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Abstract
The main aim of this paper is to provide characterizations of Birkhoff–James orthog-
onality (BJ-orthogonality in short) in a number of families of Banach spaces in terms
of the elements of significant subsets of the unit ball of their dual spaces, which
makes the characterizations more applicable. The tool to do so is a fine study of
the abstract numerical range and its relation with the BJ-orthogonality. Among other
results, we provide a characterization of BJ-orthogonality for spaces of vector-valued
bounded functions in terms of the domain set and the dual of the target space, which is
applied to get results for spaces of vector-valued continuous functions, uniform alge-
bras, Lipschitz maps, injective tensor products, bounded linear operators with respect
to the operator norm and to the numerical radius, multilinear maps, and polynomi-
als. Next, we study possible extensions of the well-known Bhatia–Šemrl theorem on
BJ-orthogonality of matrices, showing results in spaces of vector-valued continuous
functions, compact linear operators on reflexive spaces, and finite Blaschke products.
Finally, we find applications of our results to the study of spear vectors and spear
operators. We show that no smooth point of a Banach space can be BJ-orthogonal to
a spear vector of Z . As a consequence, if X is a Banach space containing strongly
exposed points and Y is a smooth Banach space with dimension at least two, then
there are no spear operators from X to Y . Particularizing this result to the identity
operator, we show that a smooth Banach space containing strongly exposed points
has numerical index strictly smaller than one. These latter results partially solve some
open problems.
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1 Introduction

Let Z be a Banach space over the field K (which will always be considered as R or
C). Given x, y ∈ Z , we say that x is Birkhoff–James orthogonal to y (BJ-orthogonal
in short), denoted by x ⊥B y, if

‖x + λy‖ � ‖x‖ ∀λ ∈ K.

This definition, proposed by Birkhoff [6] in the setting of metric linear spaces, has
a natural geometric interpretation: x ⊥B y if and only if the (real or complex) line
{x + λy : λ ∈ K} is disjoint from the open ball of radius ‖x‖ centered at the origin.
Observe that BJ-orthogonality is homogeneous, i.e., x ⊥B y implies that αx ⊥B β y
for every α, β ∈ K. Also, smoothness of the norm of Z at x is equivalent to the
right-additivity of ⊥B at x : x is smooth in Z if and only if for any y, z ∈ Z , x ⊥B y,

x ⊥B z together imply that x ⊥B (y + z). In case the norm is induced by an inner
product 〈 , 〉, it is elementary to notice that BJ-orthogonality is equivalent to the usual
orthogonality: x ⊥ y if and only if 〈x, y〉 = 0 if and only if x ⊥B y. This shows
that BJ-orthogonality generalizes the concept of usual orthogonality to the framework
of norms. It is worth mentioning that BJ-orthogonality is not a symmetric relation in
general, i.e., x ⊥B y may not necessarily imply y ⊥B x . Although there exist several
non-equivalent notions of orthogonality in Banach spaces, it is commonly accepted
that BJ-orthogonality is arguably themost useful one amongst them by virtue of its rich
connections with many important concepts in the geometric theory of Banach spaces,
including smoothness, operator norm attainment, characterizations of Euclidean and
Hilbert spaces among Banach spaces, and best approximations.We refer the interested
readers to [38–40, 42–44], and the references therein, for more information in this
regard.

A general way to study BJ-orthogonality in any Banach space Z was given by
R. C. James in terms of the dual space Z∗ of Z .

Fact 1.1 [13, Corollary 2.2] Let Z be a Banach space and let x, y ∈ Z . Then, x ⊥B y
if and only if there exists φ ∈ Z∗ with ‖φ‖ = 1 such that φ(x) = ‖x‖ and φ(y) = 0.

This characterization of BJ-orthogonality immediately relates it with the norm
attainment problem for functionals in the dual space. As a matter of fact, one of
the useful ways to reap the benefits out of the concept of BJ-orthogonality for the
purpose of understanding the geometric and analytic structures of a Banach space, is
to apply James’ characterization of BJ-orthogonality in the corresponding dual space.
As we will see in this article, it is possible to obtain further refinements of the James
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characterization inmany important cases including theBanach space of bounded linear
operators between Banach spaces.

The above result by James also relates BJ-orthogonality with the concept of
(abstract) numerical range. Let us introduce the required notations and definitions.
Given a Banach space Z , we write BZ and SZ to denote, respectively, the closed unit
ball and the unit sphere of Z , Re(·) will denote the real part (which is nothing but the
identity if we are dealing with real numbers), and we write T for the set of modulus-
one scalars. If u ∈ Z is a norm-one element, the (abstract) numerical range of z ∈ Z
with respect to (Z , u) is the non-empty compact convex subset of K given by

V (Z , u, z) := {φ(z) : φ ∈ F(BZ∗ , u)},

where F(BZ∗ , u) := {φ ∈ SZ∗ : φ(u) = 1} is the face of BZ∗ generated by u, also
known as the set of states of Z relative to u. The concept of abstract numerical range
takes its roots in a 1955 paper by Bohnenblust and Karlin [7] and it was introduced in
the 1985 paper [24]. We refer the reader to the classical books [8, 9] by Bonsall and
Duncan, to Sections 2.1 and 2.9 of the book [10], and to Section 2 of [16] for more
information and background.

Observe that, with the definition of numerical range in hands, Fact 1.1 can be easily
written in the following way.

Proposition 1.2 Let Z be a Banach space, let u ∈ SZ , and let z ∈ Z . Then,

u ⊥B z ⇐⇒ 0 ∈ V (Z , u, z).

Let us also comment that it is also possible to write the numerical range in terms
of the BJ-orthogonality, see Proposition 2.1. It is then clear that the study of BJ-
orthogonality and the study of abstract numerical ranges are somehow equivalent.

The main disadvantage of Proposition 1.2 (and of Fact 1.1) is that we have to deal
with the whole dual of the Banach space Z , and this is difficult in many situations. For
instance, when Z is a space of bounded linear operators, which is the most interesting
case for us, the dual space is a wild object that is not easy to manage. For an easier
writing of our discussion, let us introduce the following notation: given Banach spaces
X , Y , we write L(X , Y ) to denote the space of all bounded linear operators from X to
Y and K(X , Y ) for its subspace consisting of compact operators. When X = Y , we
just writeL(X) andK(X). In the case when Z is the space of n×n matrices (identified
with L(H) where H is an n-dimensional Hilbert space), a celebrated result by Bhatia
and Šemrl [5, Theorem 1.1] says that two matrices A, B satisfy that A ⊥B B if and
only if there is a norm-one vector x such that ‖Ax‖ = ‖A‖ and 〈Ax, Bx〉 = 0 (that
is, there is a norm-one vector x at which A attains its norm and such that Ax ⊥ Bx).
Observe that it is equivalent to say that, in this case, when A ⊥B B, the functional φ on
the space of n ×n matrices given by Fact 1.1 can be taken of the form φ(C) = 〈Cx, y〉
for some norm-one vectors x and y (see the proof of Corollary 4.2). Clearly, this gives
much more information than the one provided by Fact 1.1 and avoids to deal with
the dual of the space of matrices. This result does not extend to general operators
on infinite-dimensional Hilbert spaces (as they do not need to attain the norm), but
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there is a similar result: given two bounded linear operators A and B on a Hilbert
space H , A ⊥B B if and only if there is a sequence {xn} in SH satisfying that
lim ‖Axn‖ = ‖A‖ and lim〈Axn, Bxn〉 = 0 [22, Lemma 2.2], [5, Remark 3.1]. The
significance of the result obtained by Bhatia and Šemrl lies in the fact that it allows us
to examine the orthogonality of bounded linear operators on a Hilbert space in terms of
the usual orthogonality of certain special elements in the ground space. We would like
to emphasize here that such a characterization of BJ-orthogonality is certainly more
handy than James’ characterization, since we do not need to deal with the dual of the
operator space. Moreover, as already mentioned in [5], it is natural to speculate about
the validity of the above results in the case of bounded linear operators on a Banach
space. In general, they do not extend to operators between general Banach spaces, even
in the finite-dimensional case, as it was shown by Li and Schneider [20, Example 4.3].
However, a related weaker result was proved in the same paper [20, Proposition 4.2]:
if X and Y are finite-dimensional Banach spaces and T , A ∈ L(X , Y ), then T ⊥B A
if and only if

0 ∈ conv
({

y∗(Ax) : x ∈ ext(BX ), y∗ ∈ ext(BY ∗), y∗(T x) = ‖T ‖}) ,

where ext(C) denotes the set of extreme points of a convex set C and conv(·) is the
convex hull. Observe that this result is similar to Bhatia–Šemrl’s one up to taking the
convex hull inK. How did Li and Schneider get this result? Just by characterizing the
extreme points of the dual unit ball of L(X , Y ) when X and Y are finite-dimensional
and then using a classical result by Singer about best approximation. Let Z be aBanach
space, let M be a subspace of Z , and let x ∈ Z . An element m0 ∈ M is said to be a
best approximation of x at M if

‖x − m0‖ � ‖x − m‖ ∀m ∈ M .

Observe thatm0 is a best approximation to x in M if and only if x−m0 is BJ-orthogonal
to M, i.e., (x − m0) ⊥B m for every m ∈ M . Equivalently, given x, y ∈ Z , x ⊥B y
if and only if 0 is a best approximation to x in span{y}. We refer the interested reader
to the classical book [43] by I. Singer for background. Using the relation between
best approximation and BJ-orthogonality, the classical result of I. Singer that Li and
Schneider used reads as follows.

Fact 1.3 [43, Theorem II.1.1] Let Z be a Banach space and let u, z ∈ Z . Then,

u ⊥B z ⇐⇒ 0 ∈ conv
({

φ(z) : φ ∈ ext(BZ∗), φ(u) = ‖u‖}) .

Observe that this result just says that the functional φ in Fact 1.1 can be taken in
the convex hull of the set of extreme points of BZ∗ .Wewill provide in Proposition 2.2
a version of Proposition 1.2 using only extreme points with an independent proof. Of
course, Fact 1.3 is very interesting in the cases when the extreme points of the dual ball
are known and easy to manage: for Z = C(K ) or for Z being an isometric predual of
an L1(μ) space, or even when Z = L(X , Y ) and X and Y are finite-dimensional (as it
was done by Li and Schneider, see [20, Proposition 4.2]). Actually, for arbitrary spaces
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X and Y , the extreme points of the dual ball of Z = K(X , Y ) have been described
as ext(BX∗∗) ⊗ ext(BY ∗) (see [36, Theorem 1.3] for the real case and [21, Theorem
1] for the complex case). In the particular case when X is reflexive, this provides the
following result which covers Li and Schneider’s one: let X be a reflexive space, let
Y be a Banach space, and let T , A ∈ K(X , Y ); then T ⊥B A if and only if

0 ∈ conv
({

y∗(Ax) : x ∈ ext(BX ), y∗ ∈ ext(BY ∗), y∗(T x) = ‖T ‖})

(see Corollary 3.11). When we deal with non-compact operators, there is no descrip-
tion of the extreme points of the unit ball of L(X , Y )∗ available, hence Fact 1.3 is
not applicable in this case. However, a somehow similar result was proved in [30,
Theorem 2.2]: let X , Y be Banach spaces and let T , A ∈ L(X , Y ); then, T ⊥B A if
and only if

0 ∈ conv
({
lim y∗

n (Axn) : (xn, y∗
n ) ∈ SX × SY ∗ ∀n ∈ N, lim y∗

n (T xn) = ‖T ‖}) .

This is, as far as we know, the most general result concerning a characterization of
BJ-orthogonality of operators in terms of the domain and range spaces and their duals.

Our main aim in this paper is to provide a very general result characterizing BJ-
orthogonality in a Banach space Z in terms of the actions of elements on an arbitrary
one-norming subset. Recall that a subset � ⊂ SZ∗ is said to be one-norming for Z if
‖z‖ = sup{|φ(z)| : φ ∈ �} for all z ∈ Z (equivalently, if BZ∗ equals the absolutely
weak-star closed convex hull of �). One of the assertions of this general result (see
Corollary 2.6) is the following: let Z be a Banach space, � ⊂ SZ∗ be one-norming
for Z; then for u ∈ SZ and z ∈ Z ,

u ⊥B z ⇐⇒ 0 ∈ conv
({

limψn(z)ψn(u) : ψn ∈ �, lim |ψn(u)| = 1
})

.

The way to get the result is to combine Proposition 1.2 with a very general result on
numerical ranges, Theorem 2.4, which extends previous characterizations from [16].
This result also allows to characterize smooth points, see Corollary 2.11. There are
also nicer versions of these results in the case when instead of a one-norming subset
�, we have a subset C of SZ∗ such that its weak-star closed convex hull is the whole
BZ∗ , see Theorem 2.3 and Corollaries 2.5 and 2.10. All of this is the content of Sect. 2
of this manuscript.

Section 3 contains a number of particular cases in which the results of Sect. 2
apply. It is divided into several subsections, and covers results in a number of spaces.
Even though some of the results of this section were previously known, the previous
approaches were different and use ad hoc techniques for each of the particular cases,
while our present approach generalizes all these techniques. On the other hand, the
general result for �∞(	, Y ) we give in Theorem 3.2 seems to be new, as are its appli-
cations for spaces of vector-valued continuous functions (Corollaries 3.4 and 3.5),
uniform algebras (Corollary 3.6), Lipschitz maps (Proposition 3.7), and injective ten-
sor products (Proposition 3.8). For bounded linear operators (Sect. 3.4), most of the
results have already been known, but there are some improvements of previous results
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in Proposition 3.10 and Corollary 3.11. Besides, we include a result on smoothness of
bounded linear operators which will be used in Sect. 5. Section 3.5 deals with multi-
linear maps and polynomials and the results seem to be new. Finally, Sect. 3.6 contains
results on BJ-orthogonality with respect to the numerical radius of operators which
were previously known.

Next, in Sect. 4, we provide several results related to the Bhatia–Šemrl theorem
(in the sense of removing the convex hull and the limits of the characterization of
BJ-orthogonality). The main result (Theorem 4.3) is about vector-valued continuous
functions on a compact Hausdorff space and seems to be completely new. As conse-
quences, we obtain Bhatia–Šemrl’s kind of results for compact operators on reflexive
Banach spaces, Proposition 4.5 for the real case, Theorem 4.6 in the complex case, and
the latter is new for infinite-dimensional spaces.We also obtain a nice characterization
of BJ-orthogonality for finite Blaschke products (Example 4.9).

Finally, Sect. 5 contains applications of the results in the paper to the study of spear
vectors, spear operators, and Banach spaces with numerical index one. The notions of
spear vectors and spear operators will be defined in Sect. 5. The results in this section
are actually consequences of Theorem 5.1 which says that if u is a vertex of a Banach
space Z and z ∈ Z is smooth in (Z , vu), then z cannot beBJ-orthogonal to u in (Z , vu).

Thus, no smooth point of a Banach space Z can be BJ-orthogonal to a spear vector
of Z (Corollary 5.3). The particularization of the results to the case Z = L(X , Y )

leads to obstructive results for the existence of spear operators. In particular, we show
that if X is a Banach space containing strongly exposed points and Y is a smooth
Banach spacewith dimension at least two, then there are no spear operators inL(X , Y )

(Corollary 5.9) and this result is proved using a sufficient condition for an operator
to be smooth (Proposition 3.14). This result somehow extends [15, Proposition 6.5.a]
and provides a partial answer to [15, Problem 9.12]. Particularizing this to the identity
operator, we get an obstructive condition for a Banach space to have numerical index
one: the existence of a smooth point which is BJ-orthogonal to a strongly exposed point
(Corollary 5.10). In particular, smooth Banach spaces with dimension at least two
containing strongly exposed points do not have numerical index one (Corollary 5.12).
This latter result is a partial answer to the question of whether a smooth Banach
space of dimension at least two may have numerical index one [14]. Let us comment
that the mix of ideas from numerical ranges and from BJ-orthogonality is the key
to obtaining these interesting applications which partially solve some open questions.
Moreover, the abstract numerical range approach toBJ-orthogonality considered in this
article generalizes all of the previously mentioned characterizations to a much broader
framework. In view of this, it is reasonable to expect that the methods developed here
will cover more particular cases, known and new.

A preprint version of this manuscript (which is very close to the present one) is
included as Chapter VI in Alicia Quero’s PhD dissertation [29], which followed a
compendium form and was defended at the University of Granada in September 2023.
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2 The numerical range approach

The aim of this section is to connect BJ-orthogonality and smoothness with the theory
of abstract numerical ranges and present different expressions of the abstract numer-
ical range which will be very useful in order to characterize BJ-orthogonality and
smoothness in several contexts.

Let us start with a result showing that the abstract numerical range can be expressed
in terms of BJ-orthogonality. This result, together with Proposition 1.2, shows that the
study of BJ-orthogonality and the study of abstract numerical ranges are somehow
equivalent.

Proposition 2.1 Let Z be a Banach space and let u ∈ SZ . Then, for every z ∈ Z ,

V (Z , u, z) = {α ∈ K : u ⊥B (z − αu)} .

Proof Letα ∈ V (Z , u, z), then there existsφ ∈ SZ∗ such thatφ(u) = 1 andφ(z) = α.

Thus φ(z − αu) = 0 and so u ⊥B (z − αu). Conversely, if α ∈ K is such that u ⊥B

(z−αu), then there existsφ ∈ SZ∗ such thatφ(u) = 1 andφ(z−αu) = φ(z)−α = 0,
therefore α = φ(z) ∈ V (Z , u, z). ��

Let Z be a Banach space and let u ∈ SZ .Our aim here is to show how to describe the
abstract numerical range V (Z , u, ·) in terms of a fixed one-norming subset � ⊂ SZ∗
which will allow us to get characterizations of BJ-orthogonality and smoothness.
In the particular case in which � is equal to ext(BZ∗), the characterization of BJ-
orthogonality actually follows from Fact 1.3. But we are also able to get a result on
abstract numerical ranges as an easy consequence of the Bauer Maximum Principle.
Observe that Fact 1.3 can also be deduced from the next proposition and Proposi-
tion 1.2.

Proposition 2.2 Let Z be a Banach space and let u ∈ SZ . Then, for every z ∈ Z ,

V (Z , u, z) = conv {φ(z) : φ ∈ ext (BZ∗) , φ(u) = 1} .

Proof We apply the Bauer Maximum Principle (see [1, 7.69], for instance) to the set
F(BZ∗ , u),which is convex andw∗-compact, and to the function φ �−→ Re φ(z) from
F(BZ∗ , u) to R, which is w∗-continuous and convex. Then, this function attains its
maximum at an extreme point of F(BZ∗ , u) (which is also an extreme point of BZ∗
since F(BZ∗ , u) is an extremal subset). That is,

max Re V (Z , u, z) = maxRe {φ(z) : φ ∈ ext (BZ∗) , φ(u) = 1} .

Now, the result follows using that V (Z , u, θ z) = θV (Z , u, z) and

{φ(θ z) : φ ∈ ext (BZ∗) , φ(u) = 1} = θ {φ(z) : φ ∈ ext (BZ∗) , φ(u) = 1}

for every θ ∈ T. ��
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There are Banach spaces Z for which the set of extreme points of the dual space
is not known (for instance, this is the case for Z = L(X , Y ) in general). In those
cases, another way to characterize the numerical range is needed. This was done in
[16, Propostion 2.14] substituting the set of extreme points of the dual ball by a subset
C ⊆ BZ∗ such that BZ∗ = convw∗

(C). We next give a reformulation of that result
which will be useful in applications.

Theorem 2.3 Let Z be a Banach space, let u ∈ SZ , and let C ⊆ BZ∗ be such that
BZ∗ = convw∗

(C). Then,

V (Z , u, z) = conv
⋂

δ>0

{
φ(z) : φ ∈ C, Re φ(u) > 1 − δ

}

= conv
({
lim φn(z) : φn ∈ C ∀n ∈ N, lim φn(u) = 1

})

for every z ∈ Z .

Let us comment that comparing this theorem with Proposition 2.2, we lose infor-
mation as we have to deal with limits, but we obtain a lot of generality, as there are
many situations in which BZ∗ = convw∗

(C) holds and C is completely different from
ext(BZ∗) (even disjoint). In what follows, and in the rest of the paper, when we write
lim zn for a bounded scalar sequence {zn} we are understanding that the sequence is
convergent.

Proof of Theorem 2.3 The first equality was already proved in [16, Propostion 2.14],
let us prove that

V (Z , u, z) = conv
({
lim φn(z) : φn ∈ C ∀n ∈ N, lim φn(u) = 1

})
.

For z ∈ Z , we write W (z) := {lim φn(z) : φn ∈ C ∀n ∈ N, lim φn(u) = 1
}
and we

prove first the inclusion V (Z , u, z) ⊇ conv W (z). Given λ0 ∈ W (z), for each n ∈ N

there exists φn ∈ C such that

|φn(z) − λ0| < 1/n and |φn(u) − 1| < 1/n.

Since BZ∗ is w∗-compact, there is a w∗-cluster point φ0 ∈ BZ∗ of the sequence
{φn}n∈N. Then, it follows that φ0(z) = λ0 and φ0(u) = 1, so λ0 ∈ V (Z , u, z) and the
desired inclusion holds by the convexity of V (Z , u, z).

To prove the reverse inclusion, it is enough to show that the inequality

supRe V (Z , u, z) � supRe W (z) (2.1)

holds for every z ∈ Z , as V (Z , u, θ z) = θV (Z , u, z) and W (θ z) = θW (z) for every
θ ∈ T, and W (z) is closed. So, for fixed z ∈ Z and φ0 ∈ F(BZ∗ , u), we apply [16,
Lemma 2.15] for δ = 1/n to obtain a sequence {φn}n∈N in C such that

Re φn(u) > 1 − 1/n and Re φn(z) > Re φ0(z) − 1/n.
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We may and do suppose (up to taking a subsequence, if needed), that the sequences
{φn(u)} and {φn(z)} are convergent. Therefore, we get lim φn(u) = 1 and Re φ0(z) �
Re lim φn(z) � supRe W (z), and so (2.1) follows. ��

Weare now able to generalize the previous result to the case of one-norming subsets.
We will include more characterizations here as this is the most general result that we
have.

Theorem 2.4 Let Z be a Banach space, let u ∈ SZ , and let � ⊂ BZ∗ be one-norming
for Z . Then,

V (Z , u, z) = conv
({

θ0 limψn(z) : ψn ∈ � ∀n ∈ N, limψn(u) = θ0, θ0 ∈ T
})

= conv
({

limψn(z)ψn(u) : ψn ∈ � ∀n ∈ N, lim |ψn(u)| = 1
})

= conv
⋂

δ>0

{
ψ(z)ψ(u) : ψ ∈ �, |ψ(u)| > 1 − δ

}

=
⋂

δ>0

conv
{
ψ(z)ψ(u) : ψ ∈ �, |ψ(u)| > 1 − δ

}

for every z ∈ Z .

Proof We start proving the first three equalities. To do so, we apply Theorem 2.3 for
C = T� which satisfies convw∗

(C) = aconvw∗
(�) = BZ∗ to obtain that

V (Z , u, z) = conv
({
lim φn(z) : φn ∈ T� ∀n ∈ N, lim φn(u) = 1

})
.

Therefore, it is enough to show the following chain of inclusions:

{
lim φn(z) : φn ∈ T� ∀n ∈ N, lim φn(u) = 1

}

⊆ {θ0 limψn(z) : ψn ∈ � ∀n ∈ N, limψn(u) = θ0
}

⊆
{
limψn(z)ψn(u) : ψn ∈ � ∀n ∈ N, lim |ψn(u)| = 1

}

⊆
⋂

δ>0

{
ψ(z)ψ(u) : ψ ∈ �, |ψ(u)| > 1 − δ

}

⊆ {lim φn(z) : φn ∈ T� ∀n ∈ N, lim φn(u) = 1
}
.

For the first inclusion, take {φn}n∈N ⊆ T� with lim φn(u) = 1, then φn = θnψn for
θn ∈ T and ψn ∈ �. Let θ0 ∈ T be a cluster point of {θn}n∈N, then

limψn(u) = lim θnφn(u) = θ0

and

θ0 limψn(z) = θ0 lim θnφn(z) = lim φn(z).
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The second inclusion is evident. For the third one, let λ = limψn(z)ψn(u) for some
sequence {ψn}n∈N ⊆ �with lim |ψn(u)| = 1 and fix δ > 0. There exists n0 ∈ N such
that

∣∣
∣λ − ψn(z)ψn(u)

∣∣
∣ < 1/n and |ψn(u)| > 1 − 1/n > 1 − δ

for every n � n0, therefore λ ∈ {ψ(z)ψ(u) : ψ ∈ �, |ψ(u)| > 1 − δ
}
and the arbi-

trariness of δ gives the inclusion.

For the last inclusion, let λ ∈ ⋂δ>0

{
ψ(z)ψ(u) : ψ ∈ �, |ψ(u)| > 1 − δ

}
. For

every n ∈ N there exists ψn ∈ � such that

∣
∣∣λ − ψn(z)ψn(u)

∣
∣∣ < 1/n and |ψn(u)| > 1 − 1/n.

For each n ∈ N, take θn ∈ T such that θnψn(u) = |ψn(u)| and define φn = θnψn ∈
T�. Then, we have that

lim φn(u) = lim θnψn(u) = lim |ψn(u)| = 1

and

λ = limψn(z)ψn(u) = lim θnψn(z)θnψn(u) = lim φn(z)|ψn(u)| = lim φn(z),

which finishes the proof of the chain of inclusions.
Finally, in order to prove the last equality of the theorem, observe that

conv
⋂

δ>0

{
ψ(z)ψ(u) : ψ ∈ �, |ψ(u)| > 1 − δ

}

⊆
⋂

δ>0

conv
{
ψ(z)ψ(u) : ψ ∈ �, |ψ(u)| > 1 − δ

}

and let us show that the latter set is contained in V (Z , u, z).

For fixed λ ∈⋂δ>0 conv
{
ψ(z)ψ(u) : ψ ∈ �, |ψ(u)| > 1 − δ

}
, it is clear that

λ ∈ conv
{
ψ(z)ψ(u) : ψ ∈ �, |ψ(u)| > 1 − 1/n

}

for every n ∈ N, and we apply Carathéodory’s Theorem to obtain the existence of
an, bn, cn ∈ [0, 1] with an + bn + cn = 1 and φn, ψn, ξn ∈ � such that

|φn(u)| � 1 − 1/n, |ψn(u)| � 1 − 1/n, |ξn(u)| � 1 − 1/n, and (2.2)
∣∣∣λ − (anφn(z)φn(u) + bnψn(z)ψn(u) + cnξn(z)ξn(u)

)∣∣∣ < 1/n (2.3)

for every n ∈ N. We may find a, b, c ∈ [0, 1] and subsequences {aσ(n)}n∈N,

{bσ(n)}n∈N, {cσ(n)}n∈N of {an}n∈N, {bn}n∈N, {cn}n∈N respectively, in such a way that
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{aσ(n)}n∈N → a, {bσ(n)}n∈N → b, {cσ(n)}n∈N → c and a + b + c = 1. Addition-
ally, by passing to a subsequence, we may assume that {φσ(n)(u)}n∈N, {ψσ(n)(u)}n∈N,

{ξσ(n)(u)}n∈N, {φσ(n)(z)}n∈N, {ψσ(n)(z)}n∈N, and {ξσ(n)(z)}n∈N are convergent. Since
BZ∗ is w∗-compact, let φ0, ψ0, ξ0 ∈ BZ∗ be w∗-cluster points of the sequences
{φσ(n)}n∈N, {ψσ(n)}n∈N, {ξσ(n)}n∈N respectively. Then,

lim φσ(n)(u) = φ0(u), limψσ(n)(u) = ψ0(u), lim ξσ(n)(u) = ξ0(u),

lim φσ(n)(z) = φ0(z), limψσ(n)(z) = ψ0(z), lim ξσ(n)(z) = ξ0(z).

It follows from (2.2) that |φ0(u)| = |ψ0(u)| = |ξ0(u)| = 1. Define

� = aφ0(u)φ0 + bψ0(u)ψ0 + cξ0(u)ξ0 ∈ BZ∗ ,

then �(u) = a |φ0(u)|2 + b |ψ0(u)|2 + c |ξ0(u)|2 = 1 and

λ = lim
(

aσ(n)φσ(n)(z)φσ(n)(u)

+bσ(n)ψσ(n)(z)ψσ(n)(u) + cσ(n)ξσ(n)(z)ξσ(n)(u)
)

= �(z)

by (2.3), which imply that λ ∈ V (Z , u, z). ��
Thanks to the different expressions of the numerical range provided inTheorems 2.3

and 2.4, we are able to give new characterizations of BJ-orthogonality.

Corollary 2.5 Let Z be a Banach space, let u ∈ SZ , and let C ⊆ BZ∗ be such that
BZ∗ = convw∗

(C). Then, for z ∈ Z , the following are equivalent:
(i) u ⊥B z;
(ii) 0 ∈ conv

⋂
δ>0

{
φ(z) : φ ∈ C, Re φ(u) > 1 − δ

};
(iii) 0 ∈ conv

({
lim φn(z) : φn ∈ C ∀n ∈ N, lim φn(u) = 1

})
.

Corollary 2.6 Let Z be a Banach space, let u ∈ SZ , and let � ⊂ BZ∗ be one-norming
for Z . Then, for z ∈ Z , the following are equivalent:
(i) u ⊥B z;
(ii) 0 ∈ conv

({
θ0 limψn(z) : ψn ∈ � ∀n ∈ N, θ0 ∈ T, limψn(u) = θ0

}) ;
(iii) 0 ∈ conv

({
limψn(z)ψn(u) : ψn ∈ � ∀n ∈ N, lim |ψn(u)| = 1

})
;

(iv) 0 ∈ conv
⋂

δ>0

{
ψ(z)ψ(u) : ψ ∈ �, |ψ(u)| > 1 − δ

};
(v) 0 ∈⋂δ>0 conv

{
ψ(z)ψ(u) : ψ ∈ �, |ψ(u)| > 1 − δ

}
.

The next easy result will allow us to rephrase the characterizations given above
without using the language of convex hull.

Lemma 2.7 Let A be a non-empty subset of K. Then, 0 ∈ conv(A) if and only if given
any μ ∈ T, there exists aμ ∈ A such that Reμaμ � 0.

Moreover, if A is connected, then 0 ∈ conv(A) if and only if given any μ ∈ T,

there exists aμ ∈ A such that Reμaμ = 0.
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The real case is obvious. In the complex case, the result follows straightforwardly
from the Hahn–Banach separation theorem. An elementary proof of the sufficiency
can be found in [31, Lemma 2.1]. Let us give an elementary argument for the necessity.
By Carathéodory’s theorem, there exist λ j � 0 and a j ∈ A ( j = 1, 2, 3) such that
∑3

j=1 λ j = 1 and
∑3

j=1 λ j a j = 0. Consider any μ ∈ T. Since
∑3

j=1 μλ j a j = 0,
there exist b1, b2 ∈ {a1, a2, a3} such that Reμb1 � 0 and Reμb2 � 0, and we are
done. Now, if A is connected, then Re{μa : a ∈ A} is an interval in R containing
Reμb1 and Reμb2. Thus, there exists ã ∈ A such that Reμã = 0. This completes
the argument.

Let us now use the same spirit of Corollaries 2.5 and 2.6 to characterize the notion of
smoothness in terms of the numerical range. Recall that a smooth point z of a Banach
space Z (we may also say that Z is smooth at z) is just a point at which the norm of Z
is Gateaux differentiable; equivalently, z is a smooth point if {φ ∈ SZ∗ : φ(z) = ‖z‖}
is a singleton set. The following lemma will allow us to use the characterizations
of BJ-orthogonality to describe smooth points. Although the proof of the lemma is
immediate, we record it for the sake of completeness.

Lemma 2.8 Let Z be a Banach space and let u ∈ SZ . Then, u is a smooth point if and
only if V (Z , u, z) is a singleton set for every z ∈ Z .

Proof Ifu is smooth, thenF(BZ∗ , u) is a singleton set and then so are the setsV (Z , u, z)
for all z ∈ Z . Conversely, suppose that there exist φ1, φ2 ∈ SZ∗ such that φ1(u) =
φ2(u) = 1 and φ1 �= φ2; then we may find z ∈ SZ such that φ1(z) �= φ2(z) and so
V (Z , u, z) is not a singleton set. ��

The above lemma allows to characterize smoothness using Proposition 2.2, Theo-
rems 2.3, and 2.4.

Corollary 2.9 Let Z be a Banach space and let u ∈ SZ . Then, u is a smooth point if
and only if {φ(z) : φ ∈ ext (BZ∗) , φ(u) = 1} is a singleton set for every z ∈ Z .

Corollary 2.10 Let Z be a Banach space, let u ∈ SZ , and let C ⊂ BZ∗ be such that
BZ∗ = convw∗

(C). Then, the following are equivalent:
(i) u is a smooth point;
(ii)
{
lim φn(z) : φn ∈ C ∀n ∈ N, lim φn(u) = 1

}
is a singleton set for every z ∈ Z;

(iii)
⋂

δ>0

{
φ(z) : φ ∈ C, Re φ(u) > 1 − δ

}
is a singleton set for every z ∈ Z .

Corollary 2.11 Let Z be a Banach space, let u ∈ SZ , and � ⊂ BZ∗ be one-norming
for Z . Then, the following are equivalent:
(i) u is a smooth point;
(ii)
{
θ0 limψn(z) : ψn ∈ � ∀n ∈ N, θ0 ∈ T, limψn(u) = θ0

}
is a singleton set for

every z ∈ Z;
(iii)
{
limψn(z)ψn(u) : ψn ∈ � ∀n ∈ N, lim |ψn(u)| = 1

}
is a singleton set for every

z ∈ Z;
(iv)
⋂

δ>0

{
ψ(z)ψ(u) : ψ ∈ �, |ψ(u)| > 1 − δ

}
is a singleton set for every z ∈ Z;

(v)
⋂

δ>0 conv
{
ψ(z)ψ(u) : ψ ∈ �, |ψ(u)| > 1 − δ

}
is a singleton set for every z ∈

Z .
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3 Using the general results in some interesting particular cases

We devote this section to applying the abstract results of the previous section in sev-
eral settings. We begin with a characterization of BJ-orthogonality in a dual space
that extends [41, Theorem 2.7] to the complex case. The proof is immediate from
Corollaries 2.5, 2.10, and Goldstine’s theorem.

Proposition 3.1 Let Y be a Banach space, let C ⊂ BY such that conv(C) is dense in
BY . For u∗, z∗ ∈ Y ∗, we have that

u∗ ⊥B z∗ ⇐⇒ 0 ∈ conv
({
lim z∗(yn) : yn ∈ C ∀n ∈ N, lim u∗(yn) = ‖u∗‖}).

Moreover, the norm of Y ∗ is smooth at u∗ if and only if the set

{
lim u∗(yn) : yn ∈ C ∀n ∈ N, lim u∗(yn) = ‖u∗‖}

is a singleton set for all y∗ ∈ Y ∗.

The results in the rest of the section are divided into subsections for clarity of the
exposition.

3.1 Spaces of bounded functions

Given a non-empty set 	 and a Banach space Y , we write �∞(	, Y ) to denote the
Banach space of all bounded functions from	 to Y endowedwith the supremumnorm.
For γ ∈ 	, δγ : �∞(	, Y ) −→ Y denotes the evaluation map. We next characterize
BJ-orthogonality in �∞(	, Y ). Fix a subset C ⊂ SY ∗ whose weak-star closed convex
hull is the whole BY ∗ . Consider the set

C := {y∗ ⊗ δγ : γ ∈ 	, y∗ ∈ C} ⊆ �∞(	, Y )∗,

where [y∗ ⊗ δγ ]( f ) := y∗( f (γ )) for every f ∈ �∞(	, Y ). Since, clearly, B�∞(	,Y )∗
is the weak-star closed convex hull of C, the following result is a consequence of
Corollary 2.5.

Theorem 3.2 Let 	 be a non-empty set, let Y be a Banach space, let C ⊂ SY ∗ be such
that BY ∗ = convw∗

(C), and let f , g ∈ �∞(	, Y ). Then, f ⊥B g if and only if

0 ∈ conv
{
lim y∗

n (g(γn)) : γn ∈ 	, y∗
n ∈ C ∀n ∈ N, lim y∗

n ( f (γn)) = ‖ f ‖} .

Of course, the same characterization is valid in every closed subspace of �∞(	, Y ),

since the BJ-orthogonality only depends on the two-dimensional subspace generated
by the involved vectors. Then, as a consequence, we get a characterization of smooth-
ness in any closed subspace Z ⊆ �∞(	, Y ).

Corollary 3.3 Let 	 be a non-empty set, let Y be a Banach space, let C ⊂ SY ∗ such
that BY ∗ = convw∗

(C), and letZ ⊆ �∞(	, Y ) be a closed subspace. Then, for f ∈ Z
the following are equivalent:
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(i) f is a smooth point;
(ii)
{
lim y∗

n (g(γn)) : γn ∈ 	, y∗
n ∈ C ∀n ∈ N, lim y∗

n ( f (γn)) = ‖ f ‖} is a singleton
set for every g ∈ Z.

As far as we know, the above two results are new.
Let us consider some interesting particular cases. Given a Hausdorff topological

space � and a Banach space Y , we write Cb(�, Y ) to denote the Banach space of all
bounded continuous functions from � to Y , endowed with the supremum norm.

Corollary 3.4 Let � be a Hausdorff topological space, let Y be a Banach space, and
let f , g ∈ Cb(�, Y ). Then, f ⊥B g if and only if

0 ∈ conv
{
lim y∗

n (g(tn)) : tn ∈ �, y∗
n ∈ SY ∗ ∀n ∈ N, lim y∗

n ( f (tn)) = ‖ f ‖} .

This result extends [19, Corollary 3.1] to the vector-valued case. When � is com-
pact, the result can be improved using Fact 1.3 and the description of the dual ball of
C(K , Y ) = Kw∗(Y ∗, C(K )) given in [36, Theorem 1.1].

Corollary 3.5 Let K be a compact Hausdorff topological space, let Y be a Banach
space, and let f , g ∈ C(K , Y ). Then,

f ⊥B g ⇐⇒ 0 ∈ conv
{

y∗(g(t)) : t ∈ K , y∗ ∈ ext(BY ∗), y∗( f (t)) = ‖ f ‖} .

Moreover, f ∈ C(K , Y ) is smooth if and only if the set

{
y∗(g(t)) : t ∈ K , y∗ ∈ ext(BY ∗), y∗( f (t)) = ‖ f ‖}

is a singleton set for every g ∈ C(K , Y ).

The first part of the above corollary improves [34, Theorem 2.1], where the result
was given only in the real case, and [31, Theorem 2.2], where it was proved in the
case when Y is a finite-dimensional Hilbert space.

Another case in which Theorem 3.2 applies is the one of unital uniform algebras:
closed subalgebras of a C(K ) space separating the points of K and containing the
constant functions. Actually, in this case an improved result can be stated. For a unital
uniform algebra A on C(K ), the Choquet boundary of A is the set

∂ A := {s ∈ K : δs |A ∈ ext(BA∗)}

endowed with the topology induced by K . We refer to [28, Chap. 6] for background.
It is immediate that

ext(BA∗) = T{δs |A : s ∈ ∂ A},

hence the next result follows from Fact 1.3 and Corollary 2.9.

Corollary 3.6 Let A be a unital uniform algebra on C(K ) and let ∂ A ⊂ K be its
Choquet boundary.
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(a) f , g ∈ A satisfy f ⊥B g if and only if

0 ∈ conv
{
θg(s) : θ ∈ T, s ∈ ∂ A, f (s) = θ‖ f ‖}

(b) f ∈ A is a smooth point of A if and only if the set

{
θg(s) : θ ∈ T, s ∈ ∂ A, f (s) = θ‖ f ‖}

is a singleton set for every g ∈ A.

This result applies, in particular, to the disk algebra A(D) of those continuous
functions on the unit disk D = {w ∈ C : |w| � 1} which are holomorphic in the
interior, whose Choquet boundary is T. We will improve this result for a certain class
of holomorphic functions on the open unit disk in Corollary 4.8.

3.2 Lipschitz maps

Next, we give a characterization of BJ-orthogonality in the space of Lipschitz maps.
To do so, we present the basic notions and notations. Given a pointed metric space
(that is, a metric space M with a distinguished element called 0) and a Banach space
Y , we denote by Lip0(M, Y ) the Banach space of all Lipschitz maps F : M −→ Y
such that F(0) = 0 endowed with the norm

‖F‖L = sup

{‖F(t) − F(s)‖
d(t, s)

: t, s ∈ M, t �= s

}
.

We refer the reader to the book [45] for more information and background. Given
s, t ∈ M, s �= t, and y∗ ∈ Y ∗, we define

[
δ̃s,t ⊗ y∗] (F) := y∗(F(t) − F(s))

d(t, s)

for every F ∈ Lip0(M, Y ). It is immediate that this formula defines a bounded linear
functional on Lip0(M, Y ) and that, given a one-norming subset C ⊂ SY ∗ for Y , the
subset

C := {δ̃s,t ⊗ y∗ : s, t ∈ M, s �= t, y∗ ∈ C
}

is one-norming for Lip0(M, Y ).Therefore, Corollaries 2.6 and 2.11 give the following
result.

Proposition 3.7 Let M be a pointed metric space, let Y be a Banach space, and let
C ⊆ SY ∗ be one-norming for Y .

(a) F, G ∈ Lip0(M, Y ) satisfy F ⊥B G if and only if 0 belongs to
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conv

{
lim θ0

y∗
n

(
G(sn)−G(tn)

)

d(sn ,tn)
: sn, tn ∈ M, sn �= tn,

y∗
n ∈ C, θ0 ∈ T, lim

y∗
n

(
F(sn)−F(tn)

)

d(sn ,tn)
= θ0‖F‖L

}
.

(b) F ∈ Lip0(M, Y ) is a smooth point if and only if the set

{
lim θ0

y∗
n

(
G(sn)−G(tn)

)

d(sn ,tn)
: sn, tn ∈ M, sn �= tn,

y∗
n ∈ C, θ0 ∈ T, lim

y∗
n

(
F(sn)−F(tn)

)

d(sn ,tn)
= θ0‖F‖L

}

is a singleton set for every G ∈ Lip0(M, Y ).

Let us comment that there is a result on smoothness in spaces of Lipschitz functions
showing that smoothness and Fréchet smoothness are equivalent in Lip0(M,R), see
[11, Corollary 5.8].

This result also follows from Theorem 3.2 by using a vector-valued version of De
Leeuw’s map, see [45, §2.4] for instance.

3.3 Injective tensor products

Let X , Y be Banach spaces. The injective tensor product of X and Y , denoted by
X⊗̂εY , is the completion of X ⊗ Y endowed with the norm given by

‖u‖ε = sup

{∣∣∣∣
∣

n∑

i=1

x∗(xi )y∗(yi )

∣∣∣∣
∣
: x∗ ∈ BX∗ , y∗ ∈ BY ∗

}

,

where
∑n

i=1 xi ⊗yi is any representation of u. Since B(X⊗̂εY )∗ = convw∗
(BX∗ ⊗BY ∗),

we obtain the following result as consequence of Corollaries 2.5 and 2.10.

Proposition 3.8 Let X , Y be Banach spaces.

(a) u, z ∈ X⊗̂εY satisfy u ⊥B z if and only if

0 ∈ conv
({
lim(x∗

n ⊗ y∗
n )(z) : x∗

n ⊗ y∗
n ∈ BX∗ ⊗ BY ∗

∀n ∈ N, lim(x∗
n ⊗ y∗

n )(u) = ‖u‖ε

})
.

(b) u ∈ X⊗̂εY is smooth if and only if the set

{
lim(x∗

n ⊗ y∗
n )(z) : x∗

n ⊗ y∗
n ∈ BX∗ ⊗ BY ∗ ∀n ∈ N, lim(x∗

n ⊗ y∗
n )(u) = ‖u‖ε

}

is a singleton set for every z ∈ X⊗̂εY .
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3.4 Spaces of operators endowedwith the operator norm

Let X , Y be Banach spaces. Consider C ⊂ SX such that conv(C) is dense in BX and
D ⊂ SY ∗ such that conv(D) is weak-star dense in BY ∗ . Our general characterization
of BJ-orthogonality in L(X , Y ) endowed with the usual norm is obtained by using
Corollary 2.5 with

C := {y∗ ⊗ x : x ∈ C, y∗ ∈ D}

where y∗ ⊗ x ∈ L(X , Y )∗ is defined by

[y∗ ⊗ x](T ) := y∗(T x) (T ∈ L(X , Y )).

For C = SX and D = SY ∗ , the result already appeared in [30, Theorem 2.2], with a
different proof.

Proposition 3.9 (Extension of [30, Theorem2.2])Let X , Y be Banach spaces, C ⊂ SX

such that conv(C) is dense in BX and D ⊂ SY ∗ such that conv(D) is weak-star dense
in BY ∗ , and let T , A ∈ L(X , Y ). Then, T ⊥B A if and only if

0 ∈ conv
({
lim y∗

n (Axn) : (xn, y∗
n ) ∈ C × D ∀n ∈ N, lim y∗

n (T xn) = ‖T ‖}) .

Observe that the result also follows from Theorem 3.2 as L(X , Y ) can be viewed
as a closed subspace of �∞(C, Y ).

When the operators involved are compact we can remove the limits in Proposi-
tion 3.9 and also we can use extreme points of BX∗∗ and of BY ∗ . For y∗ ∈ Y ∗ and
x∗∗ ∈ X∗∗, we consider [x∗∗ ⊗ y∗](T ) := x∗∗(T ∗y∗) for every T ∈ K(X , Y ).

Proposition 3.10 Let X , Y be Banach spaces, and let T , A ∈ K(X , Y ). Then, T ⊥B A
if and only if 0 belongs to the convex hull of the set

{
x∗∗(A∗(y∗)) : x∗∗ ∈ ext(BX∗∗), y∗ ∈ ext(BY ∗), x∗∗(T ∗(y∗)) = ‖T ‖}.

The proof of this result follows from Fact 1.3 as the set

C = {x∗∗ ⊗ y∗ : x∗∗ ∈ ext(BX∗∗), y∗ ∈ ext(BY ∗)}

coincides with the set of extreme points of the unit ball of K(X , Y )∗ (see [36, Theo-
rem 1.3] for the real case and [21, Theorem1] for the complex case). In the case when
X is reflexive, the above result has a nicer form. Let us remark here that a special case
of the following result was obtained in Theorem 2.1 of [41], where X is assumed to
be a real reflexive Banach space.

Corollary 3.11 Let X be a reflexive Banach space, let Y be a Banach space, and let
T , A ∈ K(X , Y ). Then, T ⊥B A if and only if

0 ∈ conv
({

y∗(Ax) : x ∈ ext(BX ), y∗ ∈ ext(BY ∗), y∗(T x) = ‖T ‖}) .



24 Page 18 of 35 M. Martín et al.

Of course, the previous result applies when X is finite-dimensional.

Corollary 3.12 [20, Proposition 4.2] Let X be a finite-dimensional space, let Y be a
Banach space, and let T , A ∈ L(X , Y ). Then T ⊥B A if and only if

0 ∈ conv
({

y∗(Ax) : x ∈ ext(BX ), y∗ ∈ ext(BY ∗), y∗(T x) = ‖T ‖}) .

We finish this subsection on the operator norm by presenting a characterization of
smooth operators which follows directly from Corollary 2.10.

Proposition 3.13 Let X , Y be Banach spaces, C ⊂ SX such that conv(C) is dense
in BX and D ⊂ SY ∗ such that conv(D) is weak-star dense in BY ∗ , and let 0 �= T ∈
L(X , Y ). Then, T is a smooth operator if and only if

{
lim y∗

n (Axn) : (xn, y∗
n ) ∈ C × D ∀n ∈ N, lim y∗

n (T xn) = ‖T ‖}

is a singleton set for every A ∈ L(X , Y ).

As an easy consequence of this proposition and Corollary 2.10, we obtain a result
that gives the existence of smooth operators under reasonable restrictions. In fact,
they are quite similar to those used by Heinrich in [12, Theorem 3.1] to characterize
Fréchet smooth operators in L(X , Y ) (but there is no characterization of smoothness
of operators outside K(X , Y ) in [12]). The result extends [42, Theorem 3.4] to the
complex case. It will be used in Sect. 5.2.

Proposition 3.14 Let X , Y be Banach spaces. Let 0 �= T ∈ L(X , Y ) be such that
there is x0 ∈ SX satisfying the following conditions:
(1) T x0 is a smooth point in Y ;
(2) every sequence {xn} ⊂ BX satisfying lim ‖T xn‖ = ‖T ‖ has a subsequence con-

verging to αx0 for some α ∈ T.

Then, T is smooth.

Proof Using Proposition 3.13 it suffices to show that, for every A ∈ L(X , Y ), the set

{
lim y∗

n (Axn) : (xn, y∗
n ) ∈ SX × SY ∗ ∀n ∈ N, lim y∗

n (T xn) = ‖T ‖}

is a singleton set. To do so, fix an arbitrary λ = lim y∗
n (Axn) and observe that

lim y∗
n (T xn) = ‖T ‖ implies lim ‖T xn‖ = ‖T ‖. So, using (2), there are α ∈ T

and a subsequence {xσ(n)} with lim xσ(n) = αx0. Now, it is clear that

lim(αy∗
σ(n))(T x0) = lim y∗

σ(n)(T xσ(n)) = lim y∗
n (T xn) = ‖T ‖ = ‖T x0‖

and

lim(αy∗
σ(n))(Ax0) = lim y∗

σ(n)(Axσ(n)) = λ.
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Therefore, we get that

λ ∈ {lim z∗
n(Ax0) : z∗

n ∈ SY ∗ ∀n ∈ N, lim z∗
n(T x0) = ‖T x0‖

}

and the latter set is a singleton set by Corollary 2.10 as T x0 is a smooth point of Y by
(1). ��

3.5 Multilinear maps and polynomials

In an analogous way that we deal with bounded operators, it is possible to describe
the BJ-orthogonality of multilinear maps and polynomials.

Let X1, . . . , Xk and Y be Banach spaces. The set of all bounded k-linear maps from
X1 × · · · × Xk to Y will be denoted by L(X1, . . . , Xk; Y ). As usual, we define the
norm of A ∈ L(X1, . . . , Xk; Y ) by

‖A‖ = sup
{‖A(x1, . . . , xk)‖: (x1, . . . , xk) ∈ SX1 × · · · × SXk

}
.

It is then immediate that

L(X1, . . . , Xk; Y ) ⊂ �∞(	, Y )

where	 = SX1 ×· · ·× SXk . Therefore, the following result follows immediately from
Theorem 3.2 and Corollary 3.3. It was proved in [30].

Proposition 3.15 [30, Theorem 2.2 and Theorem 3.1] Let X1, . . . , Xk and Y be
Banach spaces and let C ⊂ SY ∗ be such that BY ∗ = convw∗

(C).

(a) For T , A ∈ L(X1, . . . , Xk; Y ) we have that T ⊥B A if and only if 0 belongs to
the convex hull of

{
lim

n
y∗

n (A(xn
1 , . . . , xn

k )) : (xn
1 , . . . , xn

k ) ∈ SX1 × · · · × SXk , y∗
n ∈ C,

lim
n

y∗
n (T (xn

1 , . . . , xn
k )) = ‖T ‖

}
.

(b) T ∈ L(X1, . . . , Xk; Y ) is a smooth point if and only if the set

{
lim

n
y∗

n (A(xn
1 , . . . , xn

k )) : (xn
1 , . . . , xn

k ) ∈ SX1 × · · · × SXk , y∗
n ∈ C,

lim
n

y∗
n (T (xn

1 , . . . , xn
k )) = ‖T ‖

}

is a singleton set for every A ∈ L(X1, . . . , Xk; Y ).

We now deal with polynomials between Banach spaces. Let X and Y be Banach
spaces. A (continuous) N -homogeneous polynomial P from X to Y is a mapping

P : X −→ Y for which we can find a multilinear operator T ∈ L(X ×
N
︷︸︸︷. . . ×X; Y )
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(continuous)which is symmetric (i.e.,T (x1, . . . , xN ) = T (xσ(1), . . . , xσ(N )) for every
permutation σ of the set {1, . . . , N }) and satisfying P(x) = T (x, . . . , x) for every
x ∈ X . A (general) polynomial from X to Y is a mapping P : X −→ Y which can
be written as a finite sum of homogeneous polynomials. We write P(X , Y ) for the
space of all polynomials from X to Y . It is immediate that P(X , Y ) is a subspace of
�∞(BX , Y ), so the next result follows again from Theorem 3.2 and Corollary 3.3.

Proposition 3.16 Let X , Y be Banach spaces and let C ⊂ SY ∗ be such that BY ∗ =
convw∗

(C).

(a) Given P, Q ∈ P(X , Y ), we have that P ⊥B Q if and only if

0 ∈ conv
{
lim y∗

n (P(xn)) : xn ∈ BX , y∗
n ∈ C, lim y∗

n (Q(xn)) = ‖Q‖} .

(b) P ∈ P(X , Y ) is a smooth point if and only if the set

{
lim y∗

n (P(xn)) : xn ∈ BX , y∗
n ∈ C, lim y∗

n (Q(xn)) = ‖Q‖}

is a singleton set for every Q ∈ P(X , Y ).

3.6 Spaces of operators endowedwith the numerical radius as norm

Let X be a Banach space. We deal here with the space L(X) endowed with the
numerical radius. Let us recall the necessary definitions. Write �(X) := {(x, x∗) ∈
SX × SX∗ : x∗(x) = 1}. The numerical radius of T ∈ L(X) is

v(T ) := sup{|x∗(T x)| : (x, x∗) ∈ �(X)}.

It is a well-known fact that

v(T ) = sup
{|λ| : λ ∈ V (L(X), Id, T )

}

for every T ∈ L(X) (see [10, Proposition 2.1.31], for instance).We refer the interested
reader to the classical books [8, 9] and to Sections 2.1 and 2.9 of the book [10] for
more information and background. It is clear that the numerical radius is a seminorm
on L(X) and v(T ) � ‖T ‖ for every T ∈ L(X). We would like to remark here
that although BJ-orthogonality is defined in the framework of norms, it may also be
considered in exactly the same way in any seminormed space. Of course, when the
seminorm is a norm, we return to the original setting.

We particularize Corollary 2.6 to the space of operators with the numerical radius,
taking

� := {x∗ ⊗ x : (x, x∗) ∈ �(X)} ⊂ (L(X), v)∗

which is clearly one-norming for (L(X), v). The following result appeared in [23,
Theorem 3.4].
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Proposition 3.17 [23, Theorem 3.4] Let X be a Banach space and let T , A ∈ L(X).

Then, T ⊥v
B A if and only if 0 belongs to the convex hull of the set

{
lim x∗

n (Axn)x∗
n (T xn) : (xn, x∗

n ) ∈ �(X) ∀n ∈ N, lim |x∗
n (T xn)| = v(T )

}
.

In the case of compact operators defined on a reflexive space, it is straightforward
to show that the limits can be removed.

Corollary 3.18 Let X be a reflexive Banach space and let T , A ∈ K(X). Then, T ⊥v
B A

if and only if

0 ∈ conv
({

x∗(Ax)x∗(T x) : (x, x∗) ∈ �(X), |x∗(T x)| = v(T )
})

.

A characterization in the particular case when X has finite dimension has recently
been proved by Roy and Sain [33, Theorem 2.3].

Corollary 3.19 [33, Theorem 2.3] Let X be a finite-dimensional space and let T , A ∈
L(X). Then T ⊥v

B A if and only if

0 ∈ conv
({

x∗(Ax)x∗(T x) : (x, x∗) ∈ �(X), |x∗(T x)| = v(T )
})

.

We may state the following characterization of smoothness in (L(X), v), as a
consequence of the previous observations and Corollary 2.11. We say that T ∈ L(X)

is a smooth operator for the numerical radius if T is a smooth point of (L(X), v).

Proposition 3.20 Let X be a Banach space and let T ∈ L(X). Then, T is a smooth
operator for the numerical radius if and only if

{
lim x∗

n (Axn)x∗
n (T xn) : (xn, x∗

n ) ∈ �(X) ∀n ∈ N, lim |x∗
n (T xn)| = v(T )

}

is a singleton set for every A ∈ L(X).

As far aswe could check, the above characterizationof smoothness for the numerical
radius has not appeared previously in its most general form.

4 Bhatia–Šemrl’s kind of results

In the particular case of operators on Hilbert spaces, the results of the Sect. 3.4 can
be improved as there is no need of taking convex hull. The first characterization in
this line was obtained by Stampfli [44, Theorem 2] in the special case when one of
the operators is the identity. Later, Magajna [22, Lemma 2.2] observed that Stampfli’s
result holds for any pair of operators, leading to a complete characterization of BJ-
orthogonality in L(H). The same characterization was obtained by Bhatia and Šemrl
[5, Remark 3.1], and also by Kečkić [18, Corollary 3.1] with different approaches.

Here, we present an alternative proof which follows from our Proposition 3.9 and
[25, Theorem 2].
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Corollary 4.1 ([22, Lemma 2.2], [5, Remark 3.1], [18, Corollary 3.1]) Let H be a
Hilbert space and let T , A ∈ L(H). Then T ⊥B A if and only if there exists a
sequence {xn}n∈N in SH such that ‖T xn‖ → ‖T ‖ and 〈T xn, Axn〉 → 0.

Proof We may and do suppose that ‖T ‖ = 1. It follows from Proposition 3.9 that
T ⊥B A if and only if

0 ∈ conv
({
lim〈Axn, yn〉 : xn, yn ∈ SH ∀n ∈ N, lim〈T xn, yn〉 = ‖T ‖}) .

Observe that

{
lim〈Axn, yn〉 : xn, yn ∈ SH ∀n ∈ N, lim〈T xn, yn〉 = ‖T ‖}

= {lim〈Axn, T xn〉 : xn ∈ SH ∀n ∈ N, lim ‖T xn‖ = ‖T ‖}

and that the latter set is convex (this was first stated without proof in [22, Lemma 2.1],
see [25, Theorem 2] for a proof). ��

In the particular case when H is finite-dimensional, Bhatia and Šemrl were the
first to write down the characterization of BJ-orthogonality of two matrices in terms
of the elements of H [5, Theorem 1.1]. An alternative proof of this characterization
was given by Roy, Bagchi, and Sain in [32]. We obtain this result as a consequence of
Corollary 3.12.

Corollary 4.2 (Bhatia–Šemrl theorem, [5, Theorem1.1])Let H be a finite-dimensional
Hilbert space and let T , A ∈ L(H). Then T ⊥B A if and only if there exists x ∈ SH

such that ‖T x‖ = ‖T ‖ and T x ⊥B Ax .

Proof We may and do suppose that ‖T ‖ = 1. It follows from Corollary 3.12 that

T ⊥B A ⇐⇒ 0 ∈ conv
({〈Ax, y〉 : x, y ∈ SH , 〈T x, y〉 = ‖T ‖ = 1

})
.

Now, observe that

{〈Ax, y〉 : x, y ∈ SH , 〈T x, y〉 = 1
} = {〈Ax, T x〉 : x ∈ SH , ‖T x‖ = 1

}
.

The result follows since the latter set is convex ([22, Lemma 2.1], [25, Theorem 2]).
��

It has been shown by Li and Schneider that the Bhatia–Šemrl theorem cannot be
extended in general to arbitrary finite-dimensional Banach spaces [20, Example 4.3].
Actually, the validity of the Bhatia–Šemrl theorem for all operators characterizes
Hilbert spaces among finite-dimensional Banach spaces, see [4]. However, it is natural
to study for which operators T it is possible to have a Bhatia–Šemrl theorem for all
operators A: conditions on T such that whenever T ⊥B A, one has that there is a
norm-one x such that ‖T x‖ = ‖T ‖ and T x ⊥B Ax (that is, whether we may remove
the convex hull in Corollary 3.11). This has been done in [26, 37, 40] for the real case
and in [27, 32] for the complex case. Our aim in what follows is to give a unified
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approach that allows to recover some of these results and to obtain an improvement in
the complex setting. Actually, we will work in the more general framework of vector-
valued continuous functions on a compact Hausdorff space. To deal with both the real
and the complex case, we need to introduce the notion of directional orthogonality
from [27]. Given elements x, y of a Banach space Z , we say that x is orthogonal to y
in the direction of γ ∈ T, which we denote by x ⊥γ y, if ‖x + tγ y‖ � ‖x‖ for every
t ∈ R. Obviously, x ⊥B y if and only if x ⊥γ y for every γ ∈ T. In the real case, it
is obvious that x ⊥B y if and only if x ⊥1 y if and only if x ⊥−1 y. In the complex
case, there are easy examples showing that x �⊥B y while x ⊥γ y for some γ ∈ T is
possible, see [32, Example 1]. It is shown in [32, Theorem 4] that

x ⊥γ y ⇐⇒ ∃ x∗ ∈ SX∗ with x∗(x) = γ ‖x‖ and Re x∗(y) = 0 (4.1)

(indeed, this result is immediate as x ⊥γ y if and only if x ⊥B γ y in the real space
XR underlying X and (XR)∗ = {Re x∗ : x∗ ∈ X∗}).

For a Hausdorff compact topological space K and a Banach space Y , the norm
attainment set of f ∈ C(K , Y ) is the (non-empty) set

M f = {t ∈ K : ‖ f (t)‖ = ‖ f ‖}.

Our main result in C(K , Y ) is a Bhatia–Šemrl’s type result when M f is connected.

Theorem 4.3 Let K be a compact Hausdorff topological space and let Y be a Banach
space. Let f , g ∈ C(K , Y ) be such that M f is connected. Then,

f ⊥B g ⇐⇒ ∀μ ∈ T ∃t ∈ M f such that f (t) ⊥μ g(t).

In the real case, we actually have

f ⊥B g ⇐⇒ ∃t ∈ M f such that f (t) ⊥B g(t).

The most technical part of the proof is contained in the next lemma, which is
actually valid in Cb(�, Y ). We still use the notationM f for the (maybe empty) norm
attainment set of a function f ∈ Cb(�, Y ).

Lemma 4.4 Let � be a Hausdorff topological space, let Y be a Banach space, and let
f ∈ Cb(�, Y ). Suppose that there exists a closed connected subset D of � such that
D ⊆ M f . Then, for every g ∈ Cb(�, Y ), the set

{y∗(g(t)) : t ∈ D, y∗ ∈ SY ∗ , y∗( f (t)) = ‖ f ‖}

is a connected subset of C.

Proof We follow the lines of the proof of the spatial numerical range of operators being
connected given in [8, Section 11]. Consider the product �× BY ∗, topologized by the
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product of the topology of� and thew∗ topology of BY ∗ . For any fixed h ∈ Cb(�, Y ),

define �h : � × BY ∗ −→ C by

�h(t, y∗) = y∗(h(t))
(
(t, y∗) ∈ � × BY ∗

)
.

Observe that

|�h(t, y∗) − �h(s, z∗)| = |y∗(h(t)) − z∗(h(s))|
� |y∗(h(t)) − y∗(h(s))| + |JY (h(s))(y∗) − JY (h(s))(z∗)|
� ‖h(t) − h(s)‖ + |JY (h(s))(y∗) − JY (h(s))(z∗)|,

where JY : Y −→ Y ∗∗ denotes the canonical embedding. It follows from the continuity
of h and the w∗-continuity of JY (h(s)) that the map �h is continuous.

Thus, to prove our assertion, it is enough to show that

A = {(t, y∗) ∈ D × SY ∗ : y∗( f (t)) = ‖ f ‖}

is connected. Suppose by contradiction that A = F1 ∪ F2, where F1, F2 are non-
empty and closed in A with F1 ∩ F2 = ∅. The projections π1(F1) and π1(F2) are
closed subsets of �. Indeed, consider any net (tτ ) in π1(F1) such that tτ → t0 in
�. Evidently, π1(F1) ⊆ D and D is closed. Thus, t0 ∈ D. For each τ, consider
y∗
τ ∈ SY ∗ such that (tτ , y∗

τ ) ∈ F1. The net (y∗
τ ) has a cluster point y∗

0 in BY ∗, since
BY ∗ is w∗-compact. Thus, (t0, y∗

0 ) is a cluster point of the net ((tτ , y∗
τ )). Moreover, it

follows from the continuity of� f that y∗
0 ( f (t0)) = ‖ f ‖. Thus, y∗

0 ∈ SY ∗ and we have
(t0, y∗

0 ) ∈ A. Since F1 is closed in A, we have (t0, y∗
0 ) ∈ F1. Therefore, t0 ∈ π1(F1)

and π1(F1) is a closed subset of �. Similarly, π1(F2) is a closed subset of �. Note
that D = π1(F1) ∪ π1(F2). It follows from the connectedness of D that there exists
t̃ ∈ π1(F1) ∩ π1(F2). Therefore, we may find y∗

1 and y∗
2 in SY ∗ such that (̃t, y∗

1 ) ∈ F1
and (̃t, y∗

2 ) ∈ F2. Then,

B := {(t̃, (λy∗
1 + (1 − λ)y∗

2 )
) : λ ∈ [0, 1]}

is a connected subset and it is contained in A. However, (B ∩ F1) and (B ∩ F2) are
non-empty, closed inB and form a separation ofB. This contradicts the connectedness
of B. ��

We are now ready to give the pending proof of the theorem.

Proof of Theorem 4.3 We only prove the necessity as the sufficiency is straightforward.
Suppose that f ⊥B g and consider

A1 := {y∗(g(t)) : t ∈ M f , y∗ ∈ ext(BY ∗), y∗( f (t)) = ‖ f ‖},
A2 := {y∗(g(t)) : t ∈ M f , y∗ ∈ SY ∗ , y∗( f (t)) = ‖ f ‖}.

Observe thatA1 ⊆ A2 and that 0 ∈ conv(A1) by Corollary 3.5, hence 0 ∈ conv(A2).

Now, by Lemma 4.4,A2 is connected. Therefore, by Lemma 2.7, for everyμ ∈ T there
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exists (t, y∗) ∈ M f × SY ∗ such that y∗( f (t)) = ‖ f (t)‖ = ‖ f ‖ and Reμy∗(g(t)) =
0. Hence, (4.1) shows that f (t) ⊥μ g(t), as desired. ��

Our next aim is to apply Theorem 4.3 to spaces of operators. Given Banach spaces
X , Y and T ∈ L(X , Y ), let MT denote the (maybe empty) norm attainment set of T ,

that is,

MT := {x ∈ SX : ‖T x‖ = ‖T ‖}.

In the real case, the result we get is the following one, which appeared in [26].

Proposition 4.5 [26, Theorem 2.1] Let X be a real reflexive Banach space, let Y be
a real Banach space, and let T , A ∈ K(X , Y ). Suppose that MT = D ∪ (−D) for a
connected subset D of SX . Then, T ⊥B A if and only if there exists x ∈ D such that
T x ⊥B Ax .

Proof We only prove the necessity as sufficiency is obvious. Suppose that T ⊥B A
and consider

A1 := {y∗(Ax) : x ∈ ext BX , y∗ ∈ ext BY ∗ , y∗(T x) = ‖T ‖};
A2 := {y∗(Ax) : x ∈ D, y∗ ∈ SY ∗ , y∗(T x) = ‖T ‖}.

Let us show that A1 ⊆ A2. Indeed,

A1 ⊆ {y∗(Ax) : x ∈ SX , y∗ ∈ SY ∗ , y∗(T x) = ‖T ‖}
= {y∗(Ax) : x ∈ MT , y∗ ∈ SY ∗ , y∗(T x) = ‖T ‖} = A2.

The first inclusion is obvious and the second equality is clear since y∗(T x) = ‖T ‖
implies x ∈ MT . For the third one, given x ∈ MT , there exist θ ∈ {−1, 1} and z ∈ D
with x = θ z. If y∗ ∈ SY ∗ satisfies y∗(T x) = ‖T ‖, then we have that

(θ y∗)(T z) = y∗(T x) = ‖T ‖ and (θ y∗)(Az) = y∗(Ax),

and we deduce the desired equality. Now, BX equipped with the weak topology is
a compact Hausdorff topological space. Consider the Banach space C

(
(BX , w), Y

)
.

The identification T �−→ T̃ where T̃ = T |BX , is an isometric embedding ofK(X , Y )

into C
(
(BX , w), Y

)
. Thus, by virtue of this identification, we have that the set

A3 := {y∗( Ãx) : x ∈ D, y∗ ∈ SY ∗ , y∗(T̃ x) = ‖T̃ ‖}

coincides with A2 and is connected by Lemma 4.4. It follows from Corollary 3.11
that 0 ∈ conv(A1) and so 0 ∈ conv(A3). Hence, Lemma 2.7 gives that for every
μ ∈ {−1, 1} there exists xμ ∈ D such that T̃ xμ ⊥μ Ãxμ. Therefore, there exists
x ∈ D such that T x ⊥B Ax as desired. ��
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Thecomplex case canbe treated similarly using thenotionof directional orthogonal-
ity. Ourmain result extends [26, Theorem2.1] to the complex case and [32, Theorem7]
and [27, Theorem 2.6] to the infinite-dimensional case. Observe that the connected-
ness of MT in the complex case is equivalent to requiring that MT = ⋃θ∈T θ D for a
connected set D. In the real case, the second condition is weaker.

Theorem 4.6 Let X be a complex reflexive Banach space, let Y be a complex Banach
space, and let T , A ∈ K(X , Y ). Suppose that MT is connected. Then, T ⊥B A if and
only if for each γ ∈ T there exists x ∈ MT such that T x ⊥γ Ax .

This result can be proved following a completely analogous argument to the one
for Proposition 4.5, or alternatively, it can be established as a direct consequence of
Theorem 4.3 since MT is connected in this case.

When X is finite-dimensional, the previous two results clearly apply.

Corollary 4.7 ([32, Theorem 7] and [27, Theorem 2.6]) Let X be a finite-dimensional
space, let Y be a Banach space, and let T , A ∈ L(X , Y ). In the real case, suppose
that MT = D ∪ −D for a connected set D; in the complex case, suppose that MT is
connected. Then, T ⊥B A if and only if for each γ ∈ T there exists x ∈ MT such that
T x ⊥γ Ax .

We finally give another Bhatia–Šemrl’s type result which improves Corollary 3.6
for a class of holomorphic functions on the open unit disk.

Corollary 4.8 Let f ∈ A(D) with ‖ f ‖ = 1 and let g be a holomorphic function on
the open unit disk. Suppose that M f ⊂ T is a connected subset of T and g has radial
limit g∗ with modulus one at every z ∈ M f . Then,

f ⊥B g ⇐⇒ ∀μ ∈ T ∃z0 ∈ M f such that μ f (z0)g
∗(z0) ∈ {i,−i}.

Proof Observe that Corollary 3.6 gives that

f ⊥B g ⇐⇒ 0 ∈ conv{ f (z)g∗(z) : z ∈ M f }.

Using that the set { f (z)g∗(z) : z ∈ M f } is connected and Lemma 2.7, we have that

f ⊥B g ⇐⇒ ∀μ ∈ T ∃z0 ∈ M f such that Reμ f (z0)g
∗(z0) = 0

and the result follows from | f (z0)| = |g∗(z0)| = 1. ��
This result applies to a class of inner functions of the disk algebra A(D), known as

finite Blaschke products. A Blaschke product of degree n is defined by

Bn(z) := zk
n∏

j=1

|a j |
a j

z − a j

1 − a j z
(z ∈ D)

where k is an integer, k � 0, and 0 < |a j | < 1, 1 � j � n. Observe that |Bn(z)| = 1
for z ∈ T.We refer the reader to [35, page 310] for more information and background.
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Example 4.9 Let Bm and Bn be twoBlaschke products of degreem and n, respectively,
viewed as elements of A(D). Then,

Bn ⊥B Bm ⇐⇒ ∀μ ∈ T ∃z0 ∈ T such that μBn(z0)Bm(z0) ∈ {i,−i}.

5 Applications: obstructive results for spear vectors, spear operators,
and Banach spaces with numerical index one

The aim of this section is to use the results in Sect. 2 together with a mix of ideas from
numerical ranges andBJ-orthogonality to obtain obstructive results for the existence of
spear vectors, spear operators and, in particular, for the possibility of having n(X) =
1 for a Banach space X . Let us introduce here some notation which will be used
throughout this section. Let Z be a Banach space. We write Smooth(Z) to denote the
set of smooth points of Z . For z ∈ Z , z⊥ = {x ∈ Z : z ⊥B x} and ⊥z = {x ∈
Z : x ⊥B z}. Finally, StrExp(BZ ) denotes the set of strongly exposed points of BZ

and z0 ∈ StrExp(BZ ) if there is f0 ∈ SZ∗ such that whenever lim Re f0(zn) = 1 for
{zn} ⊂ BZ , it follows that lim zn = z0 in norm.

5.1 Spear vectors

Let us first give some notation. Let Z be a Banach space and let u ∈ SZ .The numerical
radius of z ∈ Z with respect to (Z , u) is

v(Z , u, z) := sup{|λ| : λ ∈ V (Z , u, z)} = sup{|φ(z)| : φ ∈ F(BZ∗ , u)},

which is a seminorm on Z satisfying v(Z , u, z) � ‖z‖ for every z ∈ Z . When
v(Z , u, ·) is a norm in Z , we say that u is a vertex. When v(Z , u, z) = ‖z‖ for every
z ∈ Z , u is said to be a spear vector. It is known that u is a spear vector if and only if

max
θ∈T ‖u + θ z‖ = 1 + ‖z‖ ∀z ∈ Z .

We write Spear(Z) for the set of spear vectors of Z . A lot of information on spear
vectors can be found in Chapter 2 of the book [15].

Consider a Banach space Z and a vertex u ∈ SZ , and let us consider Z endowed
with the norm vu given by the numerical radius with respect to u:

vu(z) := v(Z , u, z) = sup{|φ(z)| : φ ∈ F(BZ∗ , u)} (z ∈ Z).

Then, we can consider its dual space (Z , vu)∗ consisting of the linear functionals
ψ : Z −→ K satisfying

sup{|ψ(y)| : y ∈ Z , vu(y) � 1} < ∞,
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endowed with the norm

v∗
u(ψ) := sup{|ψ(y)| : y ∈ Z , vu(y) � 1} (ψ ∈ (Z , vu)∗).

For x ∈ Z with vu(x) = 1, the numerical range of y ∈ Z with respect to the numerical
range space

(
(Z , vu), x

)
is

V
(
(Z , vu), x, y

) = {ψ(y) : ψ ∈ (Z , vu)∗, v∗
u(ψ) = ψ(x) = 1}.

Our obstructive result for spear vectors will follow from the next result.

Theorem 5.1 Let Z be a Banach space and let u ∈ SZ be a vertex of Z . If z is smooth
in (Z , vu), then z �⊥vu

B u.

A technical part of the proof is contained in the following lemma which could be
of independent interest.

Lemma 5.2 Let Z be a Banach space, let u ∈ SZ be a vertex, and let z ∈ Z with
vu(z) = 1. Then, V

(
(Z , vu), z, u

) ∩ T �= ∅.

Proof Since vu(z) = 1, there exist φ0 ∈ SZ∗ and θ0 ∈ T such that φ0(u) = θ0 and
φ0(z) = 1. We claim that φ0 ∈ (Z , vu)∗ and v∗

u(φ0) = 1. Indeed, fix y ∈ Z with
vu(y) � 1. As θ0φ0(u) = 1, we have that θ0φ0(y) ∈ V (Z , u, y), hence |φ0(y)| �
v(Z , u, y) = vu(y) � 1. This shows that φ0 ∈ (Z , vu)∗ and

v∗
u(φ0) = sup{|φ0(y)| : y ∈ Z , vu(y) � 1} � 1.

On the other hand, since vu(u) = 1, we have that v∗
u(φ0) � |φ0(u)| = 1.

This, together with φ0(z) = 1, gives that

θ0 = φ0(u) ∈ V
(
(Z , vu), z, u

) = {ψ(u) : ψ ∈ (Z , vu)∗, v∗
u(ψ) = ψ(z) = 1}.

��
We are now ready to present the pending proof.

Proof of Theorem 5.1 As z is a smooth point, we have that z �= 0 so, since u is a

vertex, this implies that vu(z) �= 0. Now, V

(
(Z , vu),

z

vu(z)
, u

)
is a singleton set by

Lemma 2.8 as the norm of (Z , vu) is smooth at z, hence also at
z

vu(z)
. Moreover,

since vu

(
z

vu(z)

)
= 1, it follows from Lemma 5.2 that

V

(
(Z , vu),

z

vu(z)
, u

)
= {θ0}
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for some θ0 ∈ T. Hence, 0 /∈ V

(
(Z , vu),

z

vu(z)
, u

)
so Proposition 1.2 gives that

z

vu(z)
�⊥vu

B u and hence z �⊥vu
B u. ��

We are ready to obtain the promised obstructive result for spear vectors.

Corollary 5.3 Let Z be a Banach space and u ∈ SZ . If there exists a smooth point z0 in
Z such that z0 ⊥B u, then (Z , vu) is not isometrically isomorphic to Z . In particular,
u is not a spear vector or, in other words,

⎛

⎝
⋃

z∈Smooth(Z)

z⊥
⎞

⎠ ∩ Spear(Z) = ∅ and Smooth(Z) ∩
⎛

⎝
⋃

z∈Spear(Z)

⊥z

⎞

⎠ = ∅.

Proof Suppose on the contrary that (Z , vu) is isometrically isomorphic to Z . Since z0
is smooth in Z and z0 ⊥B u,we have that z0 is smooth in (Z , vu) and z0 ⊥vu

B u,which
contradicts Theorem 5.1. If u is a spear vector, then the identity map Id : (Z , ‖·‖) −→
(Z , vu) is an isometric isomorphism. ��

Observe that the last part of Corollary 5.3 can be shown with a geometrical argu-
ment. Indeed, if z0 ∈ SZ is a smooth point in Z , then there exists a unique φ ∈ SZ∗
such that φ(z0) = 1 and φ ∈ ext(BZ∗). Now, if u ∈ SZ is a spear vector, then
|φ(u)| = 1 by [15, Corollary 2.8], and so z0 cannot be BJ-orthogonal to u. Note that
this argument only depends on the subspace generated by {u, z0}.
Remark 5.4 If z0 is a smooth point in a Banach space Z and u ∈ SZ is a spear vector
in span{z0, u}, then z0 is not BJ-orthogonal to u.

5.2 Spear operators

In the case when Z = L(X , Y ) for some Banach spaces X and Y , spear vectors are
called spear operators, which were introduced in [2] and have been deeply studied in
[15], where we refer for more information and background.

Our aim here is to particularize Corollary 5.3 for the numerical radius with respect
to an operator and for spear operators. The results follow directly from the above ones,
but we include some particular notation for this case. Given Banach spaces X and Y ,

and G ∈ L(X , Y ) with ‖G‖ = 1, the numerical radius of T ∈ L(X , Y ) with respect
to G is

vG(T ) := v
(L(X , Y ), G, T

)

= inf
δ>0

sup
{|y∗(T x)| : y∗ ∈ SY ∗ , x ∈ SX , Re y∗(Gx) > 1 − δ

}

= sup
{
lim |y∗

n (T xn)| : {y∗
n } ⊂ SY ∗ , {xn} ⊂ SX , lim y∗

n (Gxn) = 1
}
,

where the second and third equalities hold by [16, Proposition 2.14] and our Theo-
rem 2.3, respectively.We refer to [16] for background on numerical radius with respect
to an operator.
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The main result of the previous subsection in this setting reads as follows.

Corollary 5.5 Let X , Y be Banach spaces and let G ∈ L(X , Y ) with ‖G‖ = 1. If there
exists a smooth operator T in L(X , Y ) such that T ⊥B G, then

(L(X , Y ), vG
)

is not
isometrically isomorphic to L(X , Y ). In particular, G is not a spear operator or, in
other words,

⎛

⎝
⋃

T ∈Smooth(L(X ,Y ))

T ⊥
⎞

⎠ ∩ Spear(L(X , Y )) = ∅

and

Smooth(L(X , Y )) ∩
⎛

⎝
⋃

G∈Spear(L(X ,Y ))

⊥G

⎞

⎠ = ∅.

Our next aim is to provide an obstructive result for the existence of spear operators
which uses the geometry of the domain and range spaces instead of the geometry of the
space of operators and so it would be easier to apply. Other restrictions on the geometry
of the domain and range spaces to the existence of spear operators can be found in [15,
Ch. 6]. To obtain the desired result through the application of Corollary 5.5, we present
the following lemma, which provides a tool to construct smooth operators which are
BJ-orthogonal to a given one, under mild assumptions.

Lemma 5.6 Let X , Y be Banach spaces and suppose that x0 ∈ BX is strongly exposed
by x∗

0 ∈ SX∗ . Given A ∈ L(X , Y ), suppose that there is a smooth point u0 ∈ Y
satisfying u0 ⊥B Ax0. Then, the operator T ∈ L(X , Y ) given by T (x) = x∗

0 (x)u0 is
smooth and satisfies T ⊥B A.

Proof Observe that T clearly satisfies the hypotheses of Proposition 3.14 so it is a
smooth operator. Besides, using that u0 ⊥B Ax0, we have that

‖T + λA‖ � ‖T x0 + λAx0‖ = ‖u0 + λAx0‖ � ‖u0‖ = ‖T ‖

for every λ ∈ K. Consequently, T ⊥B A. ��
We obtain the desired result as an immediate consequence of the previous lemma

and Corollary 5.5.

Corollary 5.7 Let X , Y be Banach spaces and let G ∈ L(X , Y ) with ‖G‖ = 1. Suppose
that there are x0 ∈ StrExp(BX ) and u0 ∈ Smooth(Y ) satisfying that u0 ⊥B Gx0.
Then,

(L(X , Y ), vG
)

is not isometrically isomorphic to L(X , Y ). In particular, G is
not a spear operator.

The previous result can be reformulated in a more suggestive manner as follows.
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Corollary 5.8 Let X , Y be Banach spaces and let G ∈ L(X , Y ) with ‖G‖ = 1 be a
spear operator. Then,

⎛

⎝
⋃

y∈Smooth(Y )

y⊥
⎞

⎠ ∩ G(StrExp(BX )) = ∅

and

Smooth(Y ) ∩
⎛

⎝
⋃

x∈StrExp(BX )

⊥(Gx)

⎞

⎠ = ∅.

We obtain an interesting result when X contains strongly exposed points and Y is
a smooth Banach space with dimension at least two.

Corollary 5.9 Let X be a Banach space with StrExp(BX ) �= ∅ and let Y be a smooth
Banach space of dimension at least two. Then, for every A ∈ L(X , Y ) there is a
smooth operator T ∈ L(X , Y ) satisfying T ⊥B A. Consequently, there are no spear
operators in L(X , Y ).

Observe that the last assertion of this result extends [15, Proposition 6.5.a] when
X contains strongly exposed points (in particular, when X has the RNP) and provides
a partial answer to [15, Problem 9.12].

Proof of Corollary 5.9 To prove the first assertion, take x0 ∈ StrExp(BX ), then Ax0 ∈
Y and, since dim(Y ) � 2, there exists u0 �= 0 smooth point of Y such that u0 ⊥B Ax0.
Now, Lemma 5.6 gives the existence of a smooth operator T BJ-orthogonal to A. The
second assertion follows from Corollary 5.5. ��

5.3 Banach spaces with numerical index one

We finally particularize the results of the previous subsection to the case when X = Y
and G = IdX . In this case, we use the usual notation v(·) for the numerical radius
(instead of vId) which was introduced in Sect. 3.6. We need the following notation.
The numerical index of a Banach space X is defined by

n(X) := inf{v(T ) : T ∈ SL(X)}.

Equivalently, n(X) is the greatest constant k � 0 such that k‖T ‖ � v(T ) for every
T ∈ L(X). Note that 0 � n(X) � 1 and n(X) > 0 if and only if v(·) and ‖ · ‖
are equivalent norms on L(X). The case n(X) = 1 is equivalent to the fact that
IdX is a spear operator and we say that X is a Banach space with numerical index
one or that X has numerical index one. We refer the reader to the expository paper
[17] and to Chapter 1 of the already cited book [15] for an overview of classical and
recent results on Banach spaces with numerical index one. Let us mention that some
isomorphic and isometric restrictions on a Banach space X to have numerical index
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one are known: X∗ cannot be smooth nor strictly convex [14, Theorem 2.1] and, in the
real infinite-dimensional case, X∗ contains a copy of �1 [3, Corollary 4.9]. It is open,
as far as we know, whether the latter result extends to the complex case and whether
a Banach space with numerical index one can be smooth or strictly convex ([14] or
[15, Problem 9.12]). The particularization of the results of the previous subsection to
the case of the identity reads as follows.

Corollary 5.10 Let X be a Banach space. If there are x0 ∈ StrExp(BX ) and u0 ∈
Smooth(X) such that u0 ⊥B x0, then X does not have numerical index one.

This result can be written in the following more suggestive way:

Corollary 5.11 Let X be a Banach space with numerical index one. Then,

⎛

⎝
⋃

x∈Smooth(X)

x⊥
⎞

⎠ ∩ StrExp(BX ) = ∅

and

Smooth(X) ∩
⎛

⎝
⋃

x∈StrExp(BX )

⊥x

⎞

⎠ = ∅.

The above result provides a necessary condition to have numerical index one for
a Banach space in the way that was asked in [17, Problem 11]: Find necessary and
sufficient conditions for a Banach space to have numerical index one which do not
involve operators.

The next is a consequence of Corollary 5.10 which gives a partial answer to the
question of whether there is a smooth Banach space with numerical index one.

Corollary 5.12 Let X be a smooth Banach space of dimension at least two such that
StrExp(BX ) �= ∅. Then, X does not have numerical index one.

This applies, in particular, when X has the RNP.

Corollary 5.13 Let X be a smooth Banach space of dimension at least two having the
RNP. Then, X does not have numerical index one.
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