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Abstract
We introduce the notion of approximate smoothness in a normed linear space. We
characterize this property and show the connections between smoothness and approx-
imate smoothness for some spaces. As an application, we consider in particular the
Birkhoff–James orthogonality and its right-additivity under the assumption of approx-
imate smoothness.
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1 Introduction

Smoothness is definitely one of the most important geometrical properties of normed
linear spaces (cf. monographs [7, 13, 15] or a survey [10] for example). In particular,
some natural attributes of the Birkhoff–James orthogonality relation can be derived
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for smooth spaces. Since in its full strength, smoothness can be sometimes a too much
restrictive assumption,we are going to propose somehow relaxed, approximate version
of this property. We study this concept in general, as well as for some particular linear
normed spaces, polyhedral Banach spaces and direct sums of normed linear spaces.

1.1 Notations

Throughout the text, we use the symbols X ,Y , Z to denote real normed linear spaces.
The zero vector of a normed linear space is denoted by θ , but in case of the scalar
field R, we simply use the symbol 0. By BX := {x ∈ X : ‖x‖ ≤ 1} and SX :=
{x ∈ X : ‖x‖ = 1}, we denote the unit ball and the unit sphere of X , respectively.
The collection of all extreme points of BX will be denoted as Ext BX . For A ⊂ X ,
diam A := supx,y∈A ‖x − y‖ denotes the diameter of A.

Let X∗ denote the dual space of X . Given x ∈ X � {θ}, a functional f ∈ SX∗ is
said to be a supporting functional at x if f (x) = ‖x‖. The collection of all supporting
functionals at x will be denoted by J (x), i.e.,

J (x) := { f ∈ SX∗ : f (x) = ‖x‖}, x ∈ X � {θ}.

The Hahn–Banach theorem guarantees that the set J (x) is always nonempty and it is
easy to see that it is also convex. It is also known that J (x) isw∗-compact. An element
x ∈ X � {θ} is said to be a smooth point if J (x) is a singleton (i.e., J (x) = { f } for a
unique f ∈ SX∗ ). A normed linear space X is called smooth if every x ∈ SX (hence,
every x ∈ X � {θ}) is a smooth point.

For f ∈ X∗
� {θ}, we write

M f := {x ∈ SX : | f (x)| = ‖ f ‖}

and

M+
f := {x ∈ SX : f (x) = ‖ f ‖}.

Given two elements x, y ∈ X , let

xy:=conv {x, y} = {(1 − t)x + t y : t ∈ [0, 1]}

denote the closed line segment joining x and y. By R(X) we will denote the length
of the “longest” line segment lying on a unit sphere (cf. [5, 20]); more precisely,

R(X) := sup{‖x − y‖ : xy ⊂ SX }.

By a hyperplane, we mean a set

H :={x ∈ X : f (x) = c},
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where f ∈ X∗
� {θ} is a functional and c ∈ R a constant. Each hyperplane H ⊂ X

divides X into two closed half-spaces whose intersection is H itself. We call H a
supporting hyperplane to the unit ball, if BX lies entirely within one of the two half-
spaces and H ∩ BX �= ∅. Equivalently, H is a supporting hyperplane for BX if and
only if there exists f ∈ SX∗ such that H = {x ∈ X : f (x) = 1}. Notice that then we
have H ∩ SX = M+

f .
By H(X), we denote the set of all supporting hyperplanes for the unit ball in X .

Now, we introduce the notion

S(X):= sup{diam (H ∩ SX ) : H ∈ H(X)}

and by previous observations, we have

S(X) = sup{diam M+
f : f ∈ SX∗}. (1.1)

Actually, using the fact that the diameter of a convex set is the supremum of lengths
of segments inside the set and both H ∩ SX (for H ∈ H(X)) and M+

f are convex sets,
it follows that

S(X) = R(X). (1.2)

We define d : X � {θ} −→ [0, 2] by d(x) = diam J (x). We also set

E(X):= sup{d(x) : x ∈ SX }.

By � : X −→ X∗∗, we denote the canonical embedding of a normed linear space
X into its bidual X∗∗, that is

�(x)( f ):= f (x), x ∈ X , f ∈ X∗.

It is known that � is a linear isometry and if it is surjective (�(X) = X∗∗), then X is
called a reflexive space (necessarily a Banach space).

Using the observation that �(M+
f ) = J ( f ) ∩ �(X) and the fact that � is an

isometry, we notice that for any normed linear space X :

E(X) ≤ S(X∗) and S(X) ≤ E(X∗). (1.3)

In particular, we have
E(X) ≤ S(X∗) ≤ E(X∗∗). (1.4)

An n-dimensional Banach space X is said to be a polyhedral Banach space if BX

contains only finitely many extreme points or, equivalently, if SX is a polyhedron. For
more details on polyhedral Banach spaces see [17].

We define the sign function on R by

sgn t := t

|t | , t ∈ R � {0} and sgn 0 := 0.
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Let (X , ‖ · ‖X ) and (Y , ‖ · ‖Y ) be normed linear spaces. Then,

X ⊕p Y := {(x, y) : x ∈ X , y ∈ Y }, 1 ≤ p ≤ ∞,

is a normed linear space with respect to the following norm:

‖(x, y)‖p :=
{

(‖x‖p
X + ‖y‖p

Y )
1
p if p < ∞

max{‖x‖X , ‖y‖Y } if p = ∞.

Let 1 ≤ q ≤ ∞ be conjugated to p, i.e., such that 1
p + 1

q = 1 for 1 < p < ∞, q = 1
for p = ∞ and q = ∞ for p = 1. Then, the dual space of X⊕p Y can be isometrically
identified with X∗ ⊕q Y ∗ in the following sense: for each F ∈ (X ⊕p Y )∗ there exist a
unique ( f , g) ∈ X∗ ⊕q Y ∗ such that ‖F‖ = ‖( f , g)‖q and F((x, y)) = f (x) + g(y)
for all (x, y) ∈ X⊕pY (compare [13, p. 5] or [8,Definition 0.18 andProposition 0.19]).

1.2 Norm derivatives

It iswell known that smoothness of x ∈ SX is equivalent to theGâteauxdifferentiability
of the norm at x . The concept of norm derivatives arises naturally from the two-sided
limiting nature of the Gâteaux derivative of the norm. Let us recall the following
definition and basic properties of one-sided norm derivatives.

Definition 1.1 Let X be a normed linear space and x, y ∈ X . The norm derivatives of
x in the direction of y are defined as

ρ′+(x, y) := ‖x‖ lim
λ→0+

‖x + λy‖ − ‖x‖
λ

= lim
λ→0+

‖x + λy‖2 − ‖x‖2
2λ

,

ρ′−(x, y) := ‖x‖ lim
λ→0−

‖x + λy‖ − ‖x‖
λ

= lim
λ→0−

‖x + λy‖2 − ‖x‖2
2λ

.

The following properties of norm derivatives will be useful in this note (see [1] and
[9] for proofs):

(ρ-i) For all x , y ∈ X and all α ∈ R,

ρ′±(αx, y) = ρ′±(x, αy) =
{

αρ′±(x, y) if α ≥ 0
αρ′∓(x, y) if α < 0.

(ρ-ii) ρ′−(x, y) ≤ ρ′+(x, y). Moreover, x ∈ X � {θ} is smooth if and only if
ρ′−(x, y) = ρ′+(x, y) for all y ∈ X .
(ρ-iii) ρ′+(x, y) = ‖x‖ sup{ f (y) : f ∈ J (x)}.
(ρ-iv) ρ′−(x, y) = ‖x‖ inf{ f (y) : f ∈ J (x)}.
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1.3 Birkhoff–James orthogonality

For vectors x and y in a normed space X , we say that x is Birkhoff–James orthogonal
(BJ-orthogonal) to y, written as x ⊥B y, if

‖x + λy‖ ≥ ‖x‖, for all λ ∈ R

(cf. [2, 11, 12]). James in [11, Theorem 2.1] proved that if x ∈ X � {θ} and y ∈ X ,
then x ⊥B y if and only if there exists f ∈ J (x) such that f (y) = 0.

Chmieliński in [3] defined an approximate Birkhoff–James orthogonality as fol-
lows. Given x, y ∈ X and ε ∈ [0, 1), x is said to be approximately orthogonal to y,
written as x ⊥ε

B y, if

‖x + λy‖2 ≥ ‖x‖2 − 2ε‖x‖‖λy‖, for all λ ∈ R. (1.5)

As shown in [4], condition (1.5) can be equivalently written in the form:

‖x + λy‖ ≥ ‖x‖ − ε‖λy‖, for all λ ∈ R. (1.6)

In [6, Theorems2.2 and2.3], two important characterizations of the considered approx-
imate orthogonality were given:

x ⊥ε
B y ⇐⇒ ∃ z ∈ span{x, y} : x ⊥B z, ‖z − y‖ ≤ ε‖y‖; (1.7)

⇐⇒ ∃ f ∈ J (x) : | f (y)| ≤ ε‖y‖. (1.8)

Obviously, for any f in J (x), we have | f (y)| ≤ ‖y‖. If | f (y)| < ‖y‖ then there
exists ε ∈ [0, 1) such that | f (y)| = ε‖y‖ whence x ⊥ε

B y. In particular, it follows
from (1.8) for x, y ∈ SX :

x ⊥ε
B y for some ε ∈ [0, 1) ⇐⇒ y /∈ M f for some f ∈ J (x) (1.9)

or equivalently

x �⊥ε
B y for all ε ∈ [0, 1) ⇐⇒ y ∈ M f for all f ∈ J (x). (1.10)

The study of approximate orthogonality has been an active area of research in recent
times, particularly in the space of bounded linear operators on a Banach space (see
[6, 14, 16, 18] for recent study on approximate orthogonality). Since Birkhoff–James
orthogonality is closely related to the classical notion of smoothness in a normed space,
the above works motivated us to introduce a suitable notion of approximate smooth-
ness in normed spaces which will be in some sense compatible with approximate
orthogonality.

In [11], James obtained a characterization of smooth points in terms of right-
additivity of the Birkhoff–James orthogonality relation. Namely, x ∈ X � {θ} is a
smooth point in X if and only if ⊥B is right-additive at x , that is for any y, z ∈ X :
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x ⊥B y and x ⊥B z �⇒ x ⊥B (y + z).

Wenowdefine the notion of an approximate right-additivity of theBJ-orthogonality.

Definition 1.2 Let X be a normed linear space and x ∈ X � {θ}. We say that the
BJ-orthogonality is approximately right-additive at x (ε-right-additive for some ε ∈
[0, 1)) if for any y, z ∈ X :

x ⊥B y and x ⊥B z �⇒ x ⊥ε
B (y + z).

Similarly, we define the right-additivity of the approximate BJ-orthogonality.

Definition 1.3 We say that the approximate BJ-orthogonality is right-additive at x if
whenever x ⊥ε

B y, x ⊥ε
B z for some y, z ∈ X and ε ∈ [0, 1), then there exists some

ε1 ∈ [0, 1) such that x ⊥ε1
B (y + z).

Observe that in Definition 1.2 for a given x ∈ X �{θ}, ε is uniform in the sense that
it is independent on the choice of y and z and in the Definition 1.3 for given x, y, z
and ε, ε1 may depend on all of them.

The connections between smoothness and right-additivity of the BJ-orthogonality
induce a natural question on a condition, weaker than smoothness, which would char-
acterize the approximate right-additivity of the BJ-orthogonality (or right-additivity
of the approximate BJ-orthogonality). This is one of the motivations that lead to the
notion of approximate smoothness which is stated in the next section.

2 Approximate smoothness and rotundity

2.1 Approximate smoothness—definition and basic properties

It is obvious that for any x ∈ X � {θ}, 0 ≤ d(x) ≤ 2 and d(x) = 0 if and only if x is
a smooth point. We will be considering the case when the set J (x) is not necessarily
a singleton, but its diameter is limited, in particular strictly less than 2.

Definition 2.1 Let X be a normed linear space, x ∈ X � {θ} and ε ∈ [0, 2). We say
that x is ε-smooth if d(x) ≤ ε. When the value of ε is not specified, we say that x is
approximately smooth. The space X is said to be approximately smooth (ε-smooth) if
each x ∈ SX is εx -smooth for some εx ≤ ε < 2.

Observe that in the above definition, we intentionally excluded the possibility of
ε = 2. Otherwise, every non-zero element of a normed space would be approxi-
mately smooth and every normed space—approximately smooth one. However, our
motivation is to distinguish approximately smooth points and spaces, so we restrict to
ε < 2.

The following lemmawill be useful for obtaining a characterization of approximate
smoothness in terms of norm derivatives.



Approximate smoothness in normed linear spaces Page 7 of 23 41

Lemma 2.2 Let X be a normed linear space, x ∈ X � {θ}. Then,

sup
y∈SX

{ρ′+(x, y) − ρ′−(x, y)} = d(x)‖x‖.

Proof Using the properties (ρ-iii) and (ρ-iv), for an arbitrary y ∈ SX , we have

ρ′+(x, y) − ρ′−(x, y) = ‖x‖{ sup
f ∈J (x)

f (y) − inf
g∈J (x)

g(y)}

= ‖x‖ sup
f ,g∈J (x)

{ f (y) − g(y)}.

Hence, sup
y∈SX

{ρ′+(x, y) − ρ′−(x, y)} = d(x)‖x‖. ��

We now prove the said characterization.

Lemma 2.3 Let X be a normed linear space, x ∈ X � {θ} and ε ∈ [0, 2). Then, the
following conditions are equivalent:

(i) x is ε-smooth.
(ii) sup

y∈SX
{ρ′+(x, y) − ρ′−(x, y)} ≤ ε‖x‖.

Proof (i) �⇒ (ii) follows from Lemma 2.2.
Now, we prove (ii) �⇒ (i). Let f , g ∈ J (x) and y ∈ SX . Then, ρ′+(x, y) ≥

‖x‖ f (y), ρ′+(x, y) ≥ ‖x‖g(y), ρ′−(x, y) ≤ ‖x‖ f (y) and ρ′−(x, y) ≤ ‖x‖g(y).
Thus,

sup
y∈SX

{ρ′+(x, y) − ρ′−(x, y)} ≥ ‖x‖ sup
y∈SX

| f (y) − g(y)| = ‖x‖‖ f − g‖.

Hence, (ii) yields ‖x‖ ‖ f − g‖ ≤ ε‖x‖ and this proves (i). ��
As an immediate application of Lemma 2.3, we obtain a characterization of the

approximate smoothness of the whole space.

Corollary 2.4 Let X be a normed linear space and ε ∈ [0, 2). Then, the following
conditions are equivalent:

(i) X is ε-smooth.
(ii) sup

x,y∈SX
{ρ′+(x, y) − ρ′−(x, y)} ≤ ε.

If X is a reflexive Banach space then we notice that �(M+
f ) = J ( f ) for f ∈

X∗
� {θ}. Since � is an isometry so it follows that f ∈ X∗

� {θ} is ε-smooth if
and only if diam M+

f ≤ ε. Also, for a reflexive Banach space X using (1.4) and
E(X) = E(X∗∗), we get

X is ε-smooth if and only if S(X∗) ≤ ε. (2.1)
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Now, we consider a finite-dimensional space. We show that if each vector on a unit
sphere is approximately smooth (not necessarily with the same approximation con-
stant), then so is the whole space. Basically, this result is a consequence ofWeierstrass
compactness theorem.

Theorem 2.5 Let X be a finite-dimensional Banach space such that each x ∈ SX is
εx -smooth for some εx ∈ [0, 2). Then, X is approximately smooth.

Proof Let x ∈ SX . Without loss of generality, we assume that εx = d(x).
Let ε := supx∈SX εx . Obviously, ε ≤ 2 and suppose, contrary to our claim, that

ε = 2. Then, we could find {xn} ⊂ SX such that εxn ↗ 2. Also, for each n ∈ N, we
can choose fn, gn ∈ J (xn) such that ‖ fn − gn‖ > εxn − 1

n .
Now, using the compactness of SX , SX∗ and the fact that A = {(x, f , g) :

x ∈ SX , f , g ∈ J (x)} is a closed set in SX × SX∗ × SX∗ , we can find a con-
vergent subsequence of {(xn, fn, gn)} which we again denote by {(xn, fn, gn)}. Let
(x, f , g) ∈ A be the limit of {(xn, fn, gn)}. Let h : X × X∗ × X∗ −→ R be
defined by h((x, f , g)) = ‖ f − g‖. Then, h is clearly a continuous function. Thus,
limn→∞ h((xn, fn, gn)) = h((x, f , g)) and this implies that ‖ f − g‖ = 2. This
contradicts our assumption that εx ∈ [0, 2), whence ε < 2 and X is ε-smooth. ��

A normed space is smooth if and only each of its two-dimensional subspaces is
smooth (cf. [15, Proposition 5.4.21]). An analogous result can be proved for approx-
imate smoothness. However, if the approximation constant ε is not fixed, we can
prove it merely for finite-dimensional spaces. The authors do not know whether this
assumption is essential.

Theorem 2.6 (i) Let X be a normed linear space and ε ∈ [0, 2). Then, X is ε-smooth
if and only if each of its two-dimensional subspaces is ε-smooth.

(ii) Let X be a normed linear space. If X is approximately smooth then so is each of its
two-dimensional subspaces. Moreover, if the dimension of X is finite and each of
its two-dimensional subspaces is approximately smooth then X is approximately
smooth.

Proof (i). Let X be ε-smooth space and Y its two-dimensional subspace. For y ∈
Y �{θ} any two supporting functionals at y, f̃ , g̃ ∈ SY ∗ can be extended (by the Hahn-
Banach theorem) to f , g ∈ SX∗—supporting functionals at y in X . Now, ‖ f̃ − g̃‖ ≤
‖ f − g‖ ≤ ε implies that Y is ε-smooth.

Conversely, let every two-dimensional subspace of X be ε-smooth. Suppose, on
the contrary, that X is not ε-smooth. Then, there exist x ∈ SX and f , g ∈ J (x) such
that ‖ f − g‖ > ε. Let y ∈ SX be such that |( f − g)(y)| > ε. Clearly, this choice of
y implies that x and y are linearly independent. Let Y = span{x, y}, f̃ = f |Y and
g̃ = g|Y . Then, f̃ (x) = 1, g̃(x) = 1 implies that f̃ , g̃ ∈ SY ∗ . Also, |( f − g)(y)| > ε

implies that ‖ f̃ − g̃‖ > ε. Thus, f̃ , g̃ ∈ {h ∈ SY ∗ : h(x) = 1} and ‖ f̃ − g̃‖ > ε. This
leads to the contradiction with ε-smoothness of Y and thus X is ε-smooth.

(ii). If X is approximately smooth then, as above, an application of the Hahn–
Banach theorem yields approximate smoothness of any two-dimensional subspace of
X .
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Now, we assume that X is a finite-dimensional space and let every two-dimensional
subspace of X be approximately smooth. Suppose, on the contrary, that X is not
approximately smooth. Then, by Theorem 2.5, there exist x ∈ SX and f , g ∈ J (x)
such that ‖ f − g‖ = 2. Let y ∈ SX be such that |( f − g)(y)| = 2. Clearly, this choice
of y implies that x and y are linearly independent. Let Y = span{x, y}, f̃ = f |Y and
g̃ = g|Y . Now, using arguments similar to the proof of (i), we arrive at the contradiction
with approximate smoothness of Y and thus X is approximately smooth. ��

The following example shows that in some spaces the notions of smoothness and
approximate smoothness can coincide.

Example 2.7 (a) Observe that if x = (x1, x2, x3, . . .) ∈ �1 � {θ} then d(x) = 2 if
xi0 = 0 for some i0 ∈ N and d(x) = 0 if xi �= 0 for all i . Using this observation it
follows that x ∈ �1 � {θ} is ε-smooth for ε ∈ [0, 2) if and only if x is smooth.

(b) If x = (x1, x2, x3, . . .) ∈ c0 � {θ} then d(x) = 2 if norm of x is attained at
more than one coordinate and d(x) = 0 if norm of x is attained only at one coordinate.
Thus, it follows that x ∈ c0 � {θ} is ε-smooth for ε ∈ [0, 2) if and only if x is smooth.

2.2 Approximate rotundity

Rotundity (strict convexity) is another important geometrical property of normed
spaces.Although rotundity and smoothness are independent properties, they are related
to each other. We would like to show that it is so with their approximate counterparts.

Let X be a normed linear space and let ε ∈ [0, 2).
Definition 2.8 We say that X is ε-rotund (or ε-strictly convex) if S(X) ≤ ε.

Obviously, for ε = 0, the above condition means that each functional f ∈ SX∗
supports the unit sphere in at most one point, which is equivalent to rotundity (cf. [15,
Theorem 5.1.15, Corollary 5.1.16]).

Based on (1.3) and (1.4), we can easily establish connections between approximate
smoothness (rotundity) of a given space and approximate rotundity (smoothness) of
its dual.

Theorem 2.9 Let X be a normed linear space and let ε ∈ [0, 2).
1. If X∗ is ε-smooth, then X is ε-rotund;
2. If X∗ is ε-rotund, then X is ε-smooth;
3. If X is reflexive, then X is ε-smooth if and only if X∗ is ε-rotund and X is ε-rotund

if and only if X∗ is ε-smooth.

3 Approximate additivity of the Birkhoff–James orthogonality in
approximately smooth spaces

As we have reminded, the Birkhoff–James orthogonality is right-additive at smooth
points. Although it is no longer true for non-smooth points, we will show that under a
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Fig. 1 Illustration to Example 3.1

relaxed condition of approximate smoothness, right-additivity can be partially main-
tained.

We will start with an example showing that, in general, approximate smoothness
does not imply approximate right-additivity of the Birkhoff–James orthogonality.

Example 3.1 Let X = R
2 with a norm generated by

Bδ := conv {(1, 1), (0, 1 + δ), (−1, 1), (−1,−1), (0,−1 − δ), (1,−1)}

as a unit ball (with δ > 0).
Consider the point P = (0, 1 + δ) and functionals

f (x, y) = δ
1+δ

x + 1
1+δ

y,
g(x, y) = − δ

1+δ
x + 1

1+δ
y.

Notice that f , g ∈ J (P) (we denote by L f and Lg the respective supporting lines)
and J (P) = conv { f , g} (see Fig. 1). Then,

diam J (P) = ‖ f − g‖ = sup
(x,y)∈Bδ

2δ

1 + δ
|x | = 2δ

1 + δ
.

Thus, the considered space is ε-smooth at P , with arbitrarily small ε (if only δ is small
enough). On the other hand, for R1 = (1, δ) and R2 = (−1, δ), we have

P⊥B R1, P⊥B R2

but R1 + R2 = (0, 2δ) = λP with λ = 2δ
1+δ

hence P �⊥ε
B(R1 + R2) for any ε ∈ [0, 1).

Although approximate smoothness generally does not imply even approximate
right-additivity (nomatter how small is ε), the following results give some information
in particular situations.
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Theorem 3.2 Let X be a normed linear space and let x ∈ X�{θ}. Let y1, y2 ∈ X�{θ}
be such that x ⊥ε

B y1, x ⊥ε
B y2, where ε ∈ [0, 1) is such that

0 ≤ ε <
2‖y1 + y2‖

3(‖y1‖ + ‖y2‖) < 1.

If x is ε-smooth, then there exists ε1 ∈ [0, 1) such that x ⊥ε1
B (y1 + y2).

Proof According to (1.8), we can find f , g ∈ J (x) such that | f (y1)| ≤ ε‖y1‖ and
|g(y2)| ≤ ε‖y2‖. Now, using ε-smoothness of x , we get

| f (y2)| = |( f − g)(y2) + g(y2)|
≤ ‖ f − g‖‖y2‖ + ‖g(y2)‖
≤ ε‖y2‖ + ε‖y2‖
= 2ε‖y2‖.

Using similar arguments, we can show that |g(y1)| ≤ 2ε‖y1‖. Convexity of J (x)
yields 1

2 f + 1
2g ∈ J (x) and

∣∣∣∣
(
1

2
f + 1

2
g

)
(y1 + y2)

∣∣∣∣ ≤ 1

2
(ε‖y1‖ + 2ε‖y2‖ + 2ε‖y1‖ + ε‖y2‖)

= 3

2
ε(‖y1‖ + ‖y2‖)

< ‖y1 + y2‖.

Let ε1 ∈ [0, 1) be such that |( 12 f + 1
2g)(y1 + y2)| ≤ ε1‖y1 + y2‖. Then, (1.8) implies

that x ⊥ε1
B (y1 + y2). ��

Theorem 3.3 Let X be a normed linear space and let x ∈ X�{θ}. Let y1, y2 ∈ X�{θ}
be such that x ⊥B y1, x ⊥B y2. If x is ε-smooth, where 0 ≤ ε <

2‖y1+y2‖
‖y1‖+‖y2‖ ≤ 2, then

there exists ε1 ∈ [0, 1) such that x ⊥ε1
B (y1 + y2).

Proof Wefind f , g ∈ J (x) such that f (y1) = 0 and g(y2) = 0.Now, by ε-smoothness
of x , we get

| f (y2)| = |( f − g)(y2)| ≤ ε‖y2‖,

and similarly |g(y1)| ≤ ε‖y1‖. Clearly, 1
2 f + 1

2g ∈ J (x) and

∣∣∣∣
(
1

2
f + 1

2
g

)
(y1 + y2)

∣∣∣∣ ≤ ε

2
(‖y1‖ + ‖y2‖) < ‖y1 + y2‖.

Let ε1 ∈ [0, 1) be such that ∣∣( 12 f + 1
2g

)
(y1 + y2)

∣∣ ≤ ε1‖y1+ y2‖. Thus, (1.8) implies
that x ⊥ε1

B (y1 + y2). ��
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Fig. 2 Illustration to Example 3.5

We now provide an example to show that in Theorems 3.2 and 3.3, approximate
smoothness of x cannot be omitted. We will need the following lemma.

Lemma 3.4 Let X be a normed linear space and let x ∈ SX . Then, the approximate
Birkhoff–James orthogonality is not right-additive at x if and only if there exist y1, y2 ∈
SX , f1, f2 ∈ J (x) such that y1 /∈ M f1 , y2 /∈ M f2 and

y1+y2
‖y1+y2‖ ∈ M f for all f ∈ J (x).

Proof The proof relies on characterizations (1.9) and (1.10). Let x ∈ SX and suppose
that the approximate Birkhoff–James orthogonality is not right-additive at x , i.e., there
exist y1, y2 ∈ SX , ε ∈ [0, 1) such that x ⊥ε

B y1, x ⊥ε
B y2 and there does not exist

any ε1 ∈ [0, 1) such that x ⊥ε1
B

y1+y2
‖y1+y2‖ . Equivalently, we can write that (due to (1.9))

there exist f1, f2 ∈ J (x) such that y1 /∈ M f1 , y2 /∈ M f2 as well as (by (1.10)) that
y1+y2

‖y1+y2‖ ∈ M f for all f ∈ J (x). ��
If x ∈ X � {θ} is ε-smooth and y1, y2 ∈ X satisfy the conditions stated in Theo-

rem 3.2, then there exists f ∈ J (x) such that y1+y2
‖y1+y2‖ /∈ M f . The following example

shows that if in Theorems 3.2 or 3.3 the assumption of x being ε-smooth is omitted,
the results are not true.

Example 3.5 Consider X = (R2, ‖ ‖∞). Let x, y1, y2 ∈ SX , where x = (1, 1), y1 =
(1, α), y2 = (α, 1), 0 < α < 1

2 (see Fig. 2A). Then, we can observe, using (1.7), that

x ⊥α
B y1 and x ⊥α

B y2. Moreover, 0 < α < 1+α
3 = 2‖y1+y2‖

3(‖y1‖+‖y2‖) .
Now,we have y1+y2

‖y1+y2‖ = x ∈ M f for all f ∈ J (x) and, byLemma3.4, approximate
Birkhoff–James orthogonality is not right-additive at x .

To justify essentialness of approximate smoothness in Theorem 3.3 take x, z1, z2 ∈
SX , where x = (1, 1), z1 = (1,−α), z2 = (−α, 1), 0 < α < 1

2 (see Fig. 2B). Then,
x ⊥B z1, x ⊥B z2 and clearly,

z1+z2‖z1+z2‖ = x ∈ M f for all f ∈ J (x). Thus, Lemma 3.4
implies that Birkhoff–James orthogonality is not approximately right-additive at x .

Finally, in this section, we give a result showing that approximate smoothness of a
vector x guarantees the approximate right-additivity of the Birkhoff–James orthogo-
nality on some restricted set of vectors.
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Theorem 3.6 Let X be a real normed linear space and let x ∈ X � {θ} be ε-smooth
with ε ∈ [0, 2). Suppose that y1, y2 ∈ X are such that min{‖y1‖, ‖y2‖} ≤ ∥∥ y1+y2

2

∥∥.
If x⊥B y1 and x⊥B y2, then

x⊥ε/2
B (y1 + y2).

Proof Since x⊥B y1 and x⊥B y2, there exist f , g ∈ J (x) such that f (y1) = g(y2) =
0. Therefore,

f (y2) = ( f − g)(y2) and g(y1) = (g − f )(y1)

which, together with the assumed diam J (x) ≤ ε, gives

| f (y2)| ≤ ε‖y2‖ and |g(y1)| ≤ ε‖y1‖.

Suppose that ‖y1‖ ≤ ‖y2‖. It follows then from the assumption that ‖y1‖ ≤ ∥∥ y1+y2
2

∥∥
and

|g(y1 + y2)| = |g(y1)| ≤ ε‖y1‖ ≤ ε

2
‖y1 + y2‖.

This means that x⊥ε/2
B (y1 + y2).

Similarly, if ‖y2‖ ≤ ‖y1‖, we show that | f (y1 + y2)| ≤ ε
2‖y1 + y2‖, which also

gives the assertion. ��
Note that the condition min{‖y1‖, ‖y2‖} ≤ ∥∥ y1+y2

2

∥∥ depends both on directions
and norms of vectors y1, y2. It holds true, however, regardless of directions, if ‖y1‖ ≥
3‖y2‖ or ‖y2‖ ≥ 3‖y1‖.

4 Polyhedral spaces

Now,we consider a 2-dimensional regular polyhedral Banach space X with 2n extreme
points. Regularity heremeans that all the edges of the unit sphere are of the same length
with respect to the Euclideanmetric and all the interior angles are of the samemeasure.
For such spaces, we will calculate the values of d(x) for each x ∈ Ext BX and the
value of E(X).

Example 4.1 Let X be a 2-dimensional regular polyhedral Banach space with 2n (n ≥
2) extreme points and let x ∈ Ext BX . Then,

d(x) = E(X) =
{
2 tan π

2n if n is even,
2 tan π

2n sin
(n−1)π

2n if n is odd.

Proof If x ∈ SX �Ext BX then clearly d(x) = 0. Thus, to calculate E(X) it is sufficient
to find d(x) for all x ∈ Ext BX . Moreover, regularity and symmetry of SX implies that
d(x) = d(y) for all x, y ∈ Ext BX .
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Fig. 3 Illustration to Example 4.1

Without loss of generality, we may assume that

Ext BX = {vk : 1 ≤ k ≤ 2n},

where vk =
(
cos (k−1)π

n , sin (k−1)π
n

)
for 1 ≤ k ≤ 2n (see Fig. 3).

Let fk be the unique support functional for the segment vkvk+1 for k = 1, . . . , 2n−1
and v2nv1 for k = 2n (on Fig. 3 the respective supporting lines are denoted by L fk
and L f2n ). Some calculations, which will be omitted here, lead to the explicit formula
for the value of fk at (x, y) ∈ R

2:

fk((x, y)) =
(
x cos

(2k − 1)π

2n
+ y sin

(2k − 1)π

2n

)
sec

π

2n

(compare with a similar result in [19, the proof of Theorem 3.1]). Moreover,

J (vk) =
{

fk−1 fk if 1 < k ≤ 2n,

f2n f1 if k = 1

and thus

d(vk) =
{ ‖ fk−1 − fk‖ if 1 < k ≤ 2n,

‖ f2n − f1‖ if k = 1.
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For 1 < k ≤ 2n, we have

( fk − fk−1)((x, y)) = x

(
cos

(2k − 1)π

2n
− cos

(2k − 3)π

2n

)
sec

π

2n

+ y

(
sin

(2k − 1)π

2n
− sin

(2k − 3)π

2n

)
sec

π

2n

=
{
−2x sin

(k − 1)π

n
sin

π

2n
+ 2y cos

(k − 1)π

n
sin

π

2n

}
sec

π

2n
.

To calculate the norm of fk − fk−1 (supremum over the unit sphere), we use the
Krein–Milman theorem and restrict ourselves to extremal points. Thus, we have for
1 < k ≤ 2n

‖ fk − fk−1‖ =
max(x,y)∈Ext BX

∣∣∣−2x sin (k−1)π
n sin π

2n + 2y cos (k−1)π
n sin π

2n

∣∣∣ sec π
2n .

(4.1)

If n is even then by taking k = n
2 + 1 in (4.1), we get

‖ f n
2+1 − f n

2
‖ = max

(x,y)∈Ext BX
2|x | sin π

2n
sec

π

2n
.

For (x, y) ∈ Ext BX , |x | ≤ 1. Thus, ‖ f n
2+1 − f n

2
‖ = 2 tan π

2n .
If n is odd, then by taking k = n + 1 in (4.1), we get

‖ fn+1 − fn‖ = max
(x,y)∈Ext BX

2|y| sin π

2n
sec

π

2n
. (4.2)

For (x, y) ∈ Ext BX , |y| ≤ sin (n−1)π
2n . Thus,

‖ fn+1 − fn‖ = 2 sin
(n − 1)π

2n
sin

π

2n
sec

π

2n
= 2 tan

π

2n
sin

(n − 1)π

2n
. (4.3)

Now, using (4.2), (4.3), symmetry and regularity of SX , we get

E(X) = d(vk) =
{
2 tan π

2n if n is even,
2 tan π

2n sin
(n−1)π

2n if n is odd.

��
As an application of the above, we obtain the following result on approximate

smoothness of a 2-dimensional regular polyhedral Banach space X with 2n extreme
points.

Proposition 4.2 Let X be a 2-dimensional regular polyhedral Banach space with 2n
extreme points (n ≥ 2). Then, the following holds true.

(i) X is ε-smooth for ε ∈ [2 tan π
2n , 2), if n is even.
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(ii) X is ε-smooth for ε ∈ [2 tan π
2n sin

(n−1)π
2n , 2), if n ≥ 3 is odd.

In the next result, we give formulas for d(x), x ∈ SX and E(X) for a
finite-dimensional polyhedral Banach space X . Note that in case of X being a finite-
dimensional polyhedral Banach space, its dual X∗ is also a polyhedral Banach space
with finitely many extreme points in BX∗ .

Theorem 4.3 Let X be a finite-dimensional polyhedral Banach space and let x ∈ SX .
Then,

(i) d(x) = max{‖ fi − f j‖ : fi , f j ∈ Ext BX∗ such that fi , f j ∈ J (x)},
(ii) E(X) = max{‖ fi − f j‖ : fi , f j ∈ Ext BX∗ such that M+

fi
∩ M+

f j
�= ∅}.

Proof (i) Let x ∈ SX and Fi1, Fi2 , . . . , Fik be the facets of SX which contain
x . Let fi1 , fi2 , . . . , fik ∈ Ext BX∗ be the unique supporting functionals for the
facets Fi1 , Fi2 , . . . , Fik , respectively. Let f , g ∈ J (x). Then, f = ∑k

j=1 α j fi j ,

g = ∑k
j=1 β j fi j , where 0 ≤ α j , β j ≤ 1 and

∑k
j=1 α j = 1,

∑k
j=1 β j = 1. Now,

‖ f − g‖ =
∥∥∥∥∥∥

k∑
j=1

α j fi j − g

∥∥∥∥∥∥ =
∥∥∥∥∥∥

k∑
j=1

α j fi j −
k∑
j=1

α j g

∥∥∥∥∥∥
=

∥∥∥∥∥∥
k∑
j=1

α j ( fi j − g)

∥∥∥∥∥∥ ≤
k∑
j=1

α j‖ fi j − g‖.

Similar arguments show that

‖ fi j − g‖ ≤
k∑

�=1

β�‖ fi j − fi�‖ ≤ max
1≤�≤k

‖ fi j − fi�‖

for all 1 ≤ j ≤ k. Thus, ‖ f − g‖ ≤ max
1≤ j,�≤k

‖ fi j − fi�‖ and this proves the result.

(ii) Observe that if y ∈ F for some facet F and f , g ∈ J (y) then f , g ∈ J (x) for
some x ∈ Ext BX ∩ F . Thus, to calculate E(X) it is sufficient to consider x ∈ Ext BX .
Now, (ii) follows from (i) by observing that if f , g ∈ J (x) for some x ∈ Ext BX ∩ F
and facet F then M+

f ∩ M+
g �= ∅. ��

5 Direct sums

Given normed linear spaces X ,Y , we study the space Z = X ⊕p Y , 1 ≤ p ≤ ∞,
and approximate smoothness of its elements. We start with a description of the set of
supporting functionals.

Proposition 5.1 Let X ,Y be normed linear spaces and let Z = X ⊕p Y with 1 ≤ p ≤
∞.
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1. If 1 < p < ∞ and q is conjugated to p, then for any x ∈ X �{θ} and y ∈ Y �{θ},
we have

(a)

J ((x, y)) ={(
‖x‖p−1 f

(‖x‖p+‖y‖p)
1
q
,

‖y‖p−1g

(‖x‖p+‖y‖p)
1
q

)
∈ SX∗⊕qY ∗ : f ∈ J (x), g ∈ J (y)

}
,

(5.1)
(b) J ((x, θ)) = {( f , θ) ∈ SX∗⊕qY ∗ : f ∈ J (x)},
(c) J ((θ, y)) = {(θ, g) ∈ SX∗⊕qY ∗ : g ∈ J (y)}.

2 If p = 1, x ∈ X � {θ}, y ∈ Y � {θ}, then
(a) J ((x, y)) = {( f , g) ∈ SX∗⊕∞Y ∗ : f ∈ J (x), g ∈ J (y)},
(b) J ((x, θ)) = {( f , g) ∈ SX∗⊕∞Y ∗ : f ∈ J (x), g ∈ BY ∗},
(c) J ((θ, y)) = {( f , g) ∈ SX∗⊕∞Y ∗ : f ∈ BX∗ , g ∈ J (y)}.

3 Let p = ∞ and (x, y) ∈ Z � {θ}.
(a) If ‖x‖ > ‖y‖, then

J ((x, y)) = {( f , θ) ∈ SX∗⊕1Y ∗ : f ∈ J (x)}.

(b) If ‖x‖ < ‖y‖, then

J ((x, y)) = {(θ, g) ∈ SX∗⊕1Y ∗ : g ∈ J (y)}.

(c) If ‖x‖ = ‖y‖, then

{(α f , (1 − α)g) : f ∈ J (x), g ∈ J (y), 0 ≤ α ≤ 1} ⊆ J ((x, y)).

Proof (1a). Let F ∈ J ((x, y)), where F = ( f , g) ∈ SX∗⊕qY ∗ . Then, using Hölder’s
inequality, we get

(‖x‖p + ‖y‖p)
1
p = ‖(x, y)‖p = F((x, y)) = f (x) + g(y)

≤ ‖ f ‖‖x‖ + ‖g‖‖y‖
≤ (‖ f ‖q + ‖g‖q) 1

q (‖x‖p + ‖y‖p)
1
p

= (‖x‖p + ‖y‖p)
1
p .

This shows that equality holds in Hölder’s inequality and thus

‖ f ‖ = ‖x‖p−1

(‖x‖p + ‖y‖p)
1
q

, ‖g‖ = ‖y‖p−1

(‖x‖p + ‖y‖p)
1
q

. (5.2)
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Also, we get f (x) = ‖ f ‖‖x‖, g(y) = ‖g‖‖y‖which implies that f̃ = f
‖ f ‖ ∈ J (x)

and g̃ = g
‖g‖ ∈ J (y). Combining this with (5.2), we get

F = ( f , g) =
(

‖x‖p−1 f̃

(‖x‖p + ‖y‖p)
1
q

,
‖y‖p−1g̃

(‖x‖p + ‖y‖p)
1
q

)

which shows ⊆ in (5.1). Now, consider

F =
(

‖x‖p−1 f

(‖x‖p + ‖y‖p)
1
q

,
‖y‖p−1g

(‖x‖p + ‖y‖p)
1
q

)
∈ SX∗⊕qY ∗ ,

where f ∈ J (x) and g ∈ J (y). Then, (we use that (p − 1)q = p)

F((x, y)) = ‖x‖p + ‖y‖p

(‖x‖p + ‖y‖p)
1
q

= ‖(x, y)‖p.

Thus, F ∈ J ((x, y)) and this proves ⊇ in (5.1) and finishes the proof of part (a).
Parts (b) and (c) follow using the similar reasoning.
(2). For the proof of (a) let x ∈ X\{θ}, y ∈ Y\{θ}, f ∈ J (x) and g ∈ J (y). Then,

( f , g) ∈ SX∗⊕∞Y ∗ and ( f , g)((x, y)) = f (x) + g(y) = ‖x‖ + ‖y‖ = ‖(x, y)‖1.
Thus, ( f , g) ∈ J ((x, y)).

For the reverse, let ( f , g) ∈ J ((x, y)). Then, ‖ f ‖ ≤ 1, ‖g‖ ≤ 1 and

‖x‖ + ‖y‖ = ‖(x, y)‖1 = ( f , g)((x, y)) = f (x) + g(y)

≤ ‖ f ‖‖x‖ + ‖g‖‖y‖ ≤ ‖x‖ + ‖y‖.

This shows that ‖ f ‖ = 1, ‖g‖ = 1, f (x) = ‖x‖ and g(y) = ‖y‖. Thus, f ∈ J (x)
and g ∈ J (y).

To prove (b) let x ∈ X \ {θ}, f ∈ J (x) and g ∈ BY ∗ . Then, ( f , g) ∈ SX∗⊕∞Y ∗ and
( f , g)((x, θ)) = f (x) = ‖x‖ = ‖(x, θ)‖1. Thus, ( f , g) ∈ J ((x, θ)). The reverse
inclusion is clear.

The proof of (c) is analogous.
(3). For the proof of ((a)) let x ∈ X\{θ}, y ∈ Y be such that ‖x‖ > ‖y‖. Let f ∈

J (x). Then, clearly ( f , θ) ∈ SX∗⊕1Y ∗ , ( f , θ)((x, y)) = f (x) = ‖x‖ = ‖(x, y)‖∞
and thus ( f , θ) ∈ J ((x, y)).

Now, let ( f , g) ∈ J ((x, y)), where g ∈ BY ∗ . If f = θ , then

( f , g)((x, y)) = g(y) ≤ ‖y‖ < ‖(x, y)‖∞.

Thus, f �= θ . Suppose g �= θ . Since ( f , g) ∈ SX∗⊕1Y ∗ , f �= θ , g �= θ , gives ‖ f ‖ < 1
and ‖g‖ < 1. Also, ‖ f ‖ + ‖g‖ = 1 implies ‖g‖ = 1 − ‖ f ‖. Thus,

‖x‖ = ‖(x, y)‖∞ = ( f , g)((x, y)) = f (x) + g(y)

≤ ‖ f ‖‖x‖ + ‖g‖‖y‖ < ‖ f ‖‖x‖ + (1 − ‖ f ‖)‖x‖ = ‖x‖.
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The obtained contradiction proves the required form of J ((x, y)).
The proof of (b) is analogous.
Finally, we prove (c). Let x ∈ X\{θ}, y ∈ Y\{θ} be such that ‖x‖ = ‖y‖. Let

f ∈ J (x), g ∈ J (y) and 0 ≤ α ≤ 1. Then, (α f , (1− α)g) ∈ SX∗⊕1Y ∗ and (α f , (1−
α)g)((x, y)) = α f (x) + (1 − α)g(y) = α‖x‖ + (1 − α)‖y‖ = ‖x‖ = ‖(x, y)‖∞.
This proves the result. ��
Corollary 5.2 Let X ,Y be normed linear spaces and let Z = X⊕pY with 1 ≤ p ≤ ∞.

1. If 1 < p < ∞ and q is conjugated to p, then for any x ∈ X �{θ} and y ∈ Y �{θ},
we have

(a)

d((x, y)) =
( ‖x‖p

‖x‖p + ‖y‖p
d(x)q + ‖y‖p

‖x‖p + ‖y‖p
d(y)q

) 1
q

, (5.3)

(b) d((x, θ)) = d(x),
(c) d((θ, y)) = d(y).

2. If p = 1, x ∈ X � {θ}, y ∈ Y � {θ}, then
(a) d((x, y)) = max{d(x), d(y)},
(b) d((x, θ)) = 2,
(c) d((θ, y)) = 2.

3. Let p = ∞, (x, y) ∈ Z � {θ}.
(a) If ‖x‖ > ‖y‖, then d((x, y)) = d(x).
(b) If ‖x‖ < ‖y‖, then d((x, y)) = d(y).
(c) If ‖x‖ = ‖y‖, then d((x, y)) = 2.

Proof We will prove (1a). Let F,G ∈ J ((x, y)). On account of (5.1), there exist
fx , gx ∈ J (x), fy, gy ∈ J (y) such that

F =
(

‖x‖p−1 fx

(‖x‖p + ‖y‖p)
1
q

,
‖y‖p−1 fy

(‖x‖p + ‖y‖p)
1
q

)

and

G =
(

‖x‖p−1gx

(‖x‖p + ‖y‖p)
1
q

,
‖y‖p−1gy

(‖x‖p + ‖y‖p)
1
q

)
.

This gives (using (p − 1)q = p)

‖F − G‖qq = ‖x‖p

‖x‖p + ‖y‖p
‖ fx − gx‖q + ‖y‖p

‖x‖p + ‖y‖p
‖ fy − gy‖q
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and thus,

d((x, y))q ≤ ‖x‖p

‖x‖p + ‖y‖p
d(x)q + ‖y‖p

‖x‖p + ‖y‖p
d(y)q .

To prove the reverse inequality fix arbitrarily δ > 0 and choose f δ
x , gδ

x ∈ J (x) such
that ‖ f δ

x − gδ
x‖q > d(x)q − δ. Analogously, let f δ

y , gδ
y ∈ J (y) be chosen such that

‖ f δ
y − gδ

y‖q > d(y)q − δ. Define

Fδ :=
(

‖x‖p−1 f δ
x

(‖x‖p + ‖y‖p)
1
q

,
‖y‖p−1 f δ

y

(‖x‖p + ‖y‖p)
1
q

)

and

Gδ :=
(

‖x‖p−1gδ
x

(‖x‖p + ‖y‖p)
1
q

,
‖y‖p−1gδ

y

(‖x‖p + ‖y‖p)
1
q

)
.

By (5.1), Fδ,Gδ ∈ J ((x, y)) whence

d((x, y))q ≥ ‖Fδ − Gδ‖qq
>

‖x‖p

‖x‖p + ‖y‖p
(d(x)q − δ) + ‖y‖p

‖x‖p + ‖y‖p
(d(y)q − δ)

and since δ > 0 was arbitrary, we get

d((x, y))q ≥ ‖x‖p

‖x‖p + ‖y‖p
d(x)q + ‖y‖p

‖x‖p + ‖y‖p
d(y)q .

The proofs of other cases are similar or obvious. ��
Now, as a straightforward consequence of Corollary 5.2, we characterize approxi-

mate smoothness of the direct sum.

Theorem 5.3 Let X, Y be normed linear spaces and Z = X ⊕p Y , 1 < p < ∞. Then,
the following statements hold true:

(i) Let x ∈ X � {θ}, y ∈ Y � {θ}.
(a) If x is εx -smooth in X and y is εy-smooth in Y for εx , εy ∈ [0, 2), then (x, y)

is ε-smooth in Z with

ε :=
( ‖x‖p

‖x‖p + ‖y‖p
ε
q
x + ‖y‖p

‖x‖p + ‖y‖p
ε
q
y

) 1
q

.

(b) If x is ε-smooth in X and y is ε-smooth in Y for ε ∈ [0, 2), then (x, y) is
ε-smooth in Z.
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(c) If (x, y) is ε-smooth in Z for ε ∈ [0, 2), then either x is ε-smooth in X or y is
ε-smooth in Y .

(d) (x, y) is approximately smooth if and only if either x or y is approximately
smooth.

(ii) Let x ∈ X � {θ}. Then, (x, θ) ∈ Z is ε-smooth for ε ∈ [0, 2) if and only if x is
ε-smooth in X.

(iii) Let y ∈ Y � {θ}. Then, (θ, y) ∈ Z is ε-smooth for ε ∈ [0, 2) if and only if y is
ε-smooth in Y .

Proof For the proof of (i), we need to apply Corollary 5.2 (1a). In particular, for (id),
we observe that d(x, y) < 2 if and only if d(x) < 2 or d(y) < 2. The statements (ii)
and (iii) immediately follow from Corollary 5.2 (1b) and (1c), respectively. ��
Theorem 5.4 Let X, Y be normed linear spaces and Z = X ⊕1 Y . Then, the following
hold true:

(i) (a) If x is εx -smooth in X and y is εy-smooth in Y for εx , εy ∈ [0, 2), then (x, y)
is ε-smooth in Z with ε := max{εx , εy}.

(b) If x is ε-smooth in X and y is ε-smooth in Y for ε ∈ [0, 2), then (x, y) is
ε-smooth in Z.

(c) If (x, y) is ε-smooth in Z for ε ∈ [0, 2), then both x and y are ε-smooth in X
and Y , respectively.

(d) (x, y) is approximately smooth if and only if both x and y are approximately
smooth.

(ii) If x ∈ X � {θ} then (x, θ) ∈ Z cannot be approximately smooth.
(iii) If y ∈ Y � {θ} then (θ, y) ∈ Z cannot be approximately smooth.

Proof The proof of (i) relies on Corollary 5.2 (2a). Statements (ii) and (iii) follow
immediately from Corollary 5.2 (2b) and (2c), respectively. ��
Theorem 5.5 Let X, Y be normed linear spaces, Z = X ⊕∞ Y and z = (x, y) ∈
Z � {θ}. Then, the following statements hold true:

(i) Let ‖x‖ > ‖y‖. Then, z is ε-smooth in Z for ε ∈ [0, 2) if and only if x is ε-smooth
in X.

(ii) Let ‖x‖ < ‖y‖. Then, z is ε-smooth in Z for ε ∈ [0, 2) if and only if y is ε-smooth
in Y .

(iii) If ‖x‖ = ‖y‖, then z cannot be approximately smooth.

Proof Statements (i) and (ii) follow from Corollary 5.2 (3a) and (3b), whereas (iii) is
a consequence of Corollary 5.2 (3c). ��

The following final example is an application of the above theorem and the fact that
any t ∈ R � {0} is a smooth point of R.

Example 5.6 Let Z = X ⊕∞ R be a 3-dimensional polyhedral Banach space whose
unit ball is a right prism with regular polyhedron P as its base. Then, the following
hold true for z = (x, t) ∈ Z � {θ}:
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(i) Let ‖x‖ > |t |. Then, z is ε-smooth in Z for ε ∈ [0, 2) if and only if x is ε-smooth
in X .

(ii) Let ‖x‖ < |t |. Then, z is smooth.
(iii) If ‖x‖ = |t |, then z cannot be approximately smooth.
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