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Abstract
We study, from a quite general point of view, the family of all extensions of a posi-
tive hermitian linear functional � , defined on a dense *-subalgebra �

0
 of a topo-

logical *-algebra �[�] , with the aim of finding extensions that behave regularly. The 
sole constraint the extensions we are dealing with are required to satisfy is that their 
domain is a subspace of G(�) , the closure of the graph of � (these are the so-called 
slight extensions). The main results are two. The first is having characterized those 
elements of � for which we can find a positive hermitian slight extension of � , giv-
ing the range of the possible values that the extension may assume on these ele-
ments; the second one is proving the existence of maximal positive hermitian slight 
extensions. We show as it is possible to apply these results in several contexts: Rie-
mann integral, Infinite sums, and Dirac Delta.

Keywords Positive linear functionals · Topological *-algebras

Mathematics Subject Classification 46H05 · 46H35

1 Introduction

Let � be a topological *-algebra (in general, without unit), with topology � and contin-
uous involution ∗ , and let �0 be a dense *-subalgebra of � . Given a positive hermitian 
linear functional � on �0 (see Definition 2.1 below) is it possible to extend � to some 
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elements of � ? In this paper we will continue the analysis undertaken in [3–25] with 
the aim of finding extensions that behave regularly.

The previous problem may have, in some situations, easy solutions, namely when � 
is �-continuous or closable [3, 22] (see Definition below).

In 2010 Bongiorno and two of us (CT, ST) proposed [3] to use the notion of slight 
extension given in [10, ch.7 §36.7] for nonclosable linear maps for studying extensions 
of linear functionals, moving from the basic example of the Riemann integral

regarded as a linear functional on �0 , the *-algebra C(I) of complex valued continu-
ous functions on a compact interval I ⊆ ℝ , considered as a dense *-subalgebra of � , 
the *-algebra of Lebesgue measurable functions on I with the topology of the con-
vergence in measure. The involution * is given by pointwise complex conjugation. 
As noted in [3], it is quite elementary to realize that �R is not closable and this fact 
is responsible of the existence of several procedures for extending the integral that, 
starting from the Lebesgue integral, cover an extensive literature.

Coming back to the general case, three important questions arise. The first is for 
which elements of � it is possible to find a slight extension which is still positive her-
mitian. The second is, given a such element, what values can the extension assume 
on it. The third is whether, for each choice, we can find a maximal positive hermitian 
slight extension. We will give answers to all these questions.

As an example we will prove that, for each � such that, 0 ≤ � ≤ 1 , there exists a posi-
tive hermitian slight extension �̂

�
 of the Riemann integral �R on C([0, 1]), taking the 

value � on the Dirichlet function. Moreover for each � there exists �̆�
𝛾
 , a maximal posi-

tive hermitian slight extension of the Riemann integral, that assumes the value � on the 
Dirichlet function.

We introduce the notion of widely positive extension: roughly speaking a posi-
tive hermitian slight extension �̂ is said widely positive if is not possible to extend it 
to other positive elements of the algebra � . Moreover we give the notion of positive 
regular slight extension that closely reminds the construction of the Lebesgue integral 
or Segal’s construction of noncommutative integration [18]. We will prove that if � 
admits a positively regular absolutely convergent slight extension, which is fully posi-
tive, then this extension is unique.

Using the developed ideas we find interesting results concerning Infinite sums and, 
finally, we show that the Dirac Delta can be studied in the light of the present approach.

Several authors have considered the extension problem for hermitian, positive or 
representable functionals in various settings and from different points of view [1, 2, 17, 
19–21]. Their approach is nevertheless different from the one adopted here.

�R(f ) = ∫I

f (x)dx, f ∈ C(I),
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2  Preliminary definitions and facts

With the aim of making the paper independent we specialize and repeat to the case 
of positive hermitian linear functionals the notion of slight extension and give, with-
out proving them, the basic properties.

If � is an arbitrary *-algebra, we put

Elements of �h are called self-adjoint; elements of P(�) are called positive. Clearly, 
P(�) ⊆ �h.

We will adopt the following terminology.

Definition 2.1 A linear functional � , defined on a subspace D(�) of � , is called 

hermitian if a ∈ D(�) ⇔ a∗ ∈ D(�) and �(a∗) = �(a) , for every a ∈ D(�);
positive if �(b) ≥ 0 , for every b ∈ D(�) ∩ P(�).

In all this paper � is a positive hermitian linear functional defined on a dense 
*-subalgebra �0 of a topological *-algebra �[�] , with continuous involution ∗.

The functional � is said to be closable if one of the two equivalent statements 
which follow is satisfied. Define

• If a
�
→ 0 w.r. to � and �(a

�
) → � , then � = 0.

• G
�

 , the closure of G
�
 , does not contain couples (0,�) with � ≠ 0.

In this case, the closure � is defined on

by

The closability of � implies that � is well-defined. The functional � is linear and is 
the minimal closed extension of � (i.e., G

�
 is closed). Moreover the �-continuity of 

the involution and the hermiticity of � on �0 , imply that � is hermitian.
Coming back to the general case, let S

�
 denote the collection of all subspaces H 

of � × ℂ such that 

 (g1) G
𝜔
⊆ H ⊆ G

𝜔
;

 (g2) (0,�) ∈ H if, and only if, � = 0.

�h = {b ∈ � ∶ b = b∗}, P(�) =

{
n∑
i=1

a∗
i
ai ∶ ai ∈ �

}
.

G
�
= {(a,�(a)) ∈ �0 × ℂ; a ∈ �0}

D(𝜔) = {a ∈ � ∶ ∃{a
𝛼
} ⊂ �0, a𝛼 → a and 𝜔(a

𝛼
) is convergent },

�(a) = lim
�

�(a
�
), a ∈ D(�).
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If � is nonclosable, i.e. G
�

 contains pairs (0,�) with � ≠ 0 , then G
�
∉ S

�
 . In 

this case to every H ∈ S
�
 , there corresponds an extension �H , to be called a 

slight extension of � , defined on

by

where, from (g2), � is the unique complex number such that (a,�) ∈ H.
Moreover, by applying Zorn’s lemma to the family S

�
 , one proves that � 

admits a maximal slight extension.
Notation: in all this paper we call briefly an extension of � any �H such that 

H ∈ S
�
 . In the case � is closable, G

�
∈ S

�
 , so the corresponding � is the unique 

maximal extension of �.
Let

Given � , for every (a,�) ∈ G
�

 , there exists a net {a
𝛼
} ⊂ �0 , such that a

�

�

−→a and 
�(a

�
) → � . The �-continuity of the involution and the hermiticity of � on �0 , imply 

that a∗
�

�

−→a∗ and �(a∗
�
) = �(a

�
) → � . Hence, (a,�) ∈ G

�
 if and only if (a∗,�) ∈ G

�
 . 

Then K
�
 is a subspace of � with the property that a ∈ K

�
 if and only if a∗ ∈ K

�
.

The following proposition holds.

Proposition 2.2 For every maximal extension �̆� of � , D(�̆�) = K
𝜔
 .   ◻

Remark 2.3 In other words, all maximal extensions have the same domain K
�
 ; thus, 

if an extension has K
�
 as domain, then it is maximal.

Like in the general case considered in [10, ch.7 §36.7], uniqueness is cer-
tainly not a characteristic of the extensions of � ; in fact

Proposition 2.4 If � is not closable and �0 is a proper subspace of K
�
 , then � 

admits infinitely many maximal extensions.   ◻

The previous statement relies on the following

Proposition 2.5 Let � be nonclosable. Then

 (i) if ∃m ∈ ℂ such that (a,m) ∈ G
�

 , then (a,�) ∈ G
�

 , for every � ∈ ℂ.
 (ii) G

�
= K

�
× ℂ .   ◻

D(�H) = {a ∈ � ∶ (a,�) ∈ H}

�H(a) = �,

K
�
∶= {a ∈ � ∶ (a,�) ∈ G

�
, for some � ∈ ℂ}.
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3  Hermitian and positive extensions

If � is nonclosable the extensions defined above are neither hermitian nor positive, 
in general. It is natural to begin with considering the problem of the existence of 
hermitian extensions.

3.1  Hermiticity

Let H
�
 denote the collection of all subspaces H ∈ S

�
 for which the following addi-

tional condition holds 

 (h3) (a,�) ∈ H implies (a∗,�) ∈ H.

From (g2) and (h3) it follows 

 (h4) (a,�) ∈ H and a = a∗ , implies � is real.

Since � is hermitian then H
�
≠ ∅ and G

𝜔
⊆ H ⊆ G

𝜔
 , for every H ∈ H

�
 ; moreover, 

if � is nonclosable then G
�
∉ S

�
 , hence G

�
∉ H

�
.

To every H ∈ H
�
 there corresponds an extension �H of � defined on

by

where, from (g2), � is the unique complex number such that (a,�) ∈ H . Since 
the condition (h3) implies that a ∈ D(�H) ⇔ a∗ ∈ D(�H) and, by definition, 
𝜔H(a

∗) = l̄ = 𝜔H(a) , therefore �H is hermitian.
We observe that �0 ⊆ D(𝜔H) ⊆ � as vector spaces.

Remark 3.1 As is well-known, an arbitrary element a ∈ � can be written in a unique 
way as a = b + ic , with b and c self-adjoint elements. Since H is a vector space, 
a ∈ D(�H) ⇔ b, c ∈ D(�H) ; moreover �H(a) = �H(b + ic) = �H(b) + i�H(c) , 
where, by (h4), �H(b),�H(c) ∈ ℝ.

The following proposition was already given in [3], but the proof was incomplete. 
We give a new proof here.

Proposition 3.2 The following statements hold

 (i) Every � admits a maximal hermitian extension.
 (ii) Let �̆� be a maximal hermitian extension of � . Then D(�̆�) = K

𝜔
.

D(�H) = {a ∈ � ∶ (a,�) ∈ H}

�H(a) = �,
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 (iii) If � is nonclosable and �0 is a proper subspace of K
�
 , then � admits infinitely 

many maximal hermitian extension.

Proof (i): H
�
 satisfies the assumptions of Zorn’s lemma. Then it has a maximal ele-

ment H̆ that defines a maximal hermitian extension �̆�.
(ii): The result is obvious if � is closable. Let now � be nonclosable. As it is 

clear, for every hermitian extension �̆� , one has D(�̆�) ⊆ K
𝜔
 . Let, by contradic-

tion, a ∈ K
𝜔
⧵D(�̆�) . Then also a∗ ∈ K

𝜔
⧵D(�̆�) since a ∈ D(�H) ⇔ a∗ ∈ D(�H) . 

Now let a = b + ic with b = (a + a∗)∕2, c = (a − a∗)∕2i, b = b∗, c = c∗ . Since 
a ∈ D(�H) ⇔ b, c ∈ D(�H) , then at least one, between b or c, does not belong 
to D(�H) . Let, without loss of generality, b ∈ K

𝜔
⧵D(�̆�) . Since b ∈ K

�
 , by 

Lemma 2.5, we can choose � ∈ ℝ such that (b,�) ∈ G
�

 . Consider G
�̆�
⊕ ⟨(b,�)⟩ , 

where ⟨(b,�)⟩ denotes the subspace generated by (b,�) . We will prove that 
G

�̆�
⊕ ⟨(b,�)⟩ ∈ H

𝜔
 and this contradicts the maximality of �̆� . Thus we need 

to show that if (a1,�1) ∈ G
�̆�
⊕ ⟨(b,�)⟩ then (a∗

1
, ̄�1) ∈ G

�̆�
⊕ ⟨(b,�)⟩ . Let 

(a1,�1) = (d + �b,m + ��) with (d,m) ∈ G
�̆�
, 𝛼 ∈ ℂ . Since b = b∗, � = ̄�  , then

But (d∗, m̄) ∈ G
�̆�
 and (�̄� b, �̄� �) ∈ ⟨(b,�)⟩ , so (a∗

1
, ̄�1) ∈ G

�̆�
⊕ ⟨(b,�)⟩.

(iii): If �0 is a proper subspace of K
�
 then, as we have seen in the pre-

vious proof of (ii), there exists b = b∗ ∈ K
�
⧵𝔄0 , and moreover, ∀� ∈ ℝ , 

G
𝜔
⊕ ⟨(b,�)⟩ ∈ H

𝜔
 . From this there exists a maximal hermitian extension �̆� such 

that G
�̆�
⊇ G

𝜔
⊕ ⟨(b,�)⟩ ⊋ G

𝜔
 . It is clear that, for different values of � ∈ ℝ , the cor-

responding maximal hermitian extensions are different.   ◻

From (i) and (ii) of the previous proposition and from Remark 2.3, we obtain the 
following

Theorem 3.3 Every � admits a maximal hermitian extension �̆� which is, at once, a 
maximal extension, so D(�̆�) = K

𝜔
 .   ◻

Corollary 3.4 The Riemann integral �R on C(I) admits a maximal hermitian exten-
sion which is, at once, a maximal extension defined on a subspace of the *-algebra 
of measurable functions on I.   ◻

Remark 3.5 If we impose a constraint to an extension and then we are looking for 
a maximal element, we will find, in general, a smaller domain. In our case the situ-
ation is very different: as we have shown a maximal hermitian extensions of � is a 
maximal extension.

3.2  Positivity

Definition 3.6 Let �̂ be an extension of � defined on the domain D(�̂) with 
�0 ⊆ D(�𝜔) ⊆ � . Put

(a∗
1
, ̄�1) = ((d + 𝛼 b)∗,m + 𝛼 �) = (d∗ + �̄� b, m̄ + �̄� �) = (d∗, m̄) + (�̄� b, �̄� �).
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we say that �̂ is fully positive if �̂ is positive and D(�̂) ∩ P(�) = K
+
�
.

Remark 3.7 Since the domain of a maximal extension �̆� is K
�
 , then we deduce that 

if a maximal extension �̆� is positive, then �̆� is fully positive.

Definition 3.8 Given � , we define P
�
 as the collection of all subspaces K ∈ H

�
 sat-

isfying the following additional condition 

 (p3) (a,�) ∈ K and a ∈ P(�) , implies � ≥ 0.

Since � is positive, then P
�
≠ ∅ and G

𝜔
⊆ K ⊆ G

𝜔
 for every K ∈ P

�
.

To every K ∈ P
�
 , there corresponds a hermitian extension �K of � , defined on

by

where, from (g2), of Sect. 2, � is the unique complex number such that (a,�) ∈ K . 
By (p3), �K is a positive hermitian extension of �.

We observe that �0 ⊆ D(𝜔K) ⊆ � as vector spaces.
Since P

�
 satisfies the assumptions of Zorn’s lemma, we have the following

Theorem 3.9 Every � admits a maximal positive hermitian extension.   ◻

Corollary 3.10 The Riemann integral �R on C(I) admits a maximal positive hermi-
tian extension defined on a subspace of the *-algebra of measurable functions on I.  
 ◻

Definition 3.11 For a, b ∈ �h , we define

Remark 3.12 Let �̂ be a hermitian extension of � , a ∈ D(�̂) and c ∈ �h . If 
b ∶= ±(a − c) ∈ �h , then �̂(a) ∈ ℝ . Indeed if b ∈ �h , then a = c ± b ∈ �h and so, 
by the hermiticity of �̂ , �̂(a) ∈ ℝ . Moreover if �̂ is a positive hermitian extension 
of � and a, c ∈ D(�̂) ∩�h with a ≥ c , put b ∶= a − c , then b ∈ P(�) ∩ D(�̂) so 
�̂(a) = �̂(c) + �̂(b) ≥ �̂(c).

With this in mind, if �̂ is a positive hermitian extension of � and c ∈ �h , we 
introduce the following notations that will use to characterize both the elements for 
which it is possible to find a positive hermitian extension and, given such an ele-
ment, the values this extension may assume.

(1)K
+
�
∶= K

�
∩ P(�),

D(�K) = {a ∈ � ∶ (a,�) ∈ K}

�K(a) = �, a ∈ D(�K),

a ≤ b ⇔ b − a ∈ P(�).
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where we put �c,�̂ ∶= +∞ if the set in the right hand side of the definition is the 
empty set;

From Remark 3.12, we deduce the following

Proposition 3.13 Let �̂ be a positive hermitian extension of � . If c ∈ D(�̂) ∩�h then 
�c,�̂ = �c,�̂ = �̂(c) .   ◻

Lemma 3.14 Let �̂ be a positive hermitian extension of � and let c ∈ K
+
�
 . Then 

0 ≤ �c,�̂ ≤ �c,�̂.

Proof Observing that c ∈ P(�) ⊆ �h , we start by proving that �c,�̂,�c,�̂ ≥ 0 . 
Since, by definitions of �c,�̂ , if a ∈ D(�̂) and b ∶= a − c ∈ P(�) , we have 
a = b + c ∈ P(�) ∩ D(�̂) , so �̂(a) ≥ 0 and therefore �c,�̂ ≥ 0 . Now, 0 ∈ D(�̂) , 
c − 0 ∈ P(�) and �̂(0) = 0 , implies �c,�̂ ≥ 0.

Let us now prove that �c,�̂ ≤ �c,�̂ . Let, by contradiction, 𝜇c,�𝜔 < 𝜆c,�𝜔 . 
Then, ∀ 𝜈 ∶ 𝜇c,�𝜔 < 𝜈 < 𝜆c,�𝜔 , there exist a1, a2 ∈ D(�̂) such that 
a1 − c, c − a2 ∈ P(�) and �𝜔(a1) < 𝜈 < �𝜔(a2) ; so �𝜔(a1) < �𝜔(a2) 
and hence �𝜔(a1 − a2) < 0 . Now a1 − c, c − a2 ∈ P(�) hence 
0 ≤ �̂(a1 − c) + �̂(c − a2) = �̂(a1 − c + c − a2) = �̂(a1 − a2) , so �̂(a1 − a2) ≥ 0 : a 
contradiction.   ◻

Remark 3.15 Let �1,�2 be positive hermitian extensions of � and let c ∈ K
+
�
 . If 

D(𝜔1) ⊆ D(𝜔2) , then, by Lemma 3.14 we have

As we will see later (see Sect. 4.2) the fact that c ∈ K
+
�
 , does not guarantee that 

�c,� is finite; for this reason, we give the following

Definition 3.16 If �̂ is a positive hermitian extension of � , we define

From Remark 3.15 we have the following

Lemma 3.17 Let �̂ be a positive hermitian extension of � , then K‡

�𝜔

⊆ K
‡
𝜔
 .   ◻

Definition 3.18 Let �̂ be a positive hermitian extension of � . We say that �̂ is widely 
positive if �̂ is positive and D(�̂) ∩ P(�) = K

‡
�
.

An immediate consequence of Proposition 3.13 is the next lemma.

�c,�̂ ∶= inf {�̂(a) ∶ a ∈ D(�̂), a ≥ c},

�c,�̂ ∶= sup {�̂(a) ∶ a ∈ D(�̂), a ≤ c}.

�c,� ≤ �c,�1
≤ �c,�2

≤ �c,�2
≤ �c,�1

≤ �c,�.

(2)K
‡

�̂

∶= {c ∈ K
+
�
∶ �c,�̂ is finite}.
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Lemma 3.19 Let �̂ be a hermitian extension of � . If �̂ is positive then 
D(�𝜔) ∩ P(�) ⊆ K

‡

�𝜔

 .   ◻

Corollary 3.20 Let �̂ be a positive hermitian extension of � . If �̂ is fully positive then 
K

‡

�̂

= K
+
�
 and �̂ is widely positive. In particular if � is fully positive then K‡

�
= K

+
�
.

Proof If �̂ is fully positive then (by Lemma 3.19), we have 
K

‡

�𝜔

⊆ K
+
𝜔
= D(�𝜔) ∩ P(�) ⊆ K

‡

�𝜔

 , from which the statement follows.   ◻

An important result which follows from the previous discussion, shows that the 
sole elements c ∈ K

+
�
⧵𝔄0 for which we can find a positive hermitian extension of 

� , are exactly those with finite �c,� . More exactly the following theorems hold.

Theorem 3.21 Let c ∈ K
+
�
⧵K

‡
�
 . Then there is no positive hermitian extension �̂ of � 

such that c ∈ D(�̂).

Proof Were c ∈ D(�̂) then, by Lemma 3.19 and Lemma 3.17, c ∈ K
‡

�𝜔

⊆ K
‡
𝜔
 : a con-

tradiction.   ◻

Theorem  3.22 Let � be nonclosable, let �̂ be a positive hermitian exten-
sion of � and let c ∈ K

‡

�̂

 with c ∉ D(�̂) . Then, ∀ � ∈ ℝ ∶ �c,�̂ ≤ � ≤ �c,�̂ , 
G

�𝜔
⊊ G

�𝜔
⊕ ⟨(c, 𝛾)⟩ ∈ P

𝜔
.

Proof We first show that, ∀a ∈ D(�̂), � ∈ ℝ , such that, a + �c ∈ P(�) , we have 
�̂(a) + �� ≥ 0 . The case � = 0 is trivial, so we can distinguish two cases: 𝛼 < 0 and 
𝛼 > 0.

Let 𝛼 < 0 . Then −1∕�(a + �c) = −a∕� − c ∈ P(�) , with −a∕� ∈ D(�̂) . So, from 
the definition of �c,�̂ , �̂(−a∕�) ≥ �c,�̂ ≥ � , that is −1∕� �̂(a) − � ≥ 0 , and finally 
�̂(a) + �� ≥ 0.

Let 𝛼 > 0 . Then a + �c ∈ P(�) implies 1∕� (a + �c) = c − (−a∕�) ∈ P(�) , 
with −a∕� ∈ D(�̂) . Then, by the definition of �c,�̂ , �̂(−a∕�) ≤ �c,�̂ ≤ � . So 
−1∕� �̂(a) ≤ � that is �̂(a) + �� ≥ 0.

Now since � is nonclosable and c ∈ K
�
 , by Lemma 2.5, (c, �) ∈ G

�
 , and 

since c = c∗ ∈ K
�
, � ∈ ℝ , from the proof of (ii) in Proposition 3.2, we see that 

K ∶= G
�𝜔
⊕ ⟨(c, 𝛾)⟩ ∈ H

𝜔
 , thus G

�𝜔
⊊ K ⊆ G

𝜔
 . Now if (x, l) ∈ K then x = y + �c , 

with y ∈ D(�̂), � = � + i� ∈ ℂ . If x ∈ P(�) then x = a + �c with a ∶= (y + y∗)∕2 . 
Indeed x = x∗ = y∗ + �̄�c , and 2x = (y + y∗) + 2ℜ(�)c thus x = (y + y∗)∕2 +ℜ(�)c . 
Hence (x, l) = (a + �c, l) , a ∈ D(�̂), � ∈ ℝ . But (a, �̂(a)) ∈ G

�̂
 and 

�(c, �) ∈ ⟨(c, �)⟩ , so (a, �̂(a)) + �(c, �) = (x, �̂(a) + ��) ∈ K and then 
(x, l) − (x, �̂(a) + ��) = (0, l − �̂(a) − ��) ∈ K . Since K ∈ H

𝜔
⊆ S

𝜔
 , from (g2), 

l = �̂(a) + �� , so, by the first part of the proof, l ≥ 0 ; hence K ∈ P
�
 .   ◻

Remark 3.23 We observe that if 𝜆c,𝜔 = 𝜇c,𝜔 < +∞ , then the only value that a posi-
tive hermitian extension �̂ of � may assume in c, is � ∶= �c,�.
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The next theorem establishes that if � is nonclosable, then any maximal positive 
hermitian extension �̆� of � , has “all possible” (see Lemma 3.19) positive elements 
in its domain.

Theorem  3.24 Let � be nonclosable and let �̆� be a maximal positive hermitian 
extension of � . Then D(�̆�) ∩ P(�) = K

‡

�̆�

Proof By Lemma 3.19, we will just prove that K
‡

�̆�
⊆ D(�̆�) ∩ P(�) . Let 

c ∈ K
‡

�̆�
⊆ P(�) , and suppose, by contradiction, that c ∉ D(�̆�) . Using the previous 

definitions of �c,�̂ and �c,�̂ (with �̆� instead of �̂ ), by Theorem 3.22, for all � ∈ ℝ 
such that �c,�̂ ≤ � ≤ �c,�̂,  G

�̆�
⊊ G

�̆�
⊕ ⟨(c, 𝛾)⟩ ∈ P

𝜔
 . Since �̆� is a maximal positive 

hermitian extension of � , this leads to a contradiction.   ◻

Remark 3.25 The converse of Theorem  3.24 does not hold in general. It is suffi-
cient to find a widely positive hermitian extension which is not a maximal posi-
tive hermitian extension: indeed, by Corollary 3.20, if �̂ is widely positive then 
D(�̂) ∩ P(�) = K

‡

�̂

 . As we will see in section 4.2, Proposition 4.7, �1 is a widely 
positive extension of � which is not a maximal positive hermitian extension: indeed 
�H is a positive hermitian extension of �1.

Corollary 3.26 If there is c ∈ K
‡
�
⧵P(𝔄0) such that, 𝜆c,𝜔 < 𝜇c,𝜔 , then � admits infi-

nitely many maximal positive hermitian extensions.

Proof From Theorem 3.22 it follows that for each � ∈ ℝ such that �c,� ≤ � ≤ �c,� , 
G

𝜔
⊕ ⟨(c, 𝛾)⟩ defines a positive hermitian extensions of � . It is clear that different 

� ’s give rise to different positive hermitian extensions, from which we obtain differ-
ent maximal positive hermitian extensions of � .   ◻

Remark 3.27 Let c be the Dirichlet function,

Then, as we will see, c ∈ K
‡
�
⧵P(𝔄0) , where �0 = C([0, 1]) , and �c,�R

= 0 , �c,�R
= 1 . 

The fact that c ∈ K
+
�
 is clear. Now let a ∈ �0 with a − c ∈ P(�) (as in the Intro-

duction, � is the *-algebra of measurable functions); then a(x) ≥ 1, ∀x ∈ [0, 1] ∩ℚ . 
Thus, a(x) continuous and ℚ dense in ℝ , imply a(x) ≥ 1, ∀x ∈ [0, 1] and 
so, �R(a) ≥ 1 . But �(a) = 1 , if we take a(x) = 1 , so �c,�R

= 1 . Analogously, 
c − a ∈ P(�) implies a(x) ≤ 0, ∀x ∈ [0, 1]⧵ℚ , thus, as before, a(x) ≤ 0, ∀x ∈ [0, 1] 
and so �(a) ≤ 0 . But �(a) = 0 , if we take a(x) = 0 , so �c,�R

= 0.

Theorem 3.28 The Riemann integral �R on C([0, 1]) admits infinitely many maximal 
positive hermitian extensions.

c(x) =

{
1 if x ∈ [0, 1] ∩ℚ

0 if x ∈ [0, 1]⧵ℚ
.
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Proof For the Dirichlet function c of Remark 3.27 we have c ∈ K
+
�
⧵P(𝔄0) , 

�c,�R
= 0 , �c,�R

= 1 . By Corollary 3.26, for each � such that, 0 ≤ � ≤ 1 , there exists 
�̆� , maximal positive hermitian extension of the Riemann integral, with �̆�(c) = 𝛾 .  
 ◻

Remark 3.29 The previous theorem shows that, for each � such that, 0 ≤ � ≤ 1 , there 
exists a positive hermitian extension �̂

�
 of the Riemann integral �R on C([0,  1]), 

taking the value � on the Dirichlet function c, despite of the Lebesgue integral of c 
being equal to 0. Obviously, �̂ is neither an extension of the Lebesgue integral, nor 
depends on it.

3.3  Absolutely convergent extensions

Now we will require the *-algebra � to satisfy further conditions.

Definition 3.30 Let � be a *-algebra. We say that � has the property (D) if, for every 
a ∈ �h , there exists a unique pair (a+, a−) of elements of � , with a+, a− ∈ P(�) 
such that 

 (D1) a = a+ − a−;
 (D2) a+a− = a−a+ = 0;
 (D3) (�a)+ = �a+, ∀a ∈ �h, � ∈ ℝ+;

Then we put

In what follows we suppose that � has the property (D). In this case, one has:

Definition 3.31 A positive hermitian linear functional �̄� defined on a subspace of 
� is called absolutely convergent if for all a ∈ D(�̄�) ∩ �h, a+, a− ∈ D(�̄�) , and so 
|a| ∈ D(�̄�).

From the last definition and from Remark 3.1, it follows that, if �̂ is an abso-
lutely convergent extension of � , then ∀a ∈ D(�̂) , put a = b + ic , we have, 
b+, b−, c+, c− ∈ D(�̂).

Proposition 3.32 Assume that �̂ is an absolutely convergent extension of � . Then, 
a = b + ic ∈ D(�̂) if and only if |b|, |c|, b+, c+ ∈ D(�̂) . Moreover if a ∈ �h , then 
|�̂(a)| ≤ �̂(|a|).

|a| ∶= a+ + a−.

|a| ∈ P(�), ∀a ∈ �h.
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Proof If a ∈ D(�̂) then, by hypothesis, b+, b−, c+, c− ∈ D(�̂) thus 
|b| = b+ + b− ∈ D(�̂) and |c| = c+ + c− ∈ D(�̂) . Conversely if |b|, |c|, b+, c+ ∈ D(�̂) , 
then, easily, b−, c− ∈ D(�̂) and so a = (b+ − b−) + i(c+ − c−) ∈ D(�̂).

Now, for a ∈ D(�̂) ∩ �h,

   ◻

The following theorem states that the domain of an absolutely convergent 
extension is determined by its positive elements.

Theorem  3.33 If � admits an absolutely convergent extension �̂ , then D(�̂) is 
span {D(�̂) ∩ P(�)}.

Proof Since �̂ is an absolutely convergent extension, if a = b + ic ∈ D(�̂) , then 
b+, b−, c+, c− ∈ D(�̂) ∩ P(�) . This implies that

On the other hand,

   ◻

Corollary 3.34 If � admits an absolutely convergent extension �̂ which is widely 
positive, then D(�̂) is span {K‡

�
} .   ◻

Let P
�
 be the family of subspaces of � × ℂ considered in Sect. 3.2, K ∈ P

�
 , 

(a,�) ∈ K , and let �K be the positive hermitian extension of � corresponding to 
K. If �K is absolutely convergent and a ∈ �h , then the following conditions hold: 

(1) ∃�1,�2 ≥ 0 such that (a+,�1), (a−,�2) ∈ K,
(2) � = �1 − �2

Indeed, since �K is absolutely convergent, then a+, a− ∈ D(�K) ∩ P(�) , 
whence the (1); moreover, (a+,�1), (a−,�2) ∈ K implies 
(a+,�1) − (a−,�2) = (a+ − a−,�1 − �2) = (a,�1 − �2) ∈ K , whence the (2).

Then we are induced to give the following

Definition 3.35 Let � be absolutely convergent. We define AC
�
 the subfamily of P

�
 , 

whose elements K satisfy the following additional condition:

(pac ) (a,�) ∈ K , with a ∈ �h , implies that ∃�1,�2 ≥ 0 such that,
(a+,�1), (a−,�2) ∈ K.

|�̂(a)| = |�̂(a+ − a−)| = |�̂(a+) − �̂(a−)| ≤ |�̂(a+)| + |�̂(a−)|
= �̂(a+) + �̂(a−) = �̂(a+ + a−) = �̂(|a|)

a = (b+ − b−) + i(c+ − c−) ∈ span {D(�̂) ∩ P(�)}.

span{D(�𝜔) ∩ P(�)} ⊆ span{D(�𝜔)} = D(�𝜔).
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Since K is a vector space verifying condition (g2) of Sect. 2, then � = �1 − �2 , 
and since � is absolutely convergent, then AC

�
≠ ∅ and G

𝜔
⊆ K ⊆ G

𝜔
 , for every 

K ∈ AC
�
 . To every K ∈ AC

�
 , there corresponds a hermitian extension �K of � , 

defined on

by

where, from (g2), of Sect. 2, � is the unique complex number such that (a,�) ∈ K . 
By (pac), �K is an absolutely convergent extension of �.

We observe that �0 ⊆ D(𝜔K) ⊆ � as vector spaces.

Theorem 3.36 If � is absolutely convergent, then � has a maximal absolutely con-
vergent extension.

Proof The family AC
�
 satisfies the assumptions of Zorn’s lemma, hence it has a 

maximal element to which there corresponds a maximal absolutely convergent 
extension.   ◻

Proposition 3.37 Let �̆� be a maximal positive hermitian extension of � . If �̆� is abso-
lutely convergent, then D(�̆�) is span {K‡

�
}.

Proof If �̆� is a maximal positive hermitian extension, then, by Theorem 3.24, �̆� is 
widely positive, so the statement follows by the previous Corollary 3.34.   ◻

Now we state the following important theorem and corollary.

Theorem 3.38 Let �̆� be an absolutely convergent extension of � . If �̆� is widely posi-
tive then �̆� is a maximal absolutely convergent extension of �.

Proof Suppose, by contradiction, that �̆� is not maximal. Then, by the construction 
of a maximal absolutely convergent extension, given in Theorem 3.36, starting from 
�̆� , we can find a maximal absolutely convergent extension of � , say �̂ , which is a 
proper extension of �̆� : D(�̆�) ⊊ D(�𝜔) . Now by Theorem 3.33, Lemma 3.19 and Cor-
ollary 3.34, D(�𝜔) = span {D(�𝜔) ∩ P(�)} ⊆ span {K‡

𝜔
} = D(�̆�) : a contradiction.  

 ◻

By using Corollary 3.20 we have the following

Corollary 3.39 Let �̆� be an absolutely convergent extension of � . If �̆� is fully positive 
then �̆� is a maximal absolutely convergent extension of �.

D(�K) = {a ∈ � ∶ (a,�) ∈ K}

�K(a) = �, a ∈ D(�K),
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3.4  Positively regular extensions

In this section we will construct a particular extension �̂ of a hermitian posi-
tive linear functional � , following essentially the model of the construction of the 
Lebesgue integral.

We recall that for a, b ∈ �h , we have defined

Then we have:

Indeed |a| − 0 ∈ P(�), |a| − a = 2a− ∈ P(�) and |a| + a = 2a+ ∈ P(�).

Definition 3.40 An extension �̂ of � is said to be positively regular if

We observe that, by definition, a positively regular extension is positive.
To obtain a positively regular extension �̂ of � , we start from the next

Definition 3.41 Let � be absolutely convergent and positively regular. For a ∈ � , let 
a = a1 − a2 + i(a3 − a4), the unique writing of a, with ai ∈ P(�), 1 ≤ i ≤ 4 . Then 
we define PR

�
 as the subfamily of AC

�
 , whose elements K satisfy the following 

additional condition:

(ppr ) (a,�) ∈ K , implies ∃�i ≥ 0, 1 ≤ i ≤ 4 , such that

(1) (ai,�i) ∈ K,
(2) �i = sup{�(b) ∶ 0 ≤ b ≤ ai, b ∈ P(�0)}.

We observe that, as before, since � is absolutely convergent and positively reg-
ular, then PR

�
≠ ∅ and, for every K ∈ PR

�
 , G

𝜔
⊆ K ⊆ G

𝜔
 . Moreover, since K is 

a vector space verifying condition (g2) of Sect. 2, then � = �1 − �2 + i(�3 − �4).
To every K ∈ PR

�
 there corresponds an extension �K of � , defined on

by

where, from (g2) of Sect. 2, � is the unique complex number such that (a,�) ∈ K . 
By definition, �K is a positively regular absolutely convergent extension of �.

Again we observe that �0 ⊆ D(𝜔K) ⊆ � as vector spaces.
Invoking Zorn’s Lemma we have the following

Theorem  3.42 If � is absolutely convergent and positively regular, then � has a 
maximal positively regular absolutely convergent extension.

a ≤ b ⇔ b − a ∈ P(�).

0 ≤ |a|, a ≤ |a|, −a ≤ |a|, ∀a ∈ �h.

�̂(a) = sup{�(b) ∶ 0 ≤ b ≤ a, b ∈ P(�0)}, ∀a ∈ D(�̂) ∩ P(�).

D(�K) = {a ∈ � ∶ (a,�) ∈ K}

�K(a) = �,
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Now we state the following

Theorem 3.43 If � admits a positively regular absolutely convergent extension �̂ , 
which is fully positive, then this extension is unique.

Proof Let �
′ be another absolutely convergent, positively regu-

lar and fully positive extension of � . As �′ and �̂ are fully positive, then 
D(��) ∩ P(�) = D(�̂) ∩ P(�) = K

+
�
 and, being �′ and �̂ absolutely convergent, by 

Proposition 3.33, D(��) = D(�̂) = span {K+
�
} . Now, if b ∈ K

+
�
 , then

Finally, ∀a ∈ D(��) = D(�̂) , let a = (b+ − b−) + i(c+ − c−), the unique writing of a, 
with b+, b−, c+, c− ∈ K

+
�
.

   ◻

Since �̆� maximal positive hermitian implies �̆� fully positive, from the previous 
Theorem 3.43 and from the Theorem 3.42 we deduce the following result.

Corollary 3.44 If � admits an absolutely convergent positively regular extension �̆� , 
which is a maximal positive hermitian extension, then this extension is unique.   ◻

4  Three simple examples

We give now some easy examples, without going into the details of the proofs.

4.1  Example: the Lebesgue integral

The Henstock–Kurzweil integral is an extension of the Lebesgue integral and it is 
possible to verify it applying the abstract method developed in this section.

We use all the conventions given in the introduction and let, � ∶= �R , be the Rie-
mann integral on I. Then the Lebesgue integral on I is a positive hermitian extension 
of �.

In this case, there exist many possible extensions of the Lebesgue integral. We 
consider in what follows the Henstock–Kurzweil (HK) integral. The fact that the HK 
integral includes the Lebesgue integral was proved by Henstock [7, 8].

In [3] it was proved that the HK integral is not a maximal positive hermitian 
extension of the Riemann integral. From Theorem 3.9 we have the following

�
�(b) = sup{�(c) ∶ c ∈ P(�0), 0 ≤ c ≤ b} = �̂(b).

�
�(a) = �

�(b+ − b− + i(c+ − c−)) = �
�(b+) − �

�(b−) + i(��(c+) − �
�(c−))

= �̂(b+) − �̂(b−) + i(�̂(c+) − �̂(c−)) = �̂(b+ − b− + i(c+ − c−))

= �̂(a).
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Theorem 4.1 There exists a maximal positive hermitian extension of the Henstock–
Kurzweil integral.

Moreover, the approach proposed here allows us to give a theoretical proof of the 
existence of a maximal hermitian positive slight extension for the Henstock–Kur-
zweil integral opening the challenge of finding it explicitly.

4.2  Example: infinite sums

Let � denote the complex vector space of all infinite sequences of complex num-
bers. � is a *-algebra if the product � ⋅ � of two sequences � = (ak) , � = (bk) , k ≥ 1 , 
is defined component-wise and the involution by �∗ = (ak) . Let us endow � with the 
topology defined by the set of seminorms

Let �0 denote the *-subalgebra of � consisting of all finite sequences in the sense 
that � = (ak) ∈ �0 if, and only if, there exists N ∈ ℕ such that ak = 0 if k > N . We 
define

The symbol of series is only graphic since all sums are finite.
This functional, which is obviously positive hermitian, is nonclosable. To see 

this let us consider the sequence of sequences (�n) = ((an,k)) ⊆ �0 with, for n ≥ 1 , 
an,k ∶= �n,k (the Kronecker delta).

For fixed k, clearly limn→∞ an,k = 0 . Hence �n → � as n → ∞ and, applying � , we 
get

We observe that any convergent series which converges to l ∈ � , can be “rewritten” 
as a sequence of sequences (�n) ⊆ �0 , with �n → � and �(�n) → l , as n → ∞.

Indeed, given the series c1 + c2 + c3 … , we define (�n) = ((an,k)) , for n ≥ 1 , as 
follows:

Clearly ((an,k)) ⊆ �0 and �((an,k)) = c1 + c2 +⋯ + cn . Since the series is conver-
gent, for fixed k, an,k → 0 as n → ∞ and, finally, �((an,k)) → l as n → ∞.

The next proposition shows that in this case K
�
 is not a proper subset of the 

algebra.

Proposition 4.2 Let � and � be as above. Then �0 is a dense subalgebra of � with 
K

�
= �.

pk(�) = |ak|, � = (ak) ∈ �.

�(�) =

∞∑
k=1

ak, � = (ak) ∈ �0.

�(�n) = �((an,k)) = 1, ∀n ≥ 1.

an,k ∶=

{
cn+1−k if k ≤ n

0 if k > n



Extensions of hermitian linear functionals  Page 17 of 24 45

Proof We will prove, that for any � = (ck) ∈ � and l ∈ ℂ , there exists a sequence of 
sequences (�n) = ((an,k)) ⊆ �0 , such that (�n) → � and �((�n)) → l , as n → ∞.

Fixed l ∈ ℂ , for each n ≥ 1 we define, the element an,k, k ≥ 1 , of the sequence 
((an,k)) as following:

Then, for each 1 ≤ k ≤ n, ck − an,k = 0 , so �n → � as n → ∞ . Since 
�((an,k)) = l,∀n ≥ 1 , then �((an,k)) → l as n → ∞ , hence, by definition, � ∈ K

�
 , and 

therefore K
�
= � .   ◻

Then, from Theorem 3.3, we have the following

Proposition 4.3 The functional � admits a maximal hermitian extension �̆� which is 
a maximal extension with D(�̆�) = � .   ◻

As discussed above, there exists infinitely many extensions of � , the procedure of 
taking the limit of the partial sums sn ∶= a1 + a2 +⋯ + an , being just one of them. 
This is historically a very well known fact which dates back to the Grandi series

Grandi asserted that this infinite sum is equal to 1
2
 . Now we know that this can be 

obtained via Ramanujan sums. But also, more elementary, considering the following 
extensions of �.

4.2.1  Hölder summation

The first (historically rigorous) extension of � , due to A.L. Cauchy, is the following.

Definition 4.4 Given � = (ak) ∈ � , we put

We define the hermitian extension �1 with domain

by

Another possible extension of � , that indeed is a hermitian extension of �1 , is the 
Hölder summation.

Given a sequence � = (ak) ∈ �0 , define by induction:

an,k ∶=

⎧
⎪⎨⎪⎩

ck if 1 ≤ k ≤ n,

l −
∑n

i=1
ci if k = n + 1,

0 if k > n + 1.

1 − 1 + 1 − 1 +⋯ .

sn ∶= a1 + a2 +⋯ + an, ∀n ≥ 1.

D(�1) ∶= {� ∈ � ∶ lim
n→∞

sn, exists finite},

�1(�) ∶= lim
n→∞

sn.
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We define an extension �H with domain

by

Since, by the Stolz–Cesàro theorem, the existence of limn→∞ Hh̄
n
 , for some h̄ ∈ ℕ , 

implies that

�H(�) is well defined.
It is easy to see that �H is a positive hermitian extension of �1.
We observe that if we impose, in defining D(�H) , h̄ = 0 , we obtain �1 . If we 

impose h̄ ≤ 1 we obtain the so called Cesàro summation. Moreover a direct calcula-
tion shows that the Cesàro sum of Grandi’s series is defined and its value is

whereas (1,−1, 1,−1,…) ∉ D(�1).

4.2.2  Abel summation

Given a sequence � = (ak) , we define an extension �A of � with domain

defined by

Clearly �A(�) = a1 + a2 +⋯ + aN , if (�) ∈ �0 and it easy to see that �A is a posi-
tive hermitian extension of �.

Now take � = ((−1)k+1) . Then we obtain

H0
n
=a1 + a2 +⋯ + an,

Hh+1
n

=
1

n

n∑
t=1

Hh
t
.

D(𝜔H) ∶= {� ∈ � ∶ lim
n→∞

Hh̄
n
, exists finite for some h̄ ∈ ℕ},

𝜔H(�) ∶= lim
n→∞

Hh̄
n
.

lim
n→∞

Hh̄+1
n

= lim
n→∞

Hh̄
n
,

�H((1,−1, 1,−1,…)) =
1

2
,

D(�A) ∶= {� ∈ � ∶ lim
x→0+

lim
N→∞

N∑
k=1

e−kxak exists finite},

�A(�) = lim
x→0+

lim
N→∞

N∑
k=1

e−kxak
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which for every x > 0 converges, in the usual sense, to

Taking the limit for x → 0+ , we get

Indeed it is well known that the Abel summation is a generalization of the Hölder 
summation or still better, in light of our approach, the Abel summation is a positive 
hermitian extension of the Hölder summation.

4.2.3  Positive hermitian extensions

As we have seen, Hölder summation and Abel summation are both positive hermi-
tian extensions of � and, moreover they are extension of �1 . At this point the follow-
ing question arises: is the classical definition of the sum of a series really natural? 
The answer is yes, if we are looking to positive hermitian extensions of �.

We start with the following corollary which is a direct consequence of Proposi-
tion 4.2.

Corollary 4.5 Given the algebra � , we have K+
�
= P(�) .   ◻

With the next proposition given � ∈ K
+
�
⧵D(�) , we find explicitly �

�,� and �
�,�.

Proposition 4.6 Let � = (ck) ∈ K
+
�
 with � ∉ D(�) . Then 

�
�,� = limn→∞(c1 + c2 +⋯ + cn) and �

�,� = +∞.

Proof Since � ∈ K
+
�
 , then � ∈ P(�) so ck ≥ 0,∀k ≥ 1 . Hence 

there exists S ∶= limn→∞(c1 + c2 +⋯ + cn) ≤ +∞ . We recall that 
�
�,� ∶= {sup �(�) ∶ � ∈ �0, � ≤ �} . Let us consider the sequence (�n) = ((bn,k)) 

with, for k ≥ 1,

It is clear that ∀n ≥ 1, (bn,k) ∈ �0 , (bn,k) ≤ � and �((bn,k)) = c1 + c2 +⋯ + cn . 
Now we observe that if � ∈ �0 , then there exists k̄(�) ≥ 0 such that 
ak = 0,∀k > k̄ , and, if � ≤ � , then ak ≤ bk̄(�),k, ∀k ≥ 1 . Thus ∀� ∈ �0 , 
with � ≤ � , 𝜔(�) ≤ 𝜔((bk̄(�),k)) = c1 + c2 +⋯ ck̄(�) . Since ck ≥ 0,∀k ≥ 1 , 

N∑
k=1

e−kx(−1)k+1 =
e−x + (−1)N+1e−(N+1)x

1 + e−x

e−x

1 + e−x
.

�A((1,−1, 1,−1,…)) =
1

2
.

bn,k ∶=

{
ck if k ≤ n

0 if k > n
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then �(�) ≤ limn→∞(c1 + c2 +⋯ + cn) = S , from which �
�,� ≤ S . Finally, 

as supn{�((bn,k))} = limn→∞ �((bn,k)) = S , then �
�,� = S . Now since 

�
�,� ∶= inf {�(�) ∶ � ∈ �0, � ≥ �} , it is clear that if � ∉ D(�) , then ck > 0 for infi-

nitely many k so, the set in the right hand side of the definition of �
�,� is the empty 

set and, by definition, �
�,� = +∞ as required from the statement of the theorem.   ◻

Proposition 4.7 Given � , K‡
�
= D(�1) ∩ P(�) so �1 is widely positive.

Proof From Corollary 4.5 and Proposition 4.6 we have K‡
�
∶= {� ∈ K

+
�
∶ �

�,� is

finite} = {� ∈ P(�) ∶ lim
n→∞(c1 + c2 +⋯ + c

n
) is finite} = D(�1) ∩ P(�) .   ◻

Remark 4.8 Since D(𝜔1) ∩ P(�) ⊊ K
+
𝜔
 then �1 is an example of a widely positive 

extension of � that is not a fully positive extension. Moreover since K
�
= � , there 

exists a maximal hermitian extension �̆� with D(�̆�) = � . If instead �̆� is a maximal 
positive hermitian extension of � then, by Theorem 3.24, Lemma 3.17 and Propo-
sition 4.7, D(�̆�) ∩ P(�) = K

‡

�̆�
⊆ K‡

𝜔
⊊ K

+
𝜔
= P(�) , so �̆� is never fully positive. 

Hence there are no maximal positive hermitian extension of � that are fully positive.

Now it seems interesting to us to show another example in which K
�
 coincides 

with the entire algebra � . Starting with a subalgebra of � and changing the topol-
ogy with a finer one, we will find a new topological *-algebra �1 . Then, taking 
the closure of �0 in �1 , we will obtain the required algebra � ⊆ �1.

Let us consider the subalgebra �1 ⊆ � of all bounded sequences, endowed 
with the norm

Then �1 is a topological *-algebra with �0 ⊆ �1.
Now we find the closure of �0 in �1.

Proposition 4.9 The closure of �0 in �1 is the set � ∶= {(ck) ∈ �1 ∶ |ck| → 0 as 
k → ∞}.

Proof We first show that �0 ⊆ �.
If � = (ck) ∈ �0 , then there exists (�n) = ((an,k)) ⊆ �0 , such that (�n) → � as 

n → ∞ . Since (an,k) ∈ �0 , then there exists k̄(n) such that an,k = 0, ∀k > k̄(n) and, 
moreover,

So, ∀k > k̄(n
𝜀
), |ck| < 𝜀 , and the required inclusion holds.

Now let � = (ck) ∈ � . We will show that there exists a sequence 
(�n) = ((an,k)) ⊆ �0 such that (�n) → � as n → ∞.

Define

‖x‖∞ = sup
k

�xk�.

∀𝜀 > 0, ∃ n
𝜀
such that, ∀n > n

𝜀
, sup

k

|an,k − ck| < 𝜀.
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It is clear that ∀n ≥ 1, (an,k) ∈ �0 ; moreover, fixed 𝜀 > 0 , for (ck) ∈ � , there exists 
n
�
≥ 1 such that |ck| < 𝜀, ∀n ≥ n

𝜀
 . So, ∀n ≥ n

�
,

showing that (�n) → � as n → ∞ .   ◻

It is evident that � is an algebra, hence � is a positive hermitian linear func-
tional defined on �0 , a dense *-subalgebra of the topological *-algebra �.

Again the functional � is nonclosable. To see this let us consider the sequence 
(�n) = ((an,k)) ⊆ �0 with,

Since limn→∞ 1∕n = 0 then �n → 0 as n → ∞ , while �(�n) = 1, ∀n ≥ 1.
With the next proposition we will find K

�
.

Proposition 4.10 Let � , �0 and � be as above. Then K
�
= �.

Proof We will prove, that for any � = (ck) ∈ � and l ∈ ℂ , there exists a sequence of 
sequences (�n) = ((an,k)) ⊆ �0 , such that (�n) → � and �((�n)) → l , as n → ∞.

Fixed 𝜀 > 0 , by definition of � , there exists k1 ≥ 1 such that |ck| < 𝜀∕2, ∀k > k1 . 
Let z1 ∶=

∑k1
k=1

ck , z ∶= l − z1 and let m ≥ 1 such that |z∕m| < 𝜀∕2.
Define

It is clear that (b
�,k) ∈ �0 and, since

then, by definition of (b
�,k) , supk |ck − b

𝜀,k| < 𝜀 ; furthermore �((b
�,k)) = l . Tak-

ing �(n) = 1∕n, n ≥ 1 , and defining (an, k) ∶= (b
�(n),k) one has ((an,k)) → � and 

�((an,k)) → l , as n → ∞ .   ◻

Substituting the algebra � by � , we can prove, without substantial changes, 
the following results.

an,k ∶=

{
ck if 1 ≤ k ≤ n,

0 if k > n

sup
k

|ck − an,k| < 𝜀,

an,k ∶=

{
1∕n if 1 ≤ k ≤ n,

0 if k > n.

b
𝜀,k ∶=

⎧⎪⎨⎪⎩

ck if 1 ≤ k ≤ k1,

z∕m if k1 < k ≤ k1 + m,

0 if k > k1 + m

sup
k1<k≤k1+m

|ck − b
𝜀,k| < 𝜀∕2 + 𝜀∕2 = 𝜀,
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Corollary 4.11 Given the algebra � , we have K+
�
= P(�) .   ◻

Proposition 4.12 Let � = (ck) ∈ K
+
�
 with � ∉ D(�) . Then �

�,� = limn→∞(c1 + c2 +⋯ + cn) 
and �

�,� = +∞ .   ◻

Proposition 4.13 Given � , K‡
�
= D(�1) ∩ P(�) so �1 is widely positive.   ◻

The Remark 4.8 may be summarized as follows.

Remark 4.14 Even in the algebra � , �1 is an example of a widely positive extension 
of � that is not fully positive; moreover there exists a maximal hermitian extension 
�̆� of � with D(�̆�) = � , and there are no maximal positive hermitian extension of � 
that are fully positive.

4.3  Example: the Dirac delta

Let us consider the Banach convolution algebra L1(ℝ) with its usual norm, involu-
tion and multiplication; i.e, for f , g ∈ L1(ℝ)

Let Cc(ℝ) denote the *-algebra of continuous functions with compact support. Then, 
Cc(ℝ) is a *-subalgebra of L1(ℝ).

For f ∈ Cc(ℝ) define

� is a positive linear functional on Cc(ℝ) . Indeed, if f ∈ Cc(ℝ) , we have

Thus,

In order to extend � to some subspace of L1(ℝ) we start from the identity

‖f‖ = ∫
ℝ

�f (x)�dx
f ∗(x) = f (−x)

(f ⋆ g)(x) = ∫
ℝ

f (x − y)g(y)dy

�(f ) = f (0).

(f ∗ ⋆ f )(x) = ∫
ℝ

f (y − x)f (y)dy.

𝜔(f ∗ ⋆ f ) = (f ∗ ⋆ f )(0) = �
ℝ

|f (y)|2dy ≥ 0.

f (0) = lim
�→0+

1

2� ∫
�

−�

f (x)dx, ∀f ∈ Cc(ℝ).
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While the left hand side could be meaningless for f ∈ L1(ℝ) , the right hand side 
could produce a finite number for certain f ∈ L1(ℝ).

Consider the sequence of functions

Clearly fn ∈ Cc(ℝ) and ‖fn‖ =
1

n
→ 0 , while fn(0) = 1 , for all n ∈ ℕ . Hence � is 

nonclosable in L1(ℝ).
Let us put

and define

First, we observe that D(�̂) ⊊ L1(ℝ) . Indeed, the function

obviously belongs to L1(ℝ) ; but

So we have the following

Remark 4.15 The linear functional �̂ is a positive hermitian extension of �.
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fn(x) =

{
1 − n|x| if |x| ≤ 1

n

0 otherwise

D(�̂) ∶=

{
f ∈ L1(ℝ) ∶ lim

�→0

1

2� ∫
�

−�

f (x)dx exists in ℂ

}

�̂(f ) ∶= lim
�→0+

1

2� ∫
�

−�

f (x)dx, f ∈ D(�̂).

f (x) =

�
1√�x� if ∈ [−1, 1]⧵{0}

0 otherwise

lim
�→0+

1

2� ∫
�

−�

f (x)dx = lim
�→0+

1

2�
⋅ 4

√
� = ∞.
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