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Abstract
The aim of the paper is to develop a general theory of solvability of linear inho-
mogeneous boundary-value problems for systems of ordinary differential equations 
of arbitrary order in Sobolev spaces. Boundary conditions are allowed to be over-
determined or underdetermined. They may contain derivatives, of the unknown 
vector-valued function, whose integer or fractional orders exceed the order of the 
differential equation. Similar problems arise naturally in various applications. The 
theory introduces the notion of a rectangular number characteristic matrix of the 
problem. The index and Fredholm numbers of this matrix coincide, respectively, 
with the index and Fredholm numbers of the inhomogeneous boundary-value prob-
lem. Unlike the index, the Fredholm numbers (i.e., the dimensions of the problem 
kernel and co-kernel) are unstable even with respect to small (in the norm) finite-
dimensional perturbations. We give examples in which the characteristic matrix can 
be explicitly found. We also prove a limit theorem for a sequence of characteristic 
matrices. Specifically, it follows from this theorem that the Fredholm numbers of the 
problems under investigation are semicontinuous in the strong operator topology. 
Such a property ceases to be valid in the general case.
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1 � Introduction and statements of the problems

The study of systems of ordinary differential equations is an important part of many 
investigations in modern analysis and its applications (see, e.g., [5] and references 
therein). Unlike Cauchy problems, the solutions to inhomogeneous boundary-value 
problems for differential systems may not exist and/or may not be unique. Therefore, 
the question about the solvability character of such problems is fundamental for the 
theory of differential equations. The question is most fully studied for linear ordi-
nary differential equations. Thus, Kiguradze [17, 18] and Ashordia [1] investigated 
the solutions of first-order differential systems with general inhomogeneous bound-
ary conditions of the form

Here, the matrix-valued function A(⋅) is Lebesgue integrable over the finite inter-
val (a, b); the vector-valued function f (⋅) belongs to L((a, b);ℝm) ; the vector c per-
tains to ℝm , and B is an arbitrary linear continuous operator from the Banach space 
C([a, b];ℝm) to ℝm , with m ∈ ℕ . The boundary condition in (1.1) covers the main 
types of classical boundary conditions; namely: Cauchy problems, two-point and 
multipoint problems, and integral and mixed problems. The Fredholm property with 
zero index was established for problems of the form (1.1). Moreover, the conditions 
for the problems to be well posed were obtained, and the limit theorem for their 
solutions was proved.

These results were further developed in a series of articles by Mikhailets and his 
disciples. Specifically, they allow the differential system to have an arbitrary order 
r ∈ ℕ and the boundary operator B to be any linear continuous operator from the 
space Cr−1([a, b];ℂm) to ℂrm . They obtained conditions for the boundary-value prob-
lems to be well posed and proved limit theorems for solutions to these problems. 
These results generalize Kiguradze’s theorems in the r = 1 case. Moreover, limit 
theorems for Green’s matrices of such boundary-value problems were established 
for the first time [20, 24]. These results were applied to the analysis of multipoint 
boundary-value problems [2], as well as to the spectral theory of differential opera-
tors with distributions in coefficients [9–12].

Note that boundary-value problems with inhomogeneous boundary conditions 
containing derivatives whose order is greater than or equal to the order of the dif-
ferential equation naturally arise in some mathematical models (see, e.g., [22, 23, 
25]). The theory of such problems so far contains a few results even in the case of 
ordinary differential equations.

The present article investigates the solvability character of systems of linear ordi-
nary differential equations with the most general inhomogeneous boundary condi-
tions in Sobolev spaces. The boundary conditions may contain derivatives of the 
unknown functions of integer and fractional orders that exceed the order of the dif-
ferential system. The systems can be underdetermined or overdetermined.

Let us introduce necessary notation to describe the problem under investigation. 
Throughout the paper, we arbitrarily choose a finite interval (a, b) ⊂ ℝ and the fol-
lowing parameters:

(1.1)y�(t) + A(t)y(t) = f (t), t ∈ (a, b), By = c.
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As usual

is a complex Sobolev space; set W0
p
∶= Lp . This space is Banach with respect to the 

norm

with ‖ ⋅ ‖p standing for the norm in the Lebesgue space Lp
(
[a, b];ℂ

)
 . We need the 

Sobolev spaces

They, respectively, consist of vector-valued functions and matrix-valued functions 
whose elements belong to Wn+r

p
 . The norms in these spaces are defined to be the 

sums of the relevant norms (in Wn+r
p

 ) of all elements of a vector-valued or matrix-
valued function. We preserve the same notation ‖ ⋅ ‖n+r,p for these norms. It will 
be clear from the context to which space (scalar or vector-valued or matrix-valued 
functions) relates the designation of the norm. The same concerns all other Banach 
spaces used in the sequel. Certainly, the above Sobolev spaces coincide in the m = 1 
case. If p < ∞ , they are separable and have a Schauder basis.

We consider a linear boundary-value problem of the form

We suppose that the matrix-valued functions Ar−j(⋅) ∈ (Wn
p
)m×m , vector-valued func-

tion f (⋅) ∈ (Wn
p
)m , vector c ∈ ℂ

l , and linear continuous operator

are arbitrarily chosen and that the vector-valued function y(⋅) ∈ (Wn+r
p

)m is unknown.
If l < rm , then the boundary conditions are underdetermined; if l > rm , then they 

are overdetermined.
The boundary condition (1.3) consists of l scalar condition for system of m differ-

ential equations of rth order, we represent vectors and vector-valued functions as col-
umns. A solution to the boundary-value problem (1.2), (1.3) is understood as a vector-
valued function y(⋅) ∈ (Wn+r

p
)m that satisfies both Eq. (1.2) (everywhere if n ≥ 1 , and 

almost everywhere if n = 0 ) on (a, b) and equality (1.3). If the parameter n increases, 

n ∈ ℕ ∪ {0}, {m, r, l} ⊂ ℕ, and 1 ≤ p ≤ ∞.

Wn+r
p

(
[a, b];ℂ)

∶=
{
y ∈ Cn+r−1([a, b];ℂ) ∶ y(n+r−1) ∈ AC[a, b], y(n+r) ∈ Lp[a, b]

}

‖‖y‖‖n+r,p =
n+r∑
k=0

‖‖y(k)‖‖p,

(Wn+r
p

)m ∶= Wn+r
p

(
[a, b];ℂm

)
and (Wn+r

p
)m×m ∶= Wn+r

p

(
[a, b];ℂm×m

)
.

(1.2)(Ly)(t) ∶= y(r)(t) +

r∑
j=1

Ar−j(t)y
(r−j)(t) = f (t), t ∈ (a, b),

(1.3)By = c.

(1.4)B ∶ (Wn+r
p

)m → ℂ
l
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so does the class of linear operators (1.4). When n = 0 , this class contains all operators 
that set the general boundary conditions described above.

It is known [15] that, if 1 ≤ p < ∞ , then every operator (1.4) admits a unique ana-
lytic representation

for certain number matrices �s ∈ ℂ
l×m and matrix-valued function 

Φ(⋅) ∈ Lp� ([a, b];ℂ
l×m) ; as usual, 1∕p + 1∕p� = 1 . If p = ∞ , this formula also defines 

a bounded operator B ∶ (Wn+r
∞

)m → ℂ
l . However, there exist other operators of this 

class generated by integrals over finitely additive measures. Hence, unlike p < ∞ [4, 
13, 21], the case of p = ∞ contains additional analytical difficulties.

The set of solutions to Eq. (1.2) coincides with the space (Wn+r
p

)m when the right-
hand side of the equation runs over (Wn

p
)m . Hence, the boundary condition (1.3) with an 

operator of the form (1.4) is the most general for this equation.
The main purpose of this paper is to prove that the boundary-value problem (1.2), 

(1.3) is Fredholm and to find its Fredholm numbers, i.e., the dimensions of its ker-
nel and co-kernel. Along the way, we find the index of the problem. Note that, unlike 
the index, the Fredholm numbers are unstable with respect to one-dimensional additive 
perturbations with an arbitrarily small norm. To find these numbers, we introduce a 
rectangular number characteristic matrix M(L, B) of the boundary-value problem and 
prove that the Fredholm numbers of this matrix coincide with the Fredholm numbers 
of the problem. Furthermore, we find constructive sufficient conditions for the conver-
gence of the sequence of characteristic matrices to the characteristic matrix of the given 
problem.

The paper is organized as follows:
Section 2 states the main results; namely: the formula for the index of the problem, 

the definition of the characteristic matrix, the formulas for the Fredholm numbers, the 
limit theorem for the characteristic matrices, and some of its consequences.

Section  3 gives examples of differential systems with constant coefficients and 
boundary conditions for which the characteristic matrix is written in an explicit form.

Section  4 provides a proof of the formula for the index of the boundary-value 
problem.

Section 5 gives a proof of the theorem on the Fredholm numbers of the problem.
Section 6 contains proofs of the limit theorems for the characteristic matrices of a 

sequence of boundary-value problems.
The abstract result presented in the Appendix shows that the established limit 

theorem is of specific character for the considered class of inhomogeneous bound-
ary-value problems.

2 � Solvability and characteristic matrix

We now formulate the main results of the paper. They will be proved in Sects. 4, 5, 
and 6.

(1.5)By =

n+r−1∑
i=0

�i y
(i)(a) + ∫

b

a

Φ(t)y(n+r)(t)dt, y(⋅) ∈ (Wn+r
p

)m,
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We rewrite the inhomogeneous boundary-value problem (1.2), (1.3) in the 
form of a linear operator equation

Here, (L, B) is a bounded linear operator on the pair of Banach spaces

which follows from the definition of the Sobolev spaces involved and from the fact 
that Wn

p
 is a Banach algebra.

Let E1 and E2 be Banach spaces. A linear bounded operator T ∶ E1 → E2 is 
called a Fredholm one if its kernel and co-kernel are finite-dimensional. If T is a 
Fredholm operator, then its range T(E1) is closed in E2 , and its index

is finite (see, e.g., [14, Lemma 19.1.1]).

Theorem 2.1  The bounded linear operator (2.1) is a Fredholm one with index rm − l.

The proof of Theorem 2.1 uses the well-known theorem on the stability of the 
index of a linear operator with respect to compact additive perturbations (cf. [3]).

Theorem 2.1 naturally raises the question of finding the Fredholm numbers of 
the operator (L, B), i.e., dim ker(L,B) and dim coker(L,B) . This is a quite difficult 
task, because the Fredholm numbers may vary even with arbitrarily small one-
dimensional additive perturbations.

To formulate the following result, let us introduce some notation and 
definitions.

For each number i ∈ {1,… , r} , we consider the family of matrix Cauchy 
problems

with the initial conditions

where Yi(⋅) is an unknown m × m matrix-valued function. As usual, Om stands for the 
zero m × m matrix, Im denotes the identity m × m matrix, and �i,j is the Kronecker 
delta. Each Cauchy problem (2.2), (2.3) has a unique solution Yi ∈ (Wn+r

p
)m×m due to 

Lemma 4.1 given in Sect. 4. Certainly, if r = 1 , we use the designation Y(⋅) for Y1(⋅).
Let 

[
BYi

]
 denote the number l × m matrix whose jth column is the result of the 

action of B on the jth column of the matrix-valued function Yi.

Definition 2.2  A bloc rectangular number matrix

(L,B)y = (f , c).

(2.1)(L,B) ∶ (Wn+r
p

)m → (Wn
p
)m × ℂ

l,

ind T ∶= dim kerT − dim
(
E2∕T(E1)

)
∈ ℤ

(2.2)Y
(r)

i
(t) +

r∑
j=1

Ar−j(t)Y
(r−j)

i
(t) = Om, t ∈ (a, b),

(2.3)Y
(j−1)

i
(a) = �i,jIm, j ∈ {1,… , r},
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is called the characteristic matrix of the inhomogeneous boundary-value prob-
lem (1.2), (1.3). Note that this matrix consists of r rectangular block columns [
BYk

]
∈ ℂ

m×l.

Here, mr is the number of scalar differential equations of the system (1.2), and l is 
the number of scalar boundary conditions in (1.3).

Theorem 2.3  The dimensions of the kernel and co-kernel of the operator (2.1) are 
equal to the dimensions of the kernel and co-kernel of the characteristic matrix 
(2.4), respectively; that is

Theorem  2.3 implies the following necessary and sufficient conditions for the 
invertibility of (2.1):

Corollary 2.4  The operator (2.1) is invertible if and only if l = rm and the square 
matrix M(L, B) is nonsingular.

In the r = 1 case, Theorem 2.1 and Corollary 2.4 are proved in [3]. In the case 
where l = rm and p < ∞ , Corollary 2.4 is proved in [8]. Theorem 2.3 is also new for 
the systems of first-order differential equations.

Together with the problem (1.2), (1.3), we consider a sequence of boundary-value 
problems

where the matrix-valued functions Ar−j(⋅, k) , the vector-valued functions f (⋅, k) , the 
vectors c(k), and the linear continuous operators B(k) satisfy the above conditions 
imposed on the problem (1.2), (1.3). We assume in the sequel that k ∈ ℕ and that all 
asymptotic relations are considered for k → ∞ . The boundary-value problem (2.7), 
(2.8) is also the most general (generic) with respect to the Sobolev space Wn+r

p
.

We associate the sequence of linear continuous operators

and the sequence of characteristic matrices

(2.4)M(L,B) ∶=
([
BY1

]
,… ,

[
BYr

])
∈ ℂ

l×rm

(2.5)dim ker(L,B) = dim kerM(L,B),

(2.6)dim coker(L,B) = dim cokerM(L,B).

(2.7)L(k)y(t, k) ∶= y(r)(t, k) +

r∑
j=1

Ar−j(t, k)y
(r−j)(t, k) = f (t, k),

(2.8)B(k)y(⋅, k) = c(k), t ∈ (a, b), k ∈ ℕ,

(2.9)(L(k),B(k)) ∶ (Wn+r
p

)m → (Wn
p
)m × ℂ

l

M
(
L(k),B(k)

)
∶=

([
B(k)Y1(k)

]
,… ,

[
B(k)Yr(k)

])
⊂ ℂ

l×rm
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with the boundary-value problems (2.7), (2.8).
As usual

denotes the strong convergence of the sequence of operators (L(k),  B(k)) to the 
operator (L, B).

Let us now formulate a sufficient condition for the convergence of the 
sequence of characteristic matrices M(L(k),B(k)) to the matrix M(L,B).

Theorem  2.5  If the sequence of operators (L(k),  B(k)) converges strongly to the 
operator (L,  B), then the sequence of characteristic matrices M

(
L(k),B(k)

)
 con-

verges to the matrix M
(
L,B

)
 ; that is

Theorem 2.5 implies the sufficient conditions for the upper semicontinuity of 
the dimensions of the kernel and co-kernel of (2.9).

Theorem 2.6  If condition (2.10) is satisfied, then the following inequalities hold true 
for all sufficiently large k:

Let us consider three significant direct consequences of Theorem  2.6. Sup-
pose that condition (2.10) is satisfied.

Corollary 2.7  If the operator (L, B) is invertible, then so are the operators (L(k),B(k)) 
for all sufficiently large k.

Corollary 2.8  If the boundary-value problem (1.2), (1.3) has a solution for arbitrar-
ily chosen right-hand sides, then so do the boundary-value problems (2.7), (2.8) for 
all sufficiently large k.

Corollary 2.9  If the homogeneous boundary-value problem (1.2), (1.3) has only a 
trivial solution, then so do the homogeneous problems (2.7), (2.8) for all sufficiently 
large k.

Note that the conclusion of Theorem  2.6 and its consequences cease to be 
valid for arbitrary bounded linear operators between infinite-dimensional 
Banach spaces (see Appendix).

(2.10)(L(k),B(k))
s
����→ (L,B)

(L(k),B(k))
s
����→ (L,B) ⟹ M(L(k),B(k)) → M(L,B).

(2.11)dim ker(L(k),B(k)) ≤ dim ker(L,B),

(2.12)dim coker(L(k),B(k)) ≤ dim coker(L,B).
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3 � Examples

If all coefficients of the differential expression L are constant, then the charac-
teristic matrix of the corresponding boundary-value problem can be explicitly 
found. In this case, the characteristic matrix is an analytic function of a certain 
square number matrix and coincides hence with some polynomial of this matrix.

Example 3.1  Consider a linear one-point boundary-value problem for first-order 
constant-coefficient differential equation

Here, A ∈ ℂ
m×m ; f (⋅) ∈ (Wn

p
)m ; all �k ∈ ℂ

l×m ; c ∈ ℂ
l , and y(⋅) ∈ (Wn+1

p
)m . Thus, we 

have the bounded linear operators

Let Y(⋅) = (yi,j)
m
i,j=1

∈ (Wn+1
p

)m×m be the unique solution of the linear homogeneous 
matrix equation with the initial Cauchy condition

with Im denoting the identity m × m matrix. Hence

and

whenever k ∈ ℕ . Recall that

Thus

by the definition of B.
Theorem 2.1 asserts that

(3.1)(Ly)(t) ∶= y�(t) + Ay(t) = f (t), t ∈ (a, b),

By ∶=

n−1∑
k=0

�ky
(k)(a) = c.

B ∶ (Wn+1
p

)m → ℂ
l and (L,B) ∶ (Wn+1

p
)m → (Wn

p
)m × ℂ

l.

Y �(t) + AY(t) = Om, t ∈ (a, b), Y(a) = Im,

Y(t) = exp
(
− A(t − a)

)
, with Y(a) = Im,

Y (k)(t) = (−A)kexp
(
− A(t − a)

)
, with Y (k)(a) = (−A)k,

M(L,B) =

⎛⎜⎜⎝
B

⎛⎜⎜⎝

y1,1
⋮

ym,1

⎞⎟⎟⎠
,… ,B

⎛⎜⎜⎝

y1,m
⋮

ym,m

⎞⎟⎟⎠

⎞⎟⎟⎠
∈ ℂ

l×m.

M(L,B) =

n−1∑
k=0

�k(−A)
k
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Thus, owing to Theorem 2.3, we obtain

and

It follows from these formulas that the Fredholm numbers of the problem do not 
depend on the length of the interval (a, b).

Example 3.2  Let us consider a multipoint boundary-value problem for the differ-
ential system (3.1) with A(t) ≡ Om . The boundary conditions contain derivatives 
of integer and/or fractional orders (in the sense of Caputo [19]) at certain points 
tk ∈ [a, b] , k = 0,… ,N . These conditions become

Here, all �k,j ∈ ℂ
l×m , whereas the nonnegative numbers �k,j satisfy

Theorem 2.1 asserts that index of the operator (L, B) equals m − l . Let us find its 
Fredholm numbers. Since Y(⋅) = Im , the characteristic matrix is of the form

because the derivatives 
(C
D

�k,j
a+ Im

)
= 0 whenever 𝛽k,j > 0 . Hence, by Theorem  2.3, 

we conclude that

and

ind (L,B) = ind (M(L,B)) = m − l.

dim ker(L,B) = dim ker

(
n−1∑
k=0

�k(−A)
k

)
= m − rank

(
n−1∑
k=0

�k(−A)
k

)

dim coker(L,B) = −m + l + dim ker

(
n−1∑
k=0

�k(−A)
k

)

= l − rank

(
n−1∑
k=0

�k(−A)
k

)
.

By ∶=

N∑
k=0

s∑
j=0

�k,j
(C
D

�k,j
a+y

)
(tk) = c.

�k,0 = 0 whenever k ∈ {1, 2,… ,N}.

M(L,B) =

N∑
k=0

s∑
j=0

�k,j
(C
D

�k,j
a+ Im

)
=

N∑
k=0

�k,0,

dim ker(L,B) = dim ker

(
N∑
k=0

�k,0

)
= m − rank

(
N∑
k=0

�k,0

)
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These formulas show that the Fredholm numbers of the problem do not depend on 
the length of the interval (a, b) and on the choice of the points {tk}Nk=0 ⊂ [a, b] and 
matrices �k,j with j ≥ 1.

Example 3.3  Consider a two-point boundary-value problem for a system of second-
order differential equations generated by the expression

and the boundary operator

Here, A ∈ ℂ
m×m , and all �k, �k ∈ ℂ

l×m . Thus, we have the bounded operator

and characteristic matrix M(L,B) ∈ ℂ
l×2m.

It is easy to verify that

where the function �(�, t) ∶= 1 − exp(−�(t − a))�−1 is an entire analytic function of 
� ∈ ℂ for each fixed t ∈ [a, b] . Then

and

However

dim coker(L,B) = −m + l + dim coker

(
N∑
k=0

�k,0

)

= l − rank

(
N∑
k=0

�k,0

)
.

(Ly)(t) ∶= y��(t) + Ay�(t), t ∈ (a, b),

By ∶=

n+1∑
k=0

(
�ky

(k)(a) + �ky
(k)(b)

)
.

(L,B) ∶ (Wn+2
p

)m → (Wn
p
)m × ℂ

l

Y1(t) ≡ Im and Y2(t) = �(A, t),

[BY1] =

n+1∑
k=0

(
�kI

(k)
m
(a) + �kI

(k)
m
(b)

)
= (�0 + �0)Im

[BY2] =

n+1∑
k=0

(
�k�

(k)(A, a) + �k�
(k)(A, b)

)
.

Y
(k)

2
(t) = (−1)kAk exp(−A(t − a))
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whenever k ∈ {0,… , n + 1} . Hence

The characteristic block matrix thus becomes

According to Theorem 2.3, the dimensions of the kernel and co-kernel of the inho-
mogeneous boundary-value problem, respectively, equals the dimensions of the ker-
nel and co-kernel of the matrix M(L, B). Specifically, if �k ≡ 0 and if the problem is 
one-point, then

We see in this case that the Fredholm numbers of the boundary-value problem do 
not depend on the length of the interval (a, b).

Note that the matrix exp(−A(b − a)) can be found in an explicit form, because 
every entire analytic function of a number matrix A ∈ ℂ

m×m is a polynomial of A. 
This polynomial is expressed via the matrix A by the Lagrange–Sylvester Interpola-
tion Formula (see, e.g., [7]). Its degree is no greater than m − 1.

Example 3.4  Consider a two-point boundary-value problem for another system of 
second-order differential equations

where A ∈ ℂ
m×m . The boundary conditions induced by the same operator as that in 

Example 3; namely

It is easy to check in this case that, for each fixed t ∈ [a, b] , the fundamental matrix-
valued functions Y1(t) and Y2(t) are entire functions of the numerical matrix A given 
by some convergent power series. Then

[BY2] =

n+1∑
k=0

(
�kIm + �k exp(−A(b − a))

)
(−A)k.

M(L,B) =

(
�0 + �0;

n+1∑
k=0

(
�k + �k exp(−A(b − a))

)
(−A)k

)
.

M(L,B) =

(
�0;

n+1∑
k=0

�k(−A)
k

)
.

(Ly)(t) ∶= y��(t) + Ay(t), t ∈ (a, b),

By =

n+1∑
k=0

(
�ky

(k)(a) + �ky
(k)(b)

)
.
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and

with the block characteristic matrix M(L,B) = [BY1;BY2].
Specifically, if �k ≡ 0 (the case of one-point boundary-value problem), then

Unlike Example 3, this matrix depends in general on the length of the interval (a, b).
If �k ≡ 0 , k is even, �k ≡ 0 , and k is odd, then the characteristic matrix 

M(L,B) = O2m×l . Therefore, its Fredholm numbers take the largest possible values.

[BY1] =

n+1�
k = 1

k is odd

�k(−1)
kAk

+

n+1�
k = 0

k is even

�k(−1)
k(
√
A)2k−1 sin

�√
A(b − a)

�

+
�
k = 1

k is odd

�k(−1)
kAk cos

�√
A(b − a)

�

[BY2] =

n+1�
k = 1

k is even

�k(−1)
kAk

+

n+1�
k = 0

k is even

�k(−1)
kAk cos

�√
A(b − a)

�

+

n+1�
k = 1

k is odd

�k(−1)
k(
√
A)2k−1 sin

�√
A(b − a)

�
,

M(L,B) =

⎡
⎢⎢⎢⎢⎢⎣

n+1�
k = 0

k is even

�k(−1)
k(
√
A)2k−1 sin

�√
A(b − a)

�
;

n+1�
k = 1

k is even

�k(−1)
kAk +

n+1�
k = 0

k is even

�k(−1)
kAk cos

�√
A(b − a)

�
⎤⎥⎥⎥⎥⎥⎦

.
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As in Example 3, the matrices sin
�√

A(b − a)
�
 and cos

�√
A(b − a)

�
 can be 

exactly found as Lagrange–Sylvester interpolation polynomials.

Example 3.5  Consider the following linear boundary-value problem for a system of 
m first-order differential equations:

where f (⋅) ∈ (Wn
p
)m and c ∈ ℂ

l and B is an arbitrary linear continuous operator from 
(Wn+1

p
)m to ℂl . We suppose that 1 ≤ p < ∞.

Note that Y(⋅) = Im is the unique solution of the linear homogeneous matrix equa-
tion of the form (3.2) with the initial Cauchy condition

According to (1.5), we have

Therefore

and

Hence, the boundary-value problem (3.2) is well posed if and only if the number 
matrix �0 is square and nonsingular.

4 � Proof of the index theorem

We previously establish an auxiliary result concerning the Cauchy problem for the 
differential system (1.2). We introduce the linear operator

by putting

It follows from the continuous embedding Wn+r
p

[a, b] ⊂ Cr−1[a, b] that the operator 
C is well defined and bounded.

(3.2)Ly(t) ∶= y�(t) = f (t), t ∈ (a, b), By = c,

Y �(t) = 0, t ∈ (a, b), Y(a) = Im.

M(L,B) = [BY] =

n∑
i=0

�iY
(i)(a) + ∫

b

a

Φ(t)Y (n+1)(t)dt = �0.

dim ker(M(L,B)) = dim ker(�0)

dim coker(M(L,B)) = dim coker(�0).

(4.1)C ∶ (Wn+r
p

)m → ℂ
rm

Cy ∶= col
(
y(a), y�(a),… , y(r−1)(a)

)
for any y ∈ (Wn+r

p
)m.
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Lemma 4.1  The linear bounded operator (L, C) is invertible on the a pair of Banach 
spaces

Proof  We first treat the r = 1 case by the mathematical induction in n ∈ ℕ ∪ {0} . 
Thus, we consider the Cauchy problem

Here, A(⋅) ∈ (Wn
p
)m×m , f (⋅) ∈ (Wn

p
)m , c ∈ ℂ

m , and y(⋅) ∈ (Wn+1
p

)m , with (L, C) being 
a bounded linear operator between the spaces

Each solution to the problem (4.3), (4.4) becomes

Let n = 0 . Since the homogeneous Cauchy problem has a unique solution y = 0 , the 
operator (L,  C) is one-to-one. It follows from the assumption A(⋅) ∈ (Lp)

m×m that 
Y(⋅) ∈ (W1

p
)m×m . Since W1

p
 is a Banach algebra, the inverse Y−1(⋅) also belongs to 

(W1
p
)m×m , which implies that the right-hand side of equality (4.6) belongs to (W1

p
)m . 

Thus, the Cauchy problem (4.3), (4.4) has a solution y(⋅) of class (W1
p
)m whatever 

f (⋅) ∈ (Wn
p
)m and c ∈ ℂ

m ; i.e., the operator (4.5) is onto for n = 0.
Assume now that the conclusion of the lemma is true for a certain number 

n = k ∈ ℕ ∪ {0} . Let us prove that the conclusion holds true for n = k + 1 . We use 
the same reasoning to show that the operator (4.5) is one-to-one. It remains to show 
that this operator is onto. By the inductive assumption, the matrix-valued function 
Y(⋅) belongs to (Wk+1

p
)m×m as a solution to the matrix Cauchy problem

Hence, Y � = −AY ∈ (Wk+1
p

)m×m , because Wk+1
p

 is a Banach algebra. This implies that 
Y(⋅) ∈ (Wk+2

p
)m×m . Hence, Y−1(⋅) ∈ (Wk+2

p
)m×m , because Wk+2

p
 is a Banach algebra 

too. Thus, the Cauchy problem (4.3), (4.4) has a solution y(⋅) ∈ (Wk+2
p

)m of the form 
(4.6) whatever f (⋅) ∈ (Wn

p
)m and c ∈ ℂ

m . Therefore, the operator (4.5) is onto for 
n = k + 1 . We then conclude that this continuous bijection operator is an isomor-
phism by the bounded inverse theorem.

Let us now prove the lemma in the r ≥ 2 case. Consider an inhomogeneous 
Cauchy problem

(4.2)(L,C) ∶ (Wn+r
p

)m → (Wn
p
)m × ℂ

rm.

(4.3)Ly(t) ∶= y�(t) + A(t)y(t) = f (t), t ∈ (a, b),

(4.4)y(a) = c.

(4.5)(L,C) ∶ (Wn+1
p

)m → (Wn
p
)m × ℂ

rm.

(4.6)y(t) = Y(t)c + Y(t)∫
t

a

Y−1(s)f (s)ds.

Y �(t) + A(t)Y(t) = Om, t ∈ (a, b), Y(a) = Im.

(4.7)Ly(t) = f (t), t ∈ (a, b),
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Here, the vectors cj ∈ ℂ
m are arbitrarily given. The problem (4.7), (4.8) is reduced to 

the following Cauchy problem for a system of first-order differential equations:

Here

and the block matrix-valued function K(⋅) ∈ (Wn
p
)rm×rm is defined by the formula

We have just proved that the Cauchy problem (4.9) has a unique solution 
x(⋅) ∈ (Wn+r

p
)rm for arbitrary g ∈ (Wn

p
)rm and c ∈ Crm . Hence, the linear bounded 

operator (4.2) is bijective. Therefore, it is an isomorphism by the bounded inverse 
theorem. 	�  ◻

Proof of Theorem 2.1  We separately treat three cases: l = rm , l > rm , and l < rm.
The l = rm case. According to Lemma 4.1, we have the isomorphism

Note that

and that (0,B − Cl,m) is a finite-dimensional operator. Hence, (see, e.g., [16, Chap-
ter IV, Section 5, Subsection 2]), the operator (L, B) is Fredholm between the spaces 
(4.11), and its index coincides with the zero index of the operator (4.11), which is 
what was to be proved in this case.

The l > rm case. Put

It follows directly from Lemma 4.1 that the bounded operator:

(4.8)y(j−1)(a) = cj, j ∈ {1,… , r}.

(4.9)x�(t) + K(t)x(t) = g(t), t ∈ (a, b), x(a) = c.

x(⋅) ∶= col
(
y(⋅), y�(⋅),… , y(r−1)(⋅)

)
∈ (Wn+r

p
)rm,

g(⋅) ∶= col
(
0,… , 0
⏟⏟⏟
(r−1)m

, f (⋅)
)
∈ (Wn

p
)rm,

c ∶= col
(
c1,… , cr

)
∈ ℂ

rm,

(4.10)K(⋅) ∶=

⎛
⎜⎜⎜⎜⎝

Om − Im Om … Om

Om Om − Im … Om

⋮ ⋮ ⋮ ⋱ ⋮

Om Om Om … − Im
A0(⋅) A1(⋅) A2(⋅) … Ar−1(⋅)

⎞
⎟⎟⎟⎟⎠
.

(4.11)(L,C) ∶ (Wn+r
p

)m ↔ (Wn
p
)m × ℂ

rm.

(L,B) = (L,C) + (0,B − C),

Cl−rm y ∶= col
(
Cy, 0,… , 0

⏟⏟⏟
l−rm

)
for every y(⋅) ∈ (Wn+r

p
)m.
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has zero kernel and the closed domain

Hence, this operator is Fredholm with index rm − l ; then so is the operator (4.2), 
because

and since (0,B − Cl−mr) is a finite-dimensional operator.
The l < rm case. We introduce the bounded linear operator

by the formula

for every c1,… , crm ∈ ℂ . It follows directly from Lemma  4.1 that the bounded 
operator:

is onto and that the kernel of this operator equals (L,C)−1(O × ℂ
rm−l) and, there-

fore, is of dimension rm − l ; here, O stands for the null subspace of (Wn
p
)m × ℂ

l . 
Hence, the operator (4.12) is Fredholm with index rm − l ; then so is the operator 
(4.2), because

and since (0,B − Prm−lC) is a finite-dimensional operator. 	�  ◻

5 � Proof of the Fredholm numbers theorem

Proof of Theorem 2.3  According to Lemma 4.2, the restriction of the mapping (4.1) 
to the kernel of L sets an isomorphism

The inverse of (5.1) is defined for every vector

as follows:

(L,Cl−mr) ∶ (Wn+r
p

)m → (Wn
p
)m × ℂ

l

(Wn
p
)m × ℂ

rm × {0}l−rm.

(L,B) = (L,Cl−mr) + (0,B − Cl−mr),

Prm−l ∶ ℂ
rm

→ ℂ
l

Prm−lcol(c1,… , cl,… , crm) = col(c1,… , cl)

(4.12)(L,Prm−lC) ∶ (Wn+r
p

)m → (Wn
p
)m × ℂ

l

(L,B) = (L,Prm−lC) + (0,B − Prm−lC),

(5.1)C ∶ kerL ↔ ℂ
rm.

q ∶= col(q1,… , qr) ∈ ℂ
rm, with q1,… , qr ∈ ℂ

m,
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Recall that Yi(⋅) is a unique solution to the matrix Cauchy problem (2.2), (2.3). Then

The third equality is due to Lemma 5.1 given at the end of this section. Hence

which yields the first required formula (2.5).
The second formula (2.6) follows from (2.5) and Theorem 2.1, namely:

As to the last equality, recall that the dimension of the index of any number l × rm 
matrix is rm − l . 	�  ◻

Lemma 5.1  Let E be a linear space. The equality

holds true for an arbitrary linear operator B ∶ Em
→ ℂ

l , matrix Υ ∈ Em×� , and vec-
tor q ∈ ℂ

� , with m, l,� ∈ ℕ.

Here, as similar to the E = Wn+r
p

 case, [BΥ] stands for the number l × � matrix 
whose jth column is the action of B on the jth column of Υ.

Proof  It is similar to that given in [3, Lemma 6] in the case where m = � = l and 
when E is a Sobolev space. We will give the proof for the reader’s convenience. Let-
ting i ∈ {1, 2,… ,m} and k ∈ {1, 2,… ,�} and j ∈ {1, 2,… , l} , we write the matrix-
valued function Υ and column vector q in the form Υ = (�i,k(⋅)) and q = col(qk) . Put 
col(�j) ∶= [BΥ]q and (cj,k) ∶= [BΥ] . Since

we obtain

q ↦ y(⋅) ∶=

r∑
i=1

Yi(⋅)qi.

By = B

(
r∑

i=1

Yi(⋅)qi

)
=

r∑
i=1

B(Yi(⋅)qi) =

r∑
i=1

[BYi]qi

= M(L,B)q.

C
(
ker(L,B)

)
= kerM(L,B),

dim coker(L,B) = dim ker(L,B) − dim ind(L,B)

= dim kerM(L,B) − (rm − l)

= dim cokerM(L,B).

B(Υq) = [BΥ]q

�j =

�∑
k=1

cj,k qk,
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as was to be proved. 	�  ◻

6 � Proof of the limit theorems

To prove Theorem 2.5, we need some auxiliary results.

Lemma 6.1  The following three conditions are equivalent to each other as k → ∞ ∶

	 (I)	 L(k) → L in the strong operator topology;
	 (II)	 L(k) → L in the uniform operator topology;
	(III)	 Ar−j(⋅, k) → Ar−j(⋅) in the Banach space (Wn

p
)m×m for each j ∈ {1,… , r}.

Here, of course, L and L(k) are considered as bounded operators from (Wn+r
p

)m to 
(Wn

p
)m.

Proof  It suffices to show that the following implications hold:

Let us prove that (III) ⇒ (II) . Assume (III) to be valid. We first consider the n ∈ ℕ 
case. Given y ∈ (Wn+r

p
)m , we have

because Wn
p
 is a Banach algebra; here, the positive number cn,p does not depend on y. 

Hence, the norm of the operator L(k) − L satisfies

B(Υq) = B col

(
�∑

k=1

�i,k(⋅)qk

)m

i=1

=

�∑
k=1

qkB col(�i,k(⋅))
m
i=1

=

�∑
k=1

qk col
(
cj,k

)l
j=1

= col

(
�∑

k=1

qk cj,k

)l

j=1

= col(�j)
l
j=1

= [BΥ]q,

(III) ⟹ (II) ⟹ (I) ⟹ (III).

��(L(k) − L)y��n,p ≤
r�

j=1

��(Ar−j(⋅, k) − Ar−j(⋅))y
��n,p ≤

≤ cn,p

r�
j=1

��(Ar−j(⋅, k) − Ar−j(⋅))
��n,p ‖y‖n,p

≤ cn,p

r�
j=1

��(Ar−j(⋅, k) − Ar−j(⋅))
��n,p ‖y‖n+r,p,
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If n = 0 , then for every y ∈ (Wr
p
)m , we obtain

here, c′
r,p

 is the norm of the bounded embedding operator Wr
p
↪ L∞ . Hence, 

‖L(k) − L‖ → 0 in the n = 0 case, as well. The implication (III) ⇒ (II) is 
substantiated.

The implication (II) ⇒ (I) is trivial.
Let us prove that (I) ⇒ (III) . Suppose (I) to be valid. Then, whatever 

Y(⋅) ∈ (Wn+r
p

)m×m , we have L(k)Y → LY  , that is

in this paragraph, each convergence is considered in (Wn
p
)m×m . Putting Y(t) ∶= Im 

here, we get A0(⋅, k) → A0(⋅) . Then, letting Y(t) ∶= tIm in (6.1), we arrive at

which implies that A1(⋅, k) → A1(⋅) . Further, putting Y(t) ∶= t2Im in (6.1), we arrive 
at

which yields A2(⋅, k) → A2(⋅) . Continuing this process sequentially up to the rth 
step, we prove (III) . The implication (I) ⇒ (III) is also substantiated. 	�  ◻

Given k ∈ ℕ and i ∈ {1,… , r} , we let Yi(⋅, k) denote a unique solution to the 
matrix Cauchy problem

Note that Yi(⋅, k) ∈ (Wn+r
p

)m×m due to Lemma 4.1. Recall that Yi(⋅) ∈ (Wn+r
p

)m×m is a 
unique solution to the matrix Cauchy problem (2.2), (2.3).

Lemma 6.2  Suppose that condition (III) of Lemma 6.1 is satisfied. Then

‖L(k) − L‖ ≤ cn,p

r�
j=1

���Ar−j(⋅, k) − Ar−j(⋅)
���n,p → 0.

��(L(k) − L)y��0,p ≤
r�

j=1

��(Ar−j(⋅, k) − Ar−j(⋅))
��0,p ‖y‖∞

≤ c�
r,p

r�
j=1

��(Ar−j(⋅, k) − Ar−j(⋅))
��0,p ‖y‖r,p;

(6.1)
r∑

j=1

Ar−j(⋅, k)Y
(r−j)(⋅) →

r∑
j=1

Ar−j(⋅)Y
(r−j)(⋅);

A1(t, k) + A0(t, k)t → A1(t) + A0(t)t,

2A2(t, k) + 2A0(t, k)t + A0(t, k)t
2
→ 2A2(t) + 2A0(t)t + A0(t)t

2

Y
(r)

i
(t, k) +

r∑
j=1

Ar−j(t, k)Y
(r−j)

i
(t, k) = Om, t ∈ (a, b),

Y
(j−1)

i
(a, k) = �i,jIm, j ∈ {1,… , r}.
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for each i ∈ {1,… , r}.

The proof of this lemma is based on the following result:
Given � ∈ ℕ , we let Yn+1

p,�
 denote the set of all matrix-valued functions 

X(⋅) ∈ (Wn+1
p

)�×� , such that X(a) = I� and that detX(t) ≠ 0 for every t ∈ [a, b] . We 
endow Yn+1

p,�
 with the metric

Lemma 6.3  Given K(⋅) ∈ (Wn
p
)�×� , we let X(⋅) denote a unique solution to the matrix 

Cauchy problem

Then, the nonlinear mapping

is a homeomorphism between the Banach space (Wn
p
)�×� and the metric space Yn+1

p,�
.

The proof of Lemma 6.3 is given in [3, Theorem 3].

Proof of Lemma 6.2  If r = 1 , then this lemma is a direct consequence of Lemma 6.3 
considered for � = m.

Let us now treat the r ≥ 2 case. Using the block matrix-valued function (4.10) of 
class (Wn

p
)rm×rm , we reduce the matrix Cauchy problem (2.2), (2.3) to a boundary-

value problem for a system of first-order differential equations. Given i ∈ {1,… , r} , 
we let Zi(⋅) denote a unique solution to the matrix Cauchy problem

Here, of course, Orm×m stands for the zero rm × m matrix, and the rm × m matrix 
Ji is defined to consist of r square blocks. Owing to Lemma 4.1, the solution Zi(⋅) 
belongs to (Wn+1

p
)rm×m . We write down it in the form

where Zi,j ∈ (Wn+1
p

)m×m whenever 1 ≤ j ≤ r . We also put

and observe that

(6.2)Yi(⋅, k) → Yi(⋅) in (Wn+r
p

)m×m

dn+1,p(X(⋅),Z(⋅)) ∶= ‖X(⋅) − Z(⋅)‖n+1,p.

X
�(t) +K(t)X(t) = O�, t ∈ (a, b), X(a) = I�.

K(⋅) ↦ X(⋅)

Z�
i
(t) + K(t)Zi(t) = Orm×m, t ∈ (a, b),

Zi(a) = Ji ∶= col
(
Om,… ,Om, Im

⏟⏟⏟
i

,Om,… ,Om

)
.

Zi(⋅) ∶= col(Zi,1(⋅),… , Zi,r(⋅)),

Z(⋅) ∶=
(
Z1(⋅),… , Zr(⋅)

)
∈ (Wn+1

p
)rm×rm
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The following result is known (see, e.g., [6, Part II, Section 2.6]):

Lemma 6.4  The solution Yi(⋅) , with i ∈ {1,… , r} , of the Cauchy problem (2.2), (2.3) 
relates to the solution Z(⋅) of the Cauchy problem (6.3), (6.4) by the formula

Given k ∈ ℕ , we let K(⋅, k) denote the matrix-valued function (4.10) in which 
every Ar−j(⋅) , with j = r,… , 1 , is replaced with Ar−j(⋅, k) . Changing K(t) for K(t, k) 
in the Cauchy problem (6.3), (6.4), we consider its unique solution Z(t, k) with the 
corresponding components Zi,j(t, k) . By Lemma 6.4,

Since condition (III) is satisfied, we have K(⋅, k) → K(⋅) in (Wn
p
)rm×rm . Hence, 

Z(⋅, k) → Z(⋅) in (Wn+1
p

)rm×rm by Lemma 6.3 for � = rm . This implies by Lemma 6.4 
that

for each i, j ∈ {1,… , r} , which entails the required formula (6.2). 	�  ◻

Proof of Theorem  2.5  Suppose that (L(k),B(k))
s
����→ (L,B) . Then, by Lemma  6.1, 

condition (III) is satisfied. This implies (6.2) due to Lemma  6.2. There-
fore, [B(k)Yi(k)] → [B(k)Y(k)] for each i ∈ {1,… , k} , which yields 
M(L(k),B(k)) → M(L,B) , as was to be proved. 	�  ◻

Proof of Theorem  2.6  We suppose that condition (2.10) is satisfied. Then, 
M(L(k),B(k)) → M(L,B) due to Theorem  2.5. Put � ∶= rankM(L,B) so that there 
exists a nonzero minor of order � of the matrix M(L, B). Hence, the same minor (of 
order � ) of the matrix M(L(k), B(k)) is nonzero whenever k ≥ 1 . Therefore

Hence

and

for all sufficiently large k. This implies the required formulas (2.11) and (2.12) in 
view of Theorem 2.3. 	�  ◻

(6.3)Z�(t) + K(t)Z(t) = Orm, t ∈ (a, b),

(6.4)Z(a) = Irm.

Y
(j−1)

i
(⋅) = Zi,j(⋅) for each j ∈ {1,… , r}.

Y
(j−1)

i
(⋅, k) = Zi,j(⋅, k) for each i, j ∈ {1,… , r}.

Y
(j−1)

i
(⋅, k) → Y

(j−1)

i
(⋅) in (Wn+1

p
)m×m

�k ∶= rankM(L(k),B(k)) ≥ � whenever k ≥ 1.

dim kerM(L(k),B(k)) = rm − �k ≤ rm − � = dim kerM(L,B)

dim cokerM(L(k),B(k)) = l − �k ≤ l − � = dim cokerM(L,B)



	 V. Mikhailets and O. Atlasiuk12  Page 22 of 23

Appendix

Let E1 and E2 be infinite-dimensional complex or real Banach spaces, and suppose 
that at least one of them has a Schauder basis. Let B(E1,E2) denote the Banach space 
of all bounded linear operators from E1 to E2 . Then, the set of all finite-dimensional 
operators of class B(E1,E2) is sequentially dense in B(E1,E2) in the strong operator 
topology.

Indeed, suppose E1 to have a Schauder basis, and let Pn , with n ∈ ℕ , denote the 
projector of E1 onto the linear span of the first n elements of the basis. Then, Pn

s
����→ I1 , 

with each convergence being considered as n → ∞ in Appendix. Here, of course, I1 
stands for the identity operator on E1 . Therefore, TPn

s
����→ T  for every T ∈ B(E1,E2) . 

Each operator TPn is finite-dimensional, because dim((TPn)(E1)) ≤ n < ∞ . Moreo-
ver, the kernel and co-kernel of TPn are infinite-dimensional, so that their dimen-
sions do not depend on dim kerT  and dim cokerT .

The case where E2 has a Schauder basis is similarly considered. Let Qn be the pro-
jector of E2 onto the linear span of the first n elements of the basis. Then, QnT

s
����→ T  

for every T ∈ B(E1,E2) , with each operator QnT  being finite-dimensional. The ker-
nel and co-kernel of QnT  are infinite-dimensional.
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