Skip to main content
Log in

Phase retrieval from intensity difference of linear canonical transform

  • Original Paper
  • Published:
Banach Journal of Mathematical Analysis Aims and scope Submit manuscript

Abstract

The chirp-modulated shift-invariant space (CMSIS) is of interest in the linear canonical transform (LCT) based sampling theory. In this paper, we investigate the phase retrieval (PR) problem for the causal signals in CMSIS generated by \(\hbox {sinc}\) function. Unlike the traditional PR model, the measurement we use is the intensity difference of the LCT (IDLCT) but not the LCT intensity. The requirement for IDLCT measurement is weaker than that for intensity measurement. Such an IDLCT perspective is motivated by the famous PR model: the transport of intensity equation. It is revealed that the phase retrievability depends on both the LCT parameter matrix and the maximum gap of the target signal. From this, a necessary and sufficient condition for PR is established. Additionally, a sequence of sampling intervals are designed such that the PR can be achieved by the corresponding IDLCT measurements. Numerical simulations are conducted to check the correctness of the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article, as no datasets were generated or analyzed during the current study.

References

  1. Beinert, R.: Ambiguities in one-dimensional phase retrieval from magnitudes of a linear canonical transform. Z. Angew. Math. Mech. 97(9), 1078–1082 (2017)

    Article  MathSciNet  Google Scholar 

  2. Beinert, R., Plonka, G.: Ambiguities in one-dimensional discrete phase retrieval from Fourier magnitudes. J. Fourier Anal. Appl. 21(6), 1169–1198 (2015)

    Article  MathSciNet  Google Scholar 

  3. Bhandari, A., Zayed, A.I.: Shift-invariant and sampling spaces associated with the special affine Fourier transform. Appl. Comput. Harmon. Anal. 47(1), 30–52 (2019)

    Article  MathSciNet  Google Scholar 

  4. Cameli, C., Heinosari, T., Schwltz, J., Toigo, A.: Nonuniqueness of phase retrieval for three fractional Fourier transforms. Appl. Comput. Harmon. Anal. 39(2), 339–346 (2015)

    Article  MathSciNet  Google Scholar 

  5. Chen, Y., Qu, N.: Phase retrieval from linear canonical transforms. Numer. Funct. Anal. Optim. 43(15), 1760–1777 (2022)

    Article  MathSciNet  Google Scholar 

  6. Chen, Y., Cheng, C., Sun, Q., Wang, H.: Phase retrieval of real-valued signals in a shift-invariant space. Appl. Comput. Harmon. Anal. 49(1), 56–73 (2020)

    Article  MathSciNet  Google Scholar 

  7. Chen, Y., Cheng, C., Sun, Q.: Phase retrieval of complex and vector-valued functions. J. Funct. Anal. 283(7), 109593 (2022)

    Article  MathSciNet  Google Scholar 

  8. Cheng, C., Jiang, J., Sun, Q.: Phaseless sampling and reconstruction of real-valued signals in shift-invariant spaces. J. Fourier Anal. Appl. 25(4), 1361–1394 (2019)

    Article  MathSciNet  Google Scholar 

  9. Heinosaarri, T., Mazzarella, L., Wolf, M.M.: Quantum tomography under prior information. Commun. Math. Phys. 318(2), 355–374 (2013)

    Article  MathSciNet  Google Scholar 

  10. Huang, M., Rong, Y., Wang, Y., Xu, Z.: Almost everywhere generalized phase retrieval. Appl. Comput. Harmon. Anal. 50, 16–33 (2021)

    Article  MathSciNet  Google Scholar 

  11. Jamming, P.: Uniqueness results in an extension of Pauli’s phase retrieval problem. Appl. Comput. Harmon. Anal. 37(3), 413–441 (2014)

    Article  MathSciNet  Google Scholar 

  12. Kim, M.K.: Principles and techniques of digital holographic microscopy. SPIE Rev. 1, 018005 (2010)

    Google Scholar 

  13. Li, Y., Sun, W.: Random phaseless sampling for causal signals in shift-invariant spaces: a zero distribution perspective. IEEE Trans. Signal Process. 68, 5473–5486 (2020)

    Article  MathSciNet  Google Scholar 

  14. Li, L., Cheng, C., Han, D., Sun, Q., Shi, G.: Phase retrieval from multiple-window short-time Fourier measurements. IEEE Signal Process. Lett. 24(4), 372–376 (2017)

    Article  Google Scholar 

  15. Li, L., Juste, T., Brennan, J., Cheng, C., Han, D.: Phase retrievable projective representation frames for finite Abelian groups. J. Fourier Anal. Appl. 25(1), 86–100 (2019)

    Article  MathSciNet  Google Scholar 

  16. Liu, B., Wu, Z., Li, R.: Dynamical sampling associated with the special affine Fourier transform. Optik 238, 166767 (2021)

    Article  Google Scholar 

  17. Marks, R., Walkup, J., Hagler, M.: Sampling theorems for linear shift-variant systems. IEEE Trans. Circuits Syst. 25(4), 228–233 (1978)

    Article  Google Scholar 

  18. Meinsma, G., Mirkin, L.: \(L^{2}\) Sampled signal reconstruction with causality constraints-Part I: setup and solutions. IEEE Trans. Signal Process. 60(5), 2260–2272 (2012)

    Article  MathSciNet  Google Scholar 

  19. Miao, J., Ishikawa, T., Robinson, I.K., Murnane, M.M.: Beyond crystallography: diffractive imaging using coherent X-ray light sources. Science 348(6234), 530–535 (2015)

    Article  MathSciNet  Google Scholar 

  20. Shechtman, Y., Eldar, Y.C., Cohen, O., Chapman, H.N., Miao, J., Segev, M.: Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process. Mag. 32(3), 87–109 (2015)

    Article  Google Scholar 

  21. Shenoy, B.A., Mulleti, S., Seelamantula, C.S.: Exact phase retrieval in principal shift-invariant spaces. IEEE Trans. Signal Process. 64(2), 406–416 (2016)

    Article  MathSciNet  Google Scholar 

  22. Teague, M.R.: Irradiance moments: their propagation and use for unique retrieval of phase. J. Opt. Soc. Am. 72(9), 1199–1209 (1982)

    Article  Google Scholar 

  23. Teague, M.R.: Deterministic phase retrieval: a Green’s function solution. J. Opt. Soc. Am. 73(11), 1434–1441 (1983)

    Article  Google Scholar 

  24. Zhang, Q.: Uniqueness guarantees for phase retrieval from discrete windowed fractional Fourier transform. Optik 158, 1491–1498 (2018)

    Article  Google Scholar 

  25. Zuo, C., Li, J., Sun, J., Fan, Y., Zhang, J., Lu, L., Zhang, R., Wang, B., Huang, L., Chen, Q.: Transport of intensity equation: a tutorial. Opt. Lasers Eng. 135, 106187 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for their suggestions which improve the presentation of the paper. Youfa Li is partially supported by Natural Science Foundation of China (Nos: 61961003, 61561006, 11501132), Natural Science Foundation of Guangxi (Nos: 2018JJA110110, 2016GXNSFAA380049) and the talent project of Education Department of Guangxi Government for Young-Middle-Aged backbone teachers

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangde Wu.

Additional information

Communicated by Dachun Yang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wu, G., Huang, Y. et al. Phase retrieval from intensity difference of linear canonical transform. Banach J. Math. Anal. 18, 3 (2024). https://doi.org/10.1007/s43037-023-00307-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43037-023-00307-9

Keywords

Mathematics Subject Classification

Navigation