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Abstract
We give estimates for the measure of non-compactness of an operator interpolated by
the limiting methods involving slowly varying functions. As applications we establish
estimates for the measure of non-compactness of operators acting between Lorentz–
Karamata spaces.
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1 Introduction

The real interpolation method (A0, A1)θ,q has found important applications in Opera-
tor Theory, Approximation Theory, Function Spaces and Harmonic Analysis. See, for
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example, the monographs by Butzer and Berens [8], Bergh and Löfström [4], Triebel
[43, 44], König [32] and Bennett and Sharpley [3]. The real method is very flexible,
admitting several equivalent definitions, what is very useful in applications.

The real method applied to the couple of Lebesgue spaces (L1, L∞) yields Lorentz
spaces L p,q . It is possible to obtain more general spaces if we modify the definition
of the real method. So, logarithmic perturbations of the real method produce Lorentz–
Zygmund spaces L p,q(log L)a (see [20, 27, 28]) and perturbations involving slowly
varying functions (L1, L∞)θ,q;b give Lorentz–Karamata spaces L p,q;b(see [29]).

We are interested here in the limit cases when θ = 0, 1 of the perturbations with
slowly varying functions (A0, A1)θ,q;b. These spaces are very close to A0 when θ = 0
and to A1 when θ = 1. They have received attention from a number of authors either to
study limiting embeddings between function spaces or to establish limiting properties
of operators (see, for example, [26, 29, 36]).

Among the classical problems for any interpolation method, a prominent one is to
describe the behavior of properties that operators may have. First of all boundedness
but then other useful properties of operators. For example, techniques used by Davis,
Figiel, Johnson and Pelczyński [23] in the proof of their famous factorization theorem
for weakly compact operators motivated the investigation on the behavior of weak
compactness under interpolation (see, for example, [1, 18, 31, 34, 35]).

The behavior under interpolation of compactness have been also deeply studied
(see [9, 17, 22] and the references given there). Quantitative estimates in terms of the
measure of non-compactness have been also established. Concerning the real method,
the first result in this direction is due to Edmunds and Teixeira [42]. They assume
an approximation condition for the couple in the target. The case of general Banach
couples has been studied by Cobos, Fernández-Martínez and Martínez [15]. Results
for the real method with a function parameter and 0 < θ < 1 are due to Cordeiro [21],
Szwedek [41] and Cobos, Fernández-Cabrera and Martínez [11]. Besides, the case of
limiting methods involving logarithms have been considered by Cobos, Fernández-
Cabrera and Martínez [12, 14] and Besoy and Cobos [5].

Our aim here is to establish estimates for the measure of non-compactness of
operators interpolated by the limiting perturbations of the real method involving
slowly varying functions. As applications we derive estimates for the measure of
non-compactness of operators acting between certain Lorentz–Karamata spaces. In
particular, one of our results can be considered as a quantitative extension of a compact-
ness result of Edmunds and Opic [26] for operators acting between Lorentz–Zygmund
spaces.

We work with quasi-Banach couples (A0, A1). Our techniques are based on the
vector-valued sequence spaces that come up with the definition of (A0, A1)0,q;b and
with its description as a J -space. These ideas originated in the papers on compactness
by Cobos and Peetre [19] and Cobos, Kühn and Schonbek [17]. In the context of the
measure of non-compactness, theywere developed byCobos, Fernández-Martínez and
Martínez [15], Cobos, Fernández-Cabrera and Martínez [14] and Besoy and Cobos
[5] among other authors.
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2 Limiting real interpolation spaces

Let (A, ‖ · ‖A) be a quasi-Banach space and let cA ≥ 1 be its constant in the quasi-
triangle inequality. Let 0 < p ≤ 1 such that cA = 21/p−1. According to the Aoki-
Rolewicz theorem (see [33, Section 15.10]) there is another quasi-norm ||| · ||| on A
which is equivalent to ‖·‖A and such that ||| · |||p satisfies the triangle inequality. Then
(A, ||| · |||) is called a p-Banach space. Note that if 0 < r < p, then (A, ||| · |||) is also
an r -Banach space and that any p-Banach space satisfies the quasi-triangle inequality
with constant 21/p−1.

If B is another quasi-Banach space, we write A = B if A ↪→ B and B ↪→ A,
where ↪→ means continuous embedding.

For 0 < q ≤ ∞, let �q be the space of q-summable sequences with Z as index set.
If (wm)m∈Z is a sequence of positive numbers, we denote by �q(wm) the space of all
scalars sequences (ξm) such that (wmξm) ∈ �q .

Let (Wm) be a sequence of quasi-Banach spaces with the same constant in the
quasi-triangle inequality. We put

�q(wmWm) = {w = (wm) : wm ∈ Wm and

‖w‖�q (wm Wm ) = ‖(wm‖wm‖Wm )‖�q < ∞}.

A quasi-Banach space (�, ‖·‖�) of real valued sequences with� ↪→ �q +�q(2−m)

is said to be a quasi-Banach sequence lattice if � contains all the sequences with only
finitely many non-zero coordinates and whenever (ηm) ∈ � and |ξm | ≤ |ηm | for each
m ∈ Z, then (ξm) ∈ � and ‖(ξm)‖� ≤ ‖(ηm)‖� .

We define �(Wm) as the collection of all sequences w = (wm) such that wm ∈ Wm
and ‖w‖�(Wm) = ‖(‖wm‖Wm )‖� < ∞.

Subsequently, if b and v are non-negative functions on (0,∞), we say that b and
v are equivalent (and write b(t) ≈ v(t)) if there are positive constants c,C such that
cb(t) ≤ v(t) ≤ Cb(t) for any t > 0.

A positive, finite and Lebesgue-measurable function b on (0,∞) is said to be slowly
varying (b ∈ SV (0,∞)) if, for each ε > 0, tεb(t) is equivalent to a positive non-
decreasing measurable function and t−εb(t) is equivalent to a positive non-increasing
measurable function. Important examples of slowly varying functions are powers of
iterated logarithms and broken logarithmic functions v(t) = �A(t) where �(t) =
(1 + | log(t)|),A = (α0, α∞) ∈ R

2, �A(t) = �α0(t) if 0 < t ≤ 1 and �A(t) = �α∞(t)
if 1 < t < ∞.

We refer to [29] for properties of slowly varying functions. We only recall here that
if ε > 0, then there are positive constant cε, Cε such that

cε min{s−ε, sε}b(t) ≤ b(st) ≤ Cε max{sε, s−ε}b(t) for every s, t > 0, (2.1)

(see [29, Proposition 2.2]). Put

b(s) = sup
t>0

b(st)

b(t)
.
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The function b satisfies that b(st) ≤ b(s)b(t). Moreover, using (2.1) with ε = 1/2,
we have

sb̄(s) ≤ C1/2s1/2 → 0 as s → 0. (2.2)

Another consequence of (2.1), this time with ε = 1, is that

c1/2 ≤ b̄(s) ≤ 2C1 for any 1/2 ≤ s ≤ 1. (2.3)

Let A = (α0, α∞) ∈ R
2, v(t) = �A(t) and B = (α+

0 + (−α∞)+, α+∞ + (−α0)
+)

with α+ = max{0, α}. It follows from [14, Lemma 2.1] and [5, (2.6)] that v̄(s) ≤
�B(s), s ∈ (0,∞).

For 0 < q ≤ ∞ and b ∈ SV (0,∞), the quasi-Banach sequence space �q(b(2m))

will be of special interest for us.
If k ∈ Z, the shift operator τk is defined by τkξ = (ξm+k)m∈Z for ξ = (ξm). We

have

‖τkξ‖�q (b(2m)) = ‖(b(2m)|ξm+k |)‖�q ≤ b(2−k)‖(b(2m+k)|ξm+k |)‖�q .

Hence τk : �q(b(2m)) → �q(b(2m)) is bounded with

‖τk‖�q (b(2m)),�q (b(2m)) ≤ b̄(2−k). (2.4)

We say that A = (A0, A1) is a (p-Banach) quasi-Banach couple if A0 and A1
are (p-Banach) quasi-Banach spaces which are continuously embedded in the same
Hausdorff topologic vector space.

For t > 0 and a ∈ A0 + A1, the Peetre’s K -functional is given by

K (t, a) = K (t, a; A0, A1) = inf{‖a0‖A0 + t‖a1‖A1 : a = a0 + a1, a j ∈ A j }.

If a ∈ A0 ∩ A1, the J -functional of Peetre is

J (t, a) = J (t, a; A0, A1) = max{‖a‖A0 , t‖a‖A1}.

Note that K (1, ·) and J (1, ·) are the quasi-norms of A0+ A1 and A0∩ A1, respectively.
If (A j , ‖ · ‖A j ) is a p-Banach space for j = 0, 1, then J (t, ·) is also a p-norm, as

well as

K p(t, a) = K p(t, a; A0, A1)

= inf{(‖a0‖p
A0

+ t p‖a1‖p
A1

)1/p : a = a0 + a1, a j ∈ A j }.

This last functional is equivalent to the K -functional. In fact

K (t, a) ≤ K p(t, a) ≤ 21/p−1K (t, a), a ∈ A0 + A1. (2.5)
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Note that if ξ = (ξm) ∈ �p + �p(2−m) then

K p(2
r , ξ ; �p, �p(2

−m)) =
( ∞∑

m=−∞
[min{1, 2r−m}|ξm |]p

)1/p

.

This expression will be useful later.
A quasi-Banach space A is said to be an intermediate space with respect to the

couple A if A0 ∩ A1 ↪→ A ↪→ A0 + A1. We write A◦ for the closure of A0 ∩ A1 in
A. The fundamental lemma (see [4, Lemma 3.3.2] and [37, Lemma 2.4]) yields that

a ∈ (A0 + A1)
◦ if and only if min

{
1,

1

t

}
K (t, a) → 0

as t → 0 and as t → ∞. (2.6)

For 0 ≤ θ ≤ 1, 0 < q ≤ ∞ and b ∈ SV (0,∞), the space Āθ,q;b = (A0, A1)θ,q;b
consists of all those a ∈ A0 + A1 that have a finite quasi-norm

‖a‖ Āθ,q;b = ‖a‖(A0,A1)θ,q;b =
( ∞∑

m=−∞
[2−θmb(2m)K (2m, a)]q

)1/q

(the sum should be replaced by the supremum when q = ∞). See [29, 37]. If b ≡ 1
and 0 < θ < 1, we recover the classical real interpolation space (A0, A1)θ,q;b (see
[3, 4, 8, 43]). If 0 < θ < 1 then (A0, A1)θ,q;b is a special case of the real method with
function parameter (see [30, 40]). If θ = 0, 1, α0, α∞ ∈ R and

b(t) =
{

(1 + | log t |)α0 if 0 < t ≤ 1,

(1 + | log t |)α∞ if 1 < t < ∞,

then we recover the logarithmic interpolation spaces Āθ,q;(α0,α∞) (see [10, 16, 20, 27,
28]).

We are mainly interested here in the limiting spaces A0,q;b and A1,q;b. Since
K (t, a; A0, A1) = t K (t−1, a; A1, A0), they are related by the equality

(A0, A1)0,q;b = (A1, A0)1,q;v where v(t) = b(1/t). (2.7)

Note that v is also slowly varying on (0,∞). Due to equality (2.7), in what follows
we focus on the case θ = 0.

As it is shown in [28], (A0, A1)0,q;b is an intermediate space with respect to A if
and only if
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(∫ ∞

1
b(t)q dt/t

)1/q

< ∞. (2.8)

Let B = (B0, B1) be another quasi-Banach couple. We write T ∈ L(A, B) to mean
that T is a bounded linear operator from A0+ A1 into B0+ B1 such that the restrictions
T : A j → B j are bounded for j = 0, 1. Then the restriction

T : (A0, A1)0,q;b → (B0, B1)0,q;b

is also bounded. Indeed, if M j is bigger than or equal to the norm of T : A j → B j ,
j = 0, 1, then

K (t, T a; B0, B1) ≤ M0K

(
t M1

M0
, a; A0, A1

)
.

Therefore, if M1 ≤ M0, we obtain that ‖T ‖ Ā0,q;b,B̄0,q;b ≤ M0. If M0 < M1 then we

can find r ∈ N ∪ {0} such that 2r ≤ M1/M0 < 2r+1. Hence

‖T a‖B̄0,b;q ≤
( ∞∑

m=−∞
[b(2m)M0K (2(m+r+1), a)]q

)1/q

≤ M0 b̄(2−r−1)‖a‖ Ā0,b;q

≤ cM0 b̄

(
M0

M1

)
‖a‖ Ā0,b;q

where we have used (2.3) in the last inequality. Therefore

‖T ‖ Ā0,q;b,B̄0,q;b ≤
{

M0 if M1 ≤ M0,

cM0b̄
(

M0
M1

)
if M0 < M1,

(2.9)

where c > 0 is a constant depending only on b.
If (Tn) ⊆ L(A0 + A1, B0 + B1) with

sup {‖Tn‖A1,B1 : n ∈ N} < ∞ and lim
n→∞‖Tn‖A0,B0 = 0,

then it follows from (2.9) and (2.1) that

lim
n→∞‖Tn‖ Ā0,q;b,B̄0,q;b = 0. (2.10)

Next we show a sufficient condition on b for the inclusion (A0, A1)0,q;b ⊆ (A0 +
A1)

◦. Let 0 < q ≤ ∞ and take any a ∈ (A0, A1)0,q;b. Then

( ∞∑
n=−∞

[
b(2n)

min {1, 2−n} min {1, 2−n}K (2n, a)

]q)1/q

= ‖a‖ Ā0,q;b < ∞. (2.11)
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Since tb(t) is equivalent to a non-decreasing function, we have(∑∞
n=0[2nb(2n)]q

)1/q = ∞. Hence, from (2.11) it follows that

lim
t→∞

1

t
K (t, a) = lim

n→∞
1

2n
K (2n, a) = 0.

On the other hand, if we assume

{
(
∫ 1
0 b(t)q dt/t)1/q = ∞ if 0 < q < ∞,

lim
t→0

b(t) = ∞ if q = ∞,
(2.12)

then we also have that limt→0 K (t, a) = 0. Having in mind (2.6), it turns out that if
(2.12) is satisfied then (A0, A1)0,q;b ⊆ (A0 + A1)

◦.
The Gagliardo completion A∼

j of A j consists of all those a ∈ A0 + A1 having a
finite quasi-norm

‖a‖A∼
j

= sup{t− j K (t, a) : t > 0} (see [4,3]).

We have that A j ↪→ A∼
j for j = 0, 1. The quasi-Banach couple A is called mutually

closed if A j = A∼
j for j = 0, 1.

If� is a quasi-Banach sequence lattice and A = (A0, A1) is a p-Banach couple, then
the J -space A�;J = (A0, A1)�;J is formedby all sumsa =∑∞

m=−∞ um (convergence
in A0 + A1), where (um) ⊆ A0 ∩ A1 and (J (2m, um)) ∈ �. We endow A�;J with the
quasi-norm

‖a‖A�:J = ‖a‖(A0,A1)�;J = inf

{
‖(J (2m, um))‖� : a =

∞∑
m=−∞

um

}

(see [37]).
Next, we give a description of (A0, A1)0,q;b by means of the J -functional.

Theorem 2.1 Let A = (A0, A1) be a mutually closed p-Banach couple (0 < p ≤
1). Let 0 < q ≤ ∞ and let b ∈ SV (0,∞) satisfying (2.8) and (2.12). Put � =
(�p, �p(2−m))0,q:b. Then we have with equivalent quasi-norms

(A0, A1)0,q:b = (A0, A1)�;J .

Proof Let a ∈ (A0, A1)0,q:b. By the assumption on b, we know that (A0, A1)0,q:b ⊆
(A0 + A1)

◦. Hence, according to [37, Theorem 3.2], there exists (um) ⊆ A0 ∩ A1
such that a =∑∞

m=−∞ um (in A0 + A1) and
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( ∞∑
m=−∞

min(1, 2k−m)p J (2m, um)p

)1/p

≤ cK (2k, a), k ∈ Z,

where c only depends on p. Whence

‖a‖(A0,A1)�;J ≤ ‖(J (2m, um))‖(�p,�p(2−m ))0,q;b

≤
( ∞∑

k=−∞

[
b(2k)K p(2

k, ((J (2m, um)); �p, �p(2
−m))
]q)1/q

≤
⎛
⎝ ∞∑

k=−∞

⎡
⎣b(2k)

( ∞∑
m=−∞

min(1, 2k−m)p J (2m, um)p

)1/p
⎤
⎦

q⎞
⎠

1/q

≤ c

( ∞∑
k=−∞

[b(2k)K (2k, a)]q

)1/q

= c‖a‖(A0,A1)0,q;b .

Conversely, take any a ∈ (A0, A1)�;J . We can find a J -representation a =∑∞
m=−∞ um with ‖(J (2m, um))‖� ≤ 2‖a‖(A0,A1)�;J . Since

K p(2
k, a) ≤

( ∞∑
m=−∞

min(1, 2k−m)p J (2m, um)p

)1/p

, k ∈ Z,

we obtain that

‖a‖(A0,A1)0,q;b

≤
⎛
⎝ ∞∑

k=−∞

⎡
⎣b(2k)

( ∞∑
m=−∞

min(1, 2k−m)p J (2m, um)p

)1/p
⎤
⎦

q⎞
⎠

1/q

≤ 21/p−1‖(J (2m, um))‖(�p,�p(2−m ))0,q;b

≤ 21/p‖a‖(A0,A1)�;J .

��
In Theorem 2.1, the sequence space that defines (A0, A1)0,q;b as a J -space is not

explicitly described, it appears as the interpolation space � = (�p, �p(2−m))0,q:b
instead, what is enough for our aims here. Assuming extra conditions on the couple
(A0, A1) and on the function b, there are several papers in the literature where the
sequence space � is explicitly described. More precisely, in the case of logarithmic
interpolation spaces, explicit descriptions as J -spaces have been obtained by Cobos
and Kühn [16] for the case of ordered Banach couples, by Cobos and Segurado [20]
and Besoy, Cobos and Fernández–Cabrera [7] for general Banach couples and by
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Besoy and Cobos [6] for quasi-Banach couples. If (A0, A1) is a Banach couple and
1 ≤ q ≤ ∞, an explicit description of (A0, A1)0,q;b as a J -space has been recently
established by Grover and Opic [38].

The following estimate for the norm of the shift operator τk on � will be useful
later.

Lemma 2.2 Let 0 < p ≤ 1, 0 < q ≤ ∞ and let b ∈ SV (0,∞) satisfying (2.8). Put
� = (�p, �p(2−m))0,q;b. Then, for any k ∈ Z, we have

‖τk‖�,� ≤ 21/p−1b(2−k).

Proof Given any ξ = (ξm) ∈ �, we have

‖τkξ‖� ≤
( ∞∑

n=−∞

[
b(2n)K p(2

n, τkξ ; �p, �p(2
−m))
]q)1/q

=
⎛
⎝ ∞∑

n=−∞

⎡
⎣b(2n)

( ∞∑
m=−∞

min(1, 2n−m)p|ξm+k |p

)1/p
⎤
⎦

q⎞
⎠

1/q

≤ b(2−k)

⎛
⎝ ∞∑

n=−∞

⎡
⎣b(2n+k)

( ∞∑
m=−∞

min(1, 2n+k−m)p|ξm |p

)1/p
⎤
⎦

q⎞
⎠

1/q

≤ 21/p−1b(2−k)

( ∞∑
n=−∞

[b(2n)K (2n, ξ)]q

)1/q

= 21/p−1b(2−k)‖ξ‖�

where we have used (2.5) in the penultimate inequality. ��

3 Measure of non-compactness

Let A, B be quasi-Banach spaces and T ∈ L(A, B). The (ball) measure of non-
compactness β(T ) = β(T : A → B) is defined to be the infimum of the set of
numbers σ > 0 for which there is a finite subset {z1, . . . , zn} ⊆ B such that

T (UA) ⊆
n⋃

j=1

{z j + σUB}.

Here UA, UB are the closed unit balls of A and B, respectively. See [24] for details
on the measure of non-compactness. Note that β(T ) ≤ ‖T ‖A,B and that β(T ) = 0 if
and only if T is compact. That is, β(T ) = 0 means that T transforms each bounded
set of A into a set whose closure is compact in B.
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If T1 is another operator belonging to L(A, B), then it is not difficult to check that

β(T + T1 : A → B) ≤ cB
(
β(T : A → B) + β(T1 : A → B)

)
.

If we assume that E, X are other quasi-Banach spaces and that S ∈ L(B, E) and
R ∈ L(X , A), then we have

β(ST R : X → E) ≤ ‖R‖X ,Aβ(T : A → B)‖S‖B,E .

Furthermore, if ‖Sb‖E = ‖b‖B for all b ∈ B, then

β(T : A → B) ≤ 2cEβ(ST : A → E).

If for any a ∈ A with ‖a‖A < 1, there is x ∈ X with ‖x‖X < 1 such that Rx = a,
then

β(T : A → B) ≤ β(T R : X → B).

We will use freely these properties in our later computations.
Next we establish the main result of the paper. It shows an estimate for the measure

of non-compactness of an operator interpolated using parameters 0, q, b.

Theorem 3.1 Let A = (A0, A1), B = (B0, B1) be quasi-Banach couples and let
T ∈ L(A, B). Let 0 < q ≤ ∞ and b ∈ SV (0,∞) satisfying (2.8) and (2.12). Then
we have

(i) β(T : A0,q;b → B0,q;b) = 0 if β(T : A0 → B0) = 0,
(ii)

β(T :A0,q;b → B0,q;b) ≤ Cβ(T : A0 → B0) if

0 ≤ β(T : A1 → B1) < β(T : A0 → B0),

(iii)

β(T :A0,q;b → B0,q;b)

≤ C max
{
β(T : A0 → B0), β(T : A0 → B0)b

(
β(T : A0 → B0)

β(T : A1 → B1)

)}

if 0 < β(T : A0 → B0) ≤ β(T : A1 → B1).

Here C is a constant independent of T .

Proof Step 1. Consider the mutually closed quasi-Banach couples
A∼ = (A∼

0 , A∼
1 ), B∼ = (B∼

0 , B∼
1 ). The arguments of [3, Theorem V.1.5] may be

modified to give that
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K (t, a; A∼
0 , A∼

1 ) ≤ K (t, a; A0, A1) ≤ max{cA0 , cA1}K (t, a; A∼
0 , A∼

1 ).

Therefore,

(A0, A1)0,q;b = (A∼
0 , A∼

1 )0,q;b and (B0, B1)0,q;b = (B∼
0 , B∼

1 )0,q;b .

Besides, T ∈ L(A∼, B∼) and, according to [5, Lemma 3.1]„ we have

β(T : A∼
j → B∼

j ) ≤ max{cB0 , cB1}β(T : A j → B j ), j = 0, 1.

Consequently, without loss of generality we may assume in the following that the
couples A = (A0, A1) and B = (B0, B1) are mutually closed. We may also assume
that the spaces A0, A1, B0, B1 are p-Banach for some 0 < p ≤ 1. Therefore, we can
use Theorem 2.1.
Step 2. In this step we will introduce vector-valued sequence spaces and projections
which will allow to split the operator T .

Let � = (�p, �p(2−m))0,q;b. By Theorem 2.1, we know that (A0, A1)0,q;b =
(A0, A1)�;J . Consider the vector-valued sequence space �(Gm) where Gm = (A0 ∩
A1, J (2m, ·)), m ∈ Z. Let π : �(Gm) → (A0, A1)�;J be the linear operator defined
by π(um) =∑∞

m=−∞ um (convergence in A0 + A1). Then π is surjective and induces
the quasi-norm of (A0, A1)�;J . Note also that π ∈ L(�p(2−mj Gm), A j ), j = 0, 1,
and its norm is less than or equal to 1.

Put �p(G) = (�p(Gm), �p(2−m Gm)). The following projections will be useful.
For n ∈ N and u = (um) ∈ �p(Gm) + �p(2−m Gm) let

Pnu = (. . . , 0, 0, u−n, u−n+1, . . . , un−1, un, 0, 0, . . . ),

P+
n u = (. . . , 0, 0, un+1, un+2, un+3, . . . ),

P−
n u = (. . . , u−n−3, u−n−2, u−n−1, 0, 0, . . . ).

Then the identity operator I on �p(Gm) + �p(2−m Gm) can be decomposed as I =
Pn + P+

n + P−
n , n ∈ N. These projections are bounded from �p(2−mj Gm) into

�p(2−mj Gm) with norm less than or equal to 1 for j = 0, 1, and the same happens on
�(Gm). Furthermore,

‖P+
n ‖�p(Gm ),�p(2−m Gm ) = 2−(n+1) = ‖P−

n ‖�p(2−m Gm ),�p(Gm ) . (3.1)

Write Fm = (B0 + B1, K (2m, ·)), m ∈ Z. Then the linear operator ιb =
(...., b, b, b, ....) is a metric injection from (B0, B1)0,q;b into �q(b(2m)Fm). Consider
the couple �∞(F) = (�∞(Fm), �∞(2−m Fm)). Note that ι : B j → �∞(2−mj Fm) is
bounded with norm less than or equal to 1. On �∞(F) we can consider the corre-
sponding sequences of projections that we denote by (Qn), (Q+

n ), (Q−
n ). They enjoy

analogous properties as (Pn), (P+
n ) and (P−

n ). In particular, we have

‖Q+
n ‖�∞(Fm),�∞(2−m Fm ) = 2−(n+1) = ‖Q−

n ‖�∞(2−m Fm ),�∞(Fm) . (3.2)
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The following diagram illustrates the situation

�p(Gm)
π−→A0

T−→ B0
ι−→ �∞(Fm)

�p(2−m Gm)
π−→ A1

T−→ B1
ι−→ �∞(2−m Fm)

�(Gm)
π−→ A0,q;b

T−→ B0,q;b
ι−→ �q(b(2m)Fm)

.

In this diagram, the first three spaces of the last line are obtained by interpolation of
the couple above and the fourth space contains the corresponding interpolation space.
That is to say, we have

(�p(Gm), �p(2
−m Gm))0,q;b = �(Gm) and

(�∞(Fm), �∞(2−m(Fm))0,q;b ↪→ �q(b(2m)Fm). (3.3)

To establish the first formula we proceed as in the case when b(t) = (1 + | log t |)A
(see [5, Lemma 3.2]). Take any u = (um) ∈ (�p(Gm), �p(2−m Gm))0,q;b. For any
k ∈ Z and 0 < ε < 1, there are u j = (u j,m) ∈ �p(2−mj Gm) such that u = u0 + u1

and

‖u0‖�p(Gm ) + 2k‖u1‖�p(2−m Gm ) ≤ (1 + ε)K (2k, u; �p(Gm), �p(2
−m Gm)).

Then

( ∞∑
m=−∞

min(1, 2k−m)p‖um‖p
Gm

)1/p

≤ (‖u0‖p
�p(Gm ) + 2kp‖u1‖p

�p(2−m Gm )
)1/p

≤ 21/p−1(1+ε)K (2k, u; �p(Gm), �p(2
−m Gm))

and thus

‖u‖�(Gm ) =
( ∞∑

k=−∞

[
b(2k)K (2k, (‖um‖Gm ); �p, �p(2

−m))
]q)1/q

≤
⎛
⎝ ∞∑

k=−∞

⎡
⎣b(2k)

( ∞∑
m=−∞

(min(1, 2k−m)‖um‖Gm )p

)1/p
⎤
⎦

q⎞
⎠

1/q

≤ 21/p−1(1 + ε)

( ∞∑
k=−∞

[
b(2k)K (2k, u; �p(Gm), �p(2

−m Gm))
]q)1/q

≤ 21/p‖u‖(�p(Gm),�p(2−m Gm ))0,q;b .

Reciprocally, if u = (um) ∈ �(Gm), given any k ∈ Z we can decompose u =
u0 + u1 with
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u0,m =
{

um if m ≤ k,

0 if m > k,
, u1,m =

{
0 if m ≤ k,

um if m > k.

Then u0 ∈ �p(Gm), u1 ∈ �p(2−m Gm)) and we have

K (2k, u; �p(Gm), �p(2
−m Gm))

≤
(

k∑
m=−∞

‖um‖p
Gm

)1/p

+ 2k

( ∞∑
m=k+1

(2−m‖um‖Gm )p

)1/p

≤ 2

( ∞∑
m=−∞

min(1, 2k−m)p‖um‖p
Gm

)1/p

.

Consequently,

‖u‖(�p(Gm ),�p(2−m Gm ))0,q;b

=
( ∞∑

k=−∞

[
b(2k)K (2k, u; �p(Gm), �p(2

−m Gm))
]q)1/q

≤ 2

⎛
⎝ ∞∑

k=−∞

⎡
⎣b(2k)

( ∞∑
m=−∞

min(1, 2k−m)p‖um‖p
Gm

)1/p
⎤
⎦

q⎞
⎠

1/q

= 2

( ∞∑
k=−∞

[
b(2k)K p

(
2k, (‖um‖Gm ); �p, �p(2

−m)
)]q)1/q

≤ 21/p‖u‖�(Gm ).

To establish the second embedding in (3.3), take any
x = (xm) ∈ (�∞(Fm), �∞(2−m Fm))0,q;b. Give any decomposition x = x0 + x1 with
x0 = (x0,m) ∈ �∞(Fm) and x1 = (x1,m) ∈ �∞(2−m Fm), and any k ∈ Z, we obtain

‖xk‖Fk ≤ c(‖x0k ‖Fk + ‖x1k ‖Fk )

≤ c(‖x0‖�∞(Fm ) + 2k‖x1‖�∞(2−m Fm )).

It follows that

‖xk‖Fk ≤ cK (2k, x; �∞(Fm), �∞(2−m Fm)), k ∈ Z.

Therefore, ‖x‖�q (b(2m)Fm ) ≤ c‖x‖(�∞(Fm ),�∞(2−m Fm ))0,q;b as we wanted.

Put T̂ = ιT π. Since

β(T : Ā0,q;b → B̄0,q;b) ≤ c1β(ιT : Ā0,q;b → �q(b(2m)Fm))

≤ c2β(T̂ : �(Gm) → �q(b(2m)Fm)),
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it suffices to estimate the measure of non-compactness of T̂ acting between the vector-
valued sequence spaces. With this aim, for n ∈ N we decompose T̂ as

T̂ = T̂ Pn + T̂ (P+
n + P−

n )

= T̂ Pn + QnT̂ (P+
n + P−

n ) + Q−
n T̂ P+

n + Q+
n T̂ P−

n + Q−
n T̂ P−

n + Q+
n T̂ P+

n

and we proceed to estimate the measure of non-compactness of each of these six
operators acting from �(Gm) into �q(b(2m)Fm).

Step 3. We start with Q−
n T̂ P+

n . We are going to show that β(Q−
n T̂ P+

n : �(Gm) →
�q(b(2m)Fm)) tends to 0 as n → ∞.

Using the factorization

�p(Gm)
P+

n−→ �p
(
2−m Gm

) T̂−→ �∞(2−m Fm)
Q−

n−→ �∞(Fm)

and (3.1) and (3.2), we get

‖Q−
n T̂ P−

n : �p(Gm)→�∞(Fm)‖≤2−(n+1)‖T : A1 → B1‖2−(n+1) → 0 as n →∞.

In addition, the factorization

�p(2
−m Gm)

P+
n−→ �p(2

−m Gm)
T̂−→ �∞

(
2−m Fm

) Q−
n−→ �∞

(
2−m Fm

)
yields that

‖Q−
n T̂ P+

n : �p(2
−m Gm) → �∞(2−m Fm)‖ ≤ ‖T : A1 → B1‖ for any n ∈ N.

Therefore, by formulae (3.3) and (2.10), we obtain

lim
n→∞β(Q−

n T̂ P+
n : �(Gm) −→ �q(b(2m)Fm))

≤ c1 lim
n→∞ ‖Q−

n T̂ P+
n ‖�p(G)0,q;b,�∞(F)0,q;b = 0 .

Step 4. Consider Q+
n T̂ P−

n . Using the factorizations

�p(Gm)

�p(Gm)

�p(2−m Gm)

P−
n

P−
n

�∞(Fm)

�∞(Fm)

�∞(2−m Fm)

Q+
n

Q+
n

and having in mind estimates (3.1), (3.2) and formulae (3.3) we get that ‖P−
n :

�(Gm) → �p(Gm)‖ ≤ c2 and ‖Q+
n : �∞(Fm) → �q(b(2m)Fm)‖ ≤ c3. Hence,

with the help of the diagram
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�(Gm) �q(b(2m)Fm)

�p(Gm) �∞(Fm)

P−
n

Q+
n T̂ P−

n

T̂

Q+
n

we derive

β(Q+
n T̂ P−

n : �(Gm) → �q(b(2m)Fm)) ≤ c2c3β(T̂ : �p(Gm) → �∞(Fm))

≤ c2c3β(T : A0 → B0).

Step 5. Now we proceed with Q−
n T̂ P−

n . Take any σ j > β(T : A j → B j ), j = 0, 1.
First we are going to compare ‖Q−

n T̂ P−
n ‖�p(2−m Gm ),�∞(2−m Fm ) with σ1. We have

‖Q−
n T̂ P−

n ‖�p(2−m Gm ),�∞(2−m Fm ) ≤ ‖T̂ P−
n ‖�p(2−m Gm ),�∞(2−m Fm )

and

‖T̂ P−
1 ‖�p(2−m Gm ),�∞(2−m Fm ) ≥ ‖T̂ P−

2 ‖�p(2−m Gm ),�∞(2−m Fm) ≥ . . . ≥ 0.

Therefore, the sequence (‖T̂ P−
n ‖�p(2−m Gm ),�∞(2−m Fm )) is convergent, say, to τ ≥ 0.

Let (vn) ⊆ U�p(2−m Gm ) such that limn→∞‖T̂ P−
n vn‖�∞(2−m Fm) = τ . To relate τ and

σ1, let {z1, . . . , zr } ⊆ B1 such that

T π(U�p(2−m Gm )) ⊆ ∪r
k=1{zk + σ1UB1}.

We can find a subsequence (vn′) of (vn) and some 1 ≤ k ≤ r such that ‖T π P−
n′ vn′ −

zk‖B1 ≤ σ1 for all n′. Then, for any s ∈ Z, we have

K (2s, zk) ≤ ‖T π P−
n′ vn′ ‖B0 + 2s‖zk − T π P−

n′ vn′ ‖B1

≤ ‖P−
n′ vn′ ‖�p(Gm )‖T ‖A0,B0 + 2sσ1

≤ 2−n′ ‖T ‖A0,B0 + 2sσ1 → 2sσ1 as n′ → ∞.

It follows that

‖ιzk‖�∞(2−m Fm ) = sup
s∈Z

{2−s K (2s, zk)} ≤ σ1.

Hence,

τ = lim
n′→∞

‖T̂ P−
n′ vn′ ‖�∞(2−m Fm )

≤ max{cB0 , cB1} sup
n′

{‖T̂ P−
n′ vn′ − ιzk‖�∞(2−m Fm )

+ ‖ιzk‖�∞(2−m Fm)}
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≤ max{cB0 , cB1} sup
n′

{‖T π P−
n′ vn′ − zk‖B1 + σ1}

≤ 2max{cB0 , cB1}σ1.

Since the sequence (‖T̂ P−
n ‖�p(2−m Gm ),�∞(2−m Fm )) is decreasing,we conclude that there

exists N1 ∈ N such that if n ≥ N1 then

‖Q−
n T̂ P−

n ‖�p(2−m Gm ),�∞(2−m Fm ) ≤ ‖T̂ P−
n ‖�p(2−m Gm ),�∞(2−m Fm )

≤ 3max{cB0 , cB1}σ1.

Next we compare ‖Q−
n T̂ P−

n ‖�p(Gm ),�∞(Fm) with σ0. Since sequences having a
finite number of coordinates different from 0 are dense in �p(Gm), we can find
{d1, . . . , ds} ⊆ U�p(Gm ) such that each dk has a finite number of coordinates different
from 0 and with

T̂ (U�p(Gm )) ⊆
s⋃

k=1

{T̂ dk + c4σ0U�∞(Fm )}

where c4 = 3max{cB0 , cB1}2. We can also find N2 ∈ N such that if n ≥ N2 we have

‖Q−
n T̂ dk‖�∞(Fm) ≤ 2−(n+1)‖T̂ dk‖�∞(2−m Fm ) ≤ σ0 for any 1 ≤ k ≤ s.

Take any n ≥ N2 and any u ∈ U�p(Gm ). Then P−
n u ∈ U�p(Gm) and so there is

1 ≤ k ≤ s such that ‖T̂ P−
n u − T̂ dk‖�∞(Fm ) ≤ c4σ0. Therefore, ‖Q−

n T̂ P−
n u‖�∞(Fm ) ≤

‖Q−
n T̂ P−

n u − Q−
n T̂ dk‖�∞(Fm) + ‖Q−

n T̂ dk‖�∞(Fm) ≤ 2c4σ0.
Finally, using (3.3) and (2.9), we derive that there is N ∈ N such that if n ≥ N then

β(Q−
n T̂ P−

n : �(Gm) → �q(b(2m)Fm)) ≤ c5‖Q−
n T̂ P−

n ‖�p(G)0,q;b,�∞(F)0,q;b

≤
{

c6σ0 if σ1 ≤ σ0,

c6σ0b
(

σ0
σ1

)
if σ0 < σ1.

With similar arguments one can show that there is a constant c7 > 0 such that

β(Q+
n T̂ P+

n : �(Gm) → �q(b(2m)Fm)) ≤
{

c7σ0 if σ1 ≤ σ0,

c7σ0b
(

σ0
σ1

)
if σ0 < σ1.

Step 6. Given any quasi-Banach sequence lattice �, we can define a quasi-norm ‖ · ‖�̃

in R2n+1 by ‖x‖�̃ = ‖x̃‖� , where x = (xk)−n≤k≤n ∈ R
2n+1, x̃ =∑n

k=−n xkek , ek =
(δk

m)m∈Z and δk
m is theKronecker delta. Compactness of the unit ballU = U(R2n+1,‖·‖�̃ )

in (R2n+1, ‖ · ‖�̃) will be useful to estimate the measure of non-compactness of the
remaining operators.
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Letσ j > β(T : A j → B j ), j = 0, 1.We canfindfinite sets� j = {h j
1, . . . , h j

L j
} ⊆

B j such that

T (UA j ) ⊆
L j⋃

l=1

{h j
l + σ jUB j }, j = 0, 1. (3.4)

Let N ∈ N such that 2N−1 ≤ σ1/σ0 < 2N if σ0 ≤ σ1 and let N = 0 if σ1 < σ0.

As for T̂ Pn , consider the quasi-norm‖·‖�̃ onR2n+1 and letη =
∥∥∥∑n

k=−n
ek‖ek‖�

∥∥∥−1

�
.

By compactness of U = U(R2n+1,‖·‖�̃), we can find a finite set ϒ = {λ1, . . . , λs} ⊆ U
such that

U ⊆
s⋃

d=1

{λd + ηU }.

We associate to each λd = (λd
k

)
−n≤k≤n the numbers

ϕ
j
k = ϕ

j
k,λd =

(
η

‖ek‖�

+
∣∣∣λd

k

∣∣∣) 2−k j , j = 0, 1.

Next, for −n ≤ k ≤ n, λd ∈ ϒ , h0
l ∈ �0 and h1

y ∈ �1 in (3.4), pick any gk in the
intersection (ϕ0

k h0
l +ϕ0

k σ0UB0)∩ (ϕ1
k h1

y +ϕ1
k σ1UB1) provided it is non-empty and let

gk = 0 otherwise. Consider the finite set � formed by all sums
∑n

k=−n gk . We look
at B0,q;b as a J -space. We have

β(T̂ Pn : �(Gm) → �q(b
(
2m) Fm)) ≤ c1β(T π Pn : �(Gm) → B�;J ).

We are going to estimate the last term with the help of �.
For any u = (um) ∈ U�(Gm), we can find λd ∈ ϒ such that

|J (2k, uk) − λd
k |‖ek‖� ≤ ‖(J (2k, uk) − λd

k )‖�̃ ≤ η, −n ≤ k ≤ n.

It follows that |J (2k, uk)| ≤ η
‖ek‖�

+ |λd
k | = 2k jϕ

j
k . This yields that ‖uk‖A j ≤ ϕ

j
k ,

−n ≤ k ≤ n, j = 0, 1. By (3.4), there are h0
l ∈ �0 and h1

y ∈ �1 such that

‖T uk − ϕ0
k h0

l ‖B0 ≤ ϕ0
k σ0

and

‖T uk − ϕ1
k h1

y‖B1 ≤ ϕ1
k σ1.
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Hence, the intersection (ϕ0
k h0

l + ϕ0
k σ0UB0) ∩ (ϕ1

k h1
y + ϕ1

k σ1UB1) is not empty and for
the gk corresponding to that intersection we have

J (2k−N , T uk − gk) ≤ max{‖T uk − ϕ0
k h0

l ‖p
B0

+ ‖ϕ0
k h0

l − gk‖p
B0

,

2(k−N )p(‖T uk − ϕ1
k h1

y‖p
B1

+ ‖ϕ1
k h1

y − gk‖p
B1

)}1/p

≤ 21/p max{σ0, 2−N σ1}ϕ0
k .

Then, g =∑n
k=−n gk belongs to � and

‖T π Pnu − g‖B�;J
=
∥∥∥∥∥

n∑
k=−n

(T uk − gk)

∥∥∥∥∥
B�;J

≤ ‖τN (. . . 0, 0, J (2−n−N , T u−n − g−n), . . . , J (2n−N , T un − gn), 0, 0, . . . )‖�

≤ 21/p‖τN ‖�,� max{σ0, 2−N σ1}‖(. . . , 0, 0, ϕ0−n, . . . , ϕ0
n , 0, 0, . . . )‖�

≤ c2b(2−N )max{σ0, 2−N σ1}

where we have used Lemma 2.2 and definition of ϕ0
k in the last inequality. Whence,

according to the choice of N and (2.3), we obtain that

β(T̂ Pn : �(Gm) → �q(b(2m)Fm)) ≤ c1β(T π Pn : �(Gm) → B̄�;J )

≤ c3b(2−N )max{σ0, 2−N σ1}

≤
{

c4σ0 if σ1 ≤ σ0,

c4σ0b
(

σ0
σ1

)
if σ0 < σ1.

Next we consider QnT̂ (P+
n + P−

n ). This time we work with A0,q;b and B0,q;b
realized as K -spaces. We put � = �q(b(2m)). We have

β(QnT̂ (P+
n + P−

n ) : �(Gm) → �q(b(2m)Fm)) ≤ c5β(QnιT : A0,q;b → �(Fm)).

Let now η =
∥∥∥∑n

k=−n
ek‖ek‖�

∥∥∥−1

�
and consider on R2n+1 the quasi-norm ‖ · ‖�̃. There

is a finite set � = {μ1, . . . , μs} ⊆ U = U(R2n+1,‖·‖�̃) such that

U ⊆
s⋃

d=1

{
μd + ηU

}
.

Starting from μd = (μd
k )−n≤k≤n we define the numbers

ψ
j

k = ψ
j

k,μd = b(2−N )

(
η

‖ek‖�

+ |μd
k |
)
2−(k+N ) j , j = 0, 1,
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where N was defined in the following line to (3.4). Let� be the finite subset of�(Fm)

formed by all vectors zd,l,y = (zd,l,y
m )m∈Z where

zd,l,y
m =

{
0 if m /∈ [−n, n]
ψ0

mh0
l + ψ1

mh1
y if − n ≤ m ≤ n,

where h0
� ∈ �0 and h1

y ∈ �1 are the vectors of (3.4). We refer to zd,l,y as the element
of � associated to μd , h0

l and h1
y .

Given any a ∈ UA0,q;b , using the shift operator τN and (2.4), we have

‖(K (2m+N , a))‖� ≤ ‖τN ‖�‖a‖A0,q;b ≤ b(2−N ).

Therefore, there is μd ∈ � such that

‖(K (2m+N , a) − b(2−N )μd
m)−n≤m≤n‖�̃ < ηb(2−N ).

Hence

|K (2m+N , a) − b(2−N )μd
m |‖em‖� < ηb(2−N ), −n ≤ m ≤ n,

and so K (2m+N , a) < ψ0
m for −n ≤ m ≤ n. It follows that we can decompose a =

a0,m +a1,m with a j,m belonging to A j and such that ‖a0,m‖A0+2m+N ‖a1,m‖A1 < ψ0
m .

Therefore, there are h0
l ∈ �0 and h1

y ∈ �1 such that

‖T a0,m − ψ0
mh0

l ‖B0 ≤ ψ0
mσ0

and

‖T a1,m − ψ1
mh1

y‖B1 ≤ ψ1
mσ1, −n ≤ m ≤ n.

If we take z = zd,l,y the element of � associated to μd , h0
l , and h1

y, then we have

‖QnιT a − z‖�(Fm ) = ‖(K (2m, T a − zd,l,y
m ))−n≤m≤n‖�̃

≤ ∥∥(‖T a0,m − ψ0
mh0

l ‖B0 + 2m‖T a1,m − ψ1
mh1

y‖B1)−n≤m≤n
∥∥

�̃

≤ ‖(ψ0
mσ0 + 2mψ1

mσ1)−n≤m≤n‖�̃

≤ c6b(2−N )(σ0 + 2−N σ1).

Consequently,

β(QnT̂ (P+
n + P−

n ) : �(Gm) → �q(b(2m)Fm)) ≤ c5β(QnιT : A0,q;b → �(Fm))

≤ c7b(2−N )(σ0 + 2−N σ1)
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≤
{

c8σ0 if σ1 ≤ σ0,

c8σ0b
(

σ0
σ1

)
if σ0 < σ1,

,

where we have used the value of N and (2.3) in the last inequality.
Step 7. Collecting the estimates of the Steps 3 to 6, we conclude that there is a constant
C > 0 independent of T such that if we split the operator as in the Step 2 and we take
a suitable n, then for σ j > β(T : A j → B j ), we have

β(T̂ : �(Gm) → �q(2m Fm)) ≤
{

Cσ0 if σ1 ≤ σ0,

C max
{
σ0, σ0b

(
σ0
σ1

)}
if σ0 < σ1.

Then, if β(T : A0 → B0) = 0, letting σ0 → 0 and using (2.2) we obtain case (i) of
the statement. If 0 ≤ β(T : A1 → B1) < β(T : A0 → B0), letting σ0 → β(T :
A0 → B0) we get the case (ii). Finally, if 0 < β(T : A0 → B0) ≤ β(T : A1 → B1),
taking σ j = (1 + ε)β(T : A j → B j ) and letting ε goes to 0 we derive the case (iii).
This finishes the proof. ��
Remark 3.2 On the contrary to the case of the real method (see [17, 22]), if T ∈
L( Ā, B̄) and T : A1 → B1 is compact, then T : Ā0,q;b → B̄0,q;b might not be
compact. A counterexample can be found in [13, Remark 2.4].

For limiting methods with θ = 1 we have the following direct consequence of (2.7)
and Theorem 3.1.

Theorem 3.3 Let A = (A0, A1), B = (B0, B1) be quasi-Banach couples and let
T ∈ L(A, B). Let 0 < q ≤ ∞ and v ∈ SV (0,∞) satisfying

⎛
⎝ 1∫

0

v(t)q dt

t

⎞
⎠

1/q

< ∞, and also that

⎛
⎝ ∞∫

1

v(t)q dt

t

⎞
⎠

1/q

= ∞ if q < ∞ and lim
t→∞ v(t) = ∞ if q = ∞.

Then we have

(i) β(T : A1,q;v → B1,q;v) = 0 if β(T : A1 → B1) = 0,
(ii) β(T : A1,q;v → B1,q;v) ≤ Cβ(T : A1 → B1) if 0 ≤ β(T : A0 → B0) <

β(T : A1 → B1),
(iii)

β(T : A1,q;v → B1,q;v) ≤ C max
{
β(T : A1 → B1),
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β(T : A1 → B1)v

(
β(T : A1 → B1)

β(T : A0 → B0)

)}

if 0 < β(T : A1 → B1) ≤ β(T : A0 → B0).

Here C is a constant independent of T .

4 Applications

Let (R, μ) be a non-atomic σ -finite measure space. For 0 < p, q ≤ ∞ and b ∈
SV (0,∞), theLorentz–Karamata space L p,q;b(R) is formed by all (equivalent classes
of) measurable functions f on R which have a finite quasi-norm

‖ f ‖L p,q;b(R) =
(∫ ∞

0
[t1/pb(t) f ∗(t)]q dt

t

)1/q

(the integral should be replaced by the supremum if q = ∞). Here f ∗ stands for the
non-increasing rearrangement of f defined by

f ∗(t) = inf{s > 0 : μ{x ∈ R : | f (x)| > s} ≤ t}.

We refer to [25] and [29] for properties of Lorentz–Karamata spaces. Note that if
b(t) = (1 + | log t |)a we get the Lorentz–Zygmund spaces L p,q(log L)a (see [2, 3]).
If A = (α0, α∞) ∈ R

2 and

b(t) = �A(t) =
{

(1 + | log t |)α0 for 0 < t ≤ 1,

(1 + | log t |)α∞ for 1 < t < ∞,

then we obtain the generalized Lorentz–Zygmund spaces L p,q(log L)A(R) (see [39]).
If b ≡ 1 then we obtain the Lorentz spaces L p,q(R) (see [4, 8, 43]) and if, in addition,
p = q then we get the Lebesgue spaces L p(R).

In what follows, we work with couples of Lebesgue spaces
(L p0(R), L p1(R)), (Lq0(S), Lq1(S)) and operators
T ∈ L((L p0(R), L p1(R)), (Lq0(S), Lq1(S))). We put

β(Tj ) = β(T : L p j (R) → Lq j (S)), j = 0, 1.

It is shown in [29, Corollary 5.3] that

L p,q;b(R) = (L1(R), L∞(R))θ,q;b (4.1)

provided that 1 < p < ∞, 0 < θ < 1, 1/p = 1− θ , 0 < q ≤ ∞ and b ∈ SV (0,∞).
As a consequence of Theorem 3.1we can establish the following result for Lorentz–

Karamata spaces.
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Theorem 4.1 Let (R, μ) and (S, ν) be non-atomic σ -finite measure spaces. Let 1 <

p0 < p1 < ∞, 1 < q0 < q1 < ∞, 0 < q < ∞ and let b ∈ SV (0,∞) satisfying
(2.8) and (2.12). Put

b0(t) = b(t1/p0−1/p1)

(
1

b(t1/p0−1/p1)
q

∫ ∞

t
b(s1/p0−1/p1)

q ds

s

)1/min{p0,q}

and

b1(t) = b(t1/q0−1/q1)

(
1

b(t1/q0−1/q1)
q

∫ ∞

t
b(s1/q0−1/q1)

q ds

s

)1/max{q0,q}
.

If T ∈ L((L p0(R), L p1(R)), (Lq0(S), Lq1(S))) then

T : L p0,q;b0(R) → Lq0,q;b1(S) boundedly.

Moreover, for β(T ) = β(T : L p0,q;b0(R) → Lq0,q;b1(S)) we have

(a) β(T ) = 0 if β(T0) = 0,
(b) β(T ) ≤ Cβ(T0) if 0 ≤ β(T1) < β(T0),
(c) β(T ) ≤ C max

{
β(T0), β(T0)b (β(T0)/β(T1))

}
if 0 < β(T0) ≤ β(T1).

Here C > 0 is a constant independent of T .

Proof Let 0 < θ0 < θ1 < 1 such that 1/p j = 1 − θ j , j = 0, 1. We have L p j (R) =
(L1(R), L∞(R))θ j ,p j . Hence, we can use the reiteration formula of [29, Theorem 3.2]
to work with the space (L p0(R), L p1(R))0,q;b. Then, according to [36, Theorem 4.10]
and (4.1), we obtain

L p0,q;b0(R) = (L1(R), L∞(R))θ0,q;b0 ↪→ (L p0(R), L p1(R))0,q;b.

Similarly, but using now [36, Theorem 4.8] with η j = 1−1/q j , j = 0, 1, we get

(Lq0(S), Lq1(S))0,q;b ↪→ (L1(S), L∞(S))η0,q;b1 = Lq0,q;b1(S).

Therefore, the result follows interpolating with parameters 0, q, b the couples
(L p0(R), L p1(R)), (Lq0(S), Lq1(S)), applying Theorem 3.1 and having in mind the
embeddings pointed out above. ��

Subsequently, for τ ∈ R andA = (α0, α∞) ∈ R
2, we putA+τ = (α0+τ, α∞+τ).

Recall that α+ = max{α, 0} for α ∈ R.

Remark 4.2 Let A = (α0, α∞) ∈ R
2 such that α∞ + 1/q < 0 < α0 + 1/q and let

b(t) = (1 + | log t |)A. Then for the function b0 in Theorem 4.1 we obtain

b0(t) ≈ b(t)

(
1

b(t)q

∫ ∞

t
b(s)q ds

s

)1/min{p0,q}
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≈ (1 + | log t |)A(1 + | log t |)1/min{p0,q}

= (1 + | log t |)A+ 1
min{p0,q} .

Similarly,

b1(t) ≈ (1 + | log t |)A+ 1
max{q0,q} .

Hence, we have that

L p0,q;b0(R) = L p0,q(log L)
A+ 1

min{p0,q}
(R)

and

Lq0,q;b1(S) = Lq0,q(log L)
A+ 1

max{q0,q}
(S).

Moreover, by [14, Lemma 2.1] and [5, (2.6)], we have

b(t) ≤ (1 + | log t |)(α+
0 −α∞,(−α0)

+).

Consequently, writing down Theorem 4.1 for this choice of b we recover a result
of Besoy and Cobos (see [5, Corollary 3.13]), which is a quantitative version of a
compactness result of Edmunds andOpic (see [26, Corollary 4] and also [20, Corollary
4.5]).

The following result refers to the case 1 < p1 < p0 < ∞.

Theorem 4.3 Let (R, μ) and (S, ν) be non-atomic σ -finite measure spaces. Let 1 <

p1 < p0 < ∞, 1 < q0 < q1 < ∞, 0 < q < ∞ and let b ∈ SV (0,∞) satisfying
(2.8) and (2.12). Put

b̃0(t) = b(t1/p0−1/p1)

(
1

b(t1/p0−1/p1)q

∫ t

0
b(s1/p0−1/p1)q ds

s

)1/min{p0,q}

and

b1(t) = b(t1/q0−1/q1)

(
1

b(t1/q0−1/q1)q

∫ ∞

t
b(s1/q0−1/q1)q ds

s

)1/max{q0,q}
.

If T ∈ L((L p0(R), L p1(R)), (Lq0(S), Lq1(S))) then

T : L p0,q ;̃b0(R) → Lq0,q;b1(S) boundedly.

Moreover, for β(T ) = β(T : L p0,q ;̃b0(R) → Lq0,q;b1(S)) we have

(a) β(T ) = 0 if β(T0) = 0,
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(b) β(T ) ≤ Cβ(T0) if 0 ≤ β(T1) < β(T0),
(c) β(T ) ≤ C max

{
β(T0), β(T0)b (β(T0)/β(T1))

}
if 0 < β(T0) ≤ β(T1).

Here C > 0 is a constant independent of T .

Proof Consider the couple (L∞(R), L1(R)). We have

L p j (R) = (L∞(R), L1(R))θ̃ j ,p j
where θ̃ j = 1

p j
, j = 0, 1.

So 0 < θ̃0 < θ̃1 < 1 and we still can use [29, Theorem 3.2] and [36, Theorem 4.10]
to get that

(L∞(R), L1(R))θ̃0,q;u ↪→ (L p0(R), L p1(R))0,q;b

where

u(t) = b(t1/p1−1/p0)

(
1

b(t1/p1−1/p0)
q

∫ ∞

t
b(s1/p1−1/p0)q ds

s

)1/min{p0,q}
.

According to the relationship between the K -functionals of (L∞(R), L1(R)) and
(L1(R), L∞(R)), making a change of variables and using (4.1), we obtain

‖ f ‖(L∞(R),L1(R))θ̃0,q;u =
(∫ ∞

0
[t−θ̃0u(t)K (t, f ; L∞(R), L1(R))]q dt

t

)1/q

=
(∫ ∞

0
[t1−θ̃0 b̃0(t

−1)K (t−1, f ; L1(R), L∞(R))]q dt

t

)1/q

=
(∫ ∞

0
[t θ̃0−1b̃0(t)K (t, f ; L1(R), L∞(R))]q dt

t

)1/q

= ‖ f ‖(L1(R),L∞(R))1−θ̃0,q ;̃b0
≈ ‖ f ‖L p0,q ;̃b0 (R).

Therefore

L p0,q ;̃b0(R) ↪→ (L p0(R), L p1(R))0,q;b.

Since the embedding

(Lq0(S), Lq1(S))0,q;b ↪→ Lq0,q;b1(S)

has been established in Theorem 4.1, we can conclude the result by interpolating with
parameters 0, q, b and applying Theorem 3.1. ��
Remark 4.4 Ifb(t) = (1+| log t |)AwithA = (α0, α∞) andα∞+1/q < 0 < α0+1/q,
then

b̃0(t) ≈ (1 + | log t |)Ã+ 1
min{p0,q}
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where Ã = (α∞, α0) and Theorem 4.3 gives estimates for the measure of non-
compactness of

T : L p0,q(log L)
Ã+ 1

min{p0,q}
(R) → Lq0,q(log L)

A+ 1
max{q0,q}

(R).

Proceeding similarly, but using [36, Theorem 4.8], we can derive results for 1 <

q1 < q0 < ∞.
We finish the paper with some results when the main information on T refers to the

restriction from L p1(R) into Lq1(S).

Theorem 4.5 Let (R, μ) and (S, ν) be non-atomic σ -finite measure spaces. Let 1 <

p1 < p0 < ∞, 1 < q1 < q0 < ∞, 0 < q < ∞ and let v ∈ SV (0,∞) satisfying that

(∫ 1

0
v(t)q dt

t

)1/q

< ∞ and

(∫ ∞

1
v(t)q dt

t

)1/q

= ∞.

Put

v0(t) = v(t1/p0−1/p1)

(
1

v(t1/p0−1/p1)q

∫ ∞

t
v(s1/p0−1/p1)q ds

s

)1/min{p1,q}

and

v1(t) = v(t1/q0−1/q1)

(
1

v(t1/q0−1/q1)q

∫ ∞

t
v(s1/q0−1/q1)q ds

s

)1/max{q1,q}
.

If T ∈ L((L p0(R), L p1(R)), (Lq0(S), Lq1(S))) then

T : L p1,q;v0(R) → Lq1,q;v1(S) boundedly.

Furthermore, for β(T ) = β(T : L p1,q;v0(R) → Lq1,q;v1(S)) we have

(a) β(T ) = 0 if β(T1) = 0,
(b) β(T ) ≤ Cβ(T1) if 0 ≤ β(T0) < β(T1),
(c) β(T ) ≤ C max {β(T1), β(T1)v (β(T1)/β(T0))} if 0 < β(T1) ≤ β(T0).

Here C > 0 is a constant independent of T .

Proof According to (2.7), for anyquasi-Banach couple (A0, A1)wehave (A0, A1)1,q;v
= (A1, A0)0,q;b where b(t) = v(1/t). We also have that

T ∈ L((L p1(R), L p0(R)), (Lq1(S), Lq0(S))).

Hence, the wanted result follows by interpolating with parameters 0, q, b and applying
Theorem 4.1. ��

If 1 < p0 < p1 < ∞ and/or 1 < q0 < q1 < ∞ we can obtain similar results.
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Remark 4.6 Let A = (α0, α∞) with α0 + 1/q < 0 < α∞ + 1/q and let v(t) =
(1 + | log t |)A. So, v satisfies the assumptions of Theorem 4.5. We have

v0(t) ≈ (1 + | log t |)Ã+ 1
min{p1,q} ,

v1(t) ≈ (1 + | log t |)Ã+ 1
max{q1,q} .

Moreover, by [5, (2.6)]weknow thatv(t) ≤ (1+| log t |)((−α∞)+,α+∞−α0).Writing down
Theorem 4.5 for this choice of the parameters we obtain estimates for the measure of
non-compactness of

T : L p1,q(log L)
Ã+ 1

min{p1,q}
(R) → Lq1,q(log L)

Ã+ 1
max{q1,q}

(R).
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