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Abstract
Harmonic and polyanalytic functional calculi have been recently defined for 
bounded commuting operators. Their definitions are based on the Cauchy formula 
of slice hyperholomorphic functions and on the factorization of the Laplace opera-
tor in terms of the Cauchy–Fueter operator D and of its conjugate D. Thanks to the 
Fueter extension theorem, when we apply the operator D to slice hyperholomorphic 
functions, we obtain harmonic functions and via the Cauchy formula of slice hyper-
holomorphic functions, we establish an integral representation for harmonic func-
tions. This integral formula is used to define the harmonic functional calculus on 
the S-spectrum. Another possibility is to apply the conjugate of the Cauchy–Fueter 
operator to slice hyperholomorphic functions. In this case, with a similar procedure 
we obtain the class of polyanalytic functions, their integral representation, and the 
associated polyanalytic functional calculus. The aim of this paper is to extend the 
harmonic and the polyanalytic functional calculi to the case of unbounded opera-
tors and to prove some of the most important properties. These two functional cal-
culi belong to so called fine structures on the S-spectrum in the quaternionic setting. 
Fine structures on the S-spectrum associated with Clifford algebras constitute a new 
research area that deeply connects different research fields such as operator theory, 
harmonic analysis, and hypercomplex analysis.
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1 Introduction

One of the main motivations to investigate quaternionic spectral theory can be found 
in the paper of Birkhoff and Von Neumann, see [10], where the authors show that 
quantum mechanics can also be formulated using quaternions, but they do not spec-
ify the definition of spectrum for quaternionic linear operator. The spectral theory on 
the S-spectrum for quaternionic linear operators began in 2006 with the discovery of 
the S-spectrum. This notion of spectrum was identified using only methods in hyper-
complex analysis even though its existence was suggested by quaternionic quantum 
mechanics; for more details, see the introduction of the book [22]. The notion of 
S-spectrum extends also to operators in the Clifford algebra setting, see [31, 32], 
but recently it has been shown that the quaternionic and the Clifford settings are just 
particular cases of a more general framework in which the spectral theory on the 
S-spectrum can be developed, see [23, 25]. Using the notion of S-spectrum, it was 
possible to prove the spectral theorem for quaternionic linear operators, see [1], that 
is a central theorem for the formulation of quantum mechanics, and more recently, 
the spectral theorem was extended to Clifford operators, see [24].

The spectral theory based on the S-spectrum is systematically organized in the 
books [21, 22, 31]. Nowadays, this theory has several research directions, without 
claiming completeness we mention: The slice hyperholomorphic Schur analysis, see 
[2], new classes of fractional diffusion problems based on fractional powers of qua-
ternionic linear operators, see [17, 18, 22, 26]. The results on the fractional pow-
ers are based on the H∞-functional calculus, see [6, 20]. Other interesting research 
directions are the study of the characteristic operator function, see [3], and the qua-
ternionic perturbation theory and invariant subspaces, see [12].

In recent times, a new branch of the spectral theory on the S-spectrum has been 
developed that is called fine structures on the S-spectrum. It consists of the function 
spaces arising from the Fueter–Sce theorem with their integral representations that 
are used to define various functional calculi, see [13, 16, 34, 35].

The function spaces of a given fine structure are determined by the factoriza-
tions of the second operator TFS2 in the Fueter–Sce (extension) theorem and on the 
Cauchy formula of slice hyperholomorphic functions. In the sequel, we will work 
just in the quaternionic setting and the map TFS2 will be denoted by TF2 because it 
was introduced by Fueter, while the map TFS2 was introduced by Sce for the Clif-
ford algebra setting. The integral representations of the spaces of the fine structures 
are crucial to define the associated functional calculi for bounded operators on the 
S-spectrum. Among these functional calculi, we have the harmonic, the polyhar-
monic, the polyanalytic ones, and several others. In this paper, we concentrate on 
the quaternionic setting that contains two important fine structures. In fact, in the 
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quaternionic setting, the second mapping TF2 in the Fueter extension theorem is 
equal to the Laplace operator Δ in dimension 4 and the most important factoriza-
tions of Δ lead to the harmonic fine structure and to the polyanalytic one.

The goal of this paper is to extend the harmonic and the polyanalytic func-
tional calculi to unbounded operators and to prove some of their properties.

To present our results, we need to explain more about the setting in which we 
work, so we will quote some results that we will need in the sequel and whose 
proofs can be found in [22]. We start by fixing the notation of the quaternions, 
that are defined as

where for the imaginary units holds the following relations

and

We denote by Re(q) = q0 the real part of a quaternion and by q ∶= q1e1 + q2e2 + q3e3 
its imaginary part. The conjugate of a quaternion q ∈ ℍ is defined as q̄ = q0 − q and 
the modulus of q ∈ ℍ is given by �q� =

√
qq̄ =

�
q2
0
+ q2

1
+ q2

2
+ q2

3
. The unit sphere 

of purely imaginary quaternions is defined as

We observe that if J ∈ � then J2 = −1. This means that J behaves like an imaginary 
unit, and we denote by

an isomorphic copy of the complex numbers. If we consider a non-real quaternion 
q = q0 + q = q0 + Jq|q|, where Jq ∶= q∕|q|. We can associate to q the two-sphere 
defined by

Let U ⊆ ℍ and I ∈ �. Whenever u + Iv ∈ U and, for any J ∈ �, u + Jv ∈ U , we say 
that U is axially symmetric.

Axially symmetric sets are suitable domains of the following class of functions.

Definition 1.1 (Slice hyperholomorphic functions) Let us consider U ⊂ ℍ an axi-
ally symmetric open set and we set

A function f ∶ U → ℍ of the form

ℍ ∶= {q = q0 + q1e1 + q2e2 + q3e3 | q0, q1, q2, q3 ∈ ℝ},

e2
1
= e2

2
= e2

3
= −1,

e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1, e3e1 = −e1e3 = e2.

� ∶= {q = q1e1 + q2e2 + q3e3 | q21 + q2
2
+ q2

3
= 1}.

ℂJ ∶= {u + Jv | u, v ∈ ℝ}

[q] ∶= {q0 + J|q| | J ∈ �}.

U = {(u, v) ∈ ℝ
2 | u + 𝕊v ⊂ U}.
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is called left (resp. right) slice hyperholomorphic if � and � are quaternionic-valued 
functions such that for all (u, v) ∈ U , we have

Moreover, the functions � and � have to fulfill the Cauchy–Riemann system

The class of left (resp. right) slice hyperholomorphic functions on U is denoted 
by SHL(U) (resp. SHR(U) ). If the functions � and � are real valued, then we are 
dealing with the subset of intrinsic slice hyperholomorphic functions. This set of 
functions is denoted by N(U).

By means of the left (resp. right) slice hyperholomorphic Cauchy kernel 
defined by

for s ∉ [q], it is possible to give slice hyperholomorphic functions an integral repre-
sentation. First, we recall the definition of slice Cauchy domains that will be often 
used in the integral representations of functions.

Definition 1.2 (Slice Cauchy domain) We say that U ⊆ ℍ is a slice Cauchy domain 
if it is an axially symmetric open set and if, for any J ∈ �, U ∩ ℂJ is a Cauchy 
domain in ℂJ . In particular, this is equivalent to requiring that �(U ∩ ℂJ) is the union 
of a finite number of non-intersecting piecewise continuously differentiable Jordan 
curves in ℂJ .

Theorem  1.3 (The Cauchy formulas of slice hyperholomorphic functions) We 
assume that U ⊂ ℍ is a bounded slice Cauchy domain. Let us considerer J ∈ � and 
set dsJ = ds(−J). For any q ∈ U a left (reps. right) slice hyperholomorphic function 
f,  defined on a set contained in Ū, can be written as

Similar formulas hold for unbounded domains. Another class of hyperholo-
morphic functions that we will use are the so-called axially monogenic functions, 
see [36].

f (q) = f (u + Jv) = �(u, v) + J�(u, v)

(resp. f (q) = f (u + Jv) = �(u, v) + �(u, v)J)

(1.1)�(u, v) = �(u,−v), �(u, v) = −�(u,−v).

�u�(u, v) − �v�(u, v) = 0, and �v�(u, v) + �u�(u, v) = 0.

S−1
L
(s.q) = (s − q̄)(s2 − 2q0s + |q|2)−1,

(
resp. S−1

R
(s, q) = (s2 − 2q0s + |q|2)−1(s − q̄)

)
,

f (q) =
1

2� ∫�(U∩ℂJ )

S−1
L
(s, q)dsJf (s),

(
resp. f (q) =

1

2� ∫�(U∩ℂJ )

f (s)dsJS
−1
R
(s, q)

)
.
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Definition 1.4 (Axially monogenic functions) Let U ⊂ ℍ be a slice Cauchy domain. 
A function f ∶ U → ℍ of class C1 is said to be (left) axially monogenic if it is mono-
genic, i.e.,

and it has the form

where the functions A and B satisfy the even–odd conditions (1.1). We denote by 
AM(U) the set of (left) axially monogenic functions. A similar definition can be 
given for right axially monogenic functions and we use the notation

The classes of slice hyperholomorphic and axially monogenic functions are 
connected by the well-known Fueter mapping theorem, see [39].

Theorem 1.5 (Fueter mapping theorem) Let us assume that f0 ∶ D → ℂ is a holo-
morphic function where D is an open and connected subset of the upper-half com-
plex plane. Suppose that

is the open set associated with D in ℍ. Let

where z = u + iv. We have that the function

is an intrinsic slice hyperholomorphic function. In particular, the operator

is a map between the set of holomorphic functions and the set of intrinsic slice 
hyperholomorphic functions. Moreover, the function

Df (q) = �q0 f (q) +

3∑

i=1

ei�qi f (q) = 0, q ∈ U

(1.2)f (q) = A(q0, |q|) + �B(q0, |q|), � ∶=
q

|q|
,

f (q)D = �q0 f (q) +

3∑

i=1

�qi f (q)ei = 0, q ∈ U.

ΩD = {q = q0 + q ∈ ℍ | q0 + I|q| ∈ D}

𝛼(u, v) =
f0(z) + f0(z̄)

2
and 𝛽(u, v) =

f0(z) − f0(z̄)

2i

f (q) ∶= �(q0, |q|) +
q

|q|
�(q0, |q|)

TF1
(f0)(q) ∶= �(q0, |q|) +

q

|q|
�(q0, |q|)
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is an axially monogenic function where Δ is the Laplacian in four variables. In 
particular,  the operator TF2

∶=Δ can be viewed as a map between the set of slice 
hyperholomorphic functions and the set of axially monogenic functions.

Remark 1.6 In the Fueter mapping theorem, the restriction that the holomorphic 
function has to be defined in the upper-half complex plane can be removed when we 
impose the even–odd conditions (1.1).

Remark 1.7 We can summarize the Fueter construction by the following diagram

where O(D) is the set of holomorphic functions defined on D.

Remark 1.8 In the Clifford algebra setting, the operator TF2 is equal to Δ
n−1

2

n+1
, where 

Δn+1 is the Laplace operator in n + 1 variables. If n is odd, then the TF2 is a pointwise 
differential operator, see [30, 44]. If n is even, we are dealing with the fractional 
powers of the Laplace operator, see [43].

The Cauchy formula of slice hyperholomorphic function allows to prove the 
Fueter mapping theorem in integral form, see [29].

Theorem 1.9 (Fueter mapping theorem in integral form) Let us assume that f is a 
left (resp. right) slice hyperholomorphic function on a set W ⊆ ℍ which contains a 
slice Cauchy domain U. We have that

where f̆ (q) = Δf (q), J ∈ �, dsJ = ds(−J), the kernel is given by

and the pseudo Cauchy kernel is defined by

The kernel FL(s, q) (resp. FR(s, q)) is right slice hyperholomorphic in the variable s 
(resp. left slice hyperholomorphic) and it is left axially monogenic in the variable q 

f̆ (q) ∶=Δ

(
𝛼(q0, |q|) +

q

|q|
𝛽(q0, |q|)

)

O(D) TF1−−−−→ SH(ΩD) TF2=∆−−−−−−→ AM(ΩD), (1.3)

f̆ (q) =
1

2𝜋 ∫𝜕(U∩ℂJ )

FL(s, q)dsJf (s),

(
resp. f̆ (q) =

1

2𝜋 ∫𝜕(U∩ℂJ )

f (s)dsJFR(s, q)

)

FL(s, q) ∶=ΔS−1
L
(s, q) = −4(s − q̄)Qc,s(q)

−2,

(resp. FR(s, q) ∶=ΔS−1
R
(s, q) = −4Qc,s(q)

−2(s − x̄)),

Qc,s(q) ∶= s2 − 2q0s + |q|2.



Harmonic and polyanalytic functional calculi on the S‑spectrum… Page 7 of 41 84

(resp. right axially monogenic). In particular,  different choices of the domain U and 
of the imaginary unit J do not change the result of the previous integral representa-
tion formulas.

It is possible to factorize the Laplace operator appearing in the diagram (1.3) 
in the following two different ways. Precisely, if D ∶= �q0 +

∑3

i=1
ei�qi and 

D ∶= �q0 −
∑3

i=1
ei�qi are the Cauchy–Fueter operator and its conjugate, respectively, 

then we have

Even though the operators D and D commute the factorizations, DD and DD give 
rise to different functions spaces according to the order D and D applied to a slice 
hyperholomorphic function. In fact, if we first apply operator D to functions in 
SH(ΩD) , we have:

O(D) TF1−−−−→ SH(ΩD) D−−−−→ AH(ΩD) D−−−−→ AM(ΩD),

where AH(ΩD) is the class of axially harmonic function, i.e., functions of the form 
(1.2) and in the kernel of the Laplace operator in four real variables. In the case we 
apply D to functions in SH(ΩD) , we obtain

O(D) TF1−−−−→ SH(ΩD) D−−−−→ AP2(ΩD) D−−−−→ AM(ΩD),

where AP2(ΩD) is the class of axially polyanalytic functions of order 2, i.e., func-
tions of the form (1.2) and in the kernel of the operator D2. The above cases lead us to 
the following definition.

Definition 1.10 (Fine structures of the spectral theory on the S-spectrum) All the 
set of functions spaces and the associated functional calculi induced by a factoriza-
tion of the Fueter map, i.e., the Laplace operator in Four real variables, are called 
fine structures of the spectral theory on the S-spectrum.

In [13, 34], we give an integral representation for axially harmonic functions and 
axially polyanalytic functions of order 2, we now recall such integral representations. 
Let W ⊂ ℍ be an open set. Let U be a slice Cauchy domain such that Ū ⊂ W. For J ∈ � 
and dsJ = ds(−J) we have that:

∙ given a left (resp. right) slice hyperholomorphic function f in W,   the function 
f̃ (q) ∶=Df (q) (resp. f̃ (q) ∶= f (q)D ) is harmonic and it can be written in the following 
integral form

Δ = DD = DD.
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∙ given a left (resp. right) slice hyperholomorphic function f in W,   the function 
f̆ 0(q) = Df (q) (resp. f̆ 0(q) ∶= f (q)D ) is polyanalytic of order 2 and it can be written 
in the following integral form

Our main results are an extension of the Riesz–Dunford functional calculus, see [37] 
for the classes of functions of the quaternionic fine structures. Precisely, let f be a 
holomorphic function defined on an open set containing Ω, where Ω ⊂ ℂ is an open 
set that contains the spectrum of the bounded operator B on a complex Banach space 
X
ℂ
. The holomorphic functional calculus f(B) is defined as

To define the functional calculus for an unbounded operator A,  we assume that the 
function f is holomorphic at infinity and on the spectrum �(A) of the closed linear 
operator A whose domain is contained in X

ℂ
.

Let us assume that the resolvent �(A) is non-empty. We set Φ(�) ∶= (� − �)−1, 
Φ(∞) = 0 and Φ(�) = ∞, for � ∈ �(A). We define the functional calculus for 
unbounded operators as f (A) ∶=�(B) where �(�) = f (Φ−1(�)) and B ∶= (A − �I)−1. 
For this functional calculus, we have the following integral representation

where Γ consists of a finite numbers of Jordan arcs, that surround the spectrum �(A) 
and the point at infinity. We recall that the function f has to be holomorphic in an 
open set that contains Γ and its interior. Moreover, formula (1.6) implies that f(A) is 
independent from the parameter �.

The harmonic and polyanalytic functional calculi for bounded quaterni-
onic operators with commuting components were introduced in [13, 34] where 
operators of the form T = T0 + e1T1 + e2T2 + e3T3 are considered. The operator 
T̄ = T0 − e1T1 − e2T2 − e3T3 is called the conjugate of T. The harmonic resolvent 
operator is defined as

(1.4)

f̃ (q) =
1

2𝜋 ∫𝜕(U∩ℂJ )

DS−1
L
(s, q)dsJf (s),

(
resp. f̃ (q) =

1

2𝜋 ∫𝜕(U∩ℂJ )

f (s)dsJS
−1
R
(s, q)D

)
;

(1.5)

f̆ 0(q) =
1

2𝜋 ∫𝜕(U∩ℂJ )

DS−1
L
(s, q)dsJf (s),

(
resp. f̆ 0(q) = ∫𝜕(U∩ℂJ )

f (s)dsJS
−1
R
(s, q)D

)
.

f (B) =
1

2�i ∫�Ω

(�I − B)−1f (�)d�.

(1.6)f (A) = f (∞)I +
1

2�i ∫Γ

(�I − A)−1f (�)d�,

Qc,s(T)
−1 ∶= (s2 − (T + T̄)s + TT̄)−1, s ∈ 𝜌S(T),
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and it tuned out to be the well-known commutative pseudo S-resolvent operator. The 
polyanalytic (left) resolvent operator is defined as

where FL(s,T) = −4(s − T̄)Qc,s(T)
−2. Similarly, we defined the polyanalytic right 

resolvent operator. In [13, 34], we proved that the harmonic functional calculus (also 
called Q-functional) for f ∈ SHL(U), given by

and the P2-functional calculus, defined as

are well defined since the integrals do not depend on the open set U nor on J ∈ �. 
Here U denotes a suitable open set that has smooth boundary and contains the 
S-spectrum of T.

The goal of this paper is to define the harmonic functional calculus and the P2

-functional calculus for commuting unbounded operators in the spirit of the holo-
morphic functional calculus for closed operators mentioned above. Let us consider f 
to be a suitable slice hyperholomorphic function and let �̃� be defined as:

where �(q) ∶= (f◦�−1
�
)(q), q ∶=��(s) = (s − �)−1, ��(∞) = 0, ��(�) = ∞. We 

assume that there exists � ∈ ℝ such that T − �I  has bounded inverse and we set 
A ∶= (T − �I)−1. Then it is � ∈ �S ∩ℝ ≠ �. For the case of unbounded operators, 
we will always assume that T0 = 0. Then the Q-functional calculus for closed qua-
ternionic operators is defined as

Using the same notations, we define

and, by means of this function, we define the P2-functional calculus for closed 
operators

Moreover, we show integral representations for f̃ (T) and f̆ 0(T), which are the coun-
ter part of formula (1.6) for the Riesz–Dunford functional calculus.

This fact is not necessarily expected because the Q-functional and P2-functional 
calculi are defined through integral transforms, whereas the Riesz–Dunford func-
tional calculus is based on the Cauchy formula of holomorphic functions.

PL
2
(s,T) = −FL(s,T)s + T0FL(s,T),

f̃ (T) = −
1

𝜋 ∫𝜕(U∩ℂJ )

Qc,s(T)
−1dsJf (s),

f̆ 0(T) ∶=
1

2𝜋 ∫𝜕(U∩ℂJ )

PL
2
(s,T)dsJf (s),

�̃�(q) = D(𝜙(q)),

f̃ (T) ∶= (AĀ)�̃�(A).

�̆�0(q) ∶=D(q2𝜙(q)),

f̆ 0(T) ∶= �̆�0(A).
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Outline of the paper. The paper consists of five sections, the first one being this 
introduction. In Sect. 2, we briefly revise the S-functional calculus and the F-func-
tional calculus, both for bounded and unbounded operators with commuting compo-
nents with some new insight to this calculus. In Sect. 3, we establish and prove the 
main properties for the harmonic functional calculus for closed operators. In Sect. 4, 
we define the P2-functional calculus for closed operators and we prove its main 
properties. Section 5 contains some concluding remarks.

2  Preliminary results on quaternionic operators

In this section, we recall some results on the S-functional calculus and F-functional 
calculus for bounded and unbounded operators, see for more details [22], to give a 
complete picture of the fine structures on the S-spectrum.

Bounded quaternionic linear operators We denote by B(X) the set of all 
bounded right linear operators defined on a two-sided quaternionic Banach module 
X = X

ℝ
⊗ ℍ where X

ℝ
 is a real Banach space. The S-resolvent set and the S-spec-

trum of T ∈ B(X) are defined via the operator

Definition 2.1 The S-resolvent set of T ∈ B(X) is denoted by �S(T) and it is defined 
as

where the operator

is called the pseudo S-resolvent operator of T at s. Moreover, the S-spectrum of T is 
defined as

Due to the lack of commutativity, there exist two different resolvent operators.

Definition 2.2 Let T ∈ B(X) and s ∈ �S(T). Then the left (resp. right) S-resolvent 
operator is defined as

Definition 2.3 Let T ∈ B(X), we define SHL(�S(T)) (resp. SHR(�S(T)), resp. 
N(�S(T)) ) as the set of left (resp. right, resp. intrinsic) slice hyperholomorphic func-
tions whose domains contain �S(T).

Qs(T) ∶=T2 − 2s0T + |s|2I.

�S(T) ∶= {s ∈ ℍ ∶ Qs(T)
−1 ∈ B(X)}

Qs(T)
−1 = (T2 − 2s0T + |s|2I)−1, for s ∈ �S(T)

�S(T) ∶=ℍ⧵�S(T).

S−1
L
(s,T) = −Q−1

s
(T)(T − s̄I),

(
resp. S−1

R
(s,T) ∶= − (T − s̄I)Qs(T)

−1
)
.
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For these classes of functions, we introduce the S-functional calculus for bounded 
operators.

Definition 2.4 (S-functional calculus for bounded operators) For T ∈ B(X) and 
f ∈ SHL(�S(T)) (resp. f ∈ SHR(�S(T)) ) we define

where dsJ ∶= (−J)ds and U is a bounded slice Cauchy domain such that 
𝜎S(T) ⊆ U ⊆ U ⊆ dom(f ).

The integrals in (2.1) do not depend on the choice of U on the choice of the imagi-
nary unit J ∈ �. The definition and the properties of the S-functional calculus can be 
found in the books [21, 22, 31].

Now, we recall the F-functional calculus, which was introduced for the first time 
in [29] and further developed in [14, 15, 19]. This is a monogenic functional calcu-
lus in the same spirit of McIntosh and collaborators, see [40, 41], but it is based on 
the theory of the S-spectrum. The F-functional calculus arises by the Fueter theorem 
in integral form (see Theorem 1.9) by formally replacing the quaternion q with a 
suitable quaternionic operator T.

The F−functional calculus is defined for operators T ∈ B(X) whose components 
commute with each other. More precisely, any right linear operator T ∈ B(X) can be 
written as T = T0 + e1T1 + e2T2 + e3T3 where the operators Ti for i = 0, 1, 2, 3 are 
called components of T and they are bounded linear operators from X

ℝ
 to X

ℝ
 (see 

[22, Paragraph 4.5]). We set

We are going to define the F-functional calculus for any operators T ∈ BC(X). As 
a first step in this direction, in the next definition we introduce, for any T ∈ BC(X), 
the notion of the F−spectrum which turns out to be equivalent to the notion of the 
S-spectrum but it will be more appropriate for our aim.

Definition 2.5 The F−resolvent set of T ∈ BC(X) is given by

where, for any s ∈ ℍ, we set

and T ∶= T0 − e1T1 − e2T2 − e3T3. Moreover, the F-spectrum of T is defined as

(2.1)

f (T) ∶=
1

2� ∫�(U∩ℂJ )

S−1
L
(s,T)dsJf (s),

(
resp. f (T) ∶=

1

2� ∫�(U∩ℂJ )

f (s)dsJS
−1
R
(s,T)

)
,

BC(X) ∶= {T = T0 + e1T1 + e2T2 + e3T3 ∈ B(X) |
TiTj = TjTi for any i, j = 0, 1, 2, 3}.

�F(T) ∶= {s ∈ ℍ ∶ Qc,s(T)
−1 ∈ B(X)}

Qc,s(T) ∶= s2I − s(T + T̄) + TT̄
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In [27], it is proved that the F-spectrum is the commutative version of the S-spec-
trum, i.e., for T ∈ BC(X) , we have

The operator Qc,s(T)
−1, for s ∈ �F(T), is called the commutative pseudo S-resolvent 

operator of T at s. In [27], a commutative version of the S-functional calculus for 
bounded operators is established and in this case, we have to deal with the following 
resolvent operators.

Definition 2.6 Let us assume that T belongs to BC(X) and s ∈ �S(T). The left (resp. 
right) commutative S-resolvent operator is defined as

Remark 2.7 Since no ambiguity will arise in the sequel, we write the commutative 
version of the S-resolvent operators using the same symbol adopted for the non-
commutative ones

A commutative S-functional calculus can be also defined by means of the 
above resolvent operators, as in Definition 2.4. Now, we have all the tools to give 
the definition for the F-functional calculus.

Definition 2.8 (F-resolvent operators) Let us assume that T belongs to BC(X). For 
s ∈ �S(T), the left (resp. right) F-resolvent operator is defined as

Definition 2.9 (F-functional calculus for bounded operators) Let us assume that 
U is a slice Cauchy domain that contains �S(T). Moreover, we assume that U is 
contained in the domain of f. We consider an operator T = T1e1 + T2e2 + T3e3 that 
belongs to BC(X), where the operators T

�
, � = 1, 2, 3 have real spectrum. For J ∈ � , 

we set dsJ = ds(−J). For f̆ = Δf (q) with f ∈ SHL(�S(T)) (resp. f ∈ SHR(�S(T))) , 
we define

�F(T) ∶=ℍ⧵�F(T).

�F(T) = �S(T).

S−1
L
(s,T) = (sI − T̄)Qc,s(T)

−1,
(
resp. S−1

R
(s,T) = Qc,s(T)

−1(sI − T̄)
)
.

(2.2)
FL(s,T) = −4(sI − T̄)Qc,s(T)

−2,
(
resp. FR(s,T) = −4Qc,s(T)

−2(sI − T̄)
)
.

(2.3)

f̆ (T) ∶=
1

2𝜋 ∫𝜕(U∩ℂJ )

FL(s,T)dsJf (s)

(
resp. f̆ (T) ∶=

1

2𝜋 ∫𝜕(U∩ℂJ )

f (s)dsJFR(s,T)

)
.
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The S-functional calculus as well as the F-functional calculus are well defined,, 
since the integrals in (2.3) depend neither on U and nor on the imaginary unit 
J ∈ �.

Remark 2.10 Since f̆ = Δf (q) , we observe that Δ has a kernel and the independ-
ence on the kernel is discussed in Remark 7.1.13 in [22]. The independence of the 
F-functional calculus from the ker(Δ) is obtained by an application of the mono-
genic functional calculus of McIntosh that requires that operators T

�
, � = 0, 1, 2, 3 

have real spectrum and one of the T
�
 has to be the zero operator. This requirement is 

enforced in order not to disconnect the monogenic resolvent set and it usually takes 
T0 to be zero.

Unbounded quaternionic linear operators. Now we recall the main notions 
for the S-functional calculus and F-functional calculus for unbounded operators, 
introduced in [27, 28]. These functional calculi are defined for a peculiar class of 
operators, that are defined as follows.

Definition 2.11 We assume that X is a two-sided Banach space 
T ∶ dom(T) ⊂ X → X a right linear operator. The operator T is called closed if its 
graph is closed in the Cartesian product X × X.

Definition 2.12 Let T
�
∶ dom(T

�
) ⊂ X → X be a linear closed operators for 

� = 0,… , 3 such that
T
�
Tkv = TkT�v for all v ∈

⋂3

k=0
dom(T2

k
). Then 

dom(T) = ∩3
�=0

dom(T
�
) is the domain of the quaternionic right lin-

ear operators T = T0 +
∑3

�=1
e
�
T
�
∶ dom(T) ⊂ X → X, and 

T̄ = T0 −
∑3

�=1
e
�
T
�
∶ dom(T) ⊂ X → X, since dom(T) = dom(T̄). We denote this 

set of closed right linear operators with commuting components by KC(X).

Now, we give the notion of S-spectrum in this setting.

Definition 2.13 Let T ∈ KC(X). We denote by �S(T) the S-resolvent set of T 
defined as

with

We define the S-spectrum �S(T) of T as

The extended S-spectrum is defined as

�S(T) ∶= {s ∈ ℍ ∶ Q
−1
c,s
(T) ∈ B(X)},

Qc,s(T) ∶= s2I − 2sT0 + TT̄ , where Qc,s(T) ∶ dom(T2) → X.

�S(T) = ℍ⧵�S(T).
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Remark 2.14 In the sequel, we will always assume that the S-resolvent is non-empty.

Definition 2.15 Let T ∈ KC(X). For s ∈ �S(T) we define

the commutative pseudo S-resolvent operator of T at s,  where Qc,s(T)
−1 maps X to 

dom(T2) for s ∈ �S(T).

Definition 2.16 (The (commutative) S-resolvent operators in the unbounded case) 
Let T ∈ KC(X). For s ∈ �S(T), we define the left (resp. right) S-resolvent operator of 
T at s as

Observe that because of how S−1
L
(s,T) and S−1

R
(s,T) are defined they map X to 

dom(T).

Definition 2.17 Let T ∈ KC(X). A function f is left slice hyperholomorphic in 
�S(T) if and only if f is left slice hyperholomorphic with 𝜎S(T) ⊂ dom(f ). Moreover, 
we have to request that ℍ⧵Br(0) ⊂ dom(f ) for some r > 0 and f (∞) = limq→∞ f (q) 
exists. This set of functions is denoted by SHL(�S(T)).

Similarly, we can define the functions in SHR(�S(T)) and N(�S(T)).

Definition 2.18 For � ∈ �S(T) ∩ℝ ≠ �, we define the mapping �� ∶ ℍ → ℍ as

Proposition 2.19 We assume that there exists � ∈ ℝ such that T − �I  has bounded 
inverse and we set A ∶= (T − �I)−1. Then it is � ∈ �S(T) ∩ℝ ≠ �. Let �� defined 
as above, then the mapping f ↦ f◦�−1

�
 is a one-to-one correspondences between 

SHL(�S(T)) (resp. SHR(�S(T)) and SHL(�S(A)) (resp. SHL(�S(T)), and between 
N(�S(T)) and N(�S(A)). To be precise we have

Proof It is a consequence of [22, Cor. 5.2.4].   ◻

�̄�S(T) ∶= 𝜎S(T) ∪ {∞}.

Qc,s(T)
−1 ∶= (s2 − s(T + T̄) + TT̄)−1,

S−1
L
(s,T) = (sI − T̄)Qc,s(T)

−1

(
resp. S−1

R
(s,T) = (sI − T0)Qc,s(T)

−1s +

3∑

i=1

TiQc,s(T)
−1ei

)
.

(2.4)p = ��(s) = (s − �)−1, ��(�) = ∞, ��(∞) = 0.

SHL(�S(A)) = {f ◦�−1
�

∶ f ∈ SHL(�S(T))},

SHR(�S(A)) = {f◦�−1
�

∶ f ∈ SHR(�S(T))},

N(�S(A)) = {f◦�−1
�

∶ f ∈ NL(�S(T))}.
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Definition 2.20 (S-functional for unbounded operators) Let T ∈ KC(X). 
We assume that there exists � ∈ ℝ such that T − �I  has bounded inverse and 
we set A ∶= (T − �I)−1. We suppose that f ∈ SHL(�S(T)) and we consider 
�(p) = f (�−1

�
(p)) as above. We define

We observe that the S-functional calculus for commuting unbounded opera-
tors is well defined. This is based on the fact that f (T) = �((T − �I)−1) does not 
depend on �, thanks to the following theorem.

Theorem 2.21 Let T ∈ KC(X) and assume that there exists � ∈ ℝ such that T − �I  
has bounded inverse. Let suppose that f ∈ SHL(�S(T)) and f(T) is the operator 
defined in (2.5). Let us assume that U is an unbounded slice Cauchy domain such 
that 𝜎S(T) ⊂ U and U is contained in dom(f ). Then every J ∈ � we have

Similarly,  if f ∈ SHR(�S(T)), f(T) is the operator defined in (2.5), and the set U sat-
isfies the same properties as above, we have

To prove the above theorem, it is crucial to recall the relation between the 
resolvents S−1

L
(s,T) and S−1

L
(p,A) given by the following result, see [27, Thm. 

6.12].

Theorem  2.22 Assume that there exists � ∈ ℝ such that T − �I  has bounded 
inverse. If �� is defined as (2.4), then ��(�S(T)) = �S(A), and we have the following 
identities

where S−1
L
(p,A) is the commutative S-resolvent operator in the unbounded case in 

Definition 2.16.

Now, we recall the properties of the S-functional calculus for unbounded oper-
ators that we need in this paper, see [27, Theorem 6.14].

Theorem 2.23 Let T ∈ KC(X) and assume that there exists � ∈ ℝ such that T − �I  
has bounded inverse.

• Let us suppose that f,  g ∈ SHL(�S(T)). For a ∈ ℍ we have

(2.5)f (T) ∶=�(A).

f (T) = f (∞)I +
1

2� ∫�(U∩ℂJ )

S−1
L
(s,T)dsJf (s).

f (T) = f (∞)I +
1

2� ∫�(U∩ℂJ )

f (s)dsJS
−1
R
(s,T).

(2.6)S−1
L
(p,A) = p−1I − S−1

L
(s,T)p−2,

(fa + g)(T) = f (T)a + g(T),



 F. Colombo et al.84 Page 16 of 41

• Let us assume that f ∈ N(�S(T)) and g ∈ SHL(�S(T)) or f ∈ SHR(�S(T)) and 
g ∈ N(�S(T), then we have

• If s,  q ∈ �S(T) with s ∉ [q] then

The following result puts in relation the commutative pseudo S-resolvent of T 
with the one of A,  see [22, Theorem 8.1.1].

Theorem  2.24 Let us assume that T ∈ KC(X) and that there exists � ∈ ℝ 
such that T − �I  has bounded inverse. We set A ∶= (T − �I)−1. Then for 
p = ��(s) = (s − �)−1, we have

and

Now, we revise the F-functional calculus for unbounded operators.

Definition 2.25 Let us assume that T belongs to KC(X). Then for s ∈ �S(T) , left 
F-resolvent operator is defined as

and the right F-resolvent operator as

The F-functional calculus for unbounded operators considered in this paper 
will be based on the following relation between the F-resolvent operators FL(p,A) 
and FL(s,T). The difference with the definition in [28] is in the powers of the 
operator AĀ.

Theorem  2.26 Let T ∈ KC(X) and assume that there exists � ∈ ℝ such that 
T − �I  has bounded inverse and define A = (T − �I)−1. For s ∈ �S(T) and 
p = ��(s) = (s − �)−1, we have

(fg)(T) = f (T)g(T).

S−1
R
(s,T)S−1

L
(q, T) =[(S−1

R
(s,T) − S−1

L
(q, T))q

− s̄(S−1
R
(s,T) − S−1

L
(q, T))](q2 − 2s0q + |s|2)−1.

Qc,p(A)
−1 =

(
AA

)−1

Qc,s(T)
−1p−2

Qc,p(A)
−2 =

(
AA

)−2

Qc,s(T)
−2p−4.

FL(s,T) = −4(sI − T̄)Qc,s(T)
−2,

FR(s,T) = −4

(
(sI − T0)Qc,s(T)

−2s +

3∑

i=1

TiQc,s(T)
−2ei

)
.

(2.7)(AĀ)FL(p,A)p
4 = −4pQc,s(T)

−1 − FL(s,T).
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Proof We start by observing that we can write the F-resolvent operator FL(p,A) as

By using formula (2.6) and Theorem 2.24 we get

Thanks to the hypothesis on T and consequently on A the operator

does not contain imaginary units as well as

This implies that we can commute (AA)−1 with p−1 and its powers since 
p = (s − �)−1. Moreover, (AA)−1 commutes also with the commutative version of the 
S-resolvent

Regarding the domains of the operators, we recall that

and

so we have

for all for s ∈ �S(T).Then we obtain

This fact is justified by observing that

so the range of −4Qc,s(T)
−1p−3 − FL(s,T)p

−4 is contained in the domain of (AĀ)−1. 
Moreover, the range of FL(p,A) is contained in the domain of AĀ. With these obser-
vations, we can multiply on the left-hand side by AĀ and on the right-hand side by 
p4I  to get the statement.   ◻

FL(p,A) = −4S−1
L
(p,A)Qc,p(A)

−1.

FL(p,A) = −4
(
p−1I − S−1

L
(s,T)p−2

)
(AĀ)−1Qc,s(T)

−1p−2.

AA = (�2
I − �(T + T) + TT)−1 ∶ X → dom(T2)

(AA)−1 = �2
I − �(T + T) + TT ∶ dom(T2) → X.

S−1
L
(s,T) = (sI − T̄)Qc,s(T)

−1.

Qc,s(T)
−1 ∶ X → dom(T2)

S−1
L
(s,T) ∶ X → dom(T)

S−1
L
(s,T)p−2(AĀ)−1Qc,s(T)

−1p−2 = (AĀ)−1S−1
L
(s,T)p−2Qc,s(T)

−1p−2

FL(p,A)v =(AĀ)
−1[−4Qc,s(T)

−1p−3 + 4S−1
L
(s,T)Qc,s(T)

−1p−4]

=(AĀ)−1
(
−4Qc,s(T)

−1p−3 − FL(s,T)p
−4
)
.

Qc,s(T)
−2 ∶ X → dom(Qc,s(T)

2)
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Formula (2.7) is suitable to define the F-functional calculus for unbounded opera-
tors. It is worth noticing that the above formula gives a definition for the F-func-
tional calculus, slightly different from the customary definition used in the literature, 
see [22].

Keeping in mind the definition of �� and its property, see Definition  2.18 and 
Proposition  2.19, we are in the position to define the F-functional calculus for 
unbounded operators.

Definition 2.27 (F-functional calculus for unbounded operators) Let T ∈ KC(X) 
and assume that there exists � ∈ ℝ such that T − �I  has bounded inverse and define 
A = (T − �I)−1. Moreover, suppose that T0 = 0 and let the operators T

�
, � = 1, 2, 3 

have real spectrum. Consider �� as in (2.4). Let f be in SHL(�S(T)) with f (�) = 0, 
then we take into account the functions

and the operator f̆ (T), for f̆ = Δf , is defined as

where �̆�(A) is defined by means of the bounded F-functional calculus. A similar 
definition holds for f ∈ SHR(�S(T)) with f (�) = 0.

Theorem 2.28 Let T ∈ KC(X) and assume that there exists � ∈ ℝ such that T − �I  
has bounded inverse and define A = (T − �I)−1. Moreover, suppose that T0 = 0 and 
let the operators T

�
, � = 1, 2, 3 have real spectrum. Consider �� as in (2.4). Let us 

assume that f̆ = Δf  with f ∈ SHL(�S(T)) and f (�) = 0. Then for any unbounded 
slice Cauchy domain U that contains �S(T), U ⊂ dom(f ) and J ∈ �. The operator 
f̆ (T) defined in (2.8) satisfies the following integral representation

A similar integral representation holds for f ∈ SHR(�S(T)) with f (�) = 0.

Proof Taking into account the relation (2.7), the proof follows exactly the same lines 
of [22, Thm 8.2.3].   ◻

We observe that, like what happens in the S-functional calculus for unbounded 
operators, even the F-functional calculus for unbounded operators does not 
depend on the parameter �, and the considerations of Remark  2.10 have to be 
done in the unbounded case as well.

𝜙(q) =(f◦𝜙−1
𝛼
)(q),

�̆�(q) =Δ(q2𝜙(q))

(2.8)f̆ (T) ∶= (AĀ)�̆�(A),

f̆ (T) =
1

2𝜋 ∫𝜕(U∩ℂJ )

FL(s,T)dsJf (s).
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3  Harmonic functional calculus for unbounded operators

It is well known that we can factorize the Laplace operator in terms of the 
Cauchy–Fueter operator D and we have Δ = DD = DD. When we apply the oper-
ator D or its conjugate D to a slice hyperholomorphic function, we obtain differ-
ent classes of functions. In this section, we consider the harmonic fine structure 
in the sense of Definition 1.10, see also [13].

Definition 3.1 (Axially harmonic functions) Let U ⊂ ℍ be a slice Cauchy domain. 
A function f ∶ Ω → ℍ, with f ∈ C

2(Ω), is said to be axially harmonic if

and if it has the form (1.2) where the functions A and B satisfy the even–odd condi-
tions (1.1), we will denote this function space with the symbol AH(Ω).

When we apply the operator D to a slice hyperholomorphic function f(q),   as a 
direct consequence of the Fueter theorem, we get that

This means that the function Df (q) is axially harmonic in the sense of Definition 3.1, 
and therefore the function spaces of the harmonic fine structure are given by the 
diagram

The aim of this section is to define the unbounded functional calculus for the fine 
structure (3.1). Before we need to recall the definition of the harmonic functional 
calculus (or Q-functional calculus) for bounded operators based on the S-spectrum, 
see [13].

Definition 3.2 Let T ∈ BC(X), assume that the operators T
�
, � = 0, 1, 2, 3 have real 

spectrum, where one of the T
�
 is the zero operator and set dsJ = ds(−J) for J ∈ �. 

Let U be an arbitrary bounded slice Cauchy domain that contains the S-spectrum, 
with U ⊂ dom(f ) and J ∈ �. Let f ∈ SHL(�S(T)) (resp. f ∈ SHR(�S(T)) ), then for 
any function f̃ = Df  (resp. f̃ = fD ), we set

Remark 3.3 The independence of the Q-functional calculus from the ker(D) is 
obtained using the monogenic functional calculus of McIntosh. This needs that the 

Δf (q) =

3∑

i=0

�2
qi
f (q) = 0

Δ(Df (q)) = 0.

O(D) TF1−−−−→ SH(ΩD) D−−−−→ AH(ΩD) D−−−−→ AM(ΩD), (3.1)

f̃ (T) = −
1

𝜋 ∫𝜕(U∩ℂJ )

Qc,s(T)
−1dsJf (s),

(
resp. f̃ (T) = −

1

𝜋 ∫𝜕(U∩ℂJ )

f (s)dsJQc,s(T)
−1

)
.
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operators T
�
, � = 0, 1, 2, 3 have real spectrum and one of the T

�
 has to be zero (see 

also the proof of Proposition 3.12 for the case of the unbounded operators).

The Q-functional calculus for left (resp. right) slice hyperholomorphic func-
tions is quaternionic right (resp. left) linear. This means that if we consider 
f̃ = Df  and g̃ = Dg (resp. f̃ = fD and g̃ = gD ) with f,   g ∈ SHL(�S(T)) (resp. f,   
g ∈ SHR(�S(T)) and a ∈ ℍ, for T ∈ BC(X) we have

In [13], the Q-functional calculus is introduced to get a product rule for the F-func-
tional calculus. Moreover, we study a resolvent equation for this functional calculus 
suitable to generate the Riesz projectors in this setting and to get the following prod-
uct rule, see [35].

Theorem 3.4 Let T ∈ BC(X), assume that the operators T
�
, � = 0, 1, 2, 3 have real 

spectrum, where one of the T
�
 is the zero operator. We assume that f ∈ N(�S(T)) 

and g ∈ SHL(�S(T)) or f ∈ SHR(�S(T)) and g ∈ N(�S(T)), then

where T ∶= T1e1 + T2e2 + T3e3 and where we have written Df  instead of f̃  and Dg 
instead of g̃ for the sake of clarity in the product rule.

To introduce the harmonic functional calculus for unbounded operators, we 
need to use the homeomorphism �� introduced in Definition 2.18 and its proper-
ties in Proposition 2.19.

Remark 3.5 Let T = T0 + T1e1 + T2e2 + T3e3 with commuting components in the 
sense of Definition  2.12 and assume that there exists � ∈ ℝ such that T − �I  and 
T − �I  have bounded inverses and define A ∶= (T − �I)−1. Then we can write A in 
terms of its components because it is a bounded operator

and we have

because

so the components are

(3.2)(f̃ a + g̃)(T) = f̃ (T)a + g̃(T),
(
resp. (af̃ + g̃)(T) = af̃ (T) + g̃(T)

)
.

(3.3)D(fg)(T) = f (T)(Dg)(T) + (Df )(T)g(T) + (Df )(T)T(Dg)(T),

(T − �I)−1 = B0 + B1e1 + B2e2 + B3e3

(T − �I)−1 = (T − �I)
(
(T − �I)(T − �I)

)−1

= (T − �I)
(
T2
0
+ �2

I + 2T0� + T2
1
+ T2

2
+ T2

3

)−1

(T − �I)(T − �I) = T2
0
+ �2

I + 2T0� + T2
1
+ T2

2
+ T2

3
, on dom(T2)
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where we have set

Definition 3.6 (Harmonic functional calculus for unbounded operators) Let 
T ∈ KC(X) and assume that there exists � ∈ ℝ such that T − �I  has bounded inverse 
and define A ∶= (T − �I)−1. Moreover, suppose that T0 = 0 and let the operators T

�
 

for � = 1, 2, 3 and Bj for j = 0, 1, 2, 3 defined in (3.4), have real spectrum and one of 
the Bj is zero.

For f ∈ SHL(�S(T)) , we define the functions

where D is the Cauchy–Fueter operator and �� is as in (2.4). The harmonic func-
tional calculus f̃ (T) is defined as

where f̃ = Df . A similar definition holds for f ∈ SHR(�S(T)).

We now use the relation between the two commutative pseudo S-resolvent 
Qc,p(A)

−1 and Qc,s(T)
−1 to provide the harmonic functional calculus for unbounded 

operators an integral formulation.
We can prove that the harmonic functional calculus for unbounded operators is 

well defined because it does not depend on the point � ∈ �S(T). Moreover, we also 
have to prove that the functional calculus is independent from the kernel of D taking 
slice hyperholomorphic functions.

Theorem 3.7 Let T ∈ KC(X) and assume that there exists � ∈ ℝ such that T − �I  
has bounded inverse and define A ∶= (T − �I)−1. Moreover,   suppose that T0 = 0 
and let the operators T

�
 for � = 1, 2, 3 and Bj for j = 0, 1, 2, 3 defined in (3.4), have 

real spectrum and one of the Bj is zero.
For f̃ = Df  with f ∈ SHL(�S(T)), the operator f̃ (T) defined in (3.5) satisfies

where U is any unbounded slice Cauchy domain with 𝜎S(T) ⊂ U and Ū ⊂ dom(f ) 
and J ∈ �. A similar integral representation holds for f ∈ SHR(�S(T)).

Proof We assume that � ∉ U. If this is not the case, we can replace the set U with 
the axially symmetric slice Cauchy domain U⧵B(�) with 𝜀 > 0 small enough, with-
out altering the value of the integral (3.6) by the Cauchy integral formula.

(3.4)B0 = (T0 − �I)Γ, Bj = −TjΓ, j = 1, 2, 3.

Γ ∶=
(
T2
0
+ �2

I + 2T0� + T2
1
+ T2

2
+ T2

3

)−1

.

�(q) ∶= (f◦�−1
�
)(q),

�̃(q) ∶=D(�(q))

(3.5)f̃ (T) ∶= (AĀ)�̃�(A),

(3.6)f̃ (T) = −
1

𝜋 ∫𝜕(U∩ℂJ )

Qc,s(T)
−1dsJf (s),
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We set V = ��(U). This is a bounded slice Cauchy domain that contains �S(A) 
and V ⊂ dom(f◦𝜙−1

𝛼
). From the relation among Qc,s(T)

−1 and Qc,p(A)
−1, see Theo-

rem 2.24, and the changing of variables p = ��(s) we get

  ◻

Remark 3.8 Unlike to what happens for the F-functional calculus, we do not require 
that f (�) = 0.

Before we prove that the Q-functional calculus is well posed, we need the fol-
lowing lemma.

Lemma 3.9 Let assume that f,  g ∈ SHL(�S(T)). Then we have

where c is a constant.

Proof We observe that since f,   g ∈ SHL(�S(T)) , then f − g ∈ SHL(�S(T)) , so in 
particular they are of class C1. By hypothesis, we have that f − g is a monogenic 
function that is

where Pk(J) are suitable polynomials that depend on the angular part J ∈ � and A 
and B are ℍ-valued continuously differentiable functions in ℝ2 in polar coordinates 
and they are characterized by the Vekua-type system

Monogenic functions of the form (3.7) are called axial monogenic of degree k,  see 
[36]. We observe that the coefficient A of a slice hyperholomorphic function does not 
depend on Pk(J), this implies k = 0 and so that P0(J) = 1. Since f,  g ∈ SHL(�S(T))

also A(x0, r) + J B(x0, r) must satisfy the Cauchy–Riemann system. Hence we get 
B = 0, �x0A = 0 and �rA = 0. This implies that A is constant on each connected com-
ponents.   ◻

−
1

𝜋 ∫𝜕(U∩ℂJ )

Qc,s(T)
−1dsJf (s) = −

(AĀ)

𝜋 ∫𝜕(V∩ℂJ )

Qc,p(A)
−1dpJ

× (f◦𝜙−1
𝛼
)(p)

= (AĀ)�𝜓(A)

= f̃ (T).

D(f − g) = 0 ⇒ f − g = c,

(3.7)f (x0, r) − g(x0, r) =
(
A(x0, r) + J B(x0, r)

)
Pk(J), r = |q|,

(3.8)
{

�x0A − �rB =
2k+m−1

r
B

�x0B + �rA = 0.

(3.9)f (x0, r) = g(x0, r) + A(x0, r) + J B(x0, r)
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Remark 3.10 In the sequel, we will always consider the constant c to be different in 
each connected components of �S(T).

Remark 3.11 By similar arguments of Lemma  3.9, it is possible to show, for f,   
g ∈ SHL(�S(T)), that

where c is a constant.

Let us consider f,  f∗ ∈ SHL(�S(T)) such that D(f ) = D(f∗). By Lemma 3.9 we 
have that f∗ = f + c. In the next result, we show that the harmonic functional cal-
culus is equivalent for f and f∗.

Proposition 3.12 Let T ∈ KC(X) and assume that there exists � ∈ ℝ such that 
T − �I  has bounded inverse and define A ∶= (T − �I)−1. Moreover,   suppose that 
T0 = 0 and let the operators T

�
 for � = 1, 2, 3 and Bj for j = 0, 1, 2, 3 defined in (3.4), 

have real spectrum and one of the Bj is zero. For every function f ∈ SHL(�S(T)), 
the operator f̃ (T) defined in (3.5) does not depend on the choice of � ∈ ℝ. Moreo-
ver, if we replace f by f + c where c is a quaternionic constant, then the Q-func-
tional calculus does not depend on c. A similar consideration holds for the integral 
representation when f ∈ SHR(�S(T)).

Proof The operator defined in (3.5) is independent from the parameter � ∈ ℝ since 
the integral in (3.6) does not depend on �. For the second part of the statement, let 
f∗ = f + c and we consider

where we have used the definition of the harmonic functional calculus for bounded 
operators, see Definition 3.2, and the fact that

The last equality is a consequence of two properties of the F-resolvent operator and 
Q-resolvent operator. The first property is expressed by the left F-resolvent equation 
[22, Thm. 7.3.1]

D(f − g) = 0 ⇒ f − g = c,

−
1

𝜋 ∫𝜕(U∩ℂJ )

Qc,s(T)
−1dsJf∗(s) = −

1

𝜋 ∫𝜕(U∩ℂJ )

Qc,s(T)
−1dsJ(f + c)(s)

= −
1

𝜋 ∫𝜕(U∩ℂJ )

Qc,s(T)
−1dsJf (s)

−
1

𝜋 ∫𝜕(U∩ℂJ )

Qc,s(T)
−1dsJc

= (AĀ)�𝜓(A)

= f̃ (T),

(3.10)−
1

� ∫�(U∩ℂJ )

Qc,s(T)
−1dsJc = 0.
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which implies

The second property is that the following integrals are zero:

where Ui’s, for some q ∈ ℕ and i = 1,… , q, are the connected components of U. 
This fact is a consequence of the monogenic functional calculus developed by McIn-
tosh and collaborators (see [41] and [22, Remark 7.1.13 and Lemma 7.4.1]). We can 
apply this calculus since we are assuming that the operators T

�
, � = 0, 1, 2, 3 have 

real spectrum and one of the T
�
 is the zero operator.   ◻

Remark 3.13 In the hypothesis of the previous theorem, if we consider the constant 
c the same in all the connected components of U,  we can delete the request that one 
of the T

�
 is the zero operator. Indeed, in this case to prove that

it is sufficient to apply the Cauchy integral theorem for the left slice hyperholomor-
phic vector-valued function Qc,s(T)

−1.

We conclude this section by proving a linearity property and a product rule for 
the Q-functional calculus for unbounded operators. These arise naturally as con-
sequences of the respective properties of the Q-functional calculus for bounded 
operators.

Theorem 3.14 Let T ∈ KC(X) and assume that there exists � ∈ ℝ such that T − �I  
has bounded inverse and define A ∶= (T − �I)−1. Moreover,   suppose that T0 = 0 
and let the operators T

�
 for � = 1, 2, 3 and Bj for j = 0, 1, 2, 3 defined in (3.4), have 

real spectrum and one of the Bj is zero.

• (Linearity) If f,  g ∈ SHL(�S(T)) and a ∈ ℍ, then

Similarly, if f,  g ∈ SHR(�S(T)) and a ∈ ℍ, then

(3.11)Qc,s(T)
−1 =

1

4

(
− FL(s,T)s + TFL(s,T)

)

−
1

� ∫�(U∩ℂJ )

Qc,s(T)
−1dsJc = −

1

� ∫�(U∩ℂJ )

1

4

(
− FL(s,T)s + TFL(s,T)

)
dsJc.

∫�(Ui∩ℂJ )

FL(s,T)sdsJ = 0 and ∫�(Ui∩ℂJ )

TFL(s,T)dsJ = 0,

−
1

� ∫�(U∩ℂJ )

Qc,s(T)
−1dsJc = 0,

(f̃ a + g̃)(T) = f̃ (T)a + g̃(T).

(af̃ + g̃)(T) = af̃ (T) + g̃(T).
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• (Product rule) If f ∈ N(�S(T)) and g ∈ SHL(�S(T)) or f ∈ SHR(�S(T)) and 
g ∈ N(�S(T)), then

where A ∶=A1e1 + A2e2 + A3e3.

Proof Let � ∈ �S(T) ∩ℝ, set A = (T − �I)−1, and define �� as in (2.4). By (3.5) and 
(3.2) we have

The statement for right slice hyperholomorphic functions follows from the second 
equation of (3.2) and similar arguments.

To show the product rule, we have to use (3.5), (3.3) and (2.5). Since the operator 
AĀ is scalar valued, we get

  ◻

Remark 3.15 To obtain polyharmonic functional calculus for unbounded opera-
tors, we need to consider the Fueter–Sce’s theorem in the Clifford algebra setting in 
dimension at least five. In this case, we have factorizations of the Fueter extension 
that take into account polyharmonic functions of any order.

We conclude this section with a relation among the operators Qc,p(A)
−1, 

Qc,s(T)
−1 and S−1

L
(s,T) that is of independent interest and shows a link between the 

resolvent operators of the harmonic fine structure.

Proposition 3.16 Let T ∈ KC(X) and assume that there exists � ∈ ℝ such that 
T − �I  has bounded inverse and define A ∶= (T − �I)−1. For s ∈ �S(T) and 
p = ��(s) = (s − �)−1, we have

D(fg)(T) = f (T)(Dg)(T) + (Df )(T)g(T) + (AĀ)−1(Df )(T)A(Dg)(T),

(f̃ a + g̃)(T) = (AĀ)D((fa + g)◦𝜙−1
𝛼
)(A)

= (AĀ)D(f◦𝜙−1
𝛼
)(A)a + (AĀ)D(g◦𝜙−1

𝛼
)(A)

= f̃ (T)a + g̃(T).

D(fg)(T) = (AĀ)D((fg)◦𝜙𝛼)(A)

= (AĀ)D((f◦𝜙−1
𝛼
)(g◦𝜙−1

𝛼
))(A)

= (f◦𝜙−1
𝛼
)(A)(AĀ)D(g◦𝜙−1

𝛼
)(A)

+ (AĀ)D(f◦𝜙−1
𝛼
)(A)(g◦𝜙−1

𝛼
)(A)

+ D(f◦𝜙−1
𝛼
)(A)A(AĀ)D(g◦𝜙−1

𝛼
)(A)

= f (T)(Dg)(T) + (Df )(T)g(T)

+ (AĀ)−1(Df )(T)A(Dg)(T).

AQc,p(A)
−1p3 = −S−1

L
(s,T)p +Qc,s(T)

−1.
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Proof By Theorem 2.24, since we assumed that T ∈ KC(X) and that there exists a 
point � ∈ �S(T) ∩ℝ ≠ �, for A ∶= (T − �I)−1 and p = ��(s), we have

So, we have the chain of equalities

and also

Recalling the left S-resolvent operator

and multiplying on the right for p2 , we obtain

Taking into account the relation p = ��(s) , we get

Multiplying one more time on the right by p, we finally get

The manipulation on A is justified by the fact that it is a bounded operator and the 
above relation holds for every v ∈ X.   ◻

4  Polyanalytic functional calculus for unbounded operators

As we have discussed in Sect. 3, although Δ = DD = DD, if we apply the conjugate 
Cauchy–Fueter operator D to a slice hyperholomorphic function f(q), we get a dif-
ferent set of functions with respect to the harmonic case. In fact, as a direct conse-
quence of the Fueter mapping theorem, we have

Qc,p(A)
−1 =

(
AA

)−1

Qc,s(T)
−1p−2.

Qc,p(A)
−1 =A−1(A)−1Qc,s(T)

−1p−2

=A−1(T − �I)Qc,s(T)
−1p−2

=A−1(T − sI + sI − �I)Qc,s(T)
−1p−2

Qc,p(A)
−1 =A−1(−(sI − T) + sI − �I)Qc,s(T)

−1p−2

=A−1(−(sI − T)Qc,s(T)
−1 + (s − �)Qc,s(T)

−1)p−2.

S−1
L
(s,T) = (sI − T̄)Qc,s(T)

−1

Qc,p(A)
−1p2 = A−1

(
− S−1

L
(s,T) +Qc,s(T)

−1(s − �)
)
.

Qc,p(A)
−1p2 = A−1

(
− S−1

L
(s,T) +Qc,s(T)

−1p−1
)
.

AQc,p(A)
−1p3v = −S−1

L
(s,T)pv +Qc,s(T)

−1v.

D
2
(
Df (q)

)
= ΔDf (q) = 0.



Harmonic and polyanalytic functional calculi on the S‑spectrum… Page 27 of 41 84

So, we obtain a second sequence of function spaces for the quaternionic fine 
structure

where AP2(ΩD) is the set of axially polyanalytic functions of order 2.

Definition 4.1 (Axially polyanalytic functions of order 2) Let Ω ⊂ ℍ be an axially 
symmetric slice domain. A function f ∶ Ω → ℍ is said to be (left) axially polyana-
lytic of order 2 if f ∈ C

2(Ω) and

moreover, f has the form (1.2) and the functions A and B satisfy the even–odd condi-
tions (1.1).

We now focus our attention on the polyanalytic functional calculus for unbounded 
operators of this fine structure. To do this, we need the basic notions for this func-
tional calculus for bounded operators, see [34] for more details.

Definition 4.2 (P2-resolvents) Let T = T0 +
∑3

i=1
eiTi ∈ BC(X), s ∈ ℍ, we define 

the left (resp. right) P2-resolvent operator as

We recall that the polyanalytic functional calculus for bounded operators is also 
called P2-functional calculus.

Definition 4.3 (Polyanalytic functional calculus for bounded operators) Let 
T ∈ BC(X), assume that the operators T

�
, � = 0, 1, 2, 3 have real spectrum, where 

one of the T
�
 is the zero operator, and set dsJ = ds(−J) for J ∈ �. For every function 

f̆ ◦ = Df  (resp. f̆ ◦ = fD ) with f ∈ SHL(�S(T)) (resp. f ∈ SHR(�S(T)) ), we define

where FL(s,T) (resp. FR(s,T) ) is the left (resp. right) resolvent operator defined in 
(2.2).

Remark 4.4 Similarly to the Q-functional calculus and F-functional calculus, the 
independence of the polyanalytic functional calculus from the ker(D) follows by 

O(D) TF1−−−−→ SH(ΩD) D−−−−→ AP2(ΩD) D−−−−→ AM(ΩD), (4.1)

D
2f (q) =

(
�q0 +

3∑

i=1

ei�qi

)2

f (q) = 0;

PL
2
(s,T) = −FL(s,T)s + T0FL(s,T),(

resp. PR
2
(s,T) = −sFR(s,T) + T0FR(s,T)

)
.

f̆ ◦(T) ∶=
1

2𝜋 ∫𝜕(U∩ℂJ )

PL
2
(s,T)dsJf (s),

(
resp. f̆ ◦(T) ∶=

1

2𝜋 ∫𝜕(U∩ℂJ )

f (s)dsJP
R
2
(s,T)

)
,
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the monogenic functional calculus of McIntosh. This requires that the operators T
�
, 

� = 0, 1, 2, 3 have real spectrum and one of the T
�
 has to be zero.

Remark 4.5 As it happens for other functional calculi based on the S-spectrum, 
also the polyanalytic functional calculus enjoys a linearity property. If f̆ ◦ = Df  
and ğ◦ = Dg (resp. f̆ ◦ = fD and ğ◦ = gD ) with f,   g ∈ SHL(�S(T)) (resp. f,   
g ∈ SHR(�S(T)) ) and a ∈ ℍ then

Considering the transformation from unbounded operators T ∈ KC(X) to bounded 
operators A defined as A ∶= (T − �I)−1, we now show a relation between the resol-
vents PL

2
(p,A) and PL

2
(s,T) that will lead us to the suitable definition of the P2-func-

tional calculus.

Theorem 4.6 Let T ∈ KC(X) and assume that there exists � ∈ ℝ such that T − �I  
has bounded inverse and define A ∶= (T − �I)−1. Assume that s ∈ �S(T) and 
p = (s − �)−1, then we have

where (4.3) holds on X.

Proof By Theorem 2.24 we know that

and from the definition of the left P2-resolvent and of the F-resolvent operators, we 
get

(4.2)
(f̆ ◦a + ğ◦)(T) = f̆ ◦(T)a + ğ◦(T)
(
resp. (af̆ ◦ + ğ◦)(T) = af̆ ◦(T) + ğ◦(T)

)
.

(4.3)
PL
2
(p,A)p4 = PL

2
(s,T) − 4(sI − T̄)Qc,s(T)

−1p

+ 4(T0 − sI)Qc,s(T)
−1p + 4p2I

Qc,p(A)
−1 =

(
AA

)−1

Qc,s(T)
−1p−2, for s ∈ �S(T)

PL
2
(p,A) =

(A + Ā)

2
FL(p,A) − FL(p,A)p

= − 4
(A + Ā)

2

(
(pI − Ā)Qc,p(A)

−2
)
+ 4

(
(pI − Ā)Qc,p(A)

−2
)
p

= − 4(pI − Ā)
(A + Ā)

2

(
(AĀ)−2Qc,s(T)

−2p−4
)

+ 4(pI − Ā)
(
(AĀ)−2Qc,s(T)

−2p−4
)
p

=4(AĀ)−1(pI − Ā)

(
−
(AĀ)−1(A + Ā)

2
+ p(AĀ)−1

)
Qc,s(T)

−2p−4

=4(AĀ)−1(pI − Ā)

(
−
A−1 + Ā−1

2
+ p(AĀ)−1

)
Qc,s(T)

−2p−4.
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We observe that

Moreover, we recall that dom(T) = dom(T) so

Therefore, for s ∈ �S(T) , we have

and

Furthermore, we have that

Hence, for s ∈ �S(T) and for allv ∈ X , we get

On dom(T2) , it is (AĀ)−1(pI − Ā) = (pI − Ā)(AĀ)−1, so from the assumption 
p = Φ�(s), we have � = s − p−1 and

so for all v ∈ dom(T2) , we have

With some computations, we have

Qc,s(T)
−2 ∶ X → dom(T4), for s ∈ �S(T).

(AĀ)−1 ∶ dom(T2) → X.

(AĀ)−1Qc,s(T)
−2 ∶ X → dom(T2),

(
−
A−1 + Ā−1

2

)
Qc,s(T)

−2 ∶ X → dom(T3).

(AĀ)−1(pI − Ā) ∶ dom(T2) → X.

(4.4)
PL
2
(p,A)v =4(AĀ)−1(pI − Ā)

×

(
−
A−1 + Ā−1

2
+ p(AĀ)−1

)
Qc,s(T)

−2p−4v.

(4.5)

(AĀ)−1(pI − Ā) = (pI − (T̄ − 𝛼I)−1)(T̄ − 𝛼I)(T − 𝛼I)

= p(𝛼2
I − 𝛼(T + T̄) + TT̄) + 𝛼I − T

= p(s2I + p−2I − 2sp−1I − s(T + T̄)

+ p−1(T + T̄) + TT̄) + sI − p−1I − T

= pQc,s(T) − (sI − T̄),

(AĀ)−1(pI − Ā)v = pQc,s(T)v − (sI − T̄)v,

PL
2
(p,A)v = 4

(
pQc,s(T) − (sI − T̄)

)(
−
A−1 + Ā−1

2
+ p(AĀ)−1

)

×Qc,s(T)
−2p−4v.

(4.6)
(
−
A−1 + Ā−1

2
+ p(AĀ)−1

)
= −sI + T0 + pQc,s(T),
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which holds on dom(T2). By formula (4.5), (4.4) and (4.6), we have

Now, since (−sI + pQc,s(T) + T0) and Qc,s(T)
−2 commute, we have

By multiplying on the right-hand side by p4 , we get the statement.   ◻

Remark 4.7 It is possible to prove Theorem  4.6 starting from other two different 
ways to write the resolvent operator PL

2
(p,A). The first one is the following

and, the other one is this

To obtain the desired formula, in the first case, it is sufficient to use the relation

while, in the second case, it is sufficient to use the relations: 
S−1
L
(p,A) = p−1I − S−1

L
(s,T)p−2 and Qc,p(A)

−1 = (AĀ)−1Qc,s(T)
−1p−2.

Now, we are ready to give a definition for a polyanalytic functional calculus of 
order 2 for unbounded operators.

Definition 4.8 (Polyanalytic functional calculus of order 2 for unbounded oper-
ators) Let T ∈ KC(X) and assume that there exists � ∈ ℝ such that T − �I  has 
bounded inverse and define A ∶= (T − �I)−1. Moreover, suppose that T0 = 0 and let 
the operators T

�
 for � = 1, 2, 3 and Bj for j = 0, 1, 2, 3 defined in (3.4), have real spec-

trum and one of the Bj is zero. Assume that �� is as in (2.4). For f ∈ SHL(�̄�S(T)) 
with f (�) = 0 and ��f (�) = 0, we consider the functions

PL
2
(p,T) = 4[pQc,s(T) − (sI − T̄)](−sI + pQc,s(T) + T0)Qc,s(T)

−2p−4.

PL
2
(p,T) = 4(pQc,s(T) − sI + T̄)Qc,s(T)

−2(−sI + T0 + pQc,s(T))p
−4

= (4pQc,s(T)
−1 + FL(s,T))(−sI + T0 + pQc,s(T))p

−4

= (−FL(s,T)s + T0FL(s,T))p
−4 + FL(s,T)pQc,s(T)p

−4

+ 4(−sI + T0)Qc,s(T)
−1p−3 + 4p−2

= PL
2
(s,T)p−4 − 4(sI − T̄)Qc,s(T)

−1p−3

+ 4(−sI + T0)Qc,s(T)
−1p−3 + 4p−2.

PL
2
(p,A) =

A + Ā

2
FL(p,A) − FL(p,A)p

PL
2
(p,A) = −4S−1

L
(p,A)Qc,p(A)

−1(A0 − pI).

FL(p,A) = (AĀ)−1(−4pQc,s(T)
−1 − FL(s,T))p

−4,

𝜙(q) ∶= (f◦𝜙−1
𝛼
)(q)

�̆�0(q) ∶=D(q2𝜙(q))
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and we define the operator f̆ 0(T), for f̆ 0 = Df , as

where �̆�0(A) is defined via the bounded polyanalytic functional calculus. A similar 
definition holds for f ∈ SHR(�̄�S(T)) with f (�) = 0 and ��f (�) = 0. It is enough to 
interchange f with �−1

�
.

Even for the polyanalytic functional calculus for unbounded operators, we can 
have an integral representation.

Theorem 4.9 Let T ∈ KC(X) and assume that there exists � ∈ ℝ such that T − �I  
has bounded inverse and define A ∶= (T − �I)−1. Moreover, suppose that T0 = 0 and 
let the operators T

�
 for � = 1, 2, 3 and Bj for j = 0, 1, 2, 3 defined in (3.4), have real 

spectrum and one of the Bj is zero. For f̆ 0 = Df  with f ∈ SHL(�̄�(T)) with f (�) = 0 
and ��f (�) = 0, the operator defined in (4.7) satisfies

where U is any unbounded slice Cauchy domain with �̄�S(T) ⊂ U and Ū ⊂ dom(f ) 
and J is any imaginary unit in �. A similar integral representation holds for 
f ∈ SHR(�̄�S(T)) with f (�) = 0 and ��f (�) = 0. It is enough to consider the right 
resolvent operator and interchange it with the function f.

Proof We assume that 𝛼 ∉ Ū. If this is not the case, we can replace U by the axially 
symmetric slice Cauchy domain U⧵B�(�) with an 𝜖 > 0 small enough, without alter-
ing the value of the integral by the Cauchy integral formula.

The set V = ��(U) is a bounded slice Cauchy domain with �̄�S(T) ⊂ V  and 
V̄ ⊂ dom(f◦𝜙−1

𝛼
). Using the relation between PL

2
(p,A) and PL

2
(s,T) (see formula 

(4.3)), we have

where we recall that s and p are related by p = ��(s) = (s − �)−1. Now we focus on 
the left-hand side of the previous equation, we have

(4.7)f̆ 0(T) ∶= �̆�0(A),

(4.8)f̆ 0(T) =
1

2𝜋 ∫𝜕(U∩ℂJ )

PL
2
(s,T) dsJ f (s)

(4.9)

∫𝜕(U∩ℂJ )

(PL
2
(s,T) − 4(sI − T̄)Qc,s(T)

−1p

+ 4(T0 − sI)Qc,s(T)
−1p + 4p2I) dsJ f (s)

= ∫𝜕(V∩ℂJ )

PL
2
(p,A) dpJ p

2𝜙(p),
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We consider the last three terms in the left-hand side of the previous equation. Using 
the fact that p = (s − �)−1 , we get

since the operator T̄  is closed, it commutes with the integral. Observe that the func-
tions s ↦ sQc,s(T)

−1 and s ↦ Qc,s(T)
−1 are operator-valued left slice hyperholomor-

phic, by the vector-valued Cauchy formula [22, see Theorem 2.3.19] we get

By following similar arguments, we get

(4.10)

∫𝜕(U∩ℂJ )

(PL
2
(s,T) − 4(sI − T̄)Qc,s(T)

−1p + 4(T0 − sI)Qc,s(T)
−1p

+ 4p2I) dsJ f (s)

= ∫𝜕(U∩ℂJ )

PL
2
(s,T) dsJ f (s) − 4∫𝜕(U∩ℂJ )

(sI − T̄)Qc,s(T)
−1 dsJ pf (s)

+ 4∫𝜕(U∩ℂJ )

p dsJ (T0 − sI)Qc,s(T)
−1f (s)

+ 4∫𝜕(U∩ℂJ )

p2 dsJ f (s).

∫𝜕(U∩ℂJ )

(sI − T̄)Qc,s(T)
−1 dsJ pf (s)

= ∫𝜕(U∩ℂJ )

p dsJ sQc,s(T)
−1f (s) − T̄ ∫𝜕(U∩ℂJ )

p dsJ Qc,s(T)
−1f (s)

= ∫𝜕(U∩ℂJ )

(s − 𝛼)−1 dsJ sQc,s(T)
−1f (s)

− T̄ ∫𝜕(U∩ℂJ )

(s − 𝛼)−1 dsJ Qc,s(T)
−1f (s),

∫𝜕(U∩ℂJ )

(sI − T̄)Qc,s(T)
−1 dsJ pf (s)

= ∫𝜕(U∩ℂJ )

S−1
L
(s, 𝛼) dsJ sQc,s(T)

−1f (s)

− T̄ ∫𝜕(U∩ℂJ )

S−1
L
(s, 𝛼) dsJ Qc,s(T)

−1f (s)

= (2𝜋)𝛼Qc,𝛼(T)
−1f (𝛼) − (2𝜋)T̄Qc,𝛼(T)

−1f (𝛼).
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To work with the last term of (4.10), we need slightly different manipulations

The identity (4.9) turns into

Since by assumption, we have f (�) = 0 and ��f (�) = 0, we get

and so we get the statement.   ◻

Let us consider f,   f∗ ∈ SHL(�S(T)) such that D(f ) = D(f∗). Then by 
Remark 3.11 we have that there exists a constant c such that f∗ = f + c. In the next 
result, we show that the polyanalytic functional calculus for f and f∗ is equivalent.

Proposition 4.10 Let T ∈ KC(X) and assume that there exists � ∈ ℝ such that 
T − �I  has bounded inverse and define A ∶= (T − �I)−1. Moreover, suppose that 
T0 = 0 and let the operators T

�
 for � = 1, 2, 3 and Bj for j = 0, 1, 2, 3 defined in (3.4), 

have real spectrum and one of the Bj is zero.

∫�(U∩ℂJ )

p dsJ (T0 − sI)Qc,s(T)
−1f (s)

= T0 ∫�(U∩ℂJ )

S−1
L
(s, �) dsJ Qc,s(T)

−1f (s)

− ∫�(U∩ℂJ )

S−1
L
(s, �) dsJ sQc,s(T)

−1

= (2�)T0Qc,�(T)
−1f (�) − (2�)�Qc,�(T)

−1f (�).

∫�(U∩ℂJ )

p2 dsJ f (s) = ∫�(U∩ℂJ )

(s − �)−2 dsJ f (s)

= �� ∫�(U∩ℂJ )

(s − �)−1 dsJ f (s)

= �� ∫�(U∩ℂJ )

S−1
L
(s, �) dsJ f (s)

= (2�)��f (�).

− (8𝜋)𝛼Qc,𝛼(T)
−1f (𝛼) + (8𝜋)T̄Qc,𝛼(T)

−1f (𝛼) + (8𝜋)T0Qc,𝛼(T)
−1f (𝛼)

− (8𝜋)𝛼Qc,𝛼(T)
−1f (𝛼) + 8𝜋𝜕𝛼f (𝛼) + ∫𝜕(U∩ℂJ )

PL
2
(s,T) dsJ f (s)

= ∫𝜕(U∩ℂJ )

PL
2
(p,A) dpJ p

2𝜙(p).

1

2𝜋 ∫𝜕(U∩ℂJ )

PL
2
(s,T) dsJ f (s) =

1

2𝜋 ∫𝜕(U∩ℂJ )

PL
2
(p,A) dpJp

2𝜙(p)

= 𝜓0(A) = f̆0(T),
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For every function f ∈ SHL(�S(T)) with f (�) = 0 and ��f (�) = 0, the opera-
tor f̆ 0(T) defined in (4.7) does not depend on the choice of � ∈ ℝ. Moreover, if we 
replace f by f∗ = f + c, where c is a quaternionic constant, such that f∗(�) = 0 and 
�� f∗(�) = 0, for � ∈ ℝ. Then the P2-functional calculus does not depend on c. Simi-
lar considerations hold for f ∈ SHR(�S(T)) with f (�) = 0 and ��f (�) = 0.

Proof The operator defined in (4.7) is independent from the parameter � ∈ �S(T) ∩ℝ 
since the integral in (4.8) does not depend on �.

Let us consider f∗ ∶= f + c, where c is a generic quaternion. We suppose that for 
some � ∈ ℝ , we have f∗(�) = 0 and �� f∗(�) = 0. We observe that f̆ 0

∗
= f̆ 0. From the 

integral representation (4.8), we have

Since PL
2
(s,T) = −FL(s,T)s + T0FL(s,T), we can prove that:

using the same argument that we considered at the end of Proposition 3.12 to prove 
equation (3.10). Then we get

This means that we can define f̆ 0(T) by means of � instead of �.   ◻

Remark 4.11 As we observed in Remark 3.13, in the hypothesis of the previous the-
orem, if the constant c is the same in all the connected components of U,   we can 
delete the request that one of the T

�
 is the zero operator. Indeed, in this case to prove 

that

it is sufficient to apply the Cauchy integral theorem for the left slice hyperholomor-
phic vector-valued function PL

2
(s,T).

Now, we show two important properties for the P2-functional calculus for 
unbounded operators.

Theorem 4.12 Let T ∈ KC(X) and assume that there exists � ∈ ℝ such that T − �I  
has bounded inverse and define A ∶= (T − �I)−1. Moreover, suppose that T0 = 0 
and let the operators T

�
 for � = 1, 2, 3 and Bj for j = 0, 1, 2, 3 defined in (3.4), have 

real spectrum and one of the Bj is zero.

̆f 0
∗
(T) =

1

2𝜋 ∫𝜕(U∩ℂJ )

PL
2
(s,T)dsJf∗(s)

=
1

2𝜋 ∫𝜕(U∩ℂJ )

PL
2
(s,T)dsJf (s) +

1

2𝜋 ∫𝜕(U∩ℂJ )

PL
2
(s,T)dsJc.

1

2� ∫�(U∩ℂJ )

PL
2
(s,T)dsJc = 0,

f̆ 0
∗
(T) = f̆ 0(T).

−
1

� ∫�(U∩ℂJ )

PL
2
(s,T)dsJc = 0,
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• (Linearity) If f,  g ∈ SHL(�S(T)) and a ∈ ℍ, then

Similarly, if f,  g ∈ SHR(�S(T)) and a ∈ ℍ, then

Proof Let us consider A = (T − �I)−1. We recall that �� is defined in (2.4). By (4.7) 
and (4.2) we have

By similar arguments, it is possible to show the statement for right slice hyperholo-
morphic functions.   ◻

To show the product rule for the unbounded P2-functional calculus, we need the 
following preliminary result.

Proposition 4.13 Let T ∈ KC(X) with �S(T) ∩ℝ ≠ �. Then if s,   p ∈ �S(T) with 
s ∉ [p] we have

where T ∶= T1e1 + T2e2 + T3e3.

Proof The result follows by suitably multiplying the S-resolvent equation with the 
commutative pseudo Cauchy kernel, like in [35, Thm 4.2].   ◻

We need also the following technical result.

Lemma 4.14 Let B ∈ KC(X). If we consider G being an unbounded slice Cauchy 
domain and f ∈ N(�S(T)) with f (∞) = 0, for p ∈ G we have

Proof The result follows by following similar arguments of [22, Lemma 4.2.1].   ◻

(f̆ 0a + ğ0)(T) = f̆ 0(T)a + ğ0(T).

(af̆ 0 + ğ0)(T) = af̆ 0(T) + ğ0(T).

(af̆ 0 + ğ0)(T) = D
(
q2(fa + g)◦𝜙−1

𝛼

)
(A)

= D
(
q2(f◦𝜙−1

𝛼
)a + q2(g◦𝜙−1

𝛼
)
)
(A)

= D(q2(f◦𝜙−1
𝛼
))(A)a +D(q2(g◦𝜙−1

𝛼
))(A)

= f̆ 0(T)a + ğ0(T).

(4.11)

S−1
R
(s,T)PL

2
(p,T) + PR

2
(s,T)S−1

L
(p,T)

− 4Qc,s(T)
−1TQc,p(T)

−1 = [(PR
2
(s,T) − PL

2
(p,T))p

− s̄(PR
2
(s,T) − PL

2
(p,T))](p2 − 2s0p + |s|2)−1,

1

2𝜋 ∫𝜕(G∩ℂJ )

f (s)dsJ(s̄B − Bp)(p2 − 2s0p + |s|2)−1 = Bf (p).



 F. Colombo et al.84 Page 36 of 41

Theorem 4.15 Let T ∈ KC(X) and assume that there exists � ∈ ℝ such that T − �I  
has bounded inverse and define A ∶= (T − �I)−1. Moreover, suppose that T0 = 0 
and let the operators T

�
 for � = 1, 2, 3 and Bj for j = 0, 1, 2, 3 defined in (3.4), have 

real spectrum and one of the Bj is zero. We assume that f (�) = 0 and ��f (�) = 0. 
Moreover, we suppose that f (∞) = 0. If f ∈ N(�S(T)) and g ∈ SHL(�S(T)) or 
f ∈ SHR(�S(T)) and g ∈ N(�S(T)), then

Proof Let G1 and G2 be two unbounded slice Cauchy domains such that they con-
tain the S-spectrum. We suppose also that G1 ⊂ G2 and G2 ⊂ dom(f ) ∩ dom(g). We 
pick p ∈ �(G1 ∩ ℂJ) and s ∈ �(G1 ∩ ℂJ). From the integral representations of the 
unbounded P2 functional calculus, unbounded S -functional calculus and unbounded 
Q functional calculus, see Theorems 2.21, 3.7 and 4.9, respectively, we have

Now, from the fact that f is intrinsic, formula (4.11), and the Cauchy integral for-
mula, we have

Finally by Lemma 4.14 and Theorem 4.9, we get

D(fg)(T) = f (T)(Dg)(T) + (Df )(T)g(T) −D(f )(T)TD(g)(T).

f (T)(Dg)(T) + (Df )(T)g(T) −D(f )(T)TD(g)(T)

=
1

(2�)2 ∫�(G2∩ℂJ )

f (s)dsJS
−1
R
(s,T)∫�(G1∩ℂJ )

PL
2
(p,T)dpJg(p)

+
1

(2�)2 ∫�(G2∩ℂJ )

f (s)dsJP
R
2
(s,T)∫�(G1∩ℂJ )

S−1
L
(p,T)dpJg(p)

−
1

�2

(

∫�(G2∩ℂJ )

f (s)dsJQ
−1
c,s
(T)

)
T

(

∫�(G1∩ℂJ )

Q
−1
c,p
(T)dpJg(p)

)
.

f (T)(Dg)(T) + (Df )(T)g(T) −D(f )(T)TD(g)(T)

=
1

(2𝜋)2 ∫𝜕(G2∩ℂJ )
∫𝜕(G1∩ℂJ )

f (s)dsJ[S
−1
R
(s,T)PL

2
(p,T)

+ PR
2
(s,T)S−1

L
(p,T) − 4Qc,s(T)

−1TQc,p(T)
−1]dpJg(p)

=
1

(2𝜋)2 ∫𝜕(G2∩ℂJ )
∫𝜕(G1∩ℂJ )

f (s)dsJ[(P
R
2
(s,T) − PL

2
(p,T))p

− s̄(PR
2
(s,T) − PL

2
(p,T))](p2 − 2s0p + |s|2)−1dpJg(p)

=
1

(2𝜋)2 ∫𝜕(G2∩ℂJ )
∫𝜕(G1∩ℂJ )

f (s)dsJ[s̄P
L
2
(p,T) − PL

2
(p,T)p]

× (p2 − 2s0p + |s|2)−1dpJg(p).

f (T)(Dg)(T) + (Df )(T)g(T) −D(f )(T)TD(g)(T)

=
1

2� ∫�(G1∩ℂJ )

PL
2
(p,T)dpJf (p)g(p)

= D(fg)(T).
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  ◻

The definition and the properties of the polyanalytic functional calculus can 
be extended to the case of n-tuples of unbounded operators and for polyanalytic 
function of greater order. To do this, we need to work with the Fueter’s theorem 
in the Clifford algebra setting in dimension at least five, because we will have 
more involved factorizations than the ones considered in (3.1) and (4.1).

5  Concluding remarks

In [13, 34], based on the factorizations (3.1) and (4.1), the authors have studied har-
monic and polyanalytic functional calculi based on the S-spectrum. These are based 
on the integral transforms given in (1.4) and (1.5). The quaternionic fine structures 
in the cases of bounded and unbounded operators induced by the factorization of the 
Laplace operator in terms of the Cauchy–Fueter operator and of its conjugate can be 
globally summarized in the following diagram
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We observe that the previous diagram in the Clifford setting is much more 
involved. Since the Fueter–Sce map is TF2 = Δ

n−1

2

n+1
, with n being an odd number, 

there are different ways of factorizing TF2 and these give rise to a more complicated 
fine structures, see [16].

In literature, there is also another way to study a functional calculus for 
unbounded operators: the so-called direct approach. This is directly based on the 
Cauchy formula for unbounded domains. For the S-functional calculus and the 
Riesz–Dunford functional calculus, this is consistent with the approach recalled in 
this paper in Sects. 1 and 2, see [21, 37]. In a forthcoming paper, we aim to study 
the unbounded versions of the F-functional calculus, the Q-functional calculus, and 
the P2-functional calculus with the direct approach. Moreover, we aim to show that 
these approaches are consistent with the ones presented in this paper.

The class of polyanalytic functions is widely studied in literature both in the com-
plex case, see [9], and in the non-commutative setting, see [5, 7, 8, 11]. The motiva-
tions to consider this class of functions come from some elasticity problems studied 
by Kolossov and Muskhelishvili, see [42]. Recently, this class of functions has been 
also related to the study of some time–frequency problems, see [33, 38]. Moreover, 
some famous spaces of holomorphic functions have been expanded in the polyana-
lytic setting, see [4, 45].

In the following table, we summarize the conditions on the slice hyperholomor-
phic functions given to define the unbounded functional calculi of the quaternionic 
fine structures: 

Functional calculus Condition

S-functional None
Q-functional None
P
2

-functional f (�) = 0 
and 
�� f (�) = 0

F-functional f (�) = 0
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