrete variable �jk 
indicates how many times vehicle k ∈ K visits station j ∈ R.

The master problem reads as follows.

(13)cl = f .

(14)minimize
∑
l∈Λ

∑
k∈K

cl�lk +
∑
k∈K

∑
j∈R

∑
h∈Hj

�h�jhk

(15)s.t.
∑
l∈Λ

wl
j
�lk = 2�jk ∀j ∈ R,∀k ∈ K

(16)�0k ≤ 1 ∀k ∈ K

(17)
∑
l∈LS

𝜃lk ≥ 2
∑
l�∈¶ne

S

yl
�

i
𝜃l�k ∀S ⊆ R�{0}, ∀i ∈ N, ∀k ∈ K

(18)
∑
k∈K

∑
l∈Λ

yl
i
�lk ≥ 1 ∀i ∈ N

(19)
∑
l∈Λ

ql�lk ≤ Q ∀k ∈ K

(20)
∑
l∈Λ

tl�lk +
∑

j∈R�{0}

∑
h∈Hj

�jhk

�h
≤ T ∀k ∈ K
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Degree constraints (15) impose that each station vertex has even degree, i.e. that 
the edge variables � define an Euler graph. Constraints (16) state that each vehi-
cle must visit the depot once. Constraints (17) are sub-tour elimination constraints, 
as illustrated in Fig. 1. Including coefficients yl

i
 allows us to guarantee the sum on 

the right-hand side to always be binary, and therefore to have only one constraint 
aggregating all the elements of ¶ne

S
 . Their number is therefore not exponential in the 

(21)
∑

l∈LS∪¶S

el𝜃lk −
∑
j∈S

∑
h∈Hj

𝛿jhk ≤
1

2
B
∑
l∈LS

𝜃lk ∀S ⊆ R, ∀k ∈ K

(22)
∑
j∈S

∑
h∈Hj

𝛿jhk −
∑
l∈¶S

el𝜃lk ≤
1

2
B
∑
l∈LS

𝜃lk ∀S ⊆ R, ∀k ∈ K

(23)�0k ≤ �0 k−1 ∀k ∈ K

(24)
∑
j∈R

�jk ≤
∑
j∈R

�j k−1 ∀k ∈ K

(25)�jhk ≥ 0 ∀j ∈ R,∀h ∈ Hj,∀k ∈ K

(26)�lk ∈ {0, 1} ∀l ∈ Λne, ∀k ∈ K

(27)�lk integer ∀l ∈ Λe, ∀k ∈ K

(28)�jk integer ∀j ∈ R,∀k ∈ K.

Fig. 1  Structure of subtour elim-
ination constraints. Given any 
subset S of recharge stations, 
not including the depot 0, if a 
solution contains a non-empty 
path l′ with both endpoints in S 
( l� ∈ ¶ne

S
 ), then it must also con-

tain at least two paths connect-
ing stations in S with stations 
not in S (paths in L

S
)
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number of customers, but only in the number of stations and technologies: they can 
be generated either when needed or since the beginning, depending on the size of 
the instance. Constraints (18) are covering constraints, stating that each customer 
must be visited. Constraints (19) and (20) are resource constraints on capacity and 
time.

Constraints (21) and (22) impose lower and upper bounds to the amounts of 
energy recharged in each subset of stations. Intuitively, constraints (21) have 
the following meaning. Every time a vehicle visits a subset S ∈ R it is allowed 
to enter it with full battery and leave with empty battery; hence, the difference 
between the amount of energy consumed to travel to, within, and from subset S 
(first term of the left hand side) and the total amount of energy recharged within 
S (second term on the left hand side) is upper bounded by the battery capacity 
B multiplied by the number of times the vehicle enter and leaves S. Symmetri-
cally, constraints (22) impose an upper bound on the difference between the 
total recharge and the total consumption, because of the limited battery capac-
ity. A formal proof of the validity of constraints (21) and (22) is given in [5].

Inequalities (23) and (24) are symmetry breaking constraints. Finally constraints (25) 
are non-negativity conditions on variables � , constraints (26) and (27) are integrality 
restrictions on variables � and constraints (28) are integrality restrictions on variables �.

Remark. The formulation given above allows for convex combinations of 
recharges with different technologies in a same station and aggregates the over-
all amount of energy recharged by the same vehicle in the same station using the 
same technology over all its visits. The rationale for accepting this relaxation 
when solving the master problem is that a convex combination of two technologies 
can belong to an optimal recharge policy along a given route only when time con-
straints are binding and the value of the maximum route duration falls in a range 
which is smaller than |B(�� − ���)| , where �′ and �′′ indicate the recharge speed of 
the two technologies; this is unlikely to happen in randomly generated instances. 
The constraint that forbids convex combinations of recharges is enforced incre-
mentally through a suitable branching technique, fully detailed in Section 4.

3.2.1  Reduced Costs

From the constraints of the master problem we can obtain the expression of the 
reduced costs clk for each path l ∈ Λuv connecting stations u ∈ R and v ∈ R and 
for each vehicle k ∈ K. We indicate the dual variables with the symbol �(n) , where 
n is the index of the corresponding constraint set in the master problem. We 
assume that all inequality constraints in the master problem have been written in 
≥ form, so that their corresponding dual variables are non-negative. The reduced 
cost of each column corresponding to path l ∈ Λ[u,v] and vehicle k ∈ K is given by 
the following expression:
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We now replace ql , tl , el and cl with their definitions (10)-(13) and then we group all 
terms that only depend on u, v and k, and not on y and z variables, in a unique term

which is a constant for each given pair [u, v] and each vehicle k. Now the objective 
function of the pricing problem for each l ∈ Λ[u,v] and each vehicle k ∈ K can be 
restated as follows.

The objective function can be rewritten, grouping three different terms: fixed costs, 
vertex costs and edge costs.

Now we define:

and we obtain, for each l ∈ Λ[u,v] and each vehicle k ∈ K

clk = cl −
∑
j∈R

wl
j
𝛽
(15)

jk
−

∑
S⊆R�{0}∶l∈LS

∑
l�∈¶ne

S

∑
i∈N

𝛽
(17)

Sik
+ 2

∑
S⊆R�{0}∶l∈¶ne

S

∑
i∈N

yl
i
𝛽
(17)

Sik

−
∑
i∈N

yl
i
𝛽
(18)

i
+ ql𝛽

(19)

k
+ tl𝛽

(20)

k

−
1

2
B

∑
S∶l∈LS

𝛽
(21)

Sk
+ el

∑
S∶l∈LS∪¶S

𝛽
(21)

Sk
−

1

2
B

∑
S∶l∈LS

𝛽
(22)

Sk
− el

∑
S∶l∈¶S

𝛽
(22)

Sk
.

𝜎uvk =f −
∑
j∈R

wl
j
𝛽
(15)

jk
−

∑
S⊆R�{0}∶l∈LS

∑
l�∈¶ne

S

∑
i∈N

𝛽
(17)

Sik

+
1

2
(su + sv)𝛽

(20)

k
−

1

2
B

∑
S∶l∈LS

(𝛽
(21)

k
+ 𝛽

(22)

k
)

clk = 𝜎uvk + 2
∑

S⊆R�{0}∶l∈¶ne
S

∑
i∈N

yl
i
𝛽
(17)

Sik
−
∑
i∈N

yl
i
𝛽
(18)

i
+
∑
i∈N

qiy
l
i
𝛽
(19)

k

+
∑
a∈E

taz
l
a
𝛽
(20)

k
+
∑
i∈N

siy
l
i
𝛽
(20)

k
+

∑
S∶l∈LS

∑
a∈E

eaz
l
a
𝛽
(21)

Sk
+

∑
S∶l∈¶S

∑
a∈E

eaz
l
a
(𝛽

(21)

Sk
− 𝛽

(22)

Sk
)

clk = 𝜎uvk +
�
i∈N

⎛
⎜⎜⎝
2

�
S⊆R�{0}∶l∈¶ne

S

𝛽
(17)

Sik
− 𝛽

(18)

i
+ qi𝛽

(19)

k
+ si𝛽

(20)

k

⎞
⎟⎟⎠
yl
i

+
�
a∈E

(ta𝛽
(20)

k
+ ea(

�
S∶l∈LS∪¶S

𝛽
(21)

Sk
−

�
S∶l∈¶S

𝛽
(22)

Sk
)zl

a
.

cvertex
iuvk

= 2
∑

S⊆R�{0}∶u∈S∧v∈S

𝛽
(17)

Sik
− 𝛽

(18)

i
+ qi𝛽

(19)

k
+ si𝛽

(20)

k

c
edge

auvk
= ta�

(20)

k
+ ea(

∑
S∶u∈S∨v∈S

�
(21)

Sk
−

∑
S∶u∈S∧v∈S

�
(22)

Sk
)

(29)clk = �uvk +
∑
i∈N

cvertex
iuvk

yl
i
+
∑
a∈E

c
edge

auvk
zl
a
.
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3.3  The Pricing Sub‑Problem

From the definition of path (1) - (8) and owing to the algebraic manipulations 
described in the previous subsection, the pricing sub-problem is formulated as 
follows.

Pricing variables yi (resp. za ) are encoded as master coefficients yl
i
 (resp. zl

a
 ) once an 

optimal path is found.

(30)minimize clk = �uvk +
∑
i∈N

cvertex
ik

yi +
∑
a∈E

c
edge

ak
za

(31)s.t.
∑
a∈Δi

za = 2yi ∀i ∈ N

(32)
∑
a∈Δu

za =
∑
a∈Δv

za = 1 if u ≠ v

(33)
∑
a∈Δu

za =
∑
a∈Δv

za = 2 if u = v

(34)
∑
a∈Δj

za = 0 ∀j ∈ R�{u, v}

(35)
∑
a∈ES

za ≤ |S| − 1 ∀S ⊆ N ∪R�{u, v}, S ≠ �

(36)
∑
a∈E

eaz
l
a
≤ B

(37)
∑
i∈N

qiyi ≤ Q

(38)
∑
a∈E

taza +
∑
i∈N

siyi + su + sv + �u + �v ≤ T

(39)yi ∈ {0, 1} ∀i ∈ N

(40)za ∈ {0, 1} ∀a ∈ E.
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3.3.1  An Exact Pricing Algorithm

The pricing sub-problem is solved to optimality for each u, v ∈ R and each k ∈ K by 
a bi-directional dynamic programming algorithm, where states correspond to partial 
paths. One main advantage of the path-based formulation is that recharge stations are 
not visited along the paths and hence we do not have to take into account the possi-
ble outcomes of recharge operations. Therefore the pricing sub-problem is merely 
combinatorial.

State. The state contains the following pieces of information:

– the last customer vertex  i ∈ N  that has been reached by the partial path;
– the subset  S ⊆ N  of customer vertices that have already been visited along the partial 

path;
– the maximum residual capacity  � that can be available after the operations at vertex 

i;
– the maximum residual time t that can be available after the operations at vertex i;
– the maximum residual amount of energy e that can be available after the operations 

at vertex i;
– the reduced cost  c of the partial path.

Initialization and termination. The initial empty partial path is represented by the follow-
ing states: (u, �,Q,T − su,B, �uvk) and (v, �,Q,T − sv,B, �uvk) . Bi-directional extension 
of labels terminates when half of a critical resource has been used. In the case of paths, it 
is reasonable to assume that energy is the binding resource; hence extensions are stopped 
when the value of e for the resulting labels would be smaller than B/2.

Extension. Consider a state (i, S�, ��, t�, e�, c�) associated with vertex i; when it is 
extended by appending an additional edge [i, j] to the partial path, it produces one or 
more states of the form (j, S��, ���, t��, e��, c��) . Extensions to recharge stations are not 
allowed; since node j ∈ N  is a customer vertex, the resource extension function is as 
follows:

Feasibility constraints. Not all states generated in this way are feasible. In particular 
they must comply with the following constraints:

S�� = S� ∪ {j}

��� = �� − qj
t�� = t� − tij − sj
e�� = e� − eij

c
��
= c

�
+ cvertex

jk
+ c

edge

ijk

j ∉ S�

��� ≥ 0

(e�� ≥ 0)

t�� ≥ 0
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Feasibility condition e′′ ≥ 0 is not checked because it is dominated by the termina-
tion condition e�� ≥ B∕2 which stops the bi-directional extension. Arcs (i, j) having 
eij > B∕2 are still considered during join.

Bounding. For each state generated by the dynamic programming algorithm 
we also compute a bound to the reduced cost that can be achieved, in order to 
early detect states that cannot lead to negative reduced cost solutions and to dis-
card them from further consideration. For this purpose a set of q-routes is pre-
computed for each station. In our case, a q-route is a minimum reduced cost path 
from any vertex i to the destination station requiring the use of at most q energy 
units. Such a path is not required to satisfy either time constraints or elementarity 
conditions; therefore, the set of q-routes for all integer values of q between 0 and 
B and for each vertex i can be computed in pseudo-polynomial time [8] once for 
each column generation iteration, before starting the pricing algorithm. Let �(i, q) 
be the costs of q-routes in vertex i and let (i, S, 𝜂, t, e, c̄) be a dynamic program-
ming state generated in vertex i. If c̄ + 𝜓(i, e) ≥ 0 , then the state can be discarded 
as no feasible extension can yield a negative reduced cost path. States are then 
evaluated (and possibly discarded) according to the best reduced cost that can be 
achieved with the corresponding residual amount of energy.

Dominance. Given two states (i, S�, ��, t�, e�, c�) and (i, S��, ���, t��, e��, c��) associ-
ated with the same vertex i, the former dominates the latter only if all these condi-
tions hold and at least one of the inequalities is strict.

Sets U′ and U′′ represent the sets of unreachable vertices, following the idea 
described in [12].

Join. When two partial paths, originating from u ∈ R and v ∈ R (where u and 
v may well be the same recharge station), are joined together to produce a com-
plete path, the following feasibility tests are done on the two corresponding labels 
(i, S�, ��, t�, e�, c

�
) and (j, S��, ���, t��, e��, c��):

The reduced cost of the resulting path is

The Join phase goes on until a feasible (acyclic) path is found with negative reduced 
cost. As soon as such a path is found, a corresponding column is inserted into the 

S� ∪ U� ⊆ S�� ∪ U��

𝜂� ≥ 𝜂��

t� ≥ t��

e� ≥ e��

c
�
≤ c

��
.

S� ∩ S�� = �

(Q − ��) + (Q − ���) ≤ Q

(T − t�) + (T − t��) + tij ≤ T

(B − e�) + (B − e��) + eij ≤ B

c = c
�
+ c

��
+ c

edge

ijk
.
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master problem and the Join step ends. At the contrary, if no path is found with 
negative reduced cost during Join, pricing stops.

To speed up the pricing algorithm we proceed as follows. First, the set of 
partial paths originating from each station is computed independently. Then all 
pairs of stations are considered, and the corresponding partial paths are tenta-
tively joined. We remark that, due to the contribution of the subtour elimina-
tion constraints dual variables, the same path can have different reduced cost for 
different pairs of stations. Therefore, we delay the reduced cost computation of 
each path at this stage.

Speedup techniques. It is well-known that the main source of complex-
ity when routes or paths are priced out is the combinatorial explosion due to 
the subset S in the state. To cope with this problem, several techniques have 
been proposed. We use the so-called ng-routes [3], i.e. we replace the test 
S� ∪ U� ⊆ S�� ∪ U�� on the set of visited vertices with a similar test on a smaller 
subset of vertices: we indicate with NGi for each vertex i the vertex sub-
set including i and its k nearest neighbors, according to the reduced edge costs 
(after some tests we set k = min{max{N∕10, 5},N} ). The dominance test is then 
(S� ∪ U�) ∩ NGi ⊆ (S�� ∪ U��) ∩ NGi . Extension operations are modified as well, 
setting S = S ∩ NGi whenever a new label is created at node i.

We also employ a decremental state-space relaxation technique: due to the 
NG-route relaxation, the minimum reduced cost path obtained during join may 
contain cycles. If it is the case, and if the reduced cost of such a path is negative, 
then the NG subsets of the vertices in the cycles are enlarged accordingly and the 
pricing algorithm is restarted.

Capacity constraint relaxation. In our final implementation we decided to dis-
regard the capacity constraint in the pricing problem, because it is unlikely to 
be binding in a single path. This implies weakening the relaxation of the master 
problem, but it reduces the computation time significantly.

3.3.2  Heuristic Pricing

Before running the exact pricing algorithm, columns with negative reduced cost 
are searched by two heuristic pricing algorithms. The first one is a nearest neigh-
bor greedy algorithm. We run it for each vehicle and each pair of starting and 
ending stations. Beginning with the starting station, the vertex not belonging to 
the path, which can still be visited without violating resource limits, and leading 
to the largest reduction in the reduced cost, is selected. If no such a vertex can be 
found, the path is closed by visiting the ending station. Otherwise the selected 
vertex is added to the path and the process is iterated from that vertex. The sec-
ond one is a heuristic version of the exact pricing algorithm, with two main modi-
fications: (i) from each vertex the extension is done only to the three closest ver-
tices; (ii) although visiting an already visited vertex is forbidden, the dominance 
test does not check the set of visited nodes. Therefore the algorithm is faster but it 
may happen that the optimal solution be missed or be dominated by a sub-optimal 
one.
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4  Branch‑and‑Cut‑and‑Price

Owing to the characteristics of the path-based formulation, it is quite important 
to devise an effective implicit enumeration scheme, embedding suitable disag-
gregation schemes, branching rules and cutting planes. In fact, we need to cope 
with optimal solutions of the master problem potentially made by many paths 
combined in a fractional way, i.e. very far from complying with the integrality 
requirements.

In the remainder we describe the techniques to enforce integrality and the cut-
ting planes strategies we have used in the final version of our algorithm. They 
were designed by exploiting the combinatorial structure of the problem, but 
finally chosen after extensive preliminary computational tests and analysis.

4.1  Incremental Variable Disaggregation

As discussed above, constraints on the mutually exclusive choice of the recharge 
technology are initially relaxed by aggregation, thus allowing for linear com-
binations of them. To guarantee feasibility, we designed an ad-hoc progressive 
strengthening technique, that we name incremental disaggegation. A set of inte-
ger variables �hjk is introduced, representing the number of times vehicle k visits 
station j using technology h; these new variables are linked by the following set 
of constraints:

Variables xjhk are then linked to variables �jk as follows:

These constraints have no effect when integrality conditions are dropped, but they 
impose tight restrictions when �jk and �jhk variables are fixed by branching deci-
sions (see branching rules 2 and 7 below).

Fixing these variables to integer values is however not enough to fully forbid 
recharge operations made by the same vehicle which are inconsistent with its final 
route. In particular, two inconsistency conditions might still arise: recharges with 
different technologies are mixed during a single visit to a station, and recharges 
with the same technology are mixed during multiple visits to the same station.

Therefore, we additionally design an on-demand node duplication rule, which 
is triggered only when inconsistencies are detected in a fractional solution due to 
these specific aggregation cases.

In detail, when we detect that a vehicle visiting a station more than once does 
mix recharges with different technologies during the same stop, we replicate the 
station node into as many copies as the number of technologies that are avail-
able at the station, making a single technology available in each replica, and we 

�jhk ≤ B ⋅ �jhk ∀j ∈ R, h ∈ Hj, k ∈ K.

∑
h∈Hj

�jhk = �jk ∀j ∈ R, k ∈ K.
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resume the optimization process. A similar technique is applied when we detect 
that a vehicle visits a station more than once using the same technology in differ-
ent stops. In this case the station node is replicated, and a single visit is allowed 
to each replica.

4.2  Branching Rules 

We employ seven branching rules, all originating binary branches.
Branching rule 1: Number of paths. We branch by imposing that the overall number 

of paths in the solution is upper bounded by m in one branch and lower bounded by 
m + 1 in the other for a suitably chosen integer value m.

Branching rule 2: Number of visits. We branch by imposing that a certain vehicle 
visits a certain station at most m times in one branch and at least m + 1 times in the 
other.

Branching rule 3: Empty paths. We branch by imposing that a certain empty path 
is used at most m times in one branch and at least m + 1 times in the other.

Branching rule 4: Vertex-path assignment. We branch by imposing that a certain 
customer vertex is visited or not along a path connecting two suitably chosen stations.

Branching rule 5: Edges. We branch on the use of a certain edge of the graph.
Branching rule 6: Customer-vehicle assignment. We branch by imposing that a 

customer vertex is served by a vehicle in a certain vehicle subset or in its complement.
Branching rule 7: Choice of recharge technology during single visits.
We branch by imposing that a certain vehicle that visits a certain station only once 

uses a specific technology or not.
We experimented on many branching rule selection policies. We found the following 

one to work best:

– if the overall number of paths in the solution is fractional, apply branching rule 1;
– else if a vehicle visits a station a fractional number of times    m̄ 

with  min{m̄ − ⌊m̄⌋, ⌈m̄⌉ − m̄} > 10−3 , apply branching rule 2;
– else if an empty path is used a fractional number of times    m̄ 

with  min{m̄ − ⌊m̄⌋, ⌈m̄⌉ − m̄} > 10−3 , apply branching rule 3;
– else if a customer vertex is visited a fractional number  m̄ of times along a path con-

necting two stations with  min{m̄, 1 − m̄} > 10−1 , apply branching rule 4;
– else if an edge of the graph is fractionally used  m̄ times with  min{m̄, 1 − m̄} > 10−1 , 

apply branching rule 5;
– else if a vehicle visits a station a fractional number of times  m̄ (regardless of the value 

of  m̄ ), apply branching rule 2;
– else if an empty path is used a fractional number of times  m̄ (regardless of the value 

of  m̄ ), apply branching rule 3;
– else if a customer vertex is visited a fractional number    m̄ of times along a path 

(regardless of the value of  m̄ ), apply branching rule 4;
– else if an edge of the graph is used a fractional number  m̄ of times (regardless of the 

value of  m̄ ), apply branching rule 5;
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– else if a customer vertex is fractionally served by vehicles in a vehicle subset, 
apply branching rule 6;

– else if a vehicle visits a station once, fractionally using different recharge tech-
nologies, apply branching rule 7;

– otherwise, trigger the incremental variable disaggregation procedure.

Hence, the branching rules are applied in cascade, but rules 2, 3, 4 and 5 are initially 
skipped if the corresponding branching variables are not “fractional enough”; they 
are however given a second chance for branching before considering rules 6 and 7. 
Such a choice helps in avoiding poor bounds improvement after branching on almost 
integral variables. Indeed it matches a common intuition in combinatorial optimiza-
tion algorithms: to make coarse decisions earlier (like the overall number of paths in 
a solution, or the set of stations visited by each vehicle), and fine-grained decisions 
later (like the use of single edges).

The incremental variable disaggregation procedure is integrated as follows. First, 
we check if any vehicle visits a station twice or more, and one of the inconsist-
ency conditions of Section  4.1 occurs. If it is the case, incremental variable dis-
aggregation is performed, and the optimization process is resumed after replacing 
the branching sub-problem with its disaggregated version. Otherwise, the solution is 
integer and feasible, and the sub-problem is fathomed, possibly updating the primal 
bound.

Only in two cases (namely instances B-C4-N030 and C-24-N10), we observed 
that solutions produced during the branch-and-cut-and-price tree after the applica-
tion of branching rules 1-6 included a recharge operation that was the convex com-
bination of two recharges with different technologies at the same station. However, 
branching rule 7, which is specific for the EVRP with multiple technologies, was 
enough to eliminate the infeasiblity.

Incremental disaggregation is kept as a last chance, since it implies enlarging the 
graph, adding substantial burden in terms of both master problem size and number 
of pricing problems to solve. In principle it may be necessary to achieve integrality; 
however, in our implementation, when the optimal solution of the master problem 
in the current branch-and-bound sub-problem would require node duplication 
according to incremental variable disaggregation, we assign the sub-problem a very 
low priority in the list of open sub-problems in the branch-and-bound tree, in order 
to delay the time-consuming analysis of its enlarged version as much as possible. 
In our computational tests, this allowed to never actually explore such branch-and-
bound sub-problems, since subsequent improvements in the bounds allowed to 
discard them before any node duplication.

4.3  Cutting Planes

We made computational tests with several different combinations of dynamic sepa-
ration strategies. The best performing combination was eventually the following.

Sub-tour elimination constraints
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are exponential in the number of stations, but, since their number is not so large, we 
could include all these cuts in the master problem since the beginning.

Energy consumption constraints

are exponential in the number of stations and they are not included in the initial 
restricted master problem; instead, they are dynamically separated by the branch-
and-cut-and-price framework that we employed [26].

The formulation of the master problem was also strengthened by capacity cuts. 
Given a vertex subset S such that at least m vehicles are required to satisfy its overall 
demand, we impose

that is, at least 2m paths must connect the subset to the rest of the graph in any fea-
sible solution.

These constraints are treated in their weak form by relaxing them as master con-
straints, in order not to modify the pricing sub-problem. These capacity constraints 
are exponential in the number of vertices and they are not included in the initial 
restricted master problem. To separate these constraints we use heuristics included 
in Lysgaard’s library [20]. We consider an auxiliary graph, in which a flow is associ-
ated with each edge, representing how much the edge is used in the current fractional 
solution. Lysgaard’s heuristics [20] assume to work on a graph with a total flow equal 
to 2 on the edges incident to each vertex; this is not guaranteed in our model. Hence 
we define an auxiliary graph as follows. First, we compute the total flow f̃j on the 
edges incident to each vertex j ∈ R , and we replace vertex j with ⌈f̃j∕2⌉ copies of it; 
accordingly, we replace each edge incident to j with ⌈f̃j∕2⌉ copies of it and we uni-
formly split the corresponding flow among those edges. We remark that, as a result 
of this splitting, also some vertex i ∈ N  might have less than 2 units of total flow on 
incident edges. Then we add self-loops to each vertex i ∈ N ∪R and we assign the 
self-loops the amount of flow needed to reach a total of 2 for each vertex. Finally, 
we run Lysgaard’s heuristics on the resulting graph. Upon completion, we insert 
into the restricted master problem each cut that was found in this way and whose 
violation is at least 10−4 . For computational reasons, when a vertex is found to have 
⌈f̃j∕2⌉ > �N�∕2 , the separation of capacity cuts is not performed.

∑
l∈LS

𝜃lk ≥ 2
∑
l�∈¶ne

S

yl
�

i
𝜃l�k ∀S ⊆ R�{0}, ∀i ∈ N, ∀k ∈ K

∑
l∈LS∪¶S

el𝜃lk −
∑
j∈S

∑
h∈Hj

𝛿jhk ≤
1

2
B
∑
l∈LS

𝜃lk ∀S ⊆ R, ∀k ∈ K

∑
j∈S

∑
h∈Hj

𝛿jhk −
∑
l∈¶S

el𝜃lk ≤
1

2
B
∑
l∈LS

𝜃lk ∀S ⊆ R, ∀k ∈ K

∑
l∈LS

�l ≥ 2m
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The separation of new cuts is done only when column generation is over. The 
whole pricing and cutting loop is repeated until neither violated cuts nor improving 
columns are found.

4.4  Primal Heuristics

Feasible solutions are computed through the column generation heuristics implemented 
in SCIP 6.0. The primal values obtained in this way are reported in columns CGH in the 
tables. Furthermore, once the master problem has been optimized at the root node, we 
also compute a feasible solution by running CPLEX on the master problem with inte-
grality constraints, including all the columns previously computed. The results obtained 
in this way are reported in the columns MIPH in the tables.

4.5  Parallelization

As reported above, an appealing feature of path-based formulations is the possibil-
ity of performing multiple pricing in parallel. In our case a set of K ⋅ R ⋅ (R − 1)∕2 
pricing sub-problems, one for each pair of stations and each vehicle, can be solved 
in parallel. From an algorithmic point of view, however, such a massive parallelism 
can be exploited only if (a) enough physical computing resources are available and 
(b) a suitable set of threads can be created, along with proper data structures making 
them disjoint or allowing them to be synchronized with very limited waiting times. 
Indeed, finding good parallelization schemes in column generation is not trivial [4], 
as bottleneck effects can often be observed.

We made experiments with different synchronization techniques, finding the fol-
lowing one to produce the best results.

First, we run for each triple (starting station, ending station, vehicle) fast heuristic 
pricing algorithms in parallel; the best solution for each triple is kept as an estimate 
of the optimal reduced cost in the corresponding pricing problem. Then we sort the 
set of triples by non-decreasing values of these estimates and we split the sorted list 
into blocks of H elements each. Finally, we sequentially examine the blocks, run-
ning up to H exact pricing algorithms in parallel for each block. Furthermore, exten-
sion operations in the dynamic programming algorithm are always run in parallel. 
If, at the end of a block computation, columns with negative reduced cost are found, 
these are added to the master problem and the pricing process is stopped; otherwise 
another block is processed.

In our tests the value of H was set to the number of hardware threads supported 
by our PC, i.e 32 (but each of them was running up to N threads in parallel during 
extension).

From the data structures point of view, we found useful to trade memory for comput-
ing time, duplicating support data when needed, to reduce thread synchronization needs. 
However we could not make threads fully disjoint, because the access for writing the 
inner SCIP data structures requires synchronization.
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5  Computational Experiments

Our algorithms were implemented in C++, using SCIP 6.0 [26] as a branch-and-
cut-and-price framework. Our version of SCIP embeds CPLEX 12.8 with default 
settings as an LP solver. We experimented on introducing stabilization techniques 
and using the barrier algorithm to solve the linear restricted master problem. In 
both cases we observed a reduction on the number of column generation iterations 
needed to converge, but the overall performance improvement was negligible. This 
is because stabilization and the barrier method help to reduce the number of initial 
and useless column generation iterations, but in our case most of the CPU time was 
spent during few final column generation iterations, when the exact dynamic pro-
gramming algorithm is called. The use of our pricing heuristics can be considered 
itself as a useful tool to overcome stability problems.

The results reported in this section were obtained using a PC equipped with an 
AMD 1950x 4.0GHz processor and 32 GB of RAM, running Linux Ubuntu 18. The 
CPU has 16 cores: unless otherwise indicated, computing times are expressed as 
execution (clock) times. Parallelization was implemented with the multi-threading 
framework of OPEN-MP.

5.1  Datasets

We tested our algorithms on three datasets.
Dataset A, shown in Table 5 of Appendix, was derived from the Solomon dataset 

by Schneider, Stenger and Goeke [24], by relaxing the time windows constraints: 
instances have up to 15 customers (the last part of the name indicates the size of 
each instance) and 5 stations with a single technology. Some of these instances 
are very small and not challenging: we solved them mainly to make a comparison 
between the results of similar problems. For some instances in this dataset we also 
modified the number of vehicles with respect to the original value used in [24]. In 
one case this was done to make the instance feasible, because the original one was 
not [25]. In some other cases we decreased the number of vehicles to the minimum 
value for which the instance was known to be feasible [13]. In Tables 5, 6 and 7 R0 
indicates the number of stations (excluding the depot) while T indicates the number 
of technologies (when it is two or more).

The models of [24] and [13] assume that all vehicles start with fully charged 
batteries, because it is common to recharge electric vehicles during the night and 
because current technology already allows to do this with normal power supply 
means, provided that enough time is available. This is always convenient, since it 
makes it possible to recharge at the lowest cost. Our methods allow to treat the night 
recharge as any other recharge operation: to make our experiments consistent with 
those of [24] and [13], in dataset A we gave the depot a dummy technology (which 
can be used for the initial recharge) being arbitrary quick and cheap.

Furthermore, to show the need of explicitly handling the presence of multi-
ple technologies, as well as the impact of the free overnight recharge, we have 
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modified a subset of instances from dataset A. The details of this study are reported 
in subsection 5.2.1.

We also used two more datasets, also considered in [13]. Dataset B, described 
in Table 6 of Appendix, is adapted from the Solomon dataset: all instances have 30 
customers, 7 vehicles, 5 stations and 3 technologies. In this dataset customer loca-
tions are clustered.

In Dataset C, described in Table 7 of Appendix, instances have 10 customers, up 
to 5 vehicles, up to 9 stations and 3 technologies.

5.2  Computational Results

In this subsection we present some computational results obtained with our branch-
and-cut-and-price algorithm.

In particular subsubsection 5.2.1 shows how the optimal solution of the EVRP 
can be significantly different when multiple technologies are taken into account with 
respect to the version with a single technology.

Subsubsection 5.2.2 aims at evaluating the effect of capacity cuts in strengthening 
the lower bound.

Subsubsection 5.2.3 shows a comparison between heuristics CGH and MIPH and 
the local search heuristic 48A from the literature [13].

Subsubsection  5.2.4 presents an evaluation of the speed-up effects obtained 
through parallelization.

Finally, subsubsection 5.2.5 presents the results of the branch-and-cut-and-price 
algorithm on the three datasets.

5.2.1  Single vs. Multiple Technologies

Many characteristics of the optimal solutions may change when multiple technolo-
gies are introduced. We modified some instances taken from dataset A, to prove that 
the presence of different technologies, as well as the availability of free overnight 
recharge, may actually change the structure of optimal solutions.

Table  1 summarizes the comparison between several features of optimal solu-
tions, listed one for each row, in three different cases: ORIG refers to the case where 
no free charge is available at the starting depot, so that the initial charge is paid as 
all the others; ST refers to the case with free initial charge at the depot and a single 
technology at the stations; MT refers to the case with free initial charge and multiple 
technologies. We remark that our algorithm is able to give optimality guarantees 
in all these cases by a simple proper encoding of data. The table reports the rela-
tive gain of ST over ORIG, MT over ORIG, and MT over ST, as indicated in the 
leading row. The results refer to five instances: C101-5, C103-5, R104-5, C103-15 
and C202-15. They contain either 5 or 15 customers, as indicated in the instance 
name. The results indicate clearly that these modeling choices have very high impact 
on several features of the optimal solutions. The effect that can be seen in small 
instances can be even more remarkable in large ones.
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As an example, the optimal solutions of instance C101-5, for the ORIG, ST and 
MT cases, are shown in Fig. 2. The instance involves two available vehicles, five cus-
tomers (vertices labeled 1-5), and three recharge stations, the central one acting also 
as depot (vertices R1, R2 and the central bold vertex). The most striking differences 
are the following. The ORIG solution (top figure) finds it profitable to perform a sin-
gle tour, using a single vehicle. The availability of free initial charge (ST and MT, 
mid and bottom figures) makes it more appealing to use both available vehicles. In 
the MT case (bottom figure), the technologies available in the central recharge sta-
tion are different than those in stations R1 and R2. In this case, even detours might 
be optimal: vehicle two finds it profitable to visit customer 3 and then come back to 
the central recharge station, where a cheaper technology is available, before visiting 
customer 4, in order to avoid a more expensive recharge in station R2.

5.2.2  Capacity Cuts and Lower Bounds

As observed in the previous sections, the main drawback of a path-based formula-
tion is the potential weakness of its lower bound. Since the gap with a route-based 
formulation can be reduced by means of additional inequalities, we were particularly 
interested in assessing the effectiveness of capacity cuts to strengthen the formula-
tion of the master problem. For this purpose, as a first experiment, we observed the 
number of iterations and the computing time needed to achieve a valid dual bound 
at the root node with and without capacity cuts. In Table  2 we report aggregated 
results over groups of homogeneous instances, whose details are given in the first 
two columns. The number of instances in each group is reported in the third column. 
The table is composed by two blocks, corresponding to runs without capacity cuts 
and with capacity cuts. For each instance and for both techniques, the tables report 
the average gap between the dual bounds (DB) and the best known upper bound 
(BK), which (except for very few cases) are proven optimal solutions obtained by 
letting our branch-and-price-and-cut algorithm to run without time limits. Each gap 
is measured as (BK − DB)∕BK . We also report the number of column generation 
iterations and the computing time needed to reach convergence (including both pric-
ing and master problem optimization). Additionally, for the version using capacity 

Table 1  Mean absolute percentage difference between solutions using different models

Feature |ORIG-ST|/ORIG |ORIG-MT|/ORIG |ST-MT|/ST

Optimal solution value 56.66% 55.40% 7.94%
Number of paths 10.67% 8.00% 9.00%
Number of empty paths 20.00% 0.00% 20.00%
Customers in the longest path 8.33% 6.67% 10.67%
Number of partial recharges 26.67% 31.67% 21.67%
Number of used stations 5.00% 15.00% 21.67%
Number of used vehicles 40.00% 40.00% 0.00%
Computing time 464.24% 371.17% 15.98%
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cuts we report the number of cut-and-price loops and the number of capacity cuts 
generated.

We noted that in all datasets, both with and without capacity cuts, a very 
large share of computing time was spent in pricing. The only noteworthy excep-
tion is instance A-R102-15, which is also the hardest one in dataset A. We also 

Fig. 2  Optimal solutions of 
instance C101-5 in three cases: 
ORIG (without free initial 
charge at the depot) - top; ST 
(with free initial charge at the 
depot and a single recharge 
technology at the other stations) 
- mid; MT (with free initial 
charge at the depot and multiple 
technologies) - bottom. Vertices 
1-5 are customers, vertices R1 
and R2 are recharge stations, the 
central black vertex represents 
both a recharge station and the 
depot
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observed that A-R102-15 required a very high number of energy consumption 
constraints to be separated and applied: such a phenomenon may create intricate 
dual structures that in turn make pricing more difficult. The number of column 
generation iterations needed to reach convergence tends to grow mildly as the 
size of the instance increases. The same applies to pricing time, excluding a few 
substantially harder instances (A-R102-15, B-C5-N030).

It can be observed that the effect of capacity cuts is almost negligible for the 
instances of dataset B. We argue that this effect is due to the clustered structure 
of the customers, which allows for fewer feasible combinations of paths: capac-
ity cuts are more likely to be violated when the optimal solution of the mas-
ter problem contains convex combinations of columns corresponding to paths 
which visit diverse set of customers, producing a sparse fractional solution. On 
the contrary, in clustered instances like the ones in dataset B it is less likely 
that the optimal solution of the master problem contains convex combinations of 
paths visiting customers in different clusters.

Overall, capacity cuts prove to be successful in tightening the lower bound. 
Indeed, such a tightening comes at the cost of a much larger number of column 
generation iterations needed to reach convergence. However, this has no signifi-
cant impact on the average computing time at the root node. Our guess to explain 
this phenomenon is that capacity cuts help in rebalancing the partial dual solu-
tions and consequently the complexity of pricing subproblem instances. In turn, 
more balanced pricing instances allow for more effective parallel runs, since the 
time needed by each single column generation iteration is often determined by the 
slowest among the pricing instances solved in parallel. Indeed, such a “bottleneck” 
effect has already been reported in the literature [4]. We have also observed that, 
in a few instances, adding capacity cuts reduces the number of generic cuts pro-
duced by SCIP, thereby further speeding up the resolution process.

Relying upon the results of these preliminary tests, we kept the capacity cuts 
active in the subsequent experiments.

Table 2  Column generation dual bounds and cutting strategies: average results

Instances without 
capacity 
cuts

with 
capacity 
cuts

D.S. N n.in. gap n. iter. time gap n. iter. time rounds cuts
A 5 12 17.1% 21.6 0.1 3.0% 28.0 0.1 10.7 15.0

10 12 13.5% 54.9 0.1 5.4% 63.3 0.2 14.8 35.8
15 12 11.8% 87.2 1.2 5.2% 114.8 1.9 21.5 85.8

B 30 10 6.8% 359.9 141.5 6.5% 379.1 115.8 19.3 82.4
C 10 20 15.8% 150.4 40.6 10.0% 312.2 41.9 72.4 194.9
Overall 66 13.5% 129.9 34.0 6.5% 189.5 30.6 33.4 96.4

  SN Oper. Res. Forum            (2021) 2: 8    Page 24 of 338



5.2.3  Primal Bounds

We compared the heuristic results obtained by (a) running the column genera-
tion algorithm at the root node, and keeping the best integer solution found by the 
generic heuristics implemented in SCIP during column generation and (b) using the 
set of columns belonging to the restricted master problem in the last column genera-
tion round at the root node to build a MIP and then running CPLEX for optimizing 
it. In the remainder, we refer to the former procedure as CG-based heuristics (CGH) 
and to the latter procedure as MIP-based heuristics (MIPH). As a term of compari-
son, we consider the best upper bound found by the local search algorithm 48A, an 
ad-hoc meta-heuristics described in [13].

In Table 3, we report aggregated results over groups of homogeneous instances, 
whose details are given in the first five columns. The number of instances in each 
group is reported in the fifth column. In the subsequent columns, we include the 
average optimality gap of 48A. Then, for both CGH and MIPH, we report the num-
ber of instances in which the heuristics found a feasible solution, the average opti-
mality gap on these instances and the average computing time over the whole group. 
The optimality gap is measured again with respect to the best known upper bound 
(BK), which (except very few cases) is given by proven optimal solutions obtained 
by letting our branch-and-price-and-cut algorithm run without time limits. The com-
puting time of MIPH refers to the final MIP optimization step only and is therefore 
additional to that of CGH.

It is worth noting that CGH and MIPH have different nature with respect to 48A: 
the latter is a local search heuristic, developed ad hoc for the EVRP and therefore 
it exploits the combinatorial structure of the problem. On the contrary, CGH and 
MIPH only rely on general-purpose rounding procedures starting from the master 
problem fractional solution.

As a general assessment, CGH shows poor performances: in the vast majority of 
the cases, it could not find any feasible solution. On the contrary, when MIPH is run, 
a feasible solution could be found on all instances but four, that are very tightly con-
strained. Furthermore, on dataset A and C, the optimality gap of MIPH was consist-
ently lower than that of 48A, remaining competitive also on the instances of dataset 
B, which are larger. A notable exception is instance A-RC-102-15, in which MIPH 

Table 3  Comparison of primal bounds

Instances 48A CGH MIPH

Dataset N n.inst. gap feas. gap time feas. gap time
A 5 12 9.23% 8 13.05% 0.05 11 0.25% 0.03

10 12 9.95% 1 0.00% 0.15 11 2.03% 0.10
15 12 13.31% 4 0.89% 1.85 12 5.72% 1.09

B 30 10 0.12% 1 0.13% 115.75 9 3.18% 20.85
C 10 20 1.12% 0 ’- 41.93 19 0.10% 24.91
Overall 66 6.27% 14 7.72% 30.62 62 2.00% 10.93
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leaves a large gap (while 48A does not). In terms of computing time, it was always 
possible to achieve both CGH and MIPH convergence within very few minutes, 
except for B-C5-N030 for which the column generation process required about 16 
minutes of computation.

5.2.4  Parallel Pricing

One of the promising features of path-based formulations is the possibility of speed-
ing up the pricing procedures through parallelization; this is indeed one of the main 
features of our algorithm.

We evaluated the scalability of our method as the amount of available computing 
resources, and in particular the number of CPU cores increases. Our PC is equipped 
with a CPU composed by 16 cores, whose architecture allows the management of 
up to 32 hardware threads. Therefore, we ran each column generation procedure six 
times, one for each value of p ∈ {1, 2, 4, 8, 16, 32} . At each run we restricted the 
process to use only p hardware threads. The number of logical threads, instead, was 
kept constant over the experiment.

The results of this experiment are shown in Fig. 3 and Fig. 4. Results on data-
set A are omitted, since the column generation procedure was too quick to provide 
meaningful insights. In detail, Fig. 3 plots the speed-up factor (y axis) as the num-
ber of hardware threads (x axis) increases. For each instance, the speed-up factor 
obtained in a run with p hardware threads is defined as the ratio between the com-
puting time of that run and the computing time of the run with only one hardware 
thread enabled. Thus, the higher the better, utopia parallelization leading to linear 

Fig. 3  Speedup factor as the number of available cores increases on dataset B (left) and dataset C (right)

Fig. 4  Relative overall CPU time as the number of available cores increases on dataset B (left) and data-
set C (right)
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speed-up. Figure 3 reports average values over all the instances of dataset B (left) 
and dataset C (right).

Figure 4, instead, plots the relative CPU time spent by the process (y axis) as the 
number of hardware threads (x axis) increases. The relative CPU time in a run with 
p hardware threads is defined as the ratio between the overall CPU time spent on 
that run and the overall CPU time of the run with only one hardware thread ena-
bled. Intuitively, such a ratio indicates the additional CPU effort for running many 
threads in parallel: the lower the better, utopia parallelization leading to unitary (con-
stant) relative effort. In our case, the overhead includes the CPU time spent in solving 
pricing sub-problem instances that could be saved in a sequential implementation. 
When up to H instances of the pricing sub-problem are solved in parallel, the com-
puting time taken by a block is due to the instance that requires the longest process-
ing time although negative reduced cost columns have been found in other instances. 
On the contrary, in a sequential implementation it would be possible to stop solving 
pricing sub-problem instances as soon as a column with negative reduced cost were 
generated.

As above, average values over all the instances of dataset B (left) and dataset C 
(right) are reported. Values on the x axis are indicated in logarithmic scale.

Our parallelization scheme proved successful, achieving speed-up factors that 
appear logarithmic in our tests. No asymptotic bottleneck was reached using up to 
32 parallel hardware threads. The relative CPU time grows less than linearly with 
the number of threads, and this yields a significant speed-up.

5.2.5  Branch‑and‑Cut‑and‑Price

Finally, we assessed the performance of the overall BCP algorithm. We observed the 
overall computing time, the number of sub-problems generated, the final upper and 
lower bounds and the corresponding gap. We stopped the BCP algorithm when the 
gap was reduced to 0.1% , since this is the numerical precision used by the LP opti-
mizer. We also set a computing time limit of 3 hours. No “out of memory” condition 
was observed.

Average results are reported in Table 4, whose structure is similar to the previous 
tables: besides the characteristics of each instance group, we report the number of 

Table 4  Branch-and-cut-and-price: average results

Instances exact optimization

Dataset N n. inst. feas. opt. gap nodes time
A 5 12 12 12 0.00% 75.00 0.10

10 12 11 11 0.00% 405.45 2.20
15 12 12 12 0.00% 48,822.33 1,067.19

B 30 10 8 8 0.00% 2,528.10 1,210.94
C 10 20 19 14 13.41% 4,625.19 5,941.50
Overall 66 62 57 0.22% 11,319.87 1,854.39
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instances for which a feasible solution was found, the number of instances solved 
to proven optimality, the average gap between primal bound (PB) and dual bound 
(DB) of the instances for which a feasible solution was found but optimality was 
not proven within the time limit, expressed as (PB − DB)∕DB , the average num-
ber of branch-and-bound nodes and the average computing time for the instances 
solved to proven optimality.

All instances in dataset A were solved, except one (A-RC102-10) for which no 
feasible solution was found within the time limit. However, two of them (A-R105-
15, A-RC103-15) required many nodes to be explored. Two among the ten largest 
instances in dataset B could not be closed within the time limit. Also in this case, no 
feasible solution was found within the time limit.

Several observations arise from Table  4. The performances on dataset B show 
remarkable differences with respect to the results on dataset A and C. First of all, some 
of the instances in dataset B are very tightly constrained: they allow for very few fea-
sible solutions. This explains why the branch-and-cut-and-price algorithm failed to 
find feasible solutions in two cases out of ten. The second observation concerns the 
role of clustered customers: this feature helps when a path-based formulation is used, 
because the main drawback of a path-based formulation is to allow for fractional com-
bination of paths that do not correspond to feasible routes, but this is less likely to hap-
pen when the paths generated by the pricing algorithm tend to include customers in 
the same cluster. This explains the good performance of the branch-and-cut-and-price 
algorithm, shown by the primal-dual gap achieved in dataset B: the effect of customer 
clusters is stronger than that related to the size of the instances. For what concerns 
computing time, the overall size of the instance is not so relevant on the pricing with 
a path-based formulation, because starting and ending stations are fixed, and the only 
customers which are meaningful to be included in the path are those of clusters close 
to the stations. Therefore it is not surprising that larger clustered instances (dataset B) 
could be solved easier than smaller non-clustered instances (datasets A and C).

At the same time, by comparing the results of dataset B with those of dataset A, it 
is clear that the branch-and-cut-and-price scales well when more than a single tech-
nology is available in each station.

6  Conclusions

The EVRP with multiple technologies we have addressed proves to be definitely 
more challenging than the versions of the EVRP already studied in the literature: the 
presence of continuous variables and the resulting mixed-integer model make the 
problem much more difficult than classical EVRP on graphs of the same size.

The path-based formulation we have investigated was expected to provide weak 
lower bounds with respect to a more common route-based formulation. However, 
against intuition, the main issue with our path-based formulation is not the weakness of 
the dual bounds: they can be effectively tightened with a limited amount of additional 
capacity cuts. Instead, symmetry is an issue, making the design of effective branching 
rules very hard. Primal feasibility is also an issue: several times the first feasible primal 
solution was found only after several branching operations. However, this may be due 
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to the limited battery capacity or to other characteristics of the datasets, since some 
instances in our dataset are very tightly constrained. Our experiments confirm that the 
effect of customer clusters can be stronger than that related to the size of the instances.

The true advantage of the path-based formulation emerges from a parallel implementa-
tion of the pricing step, since the path-based formulation allows up to KR(R − 1) occur-
rences of the pricing algorithm to be executed in parallel, being K the number of vehicles 
and R the number of stations. Parallelization is scalable: no asymptotic bottleneck was 
encountered when up to 32 hardware threads were executed.

Our EVRP is amenable of diverse formulation options. For instance, modeling tech-
niques for limiting the dependency from vehicle indices in the master, thus reducing 
both the model size and the risk of symmetries, appear promising. In fact, in our model 
there can be identical paths encoded in multiple path variables only to be available for 
different vehicles. However, we report that our preliminary investigations in that direc-
tion did not pay off from a computational point of view: our parallel multiple pricing 
strategy proved to be more effective than techniques relying on the parsimony of col-
umn variables. The search for alternative models on EVRPs is certainly an interesting 
and challenging research topic.

The branch-and-cut-and-price algorithm we have developed and tested also provides 
a very good starting point for the development of heuristics: MIPH, in spite of being 
based on a general-purpose solver, outperformed the specialized local search heuristic 
48A in terms of solution quality, still requiring limited computing time.

We conclude with an afterthought. Our research on the EVRP is a remarkable 
example on how the availability itself of well understood decomposition methods and 
column generation algorithms was a fundamental motivating factor for the investigation 
of structural EVRP properties (in our case, the combinatorial properties of paths and 
their connections). We believe this phenomenon to be common among researchers in our 
area. That is, such availability stimulates scholars to think in terms of decompositions 
before using decomposition methods to design algorithms. Even if it sometimes fades 
into the background of remarkable computational results, it may arguably be the most 
significant heritage of seminal works as [29]. Yet, our use of parallelization for pricing 
(and its convincing experimental validation) is a clear example on how massive problem 
decomposition has only begun to show its potential. That is, massive decomposition 
proves to be a powerful tool for the design of algorithms which need to be scalable on 
next-generation architectures, having far more (less energy intensive) CPU cores.

Appendix: Details of Datasets

In Tables 5, 6 and 7, we report the details of the instances included in our datasets. 
The structure of the tables is similar: they contain one row for each instance, and 
one column for each model parameter. Instance names are given in the first column; 
parameter names are given in the first row.
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Table 5  Details of dataset A 
[24]. |H| = 1 for all instances

Instance |N| Original K Modified K |R
0
|

A-C103-5 5 1 1 2
A-C206-5 5 1 1 4
A-C208-5 5 1 1 3
A-R202-5 5 1 1 3
A-R203-5 5 1 1 4
A-RC204-5 5 1 1 4
A-RC208-5 5 1 1 3
A-C101-5 5 2 2 3
A-R104-5 5 2 2 3
A-R105-5 5 2 2 3
A-RC105-5 5 2 2 4
A-RC108-5 5 1 2 4
A-C202-10 10 1 1 5
A-R201-10 10 1 1 4
A-R203-10 10 1 1 5
A-RC201-10 10 1 1 4
A-C101-10 10 3 2 5
A-C104-10 10 2 2 4
A-C205-10 10 2 2 3
A-R103-10 10 2 2 3
A-RC205-10 10 2 2 4
A-R102-10 10 3 3 4
A-RC102-10 10 4 3 4
A-RC108-10 10 3 3 4
A-R209-15 15 1 1 5
A-RC204-15 15 1 1 7
A-C103-15 15 3 2 5
A-C202-15 15 2 2 5
A-C208-15 15 2 2 4
A-R202-15 15 2 2 6
A-RC108-15 15 3 2 5
A-RC202-15 15 2 2 5
A-C106-15 15 3 3 3
A-R105-15 15 4 3 6
A-RC103-15 15 4 3 5
A-R102-15 15 5 4 8
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Table 6  Details of dataset B Instance |N| K |R
0
| |H|

B-C0-N030 30 7 5 3
B-C1-N030 30 7 5 3
B-C2-N030 30 7 5 3
B-C3-N030 30 7 5 3
B-C4-N030 30 7 5 3
B-C5-N030 30 7 5 3
B-C6-N030 30 7 5 3
B-C7-N030 30 7 5 3
B-C8-N030 30 7 5 3
B-C9-N030 30 6 5 3

Table 7  Details of dataset C 
[13]

Instance |N| K |R
0
| |H|

C-10-N10 10 4 9 3
C-11-N10 10 4 9 3
C-12-N10 10 4 9 3
C-13-N10 10 4 9 3
C-14-N10 10 5 9 3
C-15-N10 10 4 9 3
C-16-N10 10 4 9 3
C-17-N10 10 5 9 3
C-18-N10 10 5 9 3
C-19-N10 10 4 9 3
C-20-N10 10 4 5 3
C-21-N10 10 4 5 3
C-22-N10 10 4 5 3
C-23-N10 10 3 5 3
C-24-N10 10 4 5 3
C-25-N10 10 3 5 3
C-26-N10 10 4 5 3
C-27-N10 10 4 5 3
C-28-N10 10 4 5 3
C-29-N10 10 4 5 3
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