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Abstract
We study in this paper the finite Jung constant, its interplay with Kottman’s constant
and its meaning regarding the geometry of Banach spaces.
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1 Introduction: the Jung constants

Given a bounded subset A ⊂ X the diameter of A is defined as δ(A) = sup{‖a − b‖ :
a, b ∈ A}, while the radius of A in X is defined by rX (A) = infb∈X supa∈A ‖a − b‖.
If the infimum is attached at a point b then this point is called a center for A; if only
supa∈A ‖a−b‖ ≤ rX (A)+ ε then b will be called an ε-center. The Jung constant [16]
of A is defined as

J (A) = 2rX (A)

δ(A)
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while the Jung constant of X is the supremum J (X) = sup J (A) taken over all closed
bounded sets A with δ(A) > 0. A combination of results by Davis [11], Franchetti
in [14] and Lindenstrauss [19] show that a Banach space is 1-injective if and only if
J (X) = 1. Recall that a Banach space X is λ-injective if for every Banach space F
and every subspace E of F every operator t : E → X has an extension T : F → X
with ‖T ‖ ≤ λ‖t‖.

Two important variations of this notion [2, 4] are λ-separable injectivity, when the
property above holds when F is separable; and local λ-injectivity, when the preceding
property holds when F is finite dimensional. We can consider the corresponding
variation of Jung’s constant for separability and obtain the separable Jung constant
Js(·), introduced in [7] as

Js(X) = sup J (A)

where the supremum is taken over all separable closed bounded sets Awith δ(A) > 0.
In this paper we will consider the finite Jung constant introduced by Amir [1] (see also
[5]) and defined as

J f (X) = sup J (A)

where the supremum is taken over all finite sets A with δ(A) > 0.
The first type of characterization we are interested in this paper was obtained by

Davis [11]: a Banach space X is 1-injective if and only if J (X) = 1.We obtained in [7]
the corresponding characterization for Js : a Banach space X is separably 1-injective
if and only if Js(X) = 1. Our first set of results in this paper provided in Sect. 2 deal
with the characterization of the spaces X for which J f (X) = 1. It was (implicitly)
proved by Bayod and Masa [3] that J f (X) = 1 if and only if X is a Lindenstrauss
space. This fact was reproved in [25], while in [13] it was observed that a careful
reading of [19] yields the same characterization. Moreover, they show [13, Theorem
2.7] that J f (X) = 1 if and only if every four-point set of diameter 1 has radius 1/2
and a center.

2 Banach spaces with finite Jung constant 1

In this Section, we will prove the Lindenstrauss–Bayod–Masa characterization of
Lindenstrauss spaces through a new equality J f (X) = Js(XU ) for some ultrapower
of X . This characterization will have a few interesting consequences.

Semenov and Franchetti [26, Lemma 2.4] show that if Y , X are Banach spaces such
that for each ε > 0 the space X contains (1 + ε)-isomorphic (1 + ε)-complemented
copy of Y then J (Y ) ≤ J (X). In particular, if Y is a 1+-complemented subspace of
X then J (Y ) ≤ J (X). We generalize this:

Lemma 2.1 Let Y ⊂ X and Z be Banach spaces.

(1) If Y is λ+-complemented in X then J (Y ) ≤ λJ (X), Js(Y ) ≤ λJs(X) and J f (Y ) ≤
λJ f (X).
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(2) If Y is locally λ+-complemented in X then J f (Y ) ≤ λJ f (X)

(3) J (X⊕∞ Z) = max{J (X), J (Z)}; Js(X⊕∞ Z) = max{Js(X), Js(Z)}; J f (X⊕∞
Z) = max{J f (X), J f (Z)}

Proof (1) To avoid further confusion, given Y ⊂ X and A ⊂ Y let rY (A) (resp. rX (A))

denote the radius of A in Y (resp. in X ). Thus, we need to show that rY (A) ≤ λrX (A)

for every A ⊂ Y with 0 < δ(A) ≤ 1. Let P be a projection on X onto Y with
‖P‖ ≤ λ. If x ∈ X and ‖a − x‖ ≤ r for each a ∈ A, taking y = Px ∈ Y we have
‖a − y‖ = ‖P(a − x)‖ ≤ λ‖a − x‖ ≤ r and the result follows.

(2) Assume now that A ⊂ Y is finite and Y is locally λ+-complemented in X . If
x ∈ X and ‖a − x‖ ≤ r for each a ∈ A, pick P : A + [x] −→ Y a projection with
‖P‖ ≤ λ + ε so that ‖a − Py‖ = ‖P(a − x)‖ ≤ (λ + ε)‖a − x‖ ≤ (λ + ε)r and the
result follows as well.

(3) We make the proof for J , but the proofs for Js and J f are analogous. By
(1), J (X ⊕∞ Y ) ≥ max{J (X), J (Y )}. Conversely, let A ⊂ X ⊕∞ Y with 0 <

δ(A) ≤ 1. Let πX the canonical projection onto X . The sets B = πX (A) ⊂ X
and C = (I − πX )(A) ⊂ Y satisfy δ(B), δ(C) ≤ 1. If δ(B) = 0 then δ(C) =
δ(A) and rY (C) = rX⊕∞Y (A), and analogously when δ(C) = 0. Assume then that
δ(B) > 0 and δ(C) > 0. If we fix ε > 0 and pick x0 ∈ X and y0 ∈ Y such that
‖x0 − b‖ < rX (B)+ ε for each b ∈ B and ‖y0 − c‖ < rY (C)+ ε for each c ∈ C then
‖(x0, y0) − (b, c)‖ = max{‖x0 − b‖, ‖y0 − c‖} < max{rX (B), rY (C)} + ε for each
(b, c) ∈ A. On the other hand, δ(A) = max{δX (B), δY (C)}. Therefore

J (X ⊕∞ Y ) = sup
2r(A)

δ(A)
≤ sup

2max{rX (B), rY (C)}
δ(A)

≤ max{J (X), J (Y )}.


�

It is clear that this result says nothing forλ ≥ 2.One could suspect that the parameter
λ plays no role in either (1) or (2). Let us show it is not so.We discuss (2) first, and recall
from [4, Chapter 9] the existence of an exact sequence 0 → C[0, 1] → � → c0 → 0
in which � cannot be renormed to be a Lindenstrauss space. This sequence can be
placed in a commutative diagram

0 C[0, 1] �∞ �∞/C[0, 1] 0

0 C[0, 1] j
� c0 0

which therefore (see again [4]) yields a commutative diagram

0 C[0, 1]
j

�∞ �∞/C[0, 1] 0

0 � P �∞/C[0, 1] 0



32 Page 4 of 12 J. M. F. Castillo and P. L. Papini

in which the lower sequence locally 1+-splits and the space P is isomorphic to �∞⊕∞
c0. Thus, after renorming, we have a locally λ+-split sequence

0 � �∞ ⊕∞ c0 �∞/C[0, 1] 0

in which J f (�∞⊕∞) = 1 but J f (�) > 1. The bidual sequence

0 �∗∗ �∗∗∞ ⊕∞ �∞ (�∞/C[0, 1])∗∗ 0

provides a counterexample for (1): it splits by [4], namely, �∗∗ is complemented in
�∗∗∞ ⊕∞�∞; it cannot be 1-complemented because otherwise, by the Principle of Local
Reflexivity,�would be locally 1+-complemented in �∞ ⊕∞ c0, which is not the case.
Hence �∗∗ is not 1-injective, and therefore J (�∗∗) > 1, while J (�∗∗∞ ⊕∞ �∞) =
1. The same works, under the Continuum Hypothesis, regarding Js : if � were 1-
separably injective then it would be universally 1-separably injective (see [2]), hence
1-complemented in �∞ ⊕∞ c0, that we know it is not.

As a consequence of the results in [7, 9], J (X) (resp. Js(X)) and J (X∗∗) (resp.
Js(X∗∗)) can be different since J (c0) = 2 = Js(c0) while J (�∞) = Js(�∞) = 1.
In general, given a countably incomplete ultrafilter U on N, one has Js(C[0, 1]) = 2
but Js(C[0, 1]U ) = 1 since according to [2] the ultrapower of a Lindenstrauss space
is 1-separably injective. On the other hand, J (�∞) = 1 but J ((�∞)U ) > 1 since,
again according to [2] no infinite-dimensional ultrapower is injective. The finite Jung
constant behaves, however, differently:

Proposition 2.2 J f (X) = J f (X∗∗).

Proof The inequality J f (X) ≤ J f (X∗∗) follows from (2) in the previousLemma.Next
observe that for a certain ultrafilter U the space X∗∗ is 1-complemented in XU , and
therefore J f (X∗∗)≤ J f (XU ) by part (1) of the Lemma above. It remains to show that
J f (XU ) ≤ J f (X). Let ε > 0 be fixed and pick a finite set A = {a1, . . . , am} ⊂ XU
with δ(A) = ‖au − av‖ = 1 such that J f (XU ) ≤ 2r(A) + ε and let a be an ε-
approximate center for A; namely ‖a j − a‖ ≤ r(A) + ε for 1 ≤ j ≤ m. Assume that
a j = [a j

1 , . . . , a
j
n , . . . ] and a = [a1, . . . , an, . . . ]. Since the sets Uj = {n : ‖a j

n −
an‖ ≤ r(A)+2ε} belong toU for j = 1, ...,m as well asU = {n : ‖aun −av

n‖ ≥ 1−ε}
so does

⋂
j U j ∩U . Thus, picking n in this set, B = {a1n, . . . , amn } ⊂ X has diameter

at least 1 − ε and the point an is a 2ε-approximate center for B. All this yields

J f (X) ≥ J f (XU ) + 2ε

1 − ε
.


�
It is then immediate from the previous argument that also J f (X) = J f (XU ) for

every ultrafilter U . When U is countably incomplete, the argument can be improved
to

Theorem 2.3 If U is a countably incomplete ultrafilter then J f (X) = Js(XU ).
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Proof We just need to prove the inequality Js(XU ) ≤ J f (X). Let ε > 0 be fixed
and pick a countable set A = {am : m ∈ N} ⊂ XU with δ(A) = 1 such that
Js(XU ) ≤ 2r(A) + ε. There is no loss of generality in assuming that ‖ai − a j‖ = 1
for all i, j ∈ N just to simplify future choices. Let a be an ε-approximate center for
A; namely ‖am − a‖ ≤ r(A)+ ε for all m. Set as before am = [am1 , . . . , amn , . . . ] and
a = [a1, . . . , an, . . . ]. The sets Um = {n : ‖amn − an‖ ≤ r(A) + 2ε} belong to U for
allm as well asUu,v = {n : ‖aun −av

n‖ ≥ 1−ε} for all u, v ∈ N. Now proceed orderly:
pick k ∈ ⋂k

m=1Um ∩ ⋂
1≤u,v≤k Uu,v ∈ U and form the set Bk = {a1k , . . . , akk } ⊂ X ,

who has diameter at least 1 − ε and the point ak is a 2ε-approximate center for Bk .
The only problem that could appear is if some bk ∈ X yields a “better” center for Bk ,
namely ‖b − bk‖ ≤ α < Js(XU ) for some α and all b ∈ Bk . But if this happens for
an infinite set M ⊂ N then the element b1M having bk at the corresponding place of
1M is a “better” center for A in XU , namely ‖a − b1M‖ ≤ α, which is a contradiction
as ε → 0. Therefore

J f (X) ≥ Js(XU ) + 2ε

1 − ε
.


�
We draw now some consequences. The first of them is a new proof for the

Lindenstrauss–Bayod–Masa characterization of Lindenstraus spaces:

Proposition 2.4 A Banach space X is a Lindenstrauss space if and only if J f (X) = 1

Proof If X is a Lindenstrauss space, XU is 1-separably injective [2] and therefore
Js(XU ) = 1 according to [7], which proves the necessity. On the other hand, if
J f (X) = 1 then also Js(XU ) = 1 and thus XU is 1-separably injective [7]. It must
therefore be Lindenstrauss space [2], as well as X by the principle of local reflexivity.


�
Amir [1, p.5] shows that J f (X∗) = J (X∗) for every dual space. Moreover:

Corollary 2.5 If X is 1-complemented in X∗∗ then J f (X) = Js(X).

Proof Js(X) ≤ Js(X∗∗) ≤ Js(XU ) = J f (X). 
�

3 The interplay between the finite Jung and Kottman constants

In [21, Theorem 6] it is shown that 2 ≤ Js(X)K (X). If X is an infinite-dimensional
Banach space with unit ball B(X), the finite Kottman constant of X is defined as

K f (X) = sup{r > 0 : ∀n ∈ N ∃ A : |A| = n and inf
i �= j

‖xi − x j‖ ≥ r}.

Since J f (X) ≤ Js(X) but K (X) ≤ K f (X) it is worth checking the finite ana-
log. A combinatorial argumentation could be: if X is not reflexive then K f (X) = 2
[18]; while if X is reflexive then [1] J f (X) = J (X) and therefore K f (X)J f (X) =
K f (X)J (X) ≥ K (X)J (X) ≥ 2. Let us present a straight proof.
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Lemma 3.1 2 ≤ J f (X)K f (X).

Proof Given ε > 0, pick a set A = {x1, . . . , xN } such that K f (X) + ε ≥ ‖xi −
x j‖ ≥ K f (X) − ε (use [7, Lemma 5]). Since 2rA/δ(A) ≤ J f (X) one has rX (A) ≤
1
2 J f (X)δ(A) ≤ 1

2 J f (X)(K f (X) + ε). Pick p such that ‖xi − p‖ ≤ 1
2 (J f (X) +

ε)(K f (X)+ε) and therefore the ball centered at pwith radius 1
2 (J f (X)+ε)(K f (X)+

ε) contains a finite set (K f (X) − ε)-separated, and therefore the unit ball contains a

finite set
K f (X)−ε

1
2 (J f (X)+ε)(K f (X)+ε)

-separated; hence

K f (X) − ε

1
2 (J f (X) + ε)(K f (X) + ε)

≤ K f (X)

and, therefore,

K f (X) ≤ 1

2
J f (X)K f (X)2 �⇒ 2 ≤ J f (X)K f (X).

. 
�
One deduces from here and Proposition 2.4 that K f (X) = 2 for every Linden-

strauss space. It had been however shown in [6, Proposition 3.4] that K (X) = 2 for
every L∞-space. We continue our study recalling the following result from Pichugov
[23, Assertion]. We present it in its original formulation even if some terms appear
unexplained in our context. The consequence we seek, namely, Pichugov’s inequality
(3.1) is however clear:

Lemma 3.2 Let a closed convex set M in Xn have Chebyshev radius r . Then the point
y is its Chebyshev center if and only if there is a natural number N ≤ n + l, such that

(a) there are points xi in M (i = 1 . . . N ) such that ‖yi − y‖ = r .
(b) there are functionals fi in (Xn)∗ (i = 1 . . . N ) such that ‖ fi‖ = 1 and 〈 fi , xi −

y〉 = ‖xi − y‖.
(c) there are numbers ai (i = 1 . . . N ),

∑N
i ai = 1, ai ≥ 0 such that

∑N
i ai fi = 0.

From there one deduces the following version of Pichugov’s inequality (see [15]):

J (A) ≤ sup
n∑

i, j=1

αiα j‖ fi − f j‖X∗ (3.1)

for A ⊂ X a finite set of cardinality n, and the supremum is taken over finite families
f1, . . . , fn of elements of X∗ and scalars α1, . . . , αn with ‖ fi‖X∗ ≤ 1, αi ≥ 0,∑

αi = 1 and (
∑

αi fi )|A = 0.

Proof Pichugov’s inequality [15, (5)] yields 2rX (A) = ∑n
i, j=1 αiα j 〈xi − x j , fi − f j 〉

from where
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2rX (A) ≤ sup
n∑

i, j=1

αiα j‖xi − x j‖‖ fi − f j‖ ≤ δ(A) sup
n∑

i, j=1

αiα j‖ fi − f j‖


�
One gets

Proposition 3.3 If X is infinite-dimensional, J f (X) ≤ K f (X∗).

Proof We begin recalling from [6] that K f (X) = K (XU ) for every countably incom-
plete ultrafilter U on N. Set for each u ∈ N a finite set Au ⊂ X such that J (X) ≤
J (Au)+εu−1 and J (Au) ≤ J (Av)when u ≤ v. Pick for each u elements f u1 , ..., f un as
in Pichugov’s inequality and form the elements Fn = [ f 1n , f 2n , f 3n , . . . , ] ∈ X∗

U where
we understand that f kn = 0 for n > n(k). Since ‖Fi − Fj‖X∗

U = limU ‖ f ui − f uj ‖
means that for every ε > 0, {u : |‖ f ui − f uj ‖X∗ − ‖Fi − Fj‖X∗

U | ≤ ε} ∈ U , we get
that ‖ f ui − f uj ‖X∗ ≤ ‖Fi − Fj‖X∗

U + ε for all u in a set of U . Thus

J (X) = sup J (Au)

= lim
U

J (Au)

≤ lim
U

∑

i, j

αu
i αu

j ‖ f ui − f uj ‖X∗

≤ lim
U

∑

i, j

αu
i αu

j

(
‖Fi − Fj‖X∗

U + ε
)

and since no infinite subsetM ⊂ N exists such that ‖Fm−Fn‖ > K (X∗
U ) form, n ∈ M

we get

≤ lim
U

∑

i, j

αu
i αu

j

(
K (X∗

U ) + ε
)

≤ K (X∗
U ) + ε.


�
The converse is obviously false since J f (c0) = 1 and K f (�1) = 2. The inequality

above belongs to the world of finite constants since

• it is not true that J f (X) ≤ K (X∗) as the example of �p-spaces, 1 < p < 2, shows.
• Consequently it is not true that J (X) ≤ K (X∗) either.

In [9] we showed that K (X) and K (X∗∗) are not necessarily equal. However

Proposition 3.4 K f (X) = K f (X∗∗).

Proof We need the following version of the Principle of Local Reflexivity (see [20]):
for each finite-dimensional subspace E ⊂ X∗∗ and each ε > 0 there is a (1 + ε)-
isometry T : E → X such that T |X = idE∩X . Pick now a finite set {x∗∗

1 , . . . , x∗∗
N }
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such that ‖x∗∗
n − x∗∗

m ‖ ≥ K f (X∗∗) − ε; hence

‖T x∗∗
n − T x∗∗

m ‖ ≥ (1 − ε)‖x∗∗
n − x∗∗

m ‖ ≥ (1 − ε)(K f (X
∗∗) − ε),

for ‖T x∗∗
n ‖ ≤ (1 + ε), which is enough to conclude. 
�

A combination of the inequality above with Proposition 3.3 provides a remarkable
symmetry:

Corollary 3.5 If X is infinite-dimensional, J f (X)J f (X∗) ≤ K f (X)K f (X∗).

A combination of Proposition 3.3 with the estimates in [7] yields

(1) K f (Y )J f (X) ≤ 2e f
1 (Y , X).

(2) K f (Y )Js(X) ≤ 2es1(Y , X∗∗).

Here e f
1 (Y , X) (resp. es1(Y , X)) is the infimum of all λ > 0 such that for finite

(resp. separable) subset M of Y and every y ∈ Y , every Lipschitz map f : M → Z
admits a Lipschitz extension F : M ∪ {y} → Z with Lip(F) ≤ λLip( f ).

Corollary 3.6 J f (Y )J f (X) ≤ 2e f
1 (Y ∗, X). In particular, J f (X) ≤

√

2e f
1 (X∗∗, X).

4 Jung constants and interpolation

In [10]we studied the behavior ofKottman’s constants regarding complex interpolation
obtaining the continuity of K (·) with respect to the interpolation parameter and the
interpolation inequality: if (X0, X1) is an interpolation pair and Xθ = (X0, X1)θ is
the complex interpolation space obtained at θ then K (Xθ ) ≤ K (X0)

1−θK (X1)
θ . The

behavior of the Jung constants regarding interpolation is necessarily quite different
since an inequality J (Xθ ) ≤ J (X0)

1−θ J (X1)
θ does not hold since J (L∞) = 1,

J (L p) = 21−1/p for 2 ≤ p < ∞ and L3 = (L2, L∞)θ for θ = 1/3. Moreover,
the characterizations of spaces X with J f (X), Js(X) or J (X) equal to 1 makes an
interpolation inequality such as J (Xθ ) ≤ J (X0)

1−θ J (X1)
θ impossible since one

can obtain reflexive spaces as interpolation between injective spaces. The following
explicit example was provided to us by Manuel González.

Example 4.1 Pick the space �∞(1/n) = {x : supn 1
n xn < ∞} endowed with the sup

normand consider the pair (�∞, �∞(1/n)). The canonical inclusion �∞ −→ �∞(1(n))

is compact, hence there are reflexive interpolation spaces, whose Jung constants must
be greater than 1. However J (�∞) = J (�∞(1/n)) = 1.

Observe that this shows that J (·) does not satisfy an interpolation inequality for either
the real or complex methods. However, if we denote the complex interpolation space
as Xθ = (X0, X1)θ , we have

Proposition 4.2 The Jung and finite Jung constants are continuous with respect to the
interpolation parameter on (0, 1), but not on [0, 1].
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Proof The lack of continuity at the extremes has already been shown. In fact, [26, p.
870] already observed that J (Xθ ) can be discontinuous at the boundary points. To
show the continuity at the interior, let us recall the definition of the Kadets metric. Let
M, N be closed subspaces of a Banach space Z , and let BM denote the unit ball of M .
The gap g(M, N ) between M and N is defined by

g(M, N ) = max

{

sup
x∈BM

dist(x, BN ), sup
y∈BN

dist(y, BM )

}

,

The Kadets metric dK (X ,Y ) between two Banach spaces X and Y is the infimum
of the gap g(i(X), j(Y )) taken over all the isometric embeddings of i, j of X ,Y
into a common Banach space. It turns out that J (·), Js(·) and J f (·) are continuous
with respect to the Banach–Mazur metric: if T : X −→ Y is an isomorphism with
max ‖T ‖‖T−1‖ ≤ α then |J (X)− J (Y )| ≤ (α2−1)min{J (X), J (Y )}. We show now
the continuity of the Jung constants with respect to the Kadets metric. We will need a
few general facts that will be useful. Given a bounded set A ⊂ X with approximate
center a, a translation x → x−a allows us toworkwith the set A′ = A−a contained in
the ball of radius rM (A) and center 0.We can change now A′ by A′′ = rX (A)−1A′ and
still J (A′′) = J (A). In other words, with regard to the calculus of the Jung constants
of Z there is no loss of generality in assuming that A has radius (or diameter) 1 and
is contained in the unit ball has has approximate center 0. What is not true, as simple
examples show, is that a subset of the ball must have its center inside the ball. Let us
show now:

Claim. J f , Js and J are continuous with respect to the gap.
Let us make the proof for J f . Let M, N ⊂ X two closed subspaces of a Banach

space X . FixM and ε > 0. Let us call g : BM → BN (resp. g′ : BN → BM ) a function
such that ‖x − g(x)‖ ≤ g(M, N ) + ε (resp. ‖x − g′(x)‖ ≤ g(M, N ) + ε). There is
no loss of generality in assuming that g, g′ are homogeneous since ‖ x

2 − 1
2g(x)‖ ≤

g(M, N ) + ε. Pick a finite set A = {a1, . . . , an} in BM with ε-center 0 and such that
J f (M) < J (A) + ε. Form the set B = {g(a1), . . . , g(an)} and let b be an ε-center
for it. It is easy to check that ‖b‖ ≤ 2 + 2ε (see the comment after the proof).

r(A) ≤ sup ‖ai − g′
(
b

2

)

‖

= sup

∥
∥
∥
∥
ai
2

+ ai
2

− g
(ai
2

)
+ g

(ai
2

)
− b

2
+ b

2
− g′

(
b

2

)∥
∥
∥
∥

≤ sup

(∥
∥
∥
ai
2

∥
∥
∥ +

∥
∥
∥
ai
2

− g
(ai
2

)∥
∥
∥ +

∥
∥
∥
∥g

(ai
2

)
− b

2

∥
∥
∥
∥ +

∥
∥
∥
∥
b

2
− g′

(
b

2

)∥
∥
∥
∥

)

≤ 1

2
r(A) + sup

∥
∥
∥
∥g

(ai
2

)
− b

2

∥
∥
∥
∥ + 2g(M, N ) + ε

≤ 1

2
r(A) + 1

2
r(B) + 2g(M, N ) + 2ε
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which yields

r(A) ≤ r(B) + 4g(M, N ) + 4ε.

On the other hand

δ(A) = sup ‖ai − a j‖
= ‖ai − g(ai ) + g(ai ) − g(a j ) + g(a j ) − a j‖
≥ δ(B) − 2g(M, N ) − 2ε.

Consequently,

2rN (A)

δ(A)
≤ 2r(B) + 8g(M, N ) + 8ε

δ(B) − 2g(M, N ) − 2ε

and thus

J f (M) ≤ J f (N ) + F

for some positive and continuous function F such that f (0) = 0. Doing the same
replacing M by N we get the other inequality, and thus

lim
g(M,N )→0

∣
∣J f (M) − J f (N )

∣
∣ = 0

which is the continuity (not the uniform continuity, as it is the case of the Kottman’s
constants) of J f with respect to the gap.

The continuity with respect to the Kadets metric is now immediate taking into
account that if i, j are isometric embeddings, J (X) = J (i X) and J (Y ) = J ( jY ).
The continuity with respect to the interpolation parameter follows as we proved in
[10] for the Kottman’s constants: Kalton and Ostrovskii [17] proved that the Kadets
metric is continuous with respect to the interpolation parameter; precisely,

dK (Xθ , Xη) ≤ 2

∣
∣
∣
∣
sin (π(θ − η)/2)

sin (π(θ + η)/2)

∣
∣
∣
∣ .

Thus, the Jung constants are continuous with respect to the interpolation parameter.

�

The following is an example of a set in the unit ball of c0 with a center having
norm 2: pick A = {∑n

i ei : n ∈ N} and set 2e1. The continuity with respect to the
Kadets metric in combination with the fact that given an exact sequence 0 → Y →
Z → X → 0 one has dK (Z ,Y ⊕∞ X) = 0 (see [10]) yields that Z can be renormed
to have (finite, separable) Jung constant max{J (Y ), J (X)}. However, the example
0 → C[0, 1] → � → c0 → 0 presented earlier shows that, however, no renorming
of Z such that J (Z) = max{J (Y ), J (X)} can, in general, be achieved.
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5 Open questions

Most of our open questions wheel around the validity of the interpolation inequality

J f (Xθ ) ≤ J f (X0)
1−θ J f (X1)

θ

which is false. Could it be true on a restricted context? Say, when also X0, X1 are
superreflexive interpolation spaces, or infinite-dimensional spaces with a common
unconditional basis?

• Does the inequality 2 ≤ J f (X)J f (X∗) hold for infinite-dimensional spaces? The
inequality fails for finite-dimensional spaces since J (�n1) = 2n/n + 1 (see [12,
15]) and J (�n∞) = 1. Observe that when X , X∗ have a common unconditional
basis then (X , X∗)1/2 = �2 and thus the interpolation inequality would yield√
2 ≤ J f (X)1/2 J f (X∗)1/2, which is the inequality above.

• Does the interpolation formula hold for pairs (E0, E1) of rearrangement invari-
ant Banach lattices with E0, E1 �= L∞? R.i. Banach lattices can be seen as a
generalized form of Banach spaces with unconditional or symmetric basis.

• A Banach lattice E is said to be a θ -Hilbert space (0 < θ < 1) if E = (F, L2)θ
for some r.i. space F . Each θ -Hilbert space is a r.i. space (see [24]). Is it true that
J (E) ≤ J (L2)

θ J (F)1−θ = J (F)1−θ2θ/2 for E a θ -Hilbert space? This would
generalize the inequality J (E) ≤ 2 · 2θ/2 in [26, Theorem 2.2.].

• Can a reflexive space X be renormed in such a way that J (X) = J (X∗)? Recall
that there are reflexive spaces for which J (X) �= J (X∗), say J

(
�2(�

n
1)

) = 2 and
J

(
�2(�

n∞)
) = √

2. This example is fromAmir [1, 2.15.b], although he erroneously
writes that this space has Jung constant 1.
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