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Abstract
A non-empty set of operators M is reflexive if an operator T is in M if and only if
T x ∈ Mx , for all vectors x . In this paper, we study the reflexivity of finite-dimensional
sets of operators. We introduce the class of flat sets of operators and prove several
results related to the reflexivity of these sets; in particular, we show that the convex
hull of three (or fewer) operators is reflexive.

Keywords Reflexive set of operators · Locally linearly dependent operators · Flat
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1 Introduction

LetX andY be complex Banach spaces and letB(X ,Y ) be the Banach space of all
bounded linear operators fromX to Y (of course; ifX = Y , then we write B(X )

instead of B(X ,X )). A non-empty set M ⊆ B(X ,Y ) is reflexive if an operator
T ∈ B(X ,Y ) is in M if and only if T x ∈ Mx , for all x ∈ X . It is not hard to see
that every finite set of operators is reflexive; see [3, Proposition 2.2]. IfM ∈ B(X ,Y )

and � ⊆ C is non-empty, then � · M = {λM; λ ∈ �} is a reflexive set if and only
if � is closed (see [3, Proposition 2.5]). In particular, every one-dimensional space of
operators is reflexive.

Reflexivity was introduced by Halmos for subalgebras of B(H ), where H is a
Hilbert space.Loginov andShulman [8, 9] have extended reflexivity to linear subspaces
ofB(H )which are not necessarily algebras (see [6, Preliminaries]). In [3], we studied
the reflexivity of arbitrary sets of operators. More precisely, no algebraic structure is
assumed in the set under consideration. In [3, Section 4], we focused on the reflexivity

Communicated by Esteban Andruchow.

B Janko Bračič
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of convex sets of operators. In this paper, we continue that study. Our main interest is
in the question of whether a convex hull of a finite set of operators is reflexive. We are
able to give an affirmative answer for the convex hull of three (or fewer) operators.
However, the general problem remains open. The presented results are proved for flat
sets of operators (for the definition, see Sect. 2.3), a particular case of which are convex
sets.

The paper is organized as follows. In Sect. 2, we introduce notation and terminology
and prove some preliminary results. If the set of operators contains only operators with
high rank, then it is reflexive. This is proved in Sect. 3. The assertion follows from
known results related to the reflexivity of linear spaces of operators with a high rank
(see [4, 6, 7, 10]) and our main tool (Theorem 3.1) which gives a sufficient condition
for a subset of a reflexive set to be reflexive. Section4 is devoted to sets of operators
determined by rank-one operators, and in the last section, we give a characterization
of two-dimensional reflexive flat sets of operators.

2 Preliminaries

The dual space of a complex Banach space X is denoted by X ∗ and the pairing
between these two Banach spaces is given by 〈x, ξ 〉 = ξ(x), for all x ∈ X , ξ ∈ X ∗.
For an operator T ∈ B(X ,Y ), we denote byR(T ) its range and byN (T ) its kernel.
IfR(T ) is a finite-dimensional subspace ofY , then T is a finite rank operator and we
denote its rank, that is, the dimension of R(T ), by rk(T ). For arbitrary 0 �= f ∈ Y
and 0 �= ξ ∈ X ∗, the rank-one operator f ⊗ ξ is given by ( f ⊗ ξ)x = 〈x, ξ 〉 f ,
for all x ∈ X . Note that T ∈ B(X ,Y ) has rank k ∈ N if and only if there exist
linearly independent vectors f1, . . . , fk ∈ Y and linearly independent functionals
ξ1, . . . , ξk ∈ X ∗, such that T = f1 ⊗ ξ1 + · · · + fk ⊗ ξk .

2.1 Reflexivity

For a non-empty set M ⊆ B(X ,Y ) and a vector x ∈ X , let Mx be the closure
of the orbit Mx = {Mx; M ∈ M} ⊆ Y . Operator T ∈ B(X ,Y ) is locally in M
if T x ∈ Mx , for all x ∈ X . The set of all those operators that are locally in M is
called the reflexive cover of M and is denoted by Ref(M). Thus

Ref(M) =
⋂

x∈X
{T ∈ B(X ,Y ); T x ∈ Mx}.

Hence, an operator T is in Ref(M) if and only if, for every x ∈ X and every ε > 0,
there exists an operator Mx,ε ∈ M, such that ‖(T − Mx,ε)x‖ < ε. In the following
lemma,we show that Ref(M) is closed in the strong operator topology.Note, however,
that Ref(M) is not closed in the weak operator topology, in general (see [3, p. 756]).

Lemma 2.1 The reflexive cover of a non-empty set is closed in the strong operator
topology.
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Proof LetM ⊆ B(X ,Y ) be a non-empty set. Suppose that
(
Tj

)
j∈J ⊆ Ref(M) is a

net that converges to T ∈ B(X ,Y ) in the strong operator topology. Let x ∈ X and
ε > 0 be arbitrary. Then, there exists an index jε ∈ J , such that ‖T x − Tj x‖ < ε

2 ,
for all j ∈ J , such that j > jε. Let j > jε be arbitrary. Since Tj ∈ Ref(M)

there exists Mx,ε ∈ M, such that ‖(Tj − Mx,ε)x‖ < ε
2 . Hence, ‖(T − Mx,ε)x‖ ≤

‖(T − Tj )x‖ + ‖(Tj − Mx,ε)x‖ < ε, that is, T ∈ Ref(M). ��
Hadwin [5] introduced algebraic reflexivity. The algebraic reflexive cover of M

is Refa(M) = ⋂
x∈X {T ∈ B(X ,Y ); T x ∈ Mx}, that is, an operator T is

in Refa(M) if and only if, for every x ∈ X , there exists Mx ∈ M, such that
T x = Mxx . It is clear that Refa(M) ⊆ Ref(M) and these sets are equal if Mx
is a closed subset of Y , for every x ∈ X . For instance, if M is a finite set or a
finite-dimensional subspace of B(X ,Y ), then Mx is closed for every x ∈ X and,
therefore, Refa(M) = Ref(M).

It is not hard to see that M ⊆ Refa(M) ⊆ Ref(M). Moreover, one has
Ref

(
Ref(M)

) = Ref(M) and, similarly, Refa
(
Refa(M)

) = Refa(M). A set
M ⊆ B(X ) is said to be reflexive if Ref(M) = M. If Refa(M) = M, then
M is said to be algebraically reflexive. Of course, every reflexive set is algebraically
reflexive.

Lemma 2.2 LetM ⊆ B(X ,Y ) be a non-empty set. If A ∈ B(Y ) and B ∈ B(X ) are
invertible operators, then Ref(AMB) = ARef(M)B. In particular,M is reflexive if
and only if AMB is reflexive.

Proof Assume that T ∈ Ref(M). Let x ∈ X and ε > 0 be arbitrary. By the definition
of the reflexive cover, there exists Mx,ε ∈ M, such that ‖(T − Mx,ε)x‖ < ε

‖A‖‖B‖ . It
follows that ‖(AT B − AMx,εB)x‖ < ε. Since AMx,εB ∈ AMB, we conclude that
AT B ∈ Ref(AMB). We have proved that ARef(M)B ⊆ Ref(AMB). A similar
inclusion holds if we replace A by A−1 and B by B−1, that is, A−1Ref(M)B−1 ⊆
Ref(A−1MB−1) which gives Ref(M) ⊆ ARef(A−1MB−1)B. This last inclusion
holds for all non-empty sets, and hence, we can put in it AMB. Then, we obtain
Ref(AMB) ⊆ ARef(M)B. This proves equality Ref(AMB) = ARef(M)B. Of
course, if follows from the equality that M is reflexive if and only if AMB is
reflexive. ��

If X1 and X2 are complex Banach spaces, then let X1 ⊕ X2 be the direct sum
of X1 and X2 equipped with the norm ‖x1 ⊕ x2‖ = ‖x1‖ + ‖x2‖. For non-empty
sets Mi ⊆ B(Xi ,Yi ) (i = 1, 2), let M1 ⊕ M2 = {M1 ⊕ M2; M1 ∈ M1, M2 ∈
M2} ⊆ B(X1 ⊕ X2,Y1 ⊕ Y2).

Lemma 2.3 Let Mi ⊆ B(Xi ,Yi ) (i = 1, 2) be non-empty sets. Then, Ref(M1 ⊕
M2) = Ref(M1)⊕Ref(M2). In particular,M1 ⊕M2 is reflexive if and only ifM1
and M2 are reflexive.

Proof Let T ∈ Ref(M1⊕M2) be arbitrary. Then, with respect to the decompositions

X1 ⊕ X2 and Y1 ⊕ Y2, operator T has an operator matrix

[
T11 T12
T21 T22

]
. For arbitrary

x1 ⊕ x2 ∈ X1 ⊕ X2 and ε > 0, there exists an operator M1 ⊕ M2 ∈ M1 ⊕ M2
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(which depends on x1 ⊕ x2 and ε), such that ‖(T − M1 ⊕ M2)x1 ⊕ x2‖ < ε. It follows
that:

‖T11x1 + T12x2 − M1x1‖ < ε and ‖T21x1 + T22x2 − M2x2‖ < ε. (2.1)

If x1 = 0 and x2 ∈ X2 is arbitrary, then (2.1) implies that T11 ∈ Ref(M1) and T21 = 0.
Similarly, if x1 ∈ X1 is arbitrary and x2 = 0, then (2.1) implies T22 ∈ Ref(M2) and
T12 = 0. We conclude that T = T11 ⊕ T22 ∈ Ref(M1) ⊕ Ref(M2).

To prove the opposite inclusion, assume that T ∈ Ref(M1)⊕Ref(M2). Then, T =
T1 ⊕ T2, where T1 ∈ Ref(M1) and T2 ∈ Ref(M2). For arbitrary x1 ⊕ x2 ∈ X1 ⊕X2
and ε > 0, there existsMx1,ε ∈ M1 andMx2,ε ∈ M2, such that ‖(T1−Mx1,ε)x1‖ < ε

and ‖(T1 − Mx2,ε)x2‖ < ε. It follows that ‖(T − Mx1,ε ⊕ Mx2,ε)x1 ⊕ x2‖ < 2ε. We
conclude that T ∈ Ref(M1 ⊕ M2). ��

2.2 Flat subsets ofC
n

In this paper, we will work with a special class of closed subsets � ⊆ C
n called flat

sets. A flat set � is determined by a complex matrix C ∈ Mm×n and an m-tuple of
closed sets � j ⊆ C as follows:

� = {λ = (λ1, . . . , λn)
ᵀ ∈ C

n; Cλ ∈ �1 × · · · × �m}.

It follows from the definition that � is a flat set if it is the preimage of �1 × · · · × �m

with respect to the linear transformation C : C
n → C

m . Since �1 × · · · × �m is a
closed subset of C

m and C is a continuous transformation, every flat set is closed. It
is clear that �1 × · · · × �m itself is a flat set. In particular, every closed subset of C is
flat. The empty subset of C

n is flat. Another obvious example of a flat set is any linear
subspace of C

n . Indeed, it is obvious that every linear subspace � of C
n is the kernel

of a matrix, say C ∈ Mn×n . Hence, � is determined by C and {0}n .
Proposition 2.4 Let � ⊆ C

n be a flat set.

(i) If μ = (μ1, . . . , μn)
ᵀ ∈ C

n, then �−μ = {λ−μ = (λ1 −μ1, . . . , λn −μn)
ᵀ ∈

C
n; λ = (λ1, . . . λn)

ᵀ ∈ �} is a flat set.
(ii) Set � = {θ ∈ C

p; Aθ ∈ �} is flat, for an arbitrary matrix A ∈ Mn×p.
(iii) If B ∈ Mn×n is invertible, then � = B� is a flat set.
(iv) The intersection of finitely many flat sets in C

n is a flat set.
(v) If �k ⊆ C

nk (k = 1, . . . , q) are flat sets, then � = �1 ⊕ · · · ⊕ �q ⊆ C
n, where

n = n1 + · · · + nq , is a flat set.

Proof To prove (i)–(iii), assume that � is determined by a matrix C ∈ Mm×n and
closed subsets � j ⊆ C ( j = 1, . . . ,m).

(i) Let Cμ = (μ′
1, . . . , μ

′
n)

ᵀ. If λ ∈ �, then C(λ − μ) = Cλ − Cμ ∈ (�1 − μ′
1) ×

· · · × (�m − μ′
1), that is, � − μ is contained in the flat set that is determined by

C and sets � j − μ′
j ( j = 1, . . . ,m). On the other hand, if ν is in the flat set that

is determined by C and sets �1 − μ′
j , then Cν ∈ (�1 − μ′

1) × · · · × (�m − μ′
1)
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and therefore C(ν + μ) ∈ �1 × · · · × �m , which means that λ = ν + μ ∈ �.
Hence, ν = λ − μ ∈ � − μ. This proves that � − μ is a flat set.

(ii) If θ ∈ C
p is such that CAθ ∈ �1 × · · · × �m , then Aθ ∈ �, by the definition of

�, and therefore θ ∈ �. On the other hand, if θ ∈ �, then CAθ ∈ �1×· · ·×�m .
Hence, � is determined by the matrix CA and closed subsets � j ⊆ C ( j =
1, . . . ,m).

(iii) Let B ∈ Mn×n be an invertible matrix. If σ ∈ C
n is such that CB−1σ ∈ �1 ×

· · · × �m , then B−1σ ∈ �, by the definition of �. It follows that σ ∈ �. On
the other hand, if σ ∈ �, then there exists λ ∈ �, such that σ = Bλ. Hence,
CB−1σ = Cλ ∈ �1 ×· · ·×�m . Thus, � is determined by the matrix CB−1 and
closed subsets � j ⊆ C ( j = 1, . . . ,m).
For (iv) and (v), it is enough to consider only the case of two flat sets.

(iv) Assume that �′ is determined by a matrix C ′ ∈ Mm′×n and closed sets �′
j ⊆ C

and �′′ is determined by C ′′ ∈ Mm′′×n and closed sets �′′
j ⊆ C. Let C =[

C ′
C ′′

]
, that is, C ∈ M(m′+m′′)×n . We claim that �′ ∩ �′′ is determined by C

and �′
1 × · · ·�′

m′ × �′′
1 × · · · × �′′

m′′ . It is clear that Cλ =
[
C ′λ
C ′′λ

]
∈ C

m′+m′′
,

for all λ ∈ C
n . Assume that λ ∈ �′ ∩ �′′. Then, C ′λ ∈ �′

1 × · · · �′
m′ and

C ′′λ ∈ �′′
1 × · · · �′′

m′′ . Hence, Cλ ∈ �′
1 × · · ·�′

m′ × �′′
1 × · · · �′′

m′′ . This shows
that the intersection �′ ∩ �′′ is a subset of the flat set that is determined by C
and �′

1 × · · · �′
m′ × �′′

1 × · · ·�′′
m′′ . On the other hand, if λ is in that set, then

Cλ ∈ �′
1 × · · · �′

m′ × �′′
1 × · · · �′′

m′′ which means that C ′λ ∈ �′
1 × · · · �′

m′ and
C ′′λ ∈ �′′

1 × · · · �′′
m′′ , that is λ ∈ �′ ∩ �′′.

(v) Assume that � j ( j = 1, 2) is determined by a matrix C j ∈ Mm j×n j and closed

subsets �
( j)
1 , . . . , �

( j)
m j of C. Let C = C1 ⊕ C2. This is a matrix of dimension

(m1 +m2) × (n1 + n2). We claim that �1 ⊕ �2 is a flat set determined by C and
�

(1)
1 × · · ·×�

(1)
m1 ×�

(2)
1 × · · ·×�

(2)
m2 . It is clear that for λ ∈ �1 ⊕�2, there exist

λ1 ∈ �1 and λ2 ∈ �2, such that λ = λ1 ⊕ λ2. Hence, Cλ = C1λ1 ⊕ C2λ2 ∈
�

(1)
1 × · · · × �

(1)
m1 × �

(2)
1 × · · · × �

(2)
m2 . On the other hand, if λ ∈ C

n1+n2 is such

that Cλ ∈ �
(1)
1 × · · · × �

(1)
m1 × �

(2)
1 × · · · × �

(2)
m2 , let λ1 ∈ C

n1 and λ2 ∈ C
n2 be

such that λ = λ1 ⊕ λ2. It follows that Cλ = C1λ1 ⊕C2λ2 ∈ �
(1)
1 × · · · × �

(1)
m1 ×

�
(2)
1 × · · · × �

(2)
m2 and, therefore, C jλ j ∈ �

( j)
1 × · · · × �

( j)
m j , for j = 1, 2. By the

definition of � j , we have λ j ∈ � j which gives λ ∈ �.

��
Example We have already observed that subspaces of C

n are flat sets; in particu-
lar, every hyperplane is a flat set. Every hyperplane separates C

n in two halfspaces.
Halfspaces are flat sets. Indeed, let 0 �= C = [c1, . . . , cn] ∈ M1×n and let
� = {z ∈ C; Re(z) ≥ 0}. Then, the flat set determined by C and � is a halfs-
pace � = {(λ1, . . . , λn)ᵀ ∈ C

n; Re(c1λ1 + · · · + cnλn) ≥ 0}.
Recall that a convex polytope in C

n is the intersection of a finite family of halfs-
paces. By Proposition 2.4, any convex polytope in C

n is a flat set. For instance, the
convex hull of the standard basis (e1, . . . , en) in C

n is determined by the matrix
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C =

⎡

⎢⎢⎢⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1
1 1 · · · 1

⎤

⎥⎥⎥⎥⎥⎦
∈ M(n+1)×n and sets � j = [0, 1], for j = 1, . . . , n, and

�n+1 = {1}. ��

2.3 Finite-dimensional sets of operators

We will say that a non-empty setM ⊆ B(X ,Y ) is finite-dimensional, if span(M),
the closed linear span of M, is a finite-dimensional subspace of B(X ,Y ). If
dim

(
span(M)

) = n ≥ 1, then we will say that M is an n-dimensional set of opera-
tors. For instance, let M1, . . . , Mn ∈ B(X ,Y ) be arbitrary operators and let� ⊆ C

n

be an arbitrary non-empty set. Denote by M = [M1, . . . , Mn] the 1 × n operator
matrix. Then, � · M = {λ · M = λ1M1 + · · · + λnMn; λ = (λ1, . . . , λn)

ᵀ ∈ �} is
a finite-dimensional set. Actually, all finite-dimensional sets of operators are of this
form.

Lemma 2.5 Let M ⊆ B(X ,Y ) be a finite-dimensional set. Then, there exists M =
[M1, . . . , Mn], with linearly independent operators M1, . . . , Mn, and a non-empty set
� ⊆ C

n, such that M = � · M. Set M is closed if and only if � is a closed set.

Proof LetM �= {0} be an arbitrary finite-dimensional set. Suppose that (M1, . . . , Mn)

is a basis of span(M) and denote M = [M1, . . . , Mn]. For every T ∈ M, there exists
a unique λ ∈ C

n , such that T = λ · M. Let � = {λ ∈ C
n; there exists T ∈

M such that T = λ · M}. It is easily seen that M = � · M.
Assume that � is a closed set. Let

(
Tk

)∞
k=1 ⊆ � · M be a Cauchy sequence and let

T ∈ B(X ,Y ) be its limit. For each k ∈ N, there exists λ(k) = (λ
(k)
1 , . . . , λ

(k)
n )ᵀ ∈ �,

such that Tk = λ
(k)
1 M1 + · · · + λ

(k)
n Mn . Since M1, . . . , Mn are linearly independent

operators, for each 1 ≤ i ≤ n, there exists a functional �i ∈ B(X ,Y )∗, ‖�i‖ = 1,
such that 〈Mi ,�i 〉 = ‖Mi‖ and 〈Mj ,�i 〉 = 0 for j �= i . Let ε > 0 be arbitrary. Then,
there exists an index kε, such that ‖Tk − Tl‖ < ε for all k, l ≥ kε. It follows that:

|λ(k)
i − λ

(l)
i |‖Mi‖ = |〈(λ(k)

1 − λ
(l)
1 M1 + · · · + (λ

(k)
n − λ

(l)
n )Mn, �i 〉| ≤ ‖Tk − Tl‖ < ε,

for all i . Hence,
(
λ(k)

)∞
k=1 is a Cauchy sequence in �. Let λ = (λ1, . . . , λn)

ᵀ ∈ � be

its limit. It follows that limk→∞ ‖λ(k) ·M−λ ·M‖ = 0. Hence, for every ε > 0, there
exists an index kε, such that ‖T − λ · M‖ ≤ ‖T − Tk‖ + ‖λ(k) · M − λ · M‖ < ε, for
all k ≥ kε. We may conclude that T = λ · M ∈ � · M.

Suppose now that � is a non-empty subset of C
n , such that � · M is a closed

set of operators. Let λ(k) = (λ
(k)
1 , . . . , λ

(k)
n )ᵀ ∈ � be a Cauchy sequence and let

λ = (λ1, . . . , λn)
ᵀ ∈ C

n be its limit. Then, limk→∞ λ
(k)
j = λ j for every 1 ≤ j ≤ n.
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Denote Tk = λ(k) · M and T = λ · M. Note that Tk ∈ � · M. It follows that:

‖Tk − T ‖ = ‖(λ(k)
1 − λ1)M1 + · · · + (λ(k)

n − λn)Mn‖

≤ |λ(k)
1 − λ1| + · · · + |λ(k)

n − λn|
)
max{‖Mj‖; 1 ≤ j ≤ n} k→∞−−−→ 0.

Since � · M is closed, it follows that T ∈ � · M. Assume that μ = (μ1, . . . , μn)
ᵀ

∈ � is such that T = μ · M. Then, λ1M1 + · · · + λnMn = μ1M1 + · · · + μnMn and,
therefore, λ = μ as (M1, . . . , Mn) are linearly independent. ��

Now, we introduce flat sets of operators. A non-empty finite-dimensional set
of operators M ⊆ B(X ,Y ) is flat if there exist M = [M1, . . . , Mn], where
M1, . . . , Mn ∈ B(X ,Y ), and a flat set � ⊆ C

n which is determined by a matrix
C ∈ Mm×n and closed sets� j ⊆ C ( j = 1, . . . ,m), such thatM = � · M. Note that
this definition does not assume that M1, . . . , Mn are linearly independent. We will say
that a flat set M �= {0} is regular if there exists a flat set � and linearly independent
operators M1, . . . , Mn , such that M = � · M. In the following lemma, we give an
equivalent condition for the regularity of a flat set of operators.

Lemma 2.6 A finite-dimensional set {0} �= M ⊆ B(X ,Y ) is a regular flat set if and
only if there exists a flat set 	 ⊆ C

k , which is determined by a matrix D ∈ Mm×k and
closed sets � j ⊆ C ( j = 1, . . . ,m), and operators N1, . . . , Nk ∈ B(X ,Y ), such
that M = 	 · N , where N = [N1, . . . , Nk], and

γ ∈ N (D) whenever γ · N = 0. (2.2)

Proof IfM is a regular flat set of operators, thenM = � · M, where � ⊆ C
n is a flat

set and M = [M1, . . . , Mn]with M1, . . . , Mn linearly independent. Hence, λ ·M = 0
implies λ = 0, which means that λ ∈ N (C), where C is the matrix which determines
�.

Assume now that M = 	 · N , where N = [N1, . . . , Nk] with N1, . . . , Nk ∈
B(X ,Y ), and	 ⊆ C

k is a flat set determined by a matrix D ∈ Mm×k and closed sets
� j ⊆ C ( j = 1, . . . ,m), such that (2.2) is fulfilled. By Lemma 2.5, there exist M =
[M1, . . . , Mn], with linearly independent operators M1, . . . , Mn , and a non-empty set
� ⊆ C

n , such thatM = � ·M. Of course, 1 ≤ n ≤ k. Since 	 ·N = M = � ·M we
have span{N1, . . . , Nk} = span{M1, . . . , Mn}. Hence, if γ ∈ C

k , then there exists a
unique λγ ∈ C

n , such that γ ·N = λγ ·M. It is not hard to see that γ �→ λγ is a linear
map from C

k onto C
n . Hence, there is a matrix B ∈ Mn×k , such that γ ·N = Bγ ·M.

Matrix B is surjective. Indeed, if λ ∈ C
n , then λ · M ∈ span{M1, . . . , Mn} and,

therefore, there exists γ ∈ C
k , such that γ · N = λ · M which gives Bγ = λ. If

γ ∈ 	, then Bγ ∈ �, by the definition of � (see the proof of Lemma 2.5). Hence,
B(	) = �.

Assume that γ ∈ N (B). Then, γ · N = 0 · M = 0 · N and, therefore, Dγ =
D0 = 0, by (2.2). Hence, N (B) ⊆ N (D). It follows that there exists a matrix
C ∈ Mm×n , such that CB = D. We claim that � is a flat set determined by C and
sets � j = � j ( j = 1, . . . ,m). Suppose that λ ∈ �. Then, there exists γ ∈ 	, such
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that λ = Bγ . Hence, Cλ = CBγ = Dγ ∈ �1 × · · · × �m . On the other hand,
if λ ∈ C

n is such that Cλ ∈ �1 × · · · × �m , then there exists γ ∈ C
k , such that

Bγ = λ. Since Dγ = CBγ = Cλ ∈ �1 × · · · × �m , we see that γ ∈ 	. This gives
that λ = Bγ ∈ �. ��

2.4 Separating vectors and locally linearly dependent operators

Let {0} �= S ⊆ B(X ,Y ) be a subspace. Vector x ∈ X is separating for S if
θx : S �→ Sx is an injective mapping from S toY (see [6]). If {0} �= M ⊆ B(X ,Y )

is a finite-dimensional set of operators, then x is a separating vector for M if it is a
separating vector for span{M1, . . . , Mn}.
Lemma 2.7 Vector x ∈ X is separating for a finite-dimensional space {0} �= S ⊆
B(X ,Y ) if and only if dim(Sx) = dim(S). In particular, x is separating for lin-
early independent operators M1, . . . , Mn if and only if M1x, . . . , Mnx are linearly
independent.

Proof Let dim(S) = k and let (S1, . . . , Sk) be a basis of S. Assume that x ∈ X is
a separating vector for S. It is clear that dim(Sx) ≤ k. Let α1, . . . , αk ∈ C be such
that α1S1x + · · · + αk Skx = 0. Since θx (α1S1 + · · · + αk Sk) = α1S1x + · · · + αk Skx
and θx is injective, we have α1S1 + · · · + αk Sk = 0 which gives α1 = · · · = αk = 0.
Thus, S1x, . . . , Skx are linearly independent and, therefore, dim(Sx) = k.

Suppose now that x ∈ X is such that dim(Sx) = k. Since Sx =
span{S1x, . . . , Skx}, we see that S1x, . . . , Skx are linearly independent vectors. Let
α1, . . . , αk ∈ Cbe such that θx (α1S1+· · ·+αk Sk) = 0.Then,α1S1x+· · ·+αk Skx = 0
and, therefore, α1 = · · · = αk = 0. Hence, θx is an injective mapping.

Let M1, . . . , Mn ∈ B(X ,Y ) be linearly independent and let S be the linear span
of these operators. Since (M1, . . . , Mn) is a basis of S, a vector x is separating for S
if and only if M1x, . . . , Mnx are linearly independent. ��

Let M1, . . . , Mn ∈ B(X ,Y ). Denote M = [M1, . . . , Mn] and SM =
span{M1, . . . , Mn}. It is said that M1, . . . , Mn are locally linearly dependent (briefly,
LLD) if there is no separating vector forSM , that is, vectorsM1x, . . . , Mnx are linearly
dependent, for any x ∈ X . Of course, if M1, . . . , Mn are linearly dependent, then
they are locally linearly dependent. The opposite does not hold, in general. Aupetit [1,
Theorem 4.2.9] proved that SM contains a non-zero operator whose rank is at most
n − 1 if M1, . . . , Mn ∈ B(X ,Y ) are LLD. We will need the following corollary
of the Aupetit’s result which is a special case of [4, Theorem 2.3]. However, we will
include an elementary proof that relies on Aupetit’s theorem.

Corollary 2.8 Linearly independent operators M1, M2 ∈ B(X ,Y ) are LLD if and
only if there exist 0 �= f ∈ Y and linearly independent functionals ξ1, ξ2 ∈ X ∗,
such that M1 = f ⊗ ξ1 and M2 = f ⊗ ξ2.

Proof It is obvious that M1 = f ⊗ ξ1 and M2 = f ⊗ ξ2 are LLD. Hence, we have
to prove the opposite implication. Denote M = [M1, M2] and SM = span{M1, M2}.
Assume that M1 and M2 are LLD. It follows that dim(SM x) ≤ 1, for all x ∈ X ,
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which means that arbitrary two operators in SM are LLD. Since M1 and M2 are
linearly independent, by [1, Theorem 4.2.9], there exists a rank-one operator A in
SM . Hence, there exist 0 �= f ∈ Y and 0 �= ξ ∈ X ∗, such that A = f ⊗ ξ . Let
u ∈ X be such that 〈u, ξ 〉 = 1 and let 0 �= B ∈ SM be arbitrary. Since Au and
Bu are linearly dependent and Au = f �= 0, there exists a number κ(u), such that
Bu = κ(u)Au = κ(u) f . Let y ∈ N (A) be arbitrary. Then, A(u+y) = Au = f �= 0.
Since B(u + y) and A(u + y) are linearly dependent, there exists κ(u + y) ∈ C, such
that B(u + y) = κ(u + y)A(u + y) = κ(u + y) f . On the other hand, B(u + y) =
Bu + By = κ(u) f + By. Hence, By = (

κ(u + y) − κ(u)
)
f . An arbitrary vector

x ∈ X can be written as x = αu + y, where α ∈ C and y ∈ N (A) = N (ξ). It
follows that Bx = αBu + By = (

(α − 1)κ(u) + κ(u + y)
)
f . This shows that B is a

rank-one operator with the range spanned by f , that is, B = f ⊗η for some η ∈ X ∗.
In particular, M1 = f ⊗ ξ1 and M2 = f ⊗ ξ2 for some ξ1, ξ2 ∈ X ∗. ��

3 Reflexivity of finite-dimensional sets of operators with high rank

For operators M1, . . . , Mn ∈ B(X ,Y ), let M = [M1, . . . , Mn] and SM =
span{M1, . . . , Mn}.
Theorem 3.1 Assume that M1, . . . , Mn are linearly independent and that SM has a
separating vector. Let �1, �2 be non-empty closed subsets of Cn, such that �1 ⊆ �2.
If �2 · M is a reflexive set, then �1 · M is a reflexive set, as well.

Proof Since �1 ⊆ �2, we have �1 · M ⊆ �2 · M which implies Ref(�1 · M) ⊆
Ref(�2 · M) = �2 · M. Hence, if T ∈ Ref(�1 · M), then T ∈ �2 · M, which means
that there exists λ = (λ1, . . . , λn)

ᵀ ∈ �2, such that T = λ ·M = λ1M1+· · ·+λnMn .
Let x ∈ X be a separating vector for SM . Hence, vectors M1x, . . . , Mnx ∈ Y are
linearly independent. It follows from T ∈ Ref(�1·M) that for every ε > 0, there exists
λ(ε) = (λ

(ε)
1 , . . . , λ

(ε)
n )ᵀ ∈ �1, such that ‖T x − (λ

(ε)
1 M1x + · · · + λ

(ε)
n Mnx)‖ < ε,

that is, ‖(λ1 − λ
(ε)
1 )M1x + · · · + (λn − λ

(ε)
n )Mnx‖ < ε. Since vectors M1x, . . . , Mnx

are linearly independent, for every j ∈ {1, . . . , n}, there exists η j ∈ Y ∗, such that
‖η j‖ = 1, 〈Mj x, η j 〉 = ‖Mj x‖ and 〈Mi x, η j 〉 = 0 if j �= i . It follows that |λ j −
λ

(ε)
j |‖Mj x‖ = |〈(λ1 − λ

(ε)
1 )M1x + · · · + (λn − λ

(ε)
n )Mnx, η j 〉| ≤ ‖(λ1 − λ

(ε)
1 )M1x +

· · · + (λn − λ
(ε)
n )Mnx‖ < ε. We may conclude that λ(ε) → λ when ε → 0. Since �1

is a closed set we have λ ∈ �1 which gives T ∈ �1 · M. ��
Larson [6, Lemma 2.4] showed that SM is a reflexive space if there is no non-zero

finite-rank operator in SM . Li and Pan [7, Theorem 2] improved this by showing that
SM is reflexive if every non-zero operator in SM has rank greater than or equal to
2n − 1. Finally, Meshulam and Šemrl have proved that SM is reflexive if every non-
zero operator in SM has rank larger than n. This assertion is stated as a slightly more
general theorem in the abstract of [10]. The proof follows from several results stated
in that paper. Using Meshulam-Šemrl’s result, we can deduce the following corollary
from Theorem 3.1.
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Corollary 3.2 If every non-zero operator in SM has rank larger than n, then � · M is
a reflexive set, for every non-empty closed set � ⊆ C

n.

Proof By the Meshulam and Šemrl’s theorem [10], SM is a reflexive space. It has a
separating vector, by Aupetit’s theorem [1, Theorem 4.2.9]. Hence, by Theorem 3.1,
� · M is reflexive. ��

4 Finite-dimensional sets determined by rank-one operators

In this section, we will consider finite-dimensional sets of operators which are deter-
mined by rank-one operators. There is no loss of generality if we work with matrices.
Let p, q ∈ N and let X = C

p, Y = C
q . Since all norms on a finite-dimensional

vector space are equivalent, we will assume that these are Euclidean spaces. However,
we will identify the dual space of C

p with itself through a linear map. More precisely,
for x, y ∈ C

p, let 〈x, y〉 = yᵀx.
If x ∈ C

p and u ∈ C
q , then uxᵀ is a rank-one matrix in Mq×p. Denote by

(e1, . . . , ep), respectively, by ( f 1, . . . , f q), the standard basis of C
p, respectively, of

C
q . For i ∈ {1, . . . , q} and j ∈ {1, . . . , p}, let Ei j = f i e

ᵀ
j , that is, Ei j is aq×pmatrix

whose entries are 0 except the entry at the position (i, j) which is 1. Throughout this
section, letM denote the 1×n operatormatrix [E11, . . . , E1p, E21, . . . , Eqp]. Inwhat
follows, we will always use this lexicographic order. Let SM = span{E11, . . . , Eqp}.
For a non-empty set E ⊆ {E11, . . . , Eqp}, we say that span(E) is a standard subspace
of SM .

Proposition 4.1 For every � = �11 × · · · × �qp, where each �i j is a non-empty
closed subset of C, the finite-dimensional set � · M is reflexive.

Proof Let T ∈ Ref(� · M). Of course, there exists α = (α11, α12, . . . , αqp)
ᵀ ∈ C

qp,
such that T = ∑q

i=1

∑p
j=1 αi j Ei j . For every vector ek from the standard basis, we

have

Tek =
q∑

i=1

p∑

j=1

αi j ( f i e
ᵀ
j )ek =

q∑

i=1

αik f i . (4.1)

On the other hand, since Tek ∈ (� · M)ek , for every ε > 0, there exists λ(ek ) =
(λ

(ek )
11 , . . . , λ

(ek )
qp )ᵀ ∈ �, which depends on ε, such that ‖(T − λ(ek ) · M)ek‖ < ε.

When we put in this inequality (4.1) and

(λ(ek ) · M)ek =
q∑

i=1

p∑

j=1

λ
(ek )
i j ( f i e

ᵀ
j )ek =

q∑

i=1

λ
(ek )
ik f i ,
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we obtain
∥∥∥
∑q

i=1(αik − λ
(ek )
ik ) f i

∥∥∥ < ε. Let l ∈ {1, . . . , q} be arbitrary. Then

∣∣∣αlk − λ
(ek )
lk

∣∣∣ =
∣∣∣∣∣ f

ᵀ
l

( q∑

i=1

(
αik − λ

(ek )
ik

)
f i

)∣∣∣∣∣ ≤
∥∥∥∥∥

q∑

i=1

(
αik − λ

(ek )
ik

)
f i

∥∥∥∥∥ < ε.

Numbers λ
(ek )
lk , which depend on ε, are in�lk and this is a closed set. Hence,αlk ∈ �lk .

Since this holds for all 1 ≤ k ≤ p and 1 ≤ l ≤ q, we have α ∈ � and, therefore,
T ∈ � · M. ��

The following is an immediate consequence of Theorem 4.1.

Corollary 4.2 Every standard subspace of SM is reflexive.

Proof Let E ⊆ {E11, . . . , Eqp} be a non-empty set. Define � = �11 × · · · × �qp as
follows. If Ei j ∈ E , then let �i j = C, and let �i j = {0} if Ei j /∈ E . It is clear that
span(E) = � · M. ��

For some standard subspaces span(E) of SM , we can show that every flat subset
� ·M of span(E) is reflexive. A subsetR of {E11, . . . , Eqp} is a row if there exists i0,
such thatR ⊆ {Ei01, . . . , Ei0 p}. Similarly, a subsetQ of {E11, . . . , Eqp} is a column
if there exists j0, such that Q ⊆ {E1 j0 , . . . , Eq j0}. Of course, when we work with a
row or a column, there is no loss of generality if we assume thatR = {Ei01, . . . , Ei0 p}
or Q = {E1 j0 , . . . , Eq j0}.
Proposition 4.3 Let R = {Ei01, . . . , Ei0 p} and Q = {E1 j0 , . . . , Eq j0}. Denote R =
[Ei01, . . . , Ei0 p] and Q = [E1 j0 , . . . , Eq j0 ]. If � ⊆ C

p is a flat set, then � · R is
reflexive. On the other hand,�· Q is reflexive, for every non-empty closed set� ⊆ C

q .

Proof Let SR = span{Ei01, . . . , Ei0 p} and assume that � ⊆ C
p is a flat set deter-

mined by non-empty closed sets �i ⊆ C (i = 1, . . . ,m) and a matrix C = [ci j ] ∈
Mm×p. Suppose that T ∈ Ref(� · R). Since � · R ⊆ SR and SR is reflexive, by
Corollary 4.2, we have T ∈ SR. Hence, there exists α = (α1, . . . , αn)

ᵀ ∈ C
n , such

that T = α1Ei01+· · ·+αpEi0 p. For every i = 1, . . . ,m, let ui = ci1e1+· · ·+cipep.
Then

Tui = (α1Ei01 + · · · + αpEi0 p)ui = (α1ci1 + · · · + αpcip) f i0 .

Fix i and let ε > 0 be arbitrary. Then, there exists λ(ui ) = (λ
(ui )
1 , . . . , λ

(ui )
p )ᵀ ∈ �,

which depends on ε, such that ‖(T − λ(ui ) · R)ui‖ < ε. Since

(λ(ui ) · R)ui = (λ
(ui )
1 Ei01 + · · · + λ(ui )

p Ei0 p)ui = (λ
(ui )
1 ci1 + · · · + λ(ui )

p cip) f i0 ,

we see that

|(α1ci1 + · · · + αpcip) − (λ
(ui )
1 ci1 + · · · + λ(ui )

p cip)| = ‖(T − λ(ui ) · R)ui‖ < ε.
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Numbers λ
(ui )
1 ci1 + · · · + λ

(ui )
p cip are in �i which is a closed set. Since ε can be

arbitrary small, we conclude that α1ci1 + · · · + αpcip ∈ �i . This holds for every
i = 1, . . . ,m. Thus, α ∈ � and, therefore, T ∈ � · R.

For the second assertion, note that SQ = span{E1 j0 , . . . , Eq j0} is reflexive, by
Corollary 4.2. It is clear that every vector x ∈ C

p, such that xeᵀ
j0

�= 0 is separating
for SQ . Hence, by Theorem 3.1, � · Q is reflexive, for every non-empty closed set
� ⊆ C

q . ��
Two-dimensional non-reflexive spaces are characterized in [2, Theorem 3.10]. The

following example is a consequence of that characterization.

Example Let E ⊆ {E11, . . . , Eqp}. If E contains {Ei j , Ei+k, j , Ei+k, j+l} or a triple
{Ei j , Ei, j+l , Ei+k, j+l}, then there exist a non-reflexive two-dimensional subspace of
the standard space span(E). To see this, assume that {Ei j , Ei, j+l , Ei+k, j+l} ⊆ E (the
case {Ei j , Ei+k, j , Ei+k, j+l} ⊆ E can be treated similarly). LetM ⊆ span(E) be the
two-dimensional space spannedby Ei j+Ei+k, j+l and Ei, j+l . It is clear that Ei j /∈ M.
However, Ei j ∈ Ref(M). To check this, choose an arbitrary x = (x1, . . . , xp)ᵀ ∈ C

p.
Then, Ei j x = f j e

ᵀ
i (x1e1 +· · ·+ xpep) = xi f j . Hence, if xi = 0, then Ei j x = 0 =

0x, and if xi �= 0, then Ei j x = xi f j = (
(Ei j + Ei+k, j+l) − xi+k

xi
Ei, j+l

)
x. Since

M � Ref(M), we have proven thatM is not reflexive. ��
For a non-empty set E ⊆ {E11, . . . , Eqp}, let

PE =
∑

Ei j∈E
Ei j .

Thus, PE ∈ Mq×p is a 0-1 matrix with 1 at the position (i, j) if and only if Ei j ∈ E .
We will say that E (and, consequently, PE ) is a twisted diagonal if

whenever there is 1 at the position (i0, j0) of PE , then either there is

no other 1 in the i0-th row or no other 1 in the j0-th column of PE .
(4.2)

Examples of twisted diagonals are rows and columns from Proposition 4.3. A
twisted diagonalE ismaximal if it is not contained properly in a larger twisted diagonal.
There is no loss of generality if we confine ourselves to maximal twisted diagonals.
In the following picture, we show two examples of matrix patterns that correspond to
maximal twisted diagonals (light square means 0 and dark one means 1).

P E1 : P E2 :

Note that PE1 is a direct sum of rows and columns and PE2 can be obtained from PE1
by permutation of rows and columns.
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Lemma 4.4 Let E ⊆ {E11, . . . , Eqp} be a maximal twisted diagonal. Then, there exist
subsets E1, . . . , Ek of {E11, . . . , Eqp}, each of which is either a row or a column, and
permutation matrices U ∈ Mq×q and V ∈ Mp×p, such that U PEV = PE1 ⊕ · · · ⊕
PEk .

Proof Let E be a maximal twisted diagonal and let PE = [ρi j ] ∈ Mq×p be the
corresponding 0-1-matrix. By maximality, there is at least one 1 in each row, and each
column of PE . Hence, for i = 1, there exist indices j1, . . . , jl1 ∈ {1, . . . , q}, where
l1 ≥ 1, such that ρ1 j1 = 1, . . . , ρ1 jl1 = 1 and ρ1 j = 0 if j is not one among the
listed indices. If necessary, we may permute columns to get j1 = 1, . . . , jl1 = l1. We
have to distinguish three cases. If l = p, then we have done: PE is a 1 × p matrix
with all entries equal to 1. Assume that 1 < l < p. Then, ρi j = 0, for all pairs
(i, j), such that 2 ≤ i ≤ q and 1 ≤ j ≤ l and for all pairs (1, l + 1), . . . , (1, p).
Let E1 = {E11, . . . , E1 l} and consider PE1 as a 1 × l matrix with all entries equal
to 1. It follows that U1PEV 1 = PE1 ⊕ PE ′ , where PE ′ ∈ M(q−1)×(p−l) is the 0-1-
matrix corresponding to E ′ = E\{E11, . . . , E1 l} andU1, respectively V 1, is a suitable
permutation of rows, respectively columns. The third case is l = 1, that is, in the first
row of PE is only one 1 (which is in the first column after a suitable permutation of
columns). Let i1, i2, . . . , it ∈ {1, . . . , q} be indices, such that ρi11 = 1, . . . , ρit1 = 1
and all other entries in the first column are 0. If necessary, we permute rows to get
i1 = 1, . . . , it = t . If t = q, then we have done: PE is a q × 1 matrix with all
entries equal to 1. Suppose that 1 ≤ t < q. Then, ρi j = 0, for all pairs (i, j),
such that 1 ≤ i ≤ t and 2 ≤ j ≤ q and for all pairs (t + 1, 1), . . . , (q, 1). Let
E1 = {E11, . . . , Et1}, that is, PE1 is a t × 1 matrix with all entries equal to 1.
It follows that U2PEV 2 = PE1 ⊕ PE ′ , where PE ′ ∈ M(q−t)×(p−1) is the 0-1-
matrix corresponding to E ′ = E\{E11, . . . , Et1} andU2, V 2 are suitable permutation
matrices. It is clear that now we continue with the same procedure and consider a
smaller matrix PE ′ . ��

Let E ⊆ {E11, . . . , Eqp} be a twisted diagonal and let U ∈ Mq×q , V ∈ Mp×p,
where E1, . . . , Ek and U , V have the same meaning as in Lemma 4.4. We say that a
flat set M ⊆ span(E) splits if UMV = M1 ⊕ · · · ⊕ Mk , where M j ⊆ span(E j )

are flat subsets, for all j = 1, . . . , k.

Proposition 4.5 Let E ⊆ {E11, . . . , Eqp} be a twisted diagonal. IfM ⊆ span(E) is a
flat subset that splits, then it is reflexive.

Proof Reflexivity of each M j follows from Proposition 4.3. By Lemma 2.3, M1 ⊕
· · · ⊕ Mk is reflexive and, therefore, M is reflexive, by Lemma 2.2. ��

5 Reflexivity of two-dimensional sets of operators

Let M = [M1, M2], where M1, M2 ∈ B(X ,Y ) are linearly independent operators,
and let � ⊆ C

2 be a non-empty closed set. In this section, we consider the reflexivity
of � · M = {λ1M1 + λ2M2; (λ1, λ2)

ᵀ ∈ �}. Let SM = span{M1, M2}. By [2,
Theorem 3.10], space SM is not reflexive if and only if there exist linearly independent
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ξ1, ξ2 ∈ X ∗ and f1, f2 ∈ Y , such that SM = span{ f1 ⊗ ξ1, f1 ⊗ ξ2 + f2 ⊗ ξ1}.
However, the following lemma shows that the R-linear span of operators f1 ⊗ ξ1 and
f1 ⊗ ξ2 + f2 ⊗ ξ1 is reflexive.

Lemma 5.1 Let ξ1, ξ2 ∈ X ∗ and f1, f2 ∈ Y be linearly independent. Denote M1 =
f1 ⊗ ξ1, M2 = f1 ⊗ ξ2 + f2 ⊗ ξ1, and M = [M1, M2]. Then, the R-linear space
R
2 · M is reflexive.

Proof It is clear that (R2 · M)x is a closed subset of Y , for every x ∈ X . Hence,
Ref(R2 · M) = Refa(R2 · M). Let T ∈ Ref(R2 · M) be arbitrary. If x ∈ X , then
there exists λ(x) = (

λ
(x)
1 , λ

(x)
2

)ᵀ ∈ R
2, such that

T x = (
λ

(x)
1 f1 ⊗ ξ1 + λ

(x)
2 ( f2 ⊗ ξ2 + f2 ⊗ ξ1)

)
x

= (
λ

(x)
1 〈x, ξ1〉 + λ

(x)
2 〈x, ξ2〉

)
f1 + λ

(x)
2 〈x, ξ2〉 f2.

(5.1)

Hence, R(T ) ⊆ span{ f1, f2} which means that there exist functionals η1, η2 ∈ X ∗,
such that

T x = 〈x, η1〉 f1 + 〈x, η2〉 f2, for all x ∈ X . (5.2)

It follows from (5.2) and (5.1) that:

〈x, η1〉 = λ
(x)
1 〈x, ξ1〉 + λ

(x)
2 〈x, ξ 〉 (5.3)

and

〈x, η2〉 = λ
(x)
2 〈x, ξ1〉, (5.4)

for all x ∈ X . Suppose that x ∈ N (ξ1) ∩ N (ξ2). Then, (5.3) gives x ∈ N (η1). It
follows that there exist α, β ∈ C, such that η1 = αξ1 +βξ2. Similarly, it follows from
(5.4) that η2 = γ ξ1 for some number γ . Thus, T = α f1 ⊗ ξ1 + β f1 ⊗ ξ2 + γ f2 ⊗ ξ1.
Equations (5.3) and (5.4) can be rewritten as

〈x, (α − λ
(x)
1 )ξ1 + (β − λ

(x)
2 )ξ2〉 = 0 and 〈x, (γ − λ

(x)
2 )ξ1〉 = 0. (5.5)

Let e1, e2 ∈ X be such that 〈e1, ξ1〉 = 1 = 〈e2, ξ2〉 and 〈e1, ξ2〉 = 0 = 〈e2, ξ1〉. If we
put x = e1 into (5.5), then we get α = λ

(e1)
1 and γ = λ

(e1)
2 . Similarly, x = e2 gives

β = λ
(e2)
2 . This shows that α, β, and γ are real numbers. Let u = e1 + ie2. Equation

(5.1) gives

Tu = (
λ

(u)
1 〈u, ξ1〉 + λ

(u)
2 〈u, ξ2〉

)
f1 + λ

(u)
2 〈u, ξ2〉 f2 = (

λ
(u)
1 + iλ(u)

2

)
f1 + λ

(u)
2 f2.

(5.6)

On the other hand

Tu = (α f1 ⊗ ξ1 + β f1 ⊗ ξ2 + γ f2 ⊗ ξ1)u = (α + iβ) f1 + γ f2. (5.7)
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Comparison of (5.6) and (5.7) gives α = λ
(u)
1 and β = γ = λ

(u)
2 . Thus, T =

λ
(u)
1 M1 + λ

(u)
2 M2 ∈ R

2 · M. ��
Now, we are ready for a description of two-dimensional reflexive sets of operators.

Theorem 5.2 Let M1, M2 ∈ B(X ,Y ) be linearly independent operators and let
M = [M1, M2]. Set � · M is reflexive for every non-empty closed set � ⊆ C

2 except
if either M1, M2 are rank-one operators with the same range or M1 = f1 ⊗ ξ1 and
M2 = f1⊗ξ2+ f2⊗ξ1, where f1,2 f ∈ Y and ξ1, ξ2 ∈ X ∗ are linearly independent.

(i) If M1, M2 are rank-one operators with the same range, then � · M is reflexive for
every flat set � ⊆ C

2.
(ii) If M1 = f1⊗ξ1 and M2 = f1⊗ξ2 + f2 ⊗ξ1, where f1, f2 ∈ Y and ξ1, ξ2 ∈ X ∗

are linearly independent, then � · M is reflexive for every non-empty closed set
� ⊆ R

2.

Proof Assume that M1, M2 are neither rank-one operators with the same range nor
M1 = f1 ⊗ ξ1 and M2 = f1 ⊗ ξ2 + f2 ⊗ ξ1, with f1, f2 ∈ Y and ξ1, ξ2 ∈ X ∗
linearly independent. Then, SM is a reflexive space, by [2, Theorem 3.10], and it has
a separating vector, by Corollary 2.8. Hence, by Theorem 3.1, � · M is reflexive for
every non-empty closed set � ⊆ C

2

(i) If M1, M2 are rank-one operators with the same range, then � · M is reflexive for
every flat set � ⊆ C

2, by Proposition 4.3 (i).
(ii) If M1 = f1⊗ξ1 and M2 = f1⊗ξ2+ f2⊗ξ1, where f1,2 f ∈ Y and ξ1, ξ2 ∈ X ∗

are linearly independent, thenR
2 ·M is reflexive, by Lemma 5.1. By Corollary 2.8,

SM has a separating vector. Hence, � · M is reflexive for every non-empty closed
set � ⊆ R

2, by Theorem 3.1.

��
Corollary 5.3 The convex hull of arbitrary three operators in B(X ,Y ) is a reflexive
set.

Proof Let M1, M2, M3 ∈ B(X ,Y ) be arbitrary operators and let C be its convex
hull. Since C is reflexive if and only if C − M3 is reflexive, we may assume that
M3 = 0. If M1 and M2 are linearly dependent, say M2 = λM1, then C = �M1, where
� = {t1 + t2λ ∈ C; t1, t2, t1 + t2 ∈ [0, 1]}. By [3, Proposition 2.5], C is reflexive.
Assume, therefore, that M1 and M2 are linearly independent and let M = [M1, M2].
Then, C = � · M, where � ⊆ R

2 is the flat set determined by sets �1 = �2 = [0, 1],

�3 = {1}, and matrix C =
⎡

⎣
1 0
0 1
1 1

⎤

⎦ (see Sect. 2.2). The reflexivity of C follows by

Theorem 5.2. ��
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