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Abstract

A non-empty set of operators M is reflexive if an operator T is in M if and only if
Tx € Mx, forall vectors x. In this paper, we study the reflexivity of finite-dimensional
sets of operators. We introduce the class of flat sets of operators and prove several
results related to the reflexivity of these sets; in particular, we show that the convex
hull of three (or fewer) operators is reflexive.
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1 Introduction

Let 2" and % be complex Banach spaces and let B(Z", %) be the Banach space of all
bounded linear operators from 2" to % (of course; if 2~ = %/, then we write B(Z")
instead of B(Z", Z7)). A non-empty set M C B(Z", %) is reflexive if an operator
T € B(Z',%)isin M if and only if Tx € Mx, for all x € 2. It is not hard to see
that every finite set of operators is reflexive; see [3, Proposition 2.2]. If M € B(Z ", %)
and A C C is non-empty, then A - M = {AM; A € A} is a reflexive set if and only
if A is closed (see [3, Proposition 2.5]). In particular, every one-dimensional space of
operators is reflexive.

Reflexivity was introduced by Halmos for subalgebras of B(.7¢), where J¢ is a
Hilbert space. Loginov and Shulman [8, 9] have extended reflexivity to linear subspaces
of B(s¢°) which are not necessarily algebras (see [6, Preliminaries]). In [3], we studied
the reflexivity of arbitrary sets of operators. More precisely, no algebraic structure is
assumed in the set under consideration. In [3, Section 4], we focused on the reflexivity
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of convex sets of operators. In this paper, we continue that study. Our main interest is
in the question of whether a convex hull of a finite set of operators is reflexive. We are
able to give an affirmative answer for the convex hull of three (or fewer) operators.
However, the general problem remains open. The presented results are proved for flat
sets of operators (for the definition, see Sect. 2.3), a particular case of which are convex
sets.

The paper is organized as follows. In Sect. 2, we introduce notation and terminology
and prove some preliminary results. If the set of operators contains only operators with
high rank, then it is reflexive. This is proved in Sect.3. The assertion follows from
known results related to the reflexivity of linear spaces of operators with a high rank
(see [4, 6, 7, 10]) and our main tool (Theorem 3.1) which gives a sufficient condition
for a subset of a reflexive set to be reflexive. Section4 is devoted to sets of operators
determined by rank-one operators, and in the last section, we give a characterization
of two-dimensional reflexive flat sets of operators.

2 Preliminaries

The dual space of a complex Banach space 2" is denoted by 2™* and the pairing
between these two Banach spaces is given by (x, &) = £(x), forallx € 27, € € Z7*.
For an operator T € B(Z", %), we denote by Z(T) its range and by .4 (T) its kernel.
If Z(T) is a finite-dimensional subspace of ¢/, then T is a finite rank operator and we
denote its rank, that is, the dimension of % (T'), by rk(T'). For arbitrary 0 # f € %
and 0 #£ & € 27, the rank-one operator f ® & is given by (f ® &)x = (x, &) f,
forall x € 2. Note that T € B(Z", %) has rank k € N if and only if there exist
linearly independent vectors fi, ..., fx € % and linearly independent functionals
1, ke X, suchthat T = f1 Q& + - + fr @&

2.1 Reflexivity

For a non-empty set M C B(Z, %) and a vector x € 2, let Mx be the closure
of the orbit Mx = {Mx; M € M} C % . Operator T € B(Z", %) is locally in M
if Tx € Mx, for all x € 2. The set of all those operators that are locally in M is
called the reflexive cover of M and is denoted by Ref (M). Thus

Ref(M) = () {T € B(Z'.%); Txe Mx}.
xeZ

Hence, an operator T is in Ref (M) if and only if, for every x € 2" and every ¢ > 0,
there exists an operator M, . € M, such that ||(T — M, ¢)x|| < . In the following
lemma, we show that Ref (M) is closed in the strong operator topology. Note, however,
that Ref (M) is not closed in the weak operator topology, in general (see [3, p. 756]).

Lemma 2.1 The reflexive cover of a non-empty set is closed in the strong operator
topology.
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Proof Let M C B(%", %) be anon-empty set. Suppose that (Tj)jej C Ref(M)isa
net that converges to T € B(Z", %) in the strong operator topology. Let x € 2~ and
& > 0 be arbitrary. Then, there exists an index j. € J, such that |[Tx — T;x|| < %,
for all j € J, such that j > j.. Let j > j. be arbitrary. Since 7; € Ref(M)
there exists My, € M, such that |[(T; — My ¢)x|| < % Hence, (T — M, ¢)x|| <
(T — THx|l + (T} — My ¢)x|| < ¢, thatis, T € Ref(M). O

Hadwin [5] introduced algebraic reflexivity. The algebraic reflexive cover of M
is Ref,(M) = (Nyep{T € B(Z',%); Tx € Mx}, that is, an operator T is
in Ref,(M) if and only if, for every x € 2, there exists M, € M, such that
Tx = M,x. It is clear that Ref,(M) C Ref(M) and these sets are equal if Mx
is a closed subset of %, for every x € £ . For instance, if M is a finite set or a
finite-dimensional subspace of B(Z", %), then Mx is closed for every x € £  and,
therefore, Ref, (M) = Ref (M).

It is not hard to see that M C Ref,(M) C Ref(M). Moreover, one has
Ref(Ref(M)) = Ref(M) and, similarly, Ref, (Ref,(M)) = Ref,(M). A set
M C B(Z) is said to be reflexive if Ref(M) = M. If Ref, (M) = M, then
M is said to be algebraically reflexive. Of course, every reflexive set is algebraically
reflexive.

Lemma2.2 Let M C B(Z', %) be anon-emptyset. If A € B(%)and B € B(Z") are
invertible operators, then Ref (AM B) = ARef (M) B. In particular, M is reflexive if
and only if AMB is reflexive.

Proof Assume that T € Ref(M).Letx € 2" and ¢ > 0 be arbitrary. By the definition
of the reflexive cover, there exists M, . € M, such that ||(T — M, ¢)x| < HAHSW' It
follows that [|[(ATB — AM, B)x| < ¢. Since AM, B € AMB, we conclude that
AT B € Ref(AMB). We have proved that ARef(M)B C Ref(AMB). A similar
inclusion holds if we replace A by A~! and B by B~!, that is, A~'Ref(M)B~! C
Ref(A~' MB~!) which gives Ref (M) C ARef(A~! MB~!)B. This last inclusion
holds for all non-empty sets, and hence, we can put in it AM B. Then, we obtain
Ref(AMB) € ARef(M)B. This proves equality Ref(AMB) = ARef(M)B. Of
course, if follows from the equality that M is reflexive if and only if AMB is

reflexive. O

If 21 and 25 are complex Banach spaces, then let 2] @ 25 be the direct sum
of Z1 and 2> equipped with the norm ||x; @ x2|| = ||x1]| + |[|x2]. For non-empty
sets M; C B(Zi, %) (i =1,2),let M| & My = {M| & My; Mj € My, M, €
Ma} C B(Z1 @ 22, % © %).

Lemma2.3 Let M; C B(Z:;,%;) (i = 1,2) be non-empty sets. Then, Ref (M| @&
My) = Ref (M) @ Ref (My>). In particular, M & M, is reflexive if and only if M
and M are reflexive.

Proof LetT € Ref(M @ My) be arbitrary. Then, with respect to the decompositions
T T
T T
X1 ®xy € 21 ® %, and € > 0, there exists an operator M| & M, € M| & M;

21 ® 2, and % @ %5, operator T has an operator matrix |: ] For arbitrary
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(which depends on x| @ x> and ¢), such that ||[(T — M| @ M>)x; ® x2|| < e. It follows
that:

ITi1x1 + Tipxo — Mix1|| < e and ||Th1x1 4+ Tooxa — Moxs|| < e. 2.1

Ifx; = Oand xp € 23 isarbitrary, then (2.1) implies that 77; € Ref(M)and T>; = 0.
Similarly, if x; € 27 is arbitrary and x, = 0, then (2.1) implies 7>, € Ref (M) and
T12 = 0. We conclude that T = T11 @ Tan € Ref (M) @ Ref(My).

To prove the opposite inclusion, assume that 7 € Ref (M) ®Ref(My). Then, T =
T\ ® T», where Ty € Ref (M) and T» € Ref(M3). For arbitrary x| ®x, € 21 ® 2>
and ¢ > 0, there exists My, . € Mjand M, . € My, suchthat ||[(T1 — My, ¢)x1ll < €
and |[(T7 — My, ¢)x2|| < €. It follows that ||(T — My, ¢ ® My, o)x1 @ x2| < 2e. We
conclude that T € Ref (M| & M>). O

2.2 Flat subsets of C"

In this paper, we will work with a special class of closed subsets A € C" called flat
sets. A flat set A is determined by a complex matrix C € M, x, and an m-tuple of
closed sets A; € C as follows:

A=A=01,...,2)T€C" Cre A x--xAp}

It follows from the definition that A is a flat set if it is the preimage of Ay X --- X A,
with respect to the linear transformation C: C" — C™. Since A| X -+ X Ay, is a
closed subset of C™ and C is a continuous transformation, every flat set is closed. It
is clear that A1 x - -- X Ay, itself is a flat set. In particular, every closed subset of C is
flat. The empty subset of C" is flat. Another obvious example of a flat set is any linear
subspace of C”. Indeed, it is obvious that every linear subspace A of C" is the kernel
of a matrix, say C € M,,«,. Hence, A is determined by C and {0}".

Proposition 2.4 Let A C C" be a flat set.
A Ifp=1,....u)T €C then A—p={A—p =01 —p1, ..., ks —un)T €
C", A= (A1,...0)7T € A} is a flat set.
(ii) Set @ = {0 € CP; A0 e A} is flat, for an arbitrary matrix A € M, p.
(iii) If B € M, «,, is invertible, then ¥ = BA is a flat set.
(iv) The intersection of finitely many flat sets in C" is a flat set.

W) IfA S C™ (k=1,...,q) are flat sets, then A = A1 @ --- ® Ay S C", where
n=mny+---+ngy, is aflat set.

Proof To prove (i)-(iii), assume that A is determined by a matrix C € M, x, and
closedsubsets A; CC (j=1,...,m).

() LetCp = (i), ..., mu)T. IfX € A, then C(A — p) = CA — Cp € (A — p)) x
<o+ X (A — @), thatis, A — p is contained in the flat set that is determined by
C and sets A — M/j (j = 1,...,m). On the other hand, if v is in the flat set that

is determined by C and sets A| — u’j., then Cv € (Aj — ) x -+ x (Ap — 1))
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and therefore C(v + u) € Ay X -+ X Ay, which means that . = v + u € A.
Hence, v = A — u € A — . This proves that A — u is a flat set.

(ii) If @ € C? is such that CAf € A x --- X Ay, then A € A, by the definition of
A, and therefore # € ©. On the other hand, if @ € ®,then CAf € Ay x --- X Ay,.
Hence, © is determined by the matrix CA and closed subsets A; € C (j =
1,...,m).

(ili) Let B € My, be an invertible matrix. If & € C" is such that CB o € A x

- X A, then B lo € A, by the definition of A. It follows that @ € X. On
the other hand, if ¢ € X, then there exists A € A, such that & = BA. Hence,
CB ¢ =C\ e Ay x---x A,,. Thus, ¥ is determined by the matrix CB'and
closedsubsets A; CC (j=1,...,m).

For (iv) and (v), it is enough to consider only the case of two flat sets.
(iv) Assume that A’ is determined by a matrix C’ € M,,;/y,, and closed sets A’j cC

and A” is determined by C” € M, and closed sets A’/.’ C C.Let C =

/
[g,,:|, that is, C € My 4m”)xn. We claim that A N A” is determined by C
I

g/a:l c (Cm’er”’
for all A € C". Assume that A € A’ N A”. Then, C'A € A} x --- A/, and
C') e A x -~ A, Hence, CA € A} x --- Al , x A x--- A", This shows
that the intersection A’ N A” is a subset of the flat set that is determined by C
and A} x ---A;n, x A x ~--A:1/1,,. On the other hand, if A is in that set, then
Che Ay x---Al, x A x--- A", which means that C'A € A} x --- A/ , and
C'Le Al x---Al, thatish € A'NA".

(v) Assume thgt A (j = 1, 2) is determined by a matrix C; € M, ixn; and closed
subsets Agj), e, Af,{f) of C. Let C = Cy @ C,. This is a matrix of dimension
(my 4+ my) x (n1 + n2). We claim that A| @ A is a flat set determined by C and
A(ll) X - X Af,}f X A§2) X+ X A,(nzz) Itis clear that for A € A @ A», there exist
A1 € Ay and Ay € Ay, suchthat A = A1 @ Ap. Hence, CA = C1A; & CrAy €
Ail) X oee X A,(,i]) X Agz) X oo X Aﬁ,%; On the other hand, if A € C*'+"2 is such
that CA € Ail) X -0 X A,S}l) X Aﬁz) X - X A%,letll € C" and A, € C" be
such that A = A1 @ Aa. It follows that CA = C1A1 ® Caka € AV x - x Af)) x
A(lz) X o0 X A,(,%g and, therefore, CjA; € A(lj) X o0 X A,(,{j).,forj =1, 2. By the
definition of A ;, we have A; € A; which gives A € A.

and A x ---A;n, x A x - x A;;l,/. It is clear that CA = |:

O

Example We have already observed that subspaces of C" are flat sets; in particu-
lar, every hyperplane is a flat set. Every hyperplane separates C” in two halfspaces.
Halfspaces are flat sets. Indeed, let 0 # C = [c1,...,cn] € My, and let
A = {z € C; Re(z) > 0}. Then, the flat set determined by C and A is a halfs-
pace A = {(Ay, ..., AT € C"; Re(ciAr + -+ + cphn) = 0}

Recall that a convex polytope in C" is the intersection of a finite family of halfs-
paces. By Proposition 2.4, any convex polytope in C" is a flat set. For instance, the
convex hull of the standard basis (eq, ..., e;) in C" is determined by the matrix
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10---0
01---0
C=|::1".: € Mgu41yxn and sets A; = [0,1], for j = 1,...,n, and
00.--1
11---1
Ansr = {1}. o

2.3 Finite-dimensional sets of operators

We will say that a non-empty set M C B(Z", %) is finite-dimensional, if span(M),
the closed linear span of M, is a finite-dimensional subspace of B(Z , %#). If
dim (span(/\/l)) = n > 1, then we will say that M is an n-dimensional set of opera-
tors. For instance, let My, ..., M, € B(Z", %) be arbitrary operators and let A € C”"
be an arbitrary non-empty set. Denote by M = [M, ..., M,] the 1 x n operator
matrix. Then, A - M ={A - M =2 M +---+ 1, My; A= (Ay,..., )T € A}is
a finite-dimensional set. Actually, all finite-dimensional sets of operators are of this
form.

Lemma2.5 Let M C B(Z', %) be a finite-dimensional set. Then, there exists M =
[My, ..., M,], withlinearly independent operators My, . .., M,, and a non-empty set
A € C", such that M = A - M. Set M is closed if and only if A is a closed set.

Proof Let M # {0} be an arbitrary finite-dimensional set. Suppose that (M1, ..., M,)
is a basis of span(M) and denote M = [M|, ..., M,]. Forevery T € M, there exists
aunique A € C",suchthat T = A - M. Let A = {A € C"; thereexists T €
M suchthat T = A - M}. Itis easily seen that M = A - M.

Assume that A is a closed set. Let (Tk);:i , € A - M be a Cauchy sequence and let
T € B(2, %) beits limit. For each k € N, there exists A& = ., ... 28T € A,

such that T} = )»ik)M 1+ + )L;k)M,,. Since My, ..., M, are linearly independent
operators, for each 1 < i < n, there exists a functional ®; € B(Z", Z)*, |®;|| = 1,
such that (M;, ®;) = ||M;|| and (M, ®;) = Ofor j # i.Lete > 0 be arbitrary. Then,
there exists an index kg, such that |7y — T;|| < € for all k, [ > k,. It follows that:

k l k 1 k 1
O Om = 1o =2 Pmy 4+ 0P = A D )My, o) < 1T - Tl <6,

for all i. Hence, (l(k)):i] is a Cauchy sequence in A. Let A = (A1, ...,1,)T € A be

its limit. It follows that limg_, o [A®) - M — - M| = 0. Hence, for every ¢ > 0, there
exists an index k, such that |7 — A - M|| < |T — Tg|| + A% - M — 1 - M|| < &, for
all k > k.. We may conclude that T =1 -M € A - M.

Suppose now that A is a non-empty subset of C”, such that A - M is a closed
set of operators. Let A®) = (Agk), ey X,gk))T € A be a Cauchy sequence and let

A= (y,..., 2T € C" be its limit. Then, limy_, o )L;k) = )jforevery 1 < j <n.
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Denote T = A% .M and T = A - M. Note that Tr € A - M. 1t follows that:

k
1T — T = 100 =AMy + -+ 0P — 2, M,|

k—o00

< = a4 AP =) max(IM ) 1< j <n) =50

Since A - M is closed, it follows that T € A - M. Assume that g = (1, ..., un)7
€ Aissuchthat T = - M. Then, \\M{+-- -+ A, My, = u My + - - - 4+ u, M, and,
therefore, A = pu as (My, ..., M) are linearly independent. O

Now, we introduce flat sets of operators. A non-empty finite-dimensional set
of operators M C B(Z', %) is flat if there exist M = [My, ..., M,], where
My, ....M, € B(Z',%), and a flat set A € C”" which is determined by a matrix
C e M;x, andclosedsets A; € C(j =1,...,m), suchthat M = A - M. Note that

this definition does not assume that M1, ..., M, are linearly independent. We will say
that a flat set M # {0} is regular if there exists a flat set A and linearly independent
operators My, ..., M,, such that M = A - M. In the following lemma, we give an

equivalent condition for the regularity of a flat set of operators.

Lemma 2.6 A finite-dimensional set {0} = M C B(Z", %) is a regular flat set if and
only if there exists a flat set T C CK, which is determined by a matrix D € M, and
closed setsT'; € C (j = 1,...,m), and operators N1, ..., Ny € B(Z', %), such
that M =T - N, where N = [Ny, ..., N¢], and

y € N (D) whenever y-N =0. 2.2)

Proof If M is aregular flat set of operators, then M = A - M, where A € C" is a flat
setand M = [My, ..., M,] with My, ..., M, linearly independent. Hence, A - M = 0
implies A = 0, which means that A € .4 (C), where C is the matrix which determines
A.

Assume now that M = I - N, where N = [Ny, ..., Ni] with Ny,..., N, €
B(Z,%),andT C Ck is a flat set determined by amatrix D € M, « and closed sets
'y €C(j =1,...,m),such that (2.2) is fulfilled. By Lemma 2.5, there exist M =
[My, ..., M,], with linearly independent operators M1, ..., M,,, and a non-empty set
A C C" suchthat M = A-M.Ofcourse, 1 <n <k.SinceI' N=M=A-M we
have span{Ny, ..., Ny} = span{M, ..., M, }. Hence, if y € Ck, then there exists a
unique A, € C",suchthaty-N = A, - M.Itis not hard to see that y > A, is a linear
map from C* onto C". Hence, there is a matrix B € M), ., suchthaty - N = By - M.
Matrix B is surjective. Indeed, if A € C", then A - M € span{My, ..., M,} and,
therefore, there exists y € CK, such that y - N = A - M which gives By = A. If
y € I', then By € A, by the definition of A (see the proof of Lemma 2.5). Hence,
B(I') = A.

Assume that y € A4 (B). Then, y - N = 0- M = 0 - N and, therefore, Dy =
DO = 0, by (2.2). Hence, A4 (B) € A (D). It follows that there exists a matrix
C € M, xn, such that CB = D. We claim that A is a flat set determined by C and
sets Aj =1 (j =1,...,m). Suppose that A € A. Then, there exists y € I', such
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that A = By. Hence, CA = CBy = Dy € Ay x --- X Ay,. On the other hand,
if A € C" is such that CA € A| x --- X A,,, then there exists y € C, such that
By =A.Since Dy =CBy =CA € A; X --- X Ay, we see that y € T. This gives
that A = By € A. O

2.4 Separating vectors and locally linearly dependent operators

Let {0} # S C B(Z,%) be a subspace. Vector x € 2 is separating for S if
0y : S — Sx is an injective mapping from S to % (see [6]). If {0} # M C B(Z', %)
is a finite-dimensional set of operators, then x is a separating vector for M if it is a
separating vector for span{My, ..., M,}.

Lemma 2.7 Vector x € X2 is separating for a finite-dimensional space {0} # S <
B(Z', %) if and only if dim(Sx) = dim(S). In particular, x is separating for lin-
early independent operators My, ..., M, if and only if M\x, ..., M,x are linearly
independent.

Proof Let dim(S) = k and let (S, ..., Sx) be a basis of S. Assume that x € 2 is
a separating vector for S. It is clear that dim(Sx) < k. Let @1, ..., ax € C be such
that ;1 S1x + - - - 4+ o Spx = 0. Since O (1 S1+ - -+ axSk) = 1 S1x + - - -+ Spx
and 0, is injective, we have a1 S1 + - - - + ax Sy = 0 which gives ¢ = --- = o = 0.
Thus, Syx, ..., Sgx are linearly independent and, therefore, dim(Sx) = k.

Suppose now that x € 2 is such that dim(Sx) = k. Since Sx =
span{Six, ..., Sgx}, we see that Syx, ..., Six are linearly independent vectors. Let
oy, ...,ar € Cbesuchthatf, (o1 S1+- - -+ Sy) = 0.Then, a1 Sjx+- - -+ Spx =0
and, therefore, o1 = - - - = o = 0. Hence, 6, is an injective mapping.

Let My, ..., M, € B(Z, %) be linearly independent and let S be the linear span
of these operators. Since (M1, ..., M) is a basis of S, a vector x is separating for S
if and only if M1x, ..., M,x are linearly independent. O

Let My,....M,, € B(Z,%). Denote M = [M;,...,M,] and Syy =
span{M1, ..., M,}. Itis said that My, ..., M, are locally linearly dependent (briefly,
LLD) if there is no separating vector for Sy, that is, vectors M x, . .., Myx are linearly
dependent, for any x € 2. Of course, if My, ..., M, are linearly dependent, then
they are locally linearly dependent. The opposite does not hold, in general. Aupetit [1,
Theorem 4.2.9] proved that Sps contains a non-zero operator whose rank is at most
n—1if My,...,M, € B(Z,%) are LLD. We will need the following corollary
of the Aupetit’s result which is a special case of [4, Theorem 2.3]. However, we will
include an elementary proof that relies on Aupetit’s theorem.

Corollary 2.8 Linearly independent operators My, My € B(Z , %) are LLD if and
only if there exist 0 # f € % and linearly independent functionals &,& € 2%,
suchthat M1 = f @ &y and My = f Q@ &.

Proof 1t is obvious that M| = f ® & and M = f ® & are LLD. Hence, we have
to prove the opposite implication. Denote M = [M, M;] and Syy = span{M, M>}.
Assume that My and M, are LLD. It follows that dim(Syx) < 1, forall x € 2,
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which means that arbitrary two operators in Sy are LLD. Since M| and M, are
linearly independent, by [1, Theorem 4.2.9], there exists a rank-one operator A in
Swm. Hence, there exist 0 # f € # and 0 # & € 27*,suchthat A = f ® £. Let
u € 4 be such that (u,&) = 1 and let 0 # B € Sy be arbitrary. Since Au and
Bu are linearly dependent and Au = f # 0, there exists a number « (1), such that
Bu = k(u)Au = k(u) f.Lety € A4 (A) bearbitrary. Then, A(u+y) = Au = f #0.
Since B(u + y) and A(u + y) are linearly dependent, there exists k (u + y) € C, such
that B(u +y) = «k(u + y)A(u + y) = «(u + y) f. On the other hand, B(u + y) =
Bu 4+ By = «(u)f + By. Hence, By = (/c(u +y) — K(u))f. An arbitrary vector
x € 4 can be written as x = au + y, where« € Cand y € A4 (A) = A (§). It
follows that Bx = « Bu + By = ((a — Dx(u) +«(u+ y))f. This shows that B is a
rank-one operator with the range spanned by f, thatis, B = f ® n forsome n € Z™*.
In particular, M; = f ® & and M, = f ® &, for some &1, & € 27, O

3 Reflexivity of finite-dimensional sets of operators with high rank

For operators My,...,. M, € B(Z, %), let M = [M;,...,M,] and Sy =
span{My, ..., M,}.

Theorem 3.1 Assume that My, ..., M, are linearly independent and that Sy; has a
separating vector. Let A, Ao be non-empty closed subsets of C", such that A1 C A».
If Ay - M is a reflexive set, then A1 - M is a reflexive set, as well.

Proof Since A € Ao, we have A; - M C A; - M which implies Ref(A; - M) C
Ref(Ay - M) = Ay - M. Hence,if T € Ref(A-M),then T € A, - M, which means
that there exists A = (A1, ..., A,)T € Ay, suchthatT =A-M = A M+ -+ A, M,.
Let x € 2 be a separating vector for Sys. Hence, vectors Mix, ..., Myx € % are
linearly independent. It follows from 7" € Ref (A - M) thatforevery ¢ > 0, there exists
2O =0, AT € Ay, such that [|Tx — QS Mix + -+ 20 M0 < e,
thatis, (A — A )Myx + - 4 (ky — M) Myx|| < e. Since vectors Myx, . .., Myx
are linearly independent, for every j € {I,...,n}, there exists n; € 2/*, such that
ln;ll =1, (M;x,n;) = |M;x| and (M;x,n;) = 0if j # i. It follows that |A; —
WONM x| = (G = A Mix 4+ G = A7) My )] < 1 = 27 Myx +

st (A — Ags))Man < ¢. We may conclude that A®) — A when e — 0. Since A
is a closed set we have A € A1 which gives T € A1 - M. O

Larson [6, Lemma 2.4] showed that Sy is a reflexive space if there is no non-zero
finite-rank operator in Sy. Li and Pan [7, Theorem 2] improved this by showing that
Sy is reflexive if every non-zero operator in Sy has rank greater than or equal to
2n — 1. Finally, Meshulam and Semrl have proved that Sy is reflexive if every non-
zero operator in Syr has rank larger than n. This assertion is stated as a slightly more
general theorem in the abstract of [10]. The proof follows from several results stated
in that paper. Using Meshulam-Semrl’s result, we can deduce the following corollary
from Theorem 3.1.
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Corollary 3.2 If every non-zero operator in Syy has rank larger than n, then A - M is
a reflexive set, for every non-empty closed set A C C".

Proof By the Meshulam and Semr!’s theorem [10], Sy is a reflexive space. It has a
separating vector, by Aupetit’s theorem [1, Theorem 4.2.9]. Hence, by Theorem 3.1,
A - M is reflexive. O

4 Finite-dimensional sets determined by rank-one operators

In this section, we will consider finite-dimensional sets of operators which are deter-
mined by rank-one operators. There is no loss of generality if we work with matrices.
Let p,g € Nand let 2" = CP, % = C4. Since all norms on a finite-dimensional
vector space are equivalent, we will assume that these are Euclidean spaces. However,
we will identify the dual space of C? with itself through a linear map. More precisely,
forx,y € CP,let (x,y) = yTx.

If x ¢ C” and u € C9, then uxT is a rank-one matrix in M, ,. Denote by
(e1,...,ep), respectively, by (fy,..., f q), the standard basis of C?, respectively, of
C?.Fori e{l,...,q}andj € {1, ..., p},letE;; = fie},thatis,E,:,- isag X p matrix
whose entries are 0 except the entry at the position (i, j) which is 1. Throughout this
section, let M denote the 1 xn operatormatrix [E 11, ..., E1p, E21, ..., Eyp]. Inwhat
follows, we will always use this lexicographic order. Let Sy = span{E 1y, ..., E;p}.
For anon-empty set £ C {E|y, ..., E;p}, we say that span(£) is a standard subspace
of SM

Proposition 4.1 For every A = A1y X -+ X Ayp, where each A;j is a non-empty
closed subset of C, the finite-dimensional set A - M is reflexive.

Proof Let T e Ref(A - M). Of course, there exists a = (11, @12, ..., agp)T € CIP,
such that T = Z?zl Zj'):l a;jE;;. For every vector e; from the standard basis, we
have

q P q
Te, = Zzaij(fie})ek = Zaikfi. 4.1
i=1

i=1 j=1

On the other hand, since Te; € (A - M)eg, for every ¢ > 0, there exists A€ =
(A(l‘ik), ...,)»;e,f))T € A, which depends on ¢, such that ||[(T — A€ . Mye|| < e.
When we put in this inequality (4.1) and

q 4 q
W Mye =3 3w (fieDew =3 xi f,

i=1 j=1 i=1
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we obtain HZ?:] (ajx — Aglef))fi <e.Letl €{l,...,q} be arbitrary. Then

Il ( S (aik - )\E}ik)) fi)
i=1

Numbers Al(,ik), which depend on ¢, are in Ay and this is a closed set. Hence, o € Ajg.
Since this holds forall 1 <k < pand 1 <[ < ¢g, we have @ € A and, therefore,
TeA M. O

’Ollk — A

= < < é&.

q
> (aik - Kfﬁ”) i
i=1

The following is an immediate consequence of Theorem 4.1.
Corollary 4.2 Every standard subspace of Sy is reflexive.

Proof Let £ C {Eqy,..., E;p} be anon-empty set. Define A = Ay X -+ x Ayp as
follows. If E;; € &, thenlet A;; = C, and let A;; = {0} if E;; ¢ £. It is clear that
span(€) = A - M. O

For some standard subspaces span(€) of Sy, we can show that every flat subset
A - M of span(&) is reflexive. A subset R of {E 1, ..., E,,} is arow if there exists ig,
suchthat R C {E;1, ..., Ej),}. Similarly, a subset Q of {Ey, ..., E;,}is a column
if there exists jjo, such that Q C {Eyj, ..., Eyj,}. Of course, when we work with a
row or a column, there is no loss of generality if we assume that R = {E 1, ..., Ejjp}
or Q = {Eljoy ey quo}.

Proposition4.3 Let R = {E;j1, ..., Eiyp}and Q = {Eyj,, ..., E4j,}. Denote R =
[Eigt, ..., Ejjpland Q = [E1j,, ..., Egj,l. If A € C? is a flat set, then A - R is
reflexive. On the other hand, A - Q is reflexive, for every non-empty closed set A C C4.
Proof Let Sg = span{E;1, ..., E;,,} and assume that A € C? is a flat set deter-
mined by non-empty closed sets A; € C (i = 1,...,m) and a matrix C = [¢;;] €
M, p. Suppose that T € Ref(A - R). Since A - R C Sg and Sg is reflexive, by
Corollary 4.2, we have T € Sg. Hence, there exists &« = («q, ..., a,)T € C", such
thatT = o1 Ejy1+- - -+apEj . Foreveryi = 1,...,m,letu; = cj1e1+---+cipep.
Then

Tu; = (1 Eiy1 +- - +apEijpui = (aici1 + - +apcip) fi-

Fix i and let ¢ > 0 be arbitrary. Then, there exists A %) = (Ag""), o )»;,""))T €A,
which depends on ¢, such that || (T — A% . Ryu;|| < e. Since

A Roui = 04" Eigt + -+ 20 Eigpui = 0" ein + -+ 280cip) £,
we see that
(rcin + -+ apcip) — G iy + -+ A8 ei) | = (T =A@ - Ryu;|| < e.
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Numbers )»i"i)cil + -+ )»f,,"i)cip are in A; which is a closed set. Since ¢ can be
arbitrary small, we conclude that ayc;1 + --- + apcip € A;. This holds for every
i=1,...,m.Thus, @ € A and, therefore, T € A - R.

For the second assertion, note that Sg = span{Eyj,, ..., Ej,} is reflexive, by
Corollary 4.2. It is clear that every vector x € C?, such that xe]T.O # 0 is separating
for Sg. Hence, by Theorem 3.1, A - Q is reflexive, for every non-empty closed set
A C (. O

Two-dimensional non-reflexive spaces are characterized in [2, Theorem 3.10]. The
following example is a consequence of that characterization.

Example Let £ C {Eyy, ..., Eyp}. If £ contains {E;;, E;yy j, Eik j11} or a triple
{Eij, Ei j+1, Eiyk j+1}, then there exist a non-reflexive two-dimensional subspace of
the standard space span(&). To see this, assume that {E;;, E; j1;, Eiyk j+1} € & (the
case {E;j, Eiik j, Eiyk j+1} S € can be treated similarly). Let M C span(&) be the
two-dimensional space spanned by E;;+E; 1 j+;and E; ;. Itisclearthat E;; ¢ M.
However, E;; € Ref(M).To check this, choose anarbitrary x = (xy,...,x,)T € CP.
Then, E;jx = fjeiT(xlel +-txpep) = xifj. Hence, if x; = 0, then E;jx =0 =
Ox, and if x; # O, then E;jx = xifj = ((Ei.,' +Eijkj1) — ’%Ei,j+l)x. Since

M C Ref(M), we have proven that M is not reflexive. O
For a non-empty set £ C {Eqy, ..., E;p}, let
Pe= > Ej.
E,‘_/Eg

Thus, Pg € M is a 0-1 matrix with 1 at the position (i, j) if and only if E;; € £.
We will say that £ (and, consequently, P¢) is a twisted diagonal if

whenever there is 1 at the position (ig, jo) of Pg, then either there is 42)
no other 1 in the ip-th row or no other 1 in the jp-th column of Pg¢. '

Examples of twisted diagonals are rows and columns from Proposition 4.3. A
twisted diagonal £ is maximal if it is not contained properly in a larger twisted diagonal.
There is no loss of generality if we confine ourselves to maximal twisted diagonals.
In the following picture, we show two examples of matrix patterns that correspond to
maximal twisted diagonals (light square means 0 and dark one means 1).

oo O
O |
O O -
P & - : --.
EEEE |
O EEEE

ooo
v
&

Note that P ¢, is a direct sum of rows and columns and P¢, can be obtained from Pg,
by permutation of rows and columns.
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Lemma4.4d LetE C(E, ..., Eyp} be amaximal twisted diagonal. Then, there exist
subsets £y, ..., E of {E11, ..., Egp}, each of which is either a row or a column, and
permutation matrices U € Myxy and V. € My p, suchthat UPgV = Pg, @ --- @
Pg,.

Proof Let £ be a maximal twisted diagonal and let P¢ = [p;;] € My, be the
corresponding 0-1-matrix. By maximality, there is at least one 1 in each row, and each

column of P¢. Hence, for i = 1, there exist indices ji, ..., j;, € {l,..., g}, where
Iy > 1, such that p1;;, = 1,..., PLj, = 1 and p;; = 0 if j is not one among the
listed indices. If necessary, we may permute columns to get j1 =1, ..., ji =11. We

have to distinguish three cases. If [ = p, then we have done: Pg is a | X p matrix
with all entries equal to 1. Assume that 1 < [ < p. Then, p;; = 0, for all pairs
(i,j),suchthat2 <i < gand 1 < j <[ and for all pairs (1, + 1),..., (1, p).
Let & = {E11, ..., E1;} and consider Pg, as a 1 x [ matrix with all entries equal
to 1. It follows that U1 Pg V| = Pg, @ Pg/, where Pgr € My 1yx(p-1) is the 0-1-
matrix corresponding to &’ = E\{E 1y, ..., E1;} and U1, respectively V1, is a suitable
permutation of rows, respectively columns. The third case is / = 1, that is, in the first
row of Pg is only one 1 (which is in the first column after a suitable permutation of
columns). Let iy, i2,...,i; € {I,..., g} beindices, such that p;;; =1,..., 0,1 =1
and all other entries in the first column are 0. If necessary, we permute rows to get
i1 =1,...,iy = t.If t = g, then we have done: Pg is a ¢ x 1 matrix with all
entries equal to 1. Suppose that 1 < ¢ < g. Then, p;; = 0, for all pairs (i, j),
suchthat 1 < i < tand2 < j < ¢ and for all pairs (¢ + 1,1),..., (g, 1). Let
& = {E11,..., En}, that is, Pg, is a t x 1 matrix with all entries equal to 1.
It follows that UpPgV, = Pg @ Pg, where Pgr € My _4)x(p—1) is the 0-1-
matrix corresponding to &’ = E\{E 11, ..., E;1} and U, V; are suitable permutation
matrices. It is clear that now we continue with the same procedure and consider a
smaller matrix Pgr. O

LetE C {Eqy,..., E,p} be a twisted diagonal and let U € My, V € Mpxp,
where &1, ..., & and U, V have the same meaning as in Lemma 4.4. We say that a
flat set M C span(&) splits it UMV = M| @ --- @ My, where M; C span(&;)
are flat subsets, forall j =1, ..., k.

Proposition4.5 Let £ C (Ey, ..., Eyp} be atwisted diagonal. If M C span(€) is a
flat subset that splits, then it is reflexive.

Proof Reflexivity of each M ; follows from Proposition 4.3. By Lemma 2.3, M| @
-+ @ My is reflexive and, therefore, M is reflexive, by Lemma 2.2. O

5 Reflexivity of two-dimensional sets of operators
Let M = [M,, M>], where M|, My € B(Z", %) are linearly independent operators,
and let A C C? be a non-empty closed set. In this section, we consider the reflexivity

of A- M = (MM 4+ MMy, (A1, 22)T € A}. Let Syy = span{M, M3}. By [2,
Theorem 3.10], space Syy is not reflexive if and only if there exist linearly independent
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1,6 € 27" and f1, fo € &, such that Sy = span{fi ® &1, fi ® &2 + fo ® &1}
However, the following lemma shows that the R-linear span of operators f; ® & and
f1 ®& + fr @& is reflexive.

Lemma5.1 Let &y, & € 27 and f1, fo € ¥ be linearly independent. Denote M| =
f1®&, My = f1 @& + fr ® &, and M = [My, M3). Then, the R-linear space
R? - M is reflexive.

Proof 1t is clear that (Rz - M)x is a closed subset of ¢/, for every x € 2 . Hence,
Ref(R? - M) = Ref,(R*> - M). Let T € Ref(R? - M) be arbitrary. If x € 2, then
there exists AY) = ()L(lx), kéx))T € R2, such that

Tx= (" fi@e+150(Hhe6+ L&)

5.1
= ()»(lx) (x,&1) + kgx)w £))f1+ )»éx)(x, &) fa.

Hence, Z(T) C span{f1, f»} which means that there exist functionals n, n, € 2™,
such that

Tx = (x,m)f1+ (x,n2)f2, forall x € 2. 5.2)

It follows from (5.2) and (5.1) that:

eom) = A (x, &) + 457 (x, &) (5.3)
and
(x,m) =257 (x, &), (5.4)

for all x € 2. Suppose that x € A4 (1) N A (&). Then, (5.3) gives x € A" (). It
follows that there exist &, § € C, such that n; = a&| + B&;. Similarly, it follows from
(5.4) that n, = y& for some number y. Thus, T = o fi1 Q& +Bf1 Q& +y fr Q&
Equations (5.3) and (5.4) can be rewritten as

wo@=2E +B-ANE) =0 and  (x,(y —AD)E) =0, (5.5)

Letey, ep € Z besuchthat (e}, &) =1 = (e, &) and (e, &) = 0 = (ez, &;). If we
put x = ¢ into (5.5), then we get & = Age’) and y = )L;el). Similarly, x = e, gives
B = )\5"2). This shows that «, 8, and y are real numbers. Let u = e + ie>. Equation
(5.1) gives

Tu= (M, &) + 13w, £)) fi + 257w, &) fr = (W +ird) fi + 25 fo.
(5.6)

On the other hand
Tu=(fi®s§s1+B/1®& +v2®&)u= (a+if)fi+7[f (5.7
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Comparison of (5.6) and (5.7) gives @ = AE”) and B =y = )»5"). Thus, 7 =
WOMy+289M, e R2- M. O

Now, we are ready for a description of two-dimensional reflexive sets of operators.

Theorem 5.2 Let My, My € B(Z ', %) be linearly independent operators and let
M = [M;, M3]. Set A - M is reflexive for every non-empty closed set A € C? except
if either M, M> are rank-one operators with the same range or M1 = f1 ® & and
My, = f1Q&+ [LQE&, where f1,2 f € ¥ and &1, & € X7 are linearly independent.

(i) If My, My are rank-one operators with the same range, then A - M is reflexive for
every flat set A € C2.

(ii) If My = fi1®& and My = f1 @& + fo ®&1, where fi, fo € # and &1, € X*
are linezarly independent, then A - M is reflexive for every non-empty closed set
A C R~

Proof Assume that M, M, are neither rank-one operators with the same range nor
My = fi®& and My = fi®& + @&, with f1, f, € # and §1,& € 27
linearly independent. Then, Sy is a reflexive space, by [2, Theorem 3.10], and it has
a separating vector, by Corollary 2.8. Hence, by Theorem 3.1, A - M is reflexive for
every non-empty closed set A € C?

(1) If My, M, are rank-one operators with the same range, then A - M is reflexive for
every flat set A € C2, by Proposition 4.3 (i).

(i) fM; = fi®& and Ma = fi®& + @&, where f1,0 f € # and &1, & € 27
are linearly independent, then R?- M is reflexive, by Lemma 5.1. By Corollary 2.8,
Sy has a separating vector. Hence, A - M is reflexive for every non-empty closed
set A C R2, by Theorem 3.1.

]

Corollary 5.3 The convex hull of arbitrary three operators in B(Z , %) is a reflexive
set.

Proof Let M, My, M3 € B(Z, %) be arbitrary operators and let C be its convex
hull. Since C is reflexive if and only if C — M3 is reflexive, we may assume that
M3 = 0. If M| and M> are linearly dependent, say M, = AM|, then C = AM;, where
A={t1 +0reC; 11,11 + 1 € [0, 1]}. By [3, Proposition 2.5], C is reflexive.
Assume, therefore, that M| and M, are linearly independent and let M = [M1, M>].
Then, C = A - M, where A € R? is the flat set determined by sets A = Ar = [0, 1],

10

A3 = {1}, and matrix C = | 0 1 | (see Sect.2.2). The reflexivity of C follows by
11

Theorem 5.2. O
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