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Abstract
We introduce a notion of a topologically flat locally convex module, which extends 
the notion of a flat Banach module and which is well adapted to the nonmetrizable 
setting (and especially to the setting of DF-modules). Using this notion, we intro-
duce topologically amenable locally convex algebras and we show that a complete 
barrelled DF-algebra is topologically amenable if and only if it is Johnson amena-
ble, extending thereby Helemskii–Sheinberg’s criterion for Banach algebras. As an 
application, we completely characterize topologically amenable Köthe co-echelon 
algebras.

Keywords DF-space/algebra · Köthe co-echelon space/algebra · Projective/flat 
module · Amenable algebra

Mathematics Subject Classification 46H05 · 46M18 · 46A04 · 46A13 · 46M05 · 
47B47

1 Introduction

The paper is devoted to the study of amenability properties in the framework of DF-
algebras. These are algebras with jointly continuous multiplication whose underly-
ing topological vector spaces are DF-spaces. The category of DF-spaces contains 
spaces of distributions, e.g. tempered distributions or distributions with com-
pact support. More generally, duals of Fréchet spaces belong to this category. In 
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particular, the duals of Köthe echelon spaces are DF-spaces. These are the so-called 
Köthe co-echelon spaces and this class of objects will be of particular importance 
for us.

The general study of amenable DF-algebras meets two major difficulties which 
come from the facts that the category of DF-spaces does not respect subspaces and 
that there is no Open Mapping Theorem available. This implies that the two well-
known approaches to amenability (namely, Johnson’s approach based on deriva-
tions [10] and Helemskii–Sheinberg’s approach based on flat modules [6]) which are 
equivalent in the category of Banach (or Fréchet) algebras are potentially inequiva-
lent in the DF-algebra framework (however, we have no explicit counterexample so 
far). The main aim of this paper is to modify the notion of a flat module in such a 
way that the above-mentioned problem disappears. The resulting notion of a topo-
logically flat module is equivalent to that of a flat module in the case of Banach (or 
Fréchet) modules, but, in our view, is better adapted to the nonmetrizable setting. 
We define topologically amenable algebras in terms of topologically flat modules, 
and we show that topological amenability for complete barrelled DF-algebras is 
equivalent to amenability in Johnson’s sense. We also obtain a topological amenabil-
ity criterion for Köthe co-echelon algebras, complementing thereby recent results of 
the second author [23, 24]. Note that such algebras need not be complete, so that our 
definition of topological amenability is made in terms of the completion (see Defini-
tion 3.21).

The theory of amenable Banach algebras essentially starts with the famous result 
of Johnson [10, Theorem  2.5] who proved that the convolution algebra L1(G) is 
amenable if and only if the locally compact group G is amenable. Since then, ame-
nable Banach algebras became an inseparable part of functional analysis and opera-
tor algebra theory (see [28] for a recent and detailed account). A few years after 
the publication of Johnson’s memoir, Helemskii and Sheinberg [6] observed that 
the notion of an amenable algebra perfectly fits into the general “Banach homologi-
cal algebra” developed earlier by Helemskii [5] (and, independently, by Kiehl and 
Verdier [11] and by Taylor [31]). Namely, Helemskii and Sheinberg proved that a 
Banach algebra A is amenable in Johnson’s sense if and only if the unitization of A is 
a flat Banach A-bimodule. This result was extended by the first author [20, Corollary 
3.5] to the setting of Fréchet algebras. In the present article, we continue this investi-
gation and study amenability properties of DF-algebras, with a special emphasis on 
Köthe co-echelon algebras.

The paper is organized as follows. The next section is Notation and Preliminar-
ies, and it contains basic definitions, facts and notation that is used in the sequel. In 
Sect. 3, we introduce and study topologically flat locally convex modules and topo-
logically amenable locally convex algebras. The main results here are Theorem 3.12, 
which characterizes topologically flat DF-modules in terms of the Ext functor, and 
Theorem 3.18, which shows that, for complete barrelled DF-algebras, the topologi-
cal amenability in our sense is equivalent to the Johnson amenability. In Sect.  4, 
we characterize topologically amenable Köthe co-echelon algebras kp(V) in terms of 
the corresponding weight sets V (Theorems 4.5 and 4.6). Finally, in Sect. 5 we give 
some concrete examples of topologically amenable (and non-amenable) co-echelon 
algebras. In particular, we construct a topologically amenable co-echelon algebra of 
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order ∞ which, in a sense, cannot be reduced to a direct sum of �∞ with a contract-
ible co-echelon algebra.

General references are: [17] for functional analysis, [4, 15] for Banach and topo-
logical algebra theory, and [7] for the homology theory of topological algebras.

2  Notation and preliminaries

We start by recalling some basic definitions and introducing some notation that will 
be used in the sequel. By a locally convex algebra, we mean a locally convex space 
(lcs) over ℂ equipped with a separately continuous associative multiplication. In 
general, locally convex algebras are not assumed to have an identity. Given a locally 
convex algebra A, we denote by A+ the unconditional unitization of A, and we denote 
by A op the opposite algebra, i.e., the lcs A with multiplication a ⋅ b ∶= ba . In what 
follows, when using the word “algebra” with an adjective that describes a linear 
topological property (such as “complete”, “Fréchet”, “Banach”, etc.), we mean that 
the underlying lcs of the algebra in question has the specified property. The same 
applies to locally convex modules (see below).

Given a locally convex algebra A, a left locally convex A-module is an lcs X 
together with a left A-module structure such that the action A × X → X is separately 
continuous. Right locally convex modules and locally convex bimodules are defined 
similarly. At some point, we will be using a concrete locally convex bimodule A⊗ ℂ 
which is the lcs A itself with trivial right module action and multiplication as the left 
module action.

The completed projective tensor product of lcs’s E and F will be denoted by 
E �⊗F , and the completion of E will be denoted by Ẽ or by E∼ . A complete locally 
convex algebra with jointly continuous multiplication is called a �⊗ -algebra. If A is 
a �⊗-algebra, then the assignment a⊗ b ↦ ab gives rise to the so-called product map 
𝜋A ∶ A �⊗A → A . We will simply write � whenever it is clear to which algebra the 
product map is referred to. If A is a �⊗-algebra, then a left locally convex A-module 
X is a left A-�⊗-module if X is complete and if the action of A on X is jointly con-
tinuous. Right �⊗-modules and �⊗-bimodules are defined similarly. The category of 
left A-�⊗-modules (respectively, of right A-�⊗-modules, of A–B-�⊗-bimodules) will be 
denoted by A-��� (respectively, ���-A , A-���-B ). Note that A-�⊗-bimodules are 
nothing but left unital Ae-�⊗-modules, where Ae ∶= A+

�⊗A
op
+  is the enveloping alge-

bra of A (see [7, §II.5.2]). If X ∈ ���-A and Y ∈ A-��� , then the A-module projec-
tive tensor product of X and Y is defined as

where

If X and Y are two lcs’s, then L(X, Y) stands for the vector space of continuous linear 
operators from X to Y. We equip L(X, Y) with the topology of uniform convergence 

X �⊗
A
Y ∶= (X �⊗ Y∕N)∼,

N ∶= span
{
x ⋅ a⊗ y − x⊗ a ⋅ y ∶ a ∈ A, x ∈ X, y ∈ Y

}
⊂ X �⊗ Y .
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on bounded sets. As usual, we let X� = L(X,ℂ) . If A is a locally convex alge-
bra and X,  Y are left locally convex A-modules, then AL(X, Y) denotes the vector 
space of continuous linear A-module maps, i.e., operators T ∈ L(X, Y) satisfying 
T(a ⋅ x) = a ⋅ Tx for all a ∈ A , x ∈ X . In the case of right A-modules, resp. A–B-bi-
modules, the vector spaces LA(X, Y) and ALB(X, Y) are defined analogously.

Suppose that A, B, C are locally convex algebras, X is a locally convex B–C-bimod-
ule, and Y is a locally convex A–C-bimodule. Then, LC(X, Y) has a natural A–B-bimod-
ule structure given by

If the actions of A on Y and of B on X are hypocontinuous with respect to the fami-
lies of bounded subsets of Y and X, respectively, then LC(X, Y) is easily seen to be 
a locally convex A–B-bimodule (cf. [31, Section 3]). In particular, this condition is 
satisfied provided that the actions are jointly continuous. In particular, for each �⊗
-algebra A and each left (respectively, right) A-�⊗-module X the dual space X′ is a 
right (respectively, left) locally convex A-module. Note, however, that the action of 
A on X′ need not be jointly continuous.

Let ���� denote the category of complete lcs’s and continuous linear maps. Sup-
pose that � ⊂ ���� is a full additive subcategory. We write ���(�) for the category of 
all �⊗-algebras whose underlying spaces are objects of � . If A is a �⊗-algebra, then we 
denote by A-���(�) the full subcategory of A-��� consisting of those modules whose 
underlying spaces are objects of � . The symbols ���-A(�) and A-���-B(�) are under-
stood in a similar way.

Following [22] (cf. also [7]), we say that � is admissible if the following holds: 

 (C1) if E ∈ � and F is a locally convex space isomorphic to E, then F ∈ �;
 (C2) if E ∈ � and E0 ⊂ E is a complemented vector subspace, then E0 ∈ �;
 (C3) if E,F ∈ � , then E �⊗F ∈ �.

Most of the categories of complete lcs’s used in functional analysis are admissible. In 
this paper, the concrete admissible subcategories we are mostly interested in are ���� 
itself, the category ��� of Banach spaces, the category �� of Fréchet spaces, and the cat-
egory ���� of complete barrelled (DF)-spaces. The admissibility of ��� and �� is well 
known. As for ���� , property (�2) follows from the fact that the classes of barrelled 
spaces and of (DF)-spaces are stable under taking quotients modulo closed subspaces 
[12, 27.1.(4) and 29.5.(1)], while property (�3) follows from [13, 41.4.(7) and 41.4.(8)].

Let A be a �⊗-algebra, and let � be an admissible subcategory of ���� . A sequence

in A-���(�) is admissible if it is split exact in ���� , i.e., if it has a contracting 
homotopy consisting of continuous linear maps. Geometrically, this means that 
i is topologically injective (i.e., a homeomorphism onto its range), p is open (i.e., 
a quotient map), i(X) = ker p , and i(X) is a complemented subspace of Y. We say 
that a morphism i ∶ X → Y  (respectively, p ∶ Y → Z ) in A-���(�) is an admissible 

(a ⋅ T)(x) = a ⋅ T(x), (T ⋅ b)(x) = T(b ⋅ x) (a ∈ A, b ∈ B, T ∈ LC(X, Y)).

(1)0 → X
i
���→ Y

p
�����→ Z → 0
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monomorphism (respectively, an admissible epimorphism) if it fits into an admis-
sible sequence (1).

It is easy to show that A-���(�) together with the class of all admissible 
sequences is an exact category in Quillen’s sense [26]. Therefore, most of the 
main notions and constructions of homological algebra (projective objects, pro-
jective resolutions, derived functors, etc.) make sense in A-���(�) . For details, 
we refer to [7]. An important property of A-���(�) is that, if A ∈ ���(�) , then 
A-���(�) has enough projectives. As a consequence, each covariant func-
tor F ∶ A-𝗆𝗈𝖽(𝖢) → 𝖵𝖾𝖼𝗍 (where ���� is the category of vector spaces) has left 
derived functors LnF , and each contravariant functor F ∶ A-𝗆𝗈𝖽(𝖢) → 𝖵𝖾𝖼𝗍 has 
right derived functors RnF ( n ≥ 0 ). In particular, for each left locally convex 
A-module Y the functor Ext n

A
(−,Y) is defined to be the nth right derived functor 

of AL(−,Y) ∶ A-𝗆𝗈𝖽(𝖢) → 𝖵𝖾𝖼𝗍 . We would like to stress that, in contrast to [7], 
we do not require Y to be an object of A-���(�) . In particular, we may let Y = Z� 
for some Z ∈ ���-A(�) . This special case will be essential in our characterization 
of topologically flat modules (see Theorem 3.12). In fact, this is the only reason 
why we have to consider general locally convex modules rather than �⊗-modules 
only.

Note that the above facts on A-���(�) have obvious analogs for the categories 
���-A(�) and A-���-B(�) . For details, see [7].

Let us now recall some basic facts on strictly exact sequences of locally convex 
spaces. Suppose that � is an additive category. Following [30], we say that a short 
sequence (1) in � is strictly exact if i is a kernel of p and p is a cokernel of i.

Example 2.1 If � = ���� , then (1) is strictly exact iff it is exact in the usual sense.

Example 2.2 If � = ���� , then (1) is strictly exact iff i is topologically injective, 
i(X) = ker p , p is an open map of Y onto p(Y), and p(Y) is dense in Z. This follows 
from [25, Proposition 4.1.8]. Essentially, this means that X can be identified with a 
closed subspace of Y, and Z is the completion of Y/X.

Example 2.3 If � = �� or � = ��� , then (1) is strictly exact in � iff it is strictly exact 
in ���� iff it is exact (or, equivalently, strictly exact) in ���� . This is essentially 
a combination of Example  2.2 with the Open Mapping Theorem. See also [33, 
Chapter 2].

The following result is a special case of V. P. Palamodov’s theorem [18, Propo-
sition 4.2] (see also [33, Theorem  2.2.2]). Given a set S, let �∞(S) denote the 
Banach space of bounded ℂ-valued functions on S.

Theorem 2.4 (Palamodov) A short sequence (1) in ���� is strictly exact if and only 
if, for each set S, the sequence

is exact in ����.

0 → L(Z,�∞(S)) → L(Y ,�∞(S)) → L(X,�∞(S)) → 0



 A. Y. Pirkovskii, K. Piszczek 13 Page 6 of 24

We end this section with a definition and a collection of basic facts concerning 
Köthe co-echelon spaces and algebras. Let I be a countable set, and let V ∶= (vn)n∈ℕ 
be a sequence of weights vn ∶ I → (0,∞] such that

For 1 ≤ p < ∞ , we define the Köthe co-echelon space of order p as

and we also let

We often write kp(V) for kp(I,V) when the index set I is clear from the context. In 
most examples, we actually have I = ℕ (see Examples 2.5–2.8), but sometimes it is 
more convenient to let I = ℕ × ℕ (see Example 5.6).

The above definition is a bit unusual since we allow vn(i) = ∞ for some n ∈ ℕ and 
i ∈ I . However, this less restrictive approach does not affect our proofs and allows us 
to consider in particular the space � ∶= ℂ

(ℕ) of finitely supported sequences (see 
Example 2.5 below). The space kp(I,V) is canonically endowed with the inductive 
limit topology of the system (�p(I, vn))n∈ℕ (for p ≥ 1 ) or (c0(I, vn))n∈ℕ (for p = 0 ), 
where �p(I, vn) and c0(I, vn) are the weighted Banach spaces of scalar sequences 
equipped with their canonical norms. Clearly, if vn(i) = ∞ , then x ∈ �p(I, vn) implies 
that xi = 0 . Thus, we usually write

Since Köthe co-echelon spaces are countable inductive limits of Banach spaces, they 
are barrelled DF-spaces (see [9, 12.4, Theorem 8]). By [1, Theorem 2.3], kp(V) is 
complete for all 1 ≤ p ≤ ∞ . On the other hand, k0(V) is not always complete, see 
[12, §31.6] or [1, Theorem 3.7 and Examples 3.11, 4.11.2, 4.11.3].

In many concrete cases (see examples below), Köthe co-echelon spaces are alge-
bras with respect to the coordinatewise multiplication of sequences. A systematic 
study of such algebras was initiated in [3]. Recall from [3, Proposition 2.1] that 
kp(V) is an algebra if and only if

(we let ∞∕∞ = 1 for convenience). Moreover, if (W3) holds, then the multiplication 
on kp(V) is automatically jointly continuous [loc. cit.]. From now on, when we write 
something like “let kp(V) be a Köthe co-echelon algebra”, we tacitly assume that V 
is a sequence of weights satisfying conditions (W1)–(W3), and that kp(V) is consid-
ered as a locally convex algebra under the coordinatewise multiplication.

∀ i ∈ I ∃ n ∈ ℕ vn(i) < ∞, (W1)

∀ n ∈ ℕ ∀i ∈ I vn+1(i) ≤ vn(i). (W2)

kp(I,V) ∶=
{
x = (xi) ∈ ℂ

I ∶
∑

i∈I

|xi|pvn(i)p < ∞ for some n ∈ ℕ

}
,

k∞(I,V) ∶=
{
x = (xi) ∈ ℂ

I ∶ sup
i∈I

|xi|vn(i) < ∞ for some n ∈ ℕ

}
,

k0(I,V) ∶=
{
x = (xi) ∈ ℂ

I ∶ lim
i→∞

|xi|vn(i) = 0 for some n ∈ ℕ

}
.

kp(I,V) = ind n�p(I, vn) (1 ≤ p ≤ ∞), k0(I,V) = ind nc0(I, vn).

∀ n ∈ ℕ ∃m ∈ ℕ vm∕v
2
n
∈ �∞ (W3)
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Example 2.5 For each n ∈ ℕ , define vn ∶ ℕ → (0,∞] by vn(j) = 1 for j ≤ n , and 
vn(j) = ∞ for j > n . Conditions (W1)–(W3) are clearly satisfied, and kp(V) is noth-
ing but the algebra � of finite sequences equipped with the strongest locally convex 
topology.

Example 2.6 Let R ∈ [0,+∞) , and let � = (�i)i∈ℕ be a sequence of positive numbers 
increasing to infinity. Consider the dual power series spaces1

(where 1 ≤ p < ∞) , and

If (rn) is a fixed sequence of positive numbers strictly decreasing to R, then we 
clearly have DΛp

R
(�) = kp(V) , where vn(j) = r

�j
n  for all n, j ∈ ℕ . We could also con-

sider the space DΛ0
R
(�) = k0(V) with V as above, but the condition that �j → ∞ eas-

ily implies that DΛ0
R
(�) = DΛ∞

R
(�).

An elementary computation shows that DΛp

R
(�) satisfies (W3) if and only if 

for each r > R , there exists 𝜌 > R such that � ≤ r2 . Equivalently, this means that 
if r > R , then r2 > R . If R ≥ 1 or R = 0 , then this condition is clearly satisfied, so 
DΛ

p

R
(�) is a Köthe co-echelon algebra in this case. If 0 < R < 1 , then the above con-

dition fails (take any r ∈ (R,
√
R]).

Example 2.7 Letting �j = log j in Example 2.6, we see that DΛp

0
(�) is nothing but the 

algebra s′ of sequences of polynomial growth.

Example 2.8 If �j = j , then DΛp

R
(�) is topologically isomorphic to the space of germs 

of holomorphic functions on the closed disc 𝔻R = {z ∈ ℂ ∶ |z| ≤ R} . If R ≥ 1 or 
R = 0 , then the multiplication on DΛp

R
(�) corresponds to the “componentwise” mul-

tiplication of the Taylor expansions of holomorphic functions (the Hadamard multi-
plication, cf. [27]). The resulting locally convex algebra will be denoted by H(�R).

Given p ∈ [1,∞] and a sequence V = (vn) of weights satisfying (W1)–(W3), we 
say that V is eventually in �p if vn ∈ �p(I) for some n ∈ ℕ . Because of (W2), this 
means precisely that there exists n ∈ ℕ such that vk ∈ �p(I) for all k ≥ n . If V is 
eventually in �∞ , then we say that V is eventually bounded. By [3, Proposition 2.5], 
if 1 ≤ p < ∞ , then

DΛ
p

R
(𝛼) =

{
x = (xj) ∈ ℂ

ℕ ∶
∑

j

|xj|pr𝛼jp < ∞ for some r > R
}

DΛ∞
R
(𝛼) =

{
x = (xj) ∈ ℂ

ℕ ∶ sup
j

|xj|r𝛼j < ∞ for some r > R
}
.

1 By [1, Theorem 2.7], DΛp

R
(�) is topologically isomorphic to the strong dual of the power series space 

Λ
q

1∕R
(�) , where 1∕p + 1∕q = 1.
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In fact, if the above conditions are satisfied, then we have kp(V) = kq(V) for all 
p, q ∈ [1,∞] ∪ {0} (see [2, Proposition 15]).

A comprehensive study of Köthe co-echelon spaces may be found in [1]. Köthe 
co-echelon algebras appear as a main object of investigation in [3, 23, 24].

3  Topological flatness and topological amenability

Let � be an admissible subcategory of ���� , and let A ∈ ���(�).

Definition 3.1 We say that a module X ∈ A-���(�) is topologically flat (relative to 
� ) if for each short admissible sequence

in ���-A(�) , the sequence

is strictly exact in ���� . A right module in ���-A(�) (respectively, a bimodule in 
A-���-A(�) ) is topologically flat if it is topologically flat as a left module over A op 
(respectively, over Ae).

Remark 3.2 According to [7], a module X ∈ A-���(�) is flat (relative to � ) if for 
each short admissible sequence (2) in ���-A(�) the sequence (3) is exact in ���� . If 
� ⊂ �� , then flatness and topological flatness are equivalent (see Example 2.3). We 
conjecture that, in the general case, neither topological flatness implies flatness, nor 
vice versa. However, we do not have concrete counterexamples at the moment.

Example 3.3 Each projective module P ∈ A-���(�) is topologically flat. Indeed, if 
P is free, i.e., if P is isomorphic to A+

�⊗E for some E ∈ � , then (3) is isomorphic 
to the sequence

which is split exact and is a fortiori strictly exact in ���� . Since each projective 
module is a retract of a free module [7, III.1.27], the result follows.

Proposition 3.4 A module X ∈ A-���(�) is topologically flat if and only if for each 
admissible monomorphism Y → Z in ���-A(�) the induced map Y �⊗A X → Z �⊗A X 
is topologically injective.

V is eventually in �p ⟺ V is eventually in �1 ⟺ kp(V) is unital

⟺ V is eventually bounded, and kp(V) is nuclear.

(2)0 → Y1 → Y2 → Y3 → 0

(3)0 → Y1 �⊗
A
X → Y2 �⊗

A
X → Y3 �⊗

A
X → 0

0 → Y1 �⊗E → Y2 �⊗E → Y3 �⊗E → 0,
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Proof This is immediate from Definition  3.1 and from the fact that the functor 
(−) �⊗A X ∶ 𝗆𝗈𝖽-A → 𝖢𝖫𝖢𝖲 preserves cokernels [21, Proposition 3.3].   ◻

Remark 3.5 For � = ��� , Proposition 3.4 is well known (cf. [8, Theorem VII.1.42]). 
For � = �� , this fact was observed in [20].

The following “adjoint associativity” (or “exponential law”) for locally convex 
spaces is a kind of folklore. Since we have not found an exact reference, we give a 
proof here for the convenience of the reader.

Proposition 3.6 Let X, Y, Z be locally convex spaces. Suppose that Z is complete. 
There is a natural linear map

The above map is a vector space isomorphism in either of the following cases: 

 (i) X and Y are Fréchet spaces;
 (ii) X and Y are DF-spaces, and Y is barrelled.

Proof By the universal property of the projective tensor product (see, e.g., [13, 
41.3.(1)]), L(X �⊗ Y , Z) is naturally identified with the space of jointly continuous 
bilinear maps from X × Y  to Z. On the other hand, each � ∈ L(X, L(Y , Z)) determines 
a separately continuous bilinear map � ∶ X × Y → Z via �(x, y) = �(x)(y) ( x ∈ X , 
y ∈ Y  ). Moreover, the rule � ↦ � determines a vector space isomorphism between 
L(X, L(Y, Z)) and the space of those separately continuous bilinear maps X × Y → Z 
which are BY-hypocontinuous, where BY is the family of all bounded subsets of 
Y [13, 40.1.(3)]. This implies that (4) indeed takes L(X �⊗ Y , Z) to L(X, L(Y, Z)), is 
always injective, and is surjective if and only if each separately continuous, BY

-hypocontinuous bilinear map from X × Y  to Z is jointly continuous. In case (i), this 
condition is clearly satisfied because the separate continuity and the joint continu-
ity are equivalent for maps X × Y → Z (see, e.g., [13, 40.2.(1)]). Assume now that 
(ii) holds, and let � ∶ X × Y → Z be a separately continuous, BY-hypocontinuous 
bilinear map. Since Y is barrelled, � is also BX-hypocontinuous by [13, 40.2.(3)]. 
Finally, since X and Y are DF-spaces, and since � is (BX ,BY )-hypocontinuous, we 
conclude that � is jointly continuous [13, 40.2.(10)]. In view of the above remarks, 
this completes the proof.   ◻

Corollary 3.7 Let X, Y be either Fréchet spaces or barrelled DF-spaces. Then, there 
exist natural vector space isomorphisms

The following is a natural extension of [7, II.5.22] to the locally convex setting.

(4)L(X �⊗ Y , Z) → L(X, L(Y , Z)), f ↦ (x ↦ (y ↦ f (x⊗ y))).

(X �⊗ Y)� ≅ L(X, Y �) ≅ L(Y ,X�).
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Proposition 3.8 Let A, B, C be �⊗-algebras, and let X ∈ A-���-B , Y ∈ B-���-C , 
and Z ∈ A-���-C . There is a natural linear map

The above map is a vector space isomorphism if either of the conditions (i), (ii) of 
Proposition 3.6 are satisfied.

Proof By the universal property of �⊗B [7, II.4.2], ALC(X �⊗B Y , Z) is naturally iden-
tified with the space of those jointly continuous bilinear maps from X × Y  to Z 
which are (1) B-balanced, (2) A-linear in the first variable, and (3) C-linear in the 
second variable. A routine calculation shows that a jointly continuous bilinear map 
X × Y → Z has the above three properties if and only if the respective linear map 
X → L(Y , Z) takes X to LC(Y , Z) and is an A–B-bimodule morphism. The rest fol-
lows from Proposition 3.6.   ◻

Corollary 3.9 Let B be a �⊗-algebra, X ∈ ���-B , and Y ∈ B-��� . If X and Y are 
either Fréchet spaces or barrelled DF-spaces, then there exist natural vector space 
isomorphisms

Corollary 3.10 Let � ∈ {��,����} , let A be a �⊗-algebra, and let X ∈ ���-A(�) , 
Y ∈ A-���(�) , Z ∈ � . Then, there exists a natural vector space isomorphism

Proof This follows from Corollaries 3.7, 3.9, the commutativity of �⊗ , and the asso-
ciativity of �⊗A , since we have

  ◻

The following result was proved in [20, Proposition 3.3] for � = �� . We now give 
a shorter proof which holds both for � = �� and � = ����.

Proposition 3.11 Let � ∈ {��,����} , and let A ∈ ���(�) . Then for all 
X ∈ A-���(�) , Y ∈ ���-A(�) , n ∈ ℤ+ , there is a natural vector space isomorphism 
Ext n

A
(X, Y �) ≅ Ext n

A
(Y ,X�).

Proof Let P∙ → A+ be a projective resolution of A+ in A-���-A(�) . Then 
P∙

�⊗A X → X is a projective resolution of X in A-���(�) , and Y �⊗A P∙ → Y  is a pro-
jective resolution of Y in ���-A(�) . Applying Corollary 3.9 twice, we obtain natural 
vector space isomorphisms

(5)ALC(X �⊗
B
Y , Z) → ALB(X, LC(Y , Z)), f ↦ (x ↦ (y ↦ f (x⊗ y))).

(X �⊗
B
Y)� ≅ LB(X, Y

�) ≅ BL(Y ,X
�).

L(X �⊗
A
Y , Z�) ≅ LA(Z �⊗X, Y �).

L(X �⊗
A
Y , Z�) ≅ ((X �⊗

A
Y) �⊗ Z)� ≅ ((Z �⊗X) �⊗

A
Y)� ≅ LA(Z �⊗X, Y �).
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  ◻

Our next theorem generalizes [20, Proposition 3.4].

Theorem 3.12 Let � ∈ {��,����} , and let A ∈ ���(�) . The following properties of 
X ∈ A-���(�) are equivalent: 

 (i) X is topologically flat;
 (ii) Ext 1

A
(Y ,X�) = 0 ∀ Y ∈ ���-A(�);

 (iii) Ext 1
A
(X, Y �) = 0 ∀ Y ∈ ���-A(�);

 (iv) Ext n
A
(Y ,X�) = 0 ∀ Y ∈ ���-A(�), ∀ n ∈ ℕ;

 (v) Ext n
A
(X, Y �) = 0 ∀ Y ∈ ���-A(�), ∀ n ∈ ℕ;

 (vi) the functor LA(−,X�) ∶ 𝗆𝗈𝖽-A(𝖢) → 𝖵𝖾𝖼𝗍 takes short admissible sequences 
to exact sequences.

Proof (ii) ⇔ (iii) , (iv) ⇔ (v) : these are special cases of Proposition 3.11.
(ii) ⇔ (iv) ⇔ (vi) : these are special cases of [7, III.3.7].
(i) ⇒ (vi) . By assumption, for each short admissible sequence (2) in ���-A(�) 

the sequence (3) is strictly exact in ���� . By Palamodov’s Theorem 2.4, the dual 
sequence

is exact in ���� . Corollary 3.9 implies that (6) is isomorphic to

This yields (vi).
(vi) ⇒ (i) . We want to show that for each short admissible sequence (2) in 

���-A(�) the sequence (3) is strictly exact in ���� . By Palamodov’s Theorem 2.4, 
this means precisely that for each set S the sequence

is exact in ���� . Taking into account the isomorphism �∞(S) ≅ (�1(S))
� and apply-

ing Corollary 3.10, we see that (8) is isomorphic to

Extn
A
(X, Y �) = Hn(AL

(
P∙

�⊗
A
X, Y �)

)
≅ Hn

(
(Y �⊗

A
P∙

�⊗
A
X)�

)

≅ Hn
(
LA(Y �⊗

A
P∙,X

�)
)
= Extn

A
(Y ,X�).

(6)0 → (Y3 �⊗
A
X)� → (Y2 �⊗

A
X)� → (Y1 �⊗

A
X)� → 0

(7)0 → LA(Y3,X
�) → LA(Y2,X

�) → LA(Y1,X
�) → 0.

(8)0 → L(Y3 �⊗
A
X,�∞(S)) → L(Y2 �⊗

A
X,�∞(S)) → L(Y1 �⊗

A
X,�∞(S)) → 0

(9)0 → LA(�1(S) �⊗ Y3,X
�) → LA(�1(S) �⊗ Y2,X

�) → LA(�1(S) �⊗ Y1,X
�) → 0.
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Since �1(S) �⊗ Y∙
 is admissible in ���-A(�) , we see that (9) is exact in ���� by (vi). 

In view of the above remarks, this completes the proof.   ◻

The next proposition shows that a flat Banach module over a Banach algebra 
remains topologically flat if we consider it as an object of the bigger category of 
Fréchet modules or of complete barrelled DF-modules.

Proposition 3.13 Let A be a Banach algebra and let X be a left Banach A-module. 
The following conditions are equivalent: 

 (i) X is flat (or, equivalently, topologically flat) relative to ���;
 (ii) X is flat (or, equivalently, topologically flat) relative to ��;
 (iii) X is topologically flat relative to ����.

Proof Clearly, each of the conditions (ii) and (iii) implies (i). Conversely, let 
� denote either of the categories �� or ���� , and suppose that (i) holds. By [7, 
VII.1.14], condition (i) means precisely that X′ is injective in ���-A(���) . Using 
[7, III.1.31], we see that X′ is a retract of L(A+,X

�) in ���-A(���) . Hence, for 
each short admissible sequence Y∙ in ���-A , the sequence LA(Y∙,X�) is a retract of 
LA(Y∙, L(A+,X

�)) . On the other hand, [31, Proposition 3.2] implies that

Hence, LA(Y∙,X�) is a retract of L(Y∙,X�) , which is clearly exact in ���� . Therefore, 
LA(Y∙,X

�) is exact in ���� . Applying Theorem 2.4, we conclude that X is topologi-
cally flat in A-���(�).

Remark 3.14 The equivalence of (i) and (ii) in Proposition 3.13 was proved in [21, 
Proposition 4.11].

We now turn to topological amenability, using Helemskii–Sheinberg’s 
approach [6] as a motivation. Let � be an admissible subcategory of ���� , and 
let A ∈ ���(�).

Definition 3.15 We say that A is topologically amenable (relative to � ) if A+ is topo-
logically flat in A-���-A(�).

Remark 3.16 According to [7], A is amenable if A+ is flat in A-���-A(�) . As in 
Remark 3.2, we would like to stress that amenability and topological amenability are 
formally different in the general case, but they are equivalent if � ⊂ ��.

Example 3.17 Recall from [8, Chap. VII] (see also [7, Postscript]) that A is contract-
ible if A+ is projective in A-���-A(�) . Since projective modules are topologically 
flat (see Example 3.3), we conclude that each contractible algebra is topologically 
amenable.

LA(Y∙, L(A+,X
�)) ≅ L(Y∙,X

�).
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Recall that the amenability of a Banach algebra can be rephrased in the lan-
guage of derivations. Our next result gives a similar characterization in the cate-
gories �� and ���� . For Fréchet algebras, this was proved in [20, Corollary 3.5].

Theorem  3.18 Let � ∈ {��,����} , and let A ∈ ���(�) . Then A is topologically 
amenable relative to � if and only if for each X ∈ A-���-A(�) every continuous 
derivation A → X′ is inner.

Proof It is a standard fact (see, e.g., [7, Chap. I, Subsection 2.1]) that every continu-
ous derivation A → X′ is inner if and only if H1(A,X�) = 0 , where H1(A,X�) is the 
1st continuous Hochschild cohomology group of A with coefficients in X′ . By [7, 
III.4.9], we have a vector space isomorphism H1(A,X�) ≅ Ext 1

Ae (A+,X
�) . Now the 

result follows from Theorem 3.12.   ◻

In the ���� category, it is also possible to relate topological amenability to 
amenability.

Corollary 3.19 Let A be a complete barrelled DF-algebra which is amenable relative 
to ���� . Then A is topologically amenable relative to ����.

Proof By [23, Theorem 4.4], for each X ∈ A-���-A(����) every continuous deri-
vation A → X′ is inner. Now the result follows from Theorem 3.18.   ◻

If A is a Banach algebra, then the above notions coincide.

Proposition 3.20 Let � ∈ {��,����} , and let A be a Banach algebra. Then A is 
topologically amenable relative to � if and only if A is amenable relative to ���.

Proof This follows immediately from Proposition 3.13.   ◻

Since the algebras k0(V) that appear in the next section are not necessarily 
complete, we adopt the following definition of topological amenability for non-
complete algebras.

Definition 3.21 Let � ∈ {��,����} , and let A be a locally convex algebra with 
jointly continuous multiplication such that Ã ∈ ���(�) (where Ã is the completion of 
A). We say that A is topologically amenable relative to � if Ã is topologically ame-
nable relative to �.

Given A as above, let A-���-A(�) denote the category of locally convex 
A-bimodules X such that the left and right actions of A on X are jointly continu-
ous and such that the underlying space of X is an object of � . Clearly, we have an 
isomorphism of categories A-���-A(�) ≅ Ã-���-Ã(�).

Using the above definition, we can easily extend Theorem  3.18 to non-com-
plete algebras.
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Theorem  3.22 Let � ∈ {��,����} , and let A be a locally convex algebra with 
jointly continuous multiplication such that Ã ∈ ���(�) . Then, A is topologically ame-
nable relative to � if and only if for each X ∈ A-���-A(�) every continuous deriva-
tion A → X′ is inner.

Proof Given X ∈ A-���-A(�) ≅ Ã-���-Ã(�) , observe that X′ is complete (see, e.g., 
[12, 28.5.(1)]). Hence each continuous derivation A → X′ uniquely extends to a con-
tinuous linear map Ã → X′ , which is easily seen to be a derivation. Thus, we have a 
1–1 correspondence between the continuous derivations A → X′ and Ã → X′ , which 
obviously takes the inner derivations onto the inner derivations. Now the result fol-
lows from Theorem 3.18 applied to Ã .   ◻

We end this section with another consequence of topological amenability. The 
proof is similar to that of [4, Proposition 2.8.64], therefore we omit it.

Proposition 3.23 Let � ∈ {��,����} , and let A and B be locally convex alge-
bras with jointly continuous multiplication such that Ã, B̃ ∈ ���(�) . Suppose that 
� ∶ A → B is a continuous homomorphism with dense range. If A is topologically 
amenable relative to � , then so is B.

4  Topological amenability for co‑echelon algebras

We are now going to investigate topological amenability in the framework of Köthe 
co-echelon algebras. Throughout this section, amenability and topological amena-
bility are considered relative to the category ���� of complete barrelled DF-spaces.

The following result is a restatement of [7, Lemma 0.5.1] adapted to DF-spaces. 
The proof is essentially the same.

Lemma 4.1 Let X and Y be DF-spaces such that X is complete and Y is quasi-bar-
relled, and let u ∶ X → Y  be a continuous linear injection. If u has dense range and 
its adjoint u� ∶ Y � → X� is surjective, then u is a topological isomorphism between X 
and Y.

Proof By assumption, u� ∶ Y � → X� is a continuous linear bijection between Fréchet 
spaces, thus it is a topological isomorphism by the Open Mapping Theorem [17, 
Theorem 24.30]. Therefore, u′′ is a topological isomorphism as well. We have

where �X ∶ X ↪ X�� and �Y ∶ Y ↪ Y �� are the canonical inclusions. Since Y is quasi-
barrelled, it follows from [9, 11.2, Proposition 2] that �Y is a topological embedding. 
Since u′′ is a topological isomorphism, we conclude from (10) that �X is continuous, 
or, equivalently, a topological embedding [loc. cit.]. Hence, u′′ induces a topological 
isomorphism u ∶ X → im u . Since X is complete, im u is complete as well, so im u is 

(10)�Y◦u = u��◦�X ,
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closed in Y. Therefore, u is a topological isomorphism of X onto im u = im u = Y  .  
 ◻

Before proceeding to the characterization results, we list some properties of topo-
logically amenable Köthe co-echelon algebras of finite order.

Lemma 4.2 Let 1 ≤ p < ∞ , and let kp(V) be a Köthe co-echelon algebra. Then the 
kernel of the multiplication map 𝜋 ∶ kp(V) �⊗ kp(V) → kp(V) is a complemented 
subspace of kp(V) �⊗ kp(V) . As a consequence, the quotient kp(V) �⊗ kp(V)∕ ker𝜋 is 
complete.

Proof To begin with, let us show that the family (ei ⊗ ej)i,j∈ℕ is a Schauder basis in 
kp(V) �⊗ kp(V) with respect to the square ordering of ℕ × ℕ (see [29, Section 4.3]). 
Indeed, we have kp(V) �⊗ kp(V) = ind n�p(vn) �⊗�p(vn) by [16, Theorem 7]. Hence if 
u ∈ kp(V) �⊗ kp(V) then u ∈ �p(vn) �⊗�p(vn) for some n ∈ ℕ . Since (ej)j∈ℕ is a 
Schauder basis in �p(vn) , it follows from [29, Proposition 4.25] that (ei ⊗ ej)i,j∈ℕ is a 
Schauder basis in �p(vn) �⊗�p(vn) with respect to the square ordering. Therefore, 
u =

∑∞

i,j=1
uijei ⊗ ej in �p(vn) �⊗�p(vn) , hence also in kp(V) �⊗ kp(V) . Consequently, 

(ei ⊗ ej)i,j∈ℕ is a basis in kp(V) �⊗ kp(V) . Since the coefficient functionals e∗
i
∶ x ↦ xi 

on kp(V) are obviously continuous, so are the functionals e∗
i
⊗ e∗

j
 on kp(V) �⊗ kp(V) . 

Thus, (ei ⊗ ej)i,j∈ℕ is a Schauder basis.
Given u =

∑
i,j uijei ⊗ ej ∈ kp(V) �⊗ kp(V) , we clearly have �(u) =

∑
i uiiei . Hence,

Therefore, to complete the proof, it suffices to construct a continuous linear projec-
tion P on kp(V) �⊗ kp(V) such that P(ei ⊗ ej) = 𝛿ijei ⊗ ej for all i,  j, where �ij is the 
Kronecker delta.

Given n ∈ ℕ , let �0
p
(vn) denote the subspace of �p(vn) consisting of finitely sup-

ported sequences. Consider the bilinear map

We claim that Bn is bounded. Indeed, using [29, Lemma 2.22], we obtain

where (rj) are the Rademacher functions on [0, 1]. Hence

ker𝜋 = span {ei ⊗ ej ∶ i ≠ j}.

Bn ∶ �
0
p
(vn) × �

0
p
(vn) → �p(vn) �⊗�p(vn), Bn(x, y) =

∞∑

j=1

xjyjej ⊗ ej.

∑

j

xjyjej ⊗ ej = ∫
1

0

(∑

j

rj(t)xjej

)
⊗

(∑

j

rj(t)yjej

)
dt,

‖Bn(x, y)‖�p(vn) �⊗�p(vn)
≤ sup

0≤t≤1
���
�

j

rj(t)xjej
����p(vn)

���
�

j

rj(t)yjej
����p(vn)

= ‖x‖
�p(vn)

‖y‖
�p(vn)

.
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Therefore Bn is bounded. Extending Bn by continuity to �p(vn) × �p(vn) and then lin-
earizing, we obtain a bounded linear operator Pn on �p(vn) �⊗�p(vn) . Finally, letting 
P = ind nPn , we obtain a continuous linear operator P on kp(V) �⊗ kp(V) with the 
required properties. In view of the above remarks, this completes the proof.   ◻

Remark 4.3 Recall that the quotient of a complete DF-space modulo a closed sub-
space is not necessarily complete (see, e.g., [12, 31.6]). Therefore the completeness 
of kp(V) �⊗ kp(V)∕ ker𝜋 in Lemma 4.2 is not automatic.

Proposition 4.4 Let 1 ≤ p < ∞ and let kp(V) be a Köthe co-echelon algebra. Sup-
pose that kp(V) is topologically amenable. Then: 

 (i) V is eventually bounded;
 (ii) the product map 𝜋 ∶ kp(V)�⊗kp(V) → kp(V) is open, and there is a commutative 

diagram 

where q is the quotient map. Moreover, 

 (iii) kp(V) is nuclear.

Proof (i) Suppose towards a contradiction that all the weights vn are unbounded. 
This implies that there is a sequence jl ↗ ∞ such that vk(jl) ≥ 1 for all l ∈ ℕ and all 
k ≤ l . Define a dense range homomorphism

where we consider �p with the coordinate-wise multiplication. For every k ∈ ℕ we 
get

with Ck ∶= max{1∕vk(jl)
p ∶ l ≤ k} + 1 . Consequently, � indeed takes kp(V) to �p 

and is continuous. Since kp(V) is topologically amenable, it follows from Proposi-
tions 3.20 and 3.23 that the Banach algebra �p is amenable. This leads to a contra-
diction since �p is known to be non-amenable (see, e.g., [4, Example 4.1.42(iii)]). 
Therefore V is eventually bounded.

(11)�̂�−1(a) =

∞∑

j=1

ajej ⊗ ej + ker𝜋 (a ∈ kp(V));

� ∶ kp(V) → �p, �(a) ∶= (ajl )l∈ℕ,

‖𝜃(a)‖p
�p

=
�

l≤k
�ajl �

p +
�

l>k

�ajl �
p ≤ Ck‖a‖

p

k,p
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(ii) To prove that � is open, it suffices to show that �̂� is a topological isomorphism. 
Taking into account Lemma 4.2, we see that �̂� acts between complete barrelled DF-
spaces and, clearly, has dense range. By Lemma 4.1, the proof will be complete if 
we show that �̂�′ is surjective. Towards this goal, take 𝜓 ∈ (kp(V) �⊗ kp(V)∕ ker𝜋)

� 
and let �0 = �◦q . Since �0 vanishes on ker� , we have

Define now a linear map

In other words, � is the image of �0 under (4) (where X = Y = kp(V) and Z = ℂ ). 
Hence � is continuous. Using (12), we see that

Since the left action of kp(V) on (kp(V)⊗ ℂ)� is trivial, we conclude that � is a deri-
vation. By Theorem 3.18, there is � ∈ (kp(V))

� such that

Hence for all a, b ∈ kp(V) , we have

that is, �̂��(𝜙) = 𝜓 . Therefore, the map �̂�′ is surjective. In view of the above remarks, 
this implies that � is open. To prove (11), observe that for every j ∈ ℕ we have

Since (ej)j∈ℕ is a Schauder basis in kp(V) , this implies (11).
(iii) To get the nuclearity of kp(V) we repeat exactly the proof of [23, Theo-

rem  5.1]. We can indeed do so, since �̂�−1 is a topological isomorphism not only 
in the case of amenability (which was the assumption in [23]) but also under the 
weaker assumption of topological amenability.   ◻

Theorem 4.5 Let 1 ≤ p < ∞ , and let kp(V) be a Köthe co-echelon algebra. TFAE: 

 (i) kp(V) is topologically amenable;
 (ii) kp(V) is amenable;
 (iii) kp(V) is contractible;
 (iv) kp(V) is unital;
 (v) V is eventually in �1;
 (vi) V is eventually bounded, and kp(V) is nuclear.

(12)𝜓0(a⊗ b) =

∞∑

j=1

ajbj𝜓0(ej ⊗ ej) (a, b ∈ kp(V)).

𝛿 ∶ kp(V) → (kp(V)⊗ ℂ)�, ⟨b, 𝛿(a)⟩ ∶= 𝜓0(a⊗ b).

⟨c, 𝛿(ab)⟩ = ⟨ab⊗ c,𝜓0⟩ = ⟨a⊗ bc,𝜓0⟩ = ⟨c, 𝛿(a) ⋅ b⟩ (a, b, c ∈ kp(V)).

�(a) = � ⋅ a (a ∈ kp(V)).

⟨a⊗ b + ker𝜋, �̂��(𝜙)⟩ = ⟨ab,𝜙⟩ = ⟨b,𝜙 ⋅ a⟩
= ⟨b, 𝛿(a)⟩ = ⟨a⊗ b,𝜓0⟩ = ⟨a⊗ b + ker𝜋,𝜓⟩,

�̂�−1(ej) = �̂�−1
◦�̂�(ej ⊗ ej + ker𝜋) = ej ⊗ ej + ker𝜋.
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Proof (ii) ⇔ (iii) ⇔ (iv) : see [23, Theorem 5.1].
(iv) ⇔ (v) ⇔ (vi) : see [3, Proposition 2.5].
(ii) ⇒ (i) follows from Corollary 3.19.
(i) ⇒ (vi) follows from Proposition 4.4.   ◻

It turns out that the cases of Köthe co-echelon algebras of order zero and infin-
ity can be treated simultaneously.

Theorem 4.6 Let p ∈ {0,∞} , and let kp(V) be a Köthe co-echelon algebra. TFAE: 

 (i) k0(V) is topologically amenable;
 (ii) k∞(V) is topologically amenable;
 (iii) V is eventually bounded.

Proof (ii) ⇒ (iii) . If k∞(V) is topologically amenable then we can follow the proof 
of Proposition 4.4 to show that V is eventually bounded. Indeed, suppose towards 
a contradiction that all the weights vn are unbounded. This implies that there is a 
sequence jl ↗ ∞ such that vk(jl) ≥ 2l for all l ∈ ℕ and all k ≤ l . Define a dense 
range homomorphism

where we consider �1 with the coordinate-wise multiplication. For every k ∈ ℕ we 
get

with Ck ∶=
∑

l≤k(1∕vk(jl)) + 1 . Consequently, � indeed takes k∞(V) to �1 and is con-
tinuous. Since k∞(V) is topologically amenable, it follows from Propositions 3.20 
and 3.23 that the Banach algebra �1 is amenable. This leads to a contradiction since 
�1 is known to be non-amenable (see, e.g., [4, Example 4.1.42(iii)]). Therefore, V is 
eventually bounded.

(iii) ⇒ (ii) . Without loss of generality, we may assume that v1 ∈ V  is bounded. 
We then have �∞ ⊂ �∞(v1) , and the inclusion is clearly bounded. Composing with 
the inclusion of �∞(v1) into k∞(V) , we obtain a continuous homomorphism

We claim that � has dense range. To this end, let a ∈ k∞(V)⧵{0} , i.e., 
0 < ‖a‖n,∞ < ∞ for some n ∈ ℕ . Using (W3), find m ∈ ℕ and C > 0 such that

Fix 𝜀 > 0 and denote J1 ∶= {j ∈ ℕ ∶ vn(j) ≥ �

2C‖a‖n,∞
} and J2 ∶= ℕ⧵J1 . Define a sca-

lar sequence b� = (bj)j as

� ∶ k∞(V) → �1, �(a) ∶= (ajl )l∈ℕ,

‖𝜃(a)‖
�1

=
�

l≤k
�ajl � +

�

l>k

�ajl � ≤ Ck‖a‖k,∞

(13)� ∶ �∞ → k∞(V), �(a) ∶= a.

∀ j ∈ ℕ vm(j) ≤ Cvn(j)
2.
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For each j ∈ J1 , we have

Consequently, b� ∈ �∞ with ‖b�‖
�∞

≤ 2C

�
‖a‖2

n,∞
 . If J2 is empty, we conclude that 

a = b� is in the range of � . Otherwise, observe that

For any j ∈ J2 we get

Thus, ‖a − b𝜀‖m,∞ < 𝜀 . This implies that for a sequence �k ↘ 0 we get another 
sequence bk ∶= b�k ∈ �∞ such that

But the topology of �∞(vm) is stronger than that of k∞(V) , thus

Consequently, the homomorphism (13) has dense range. Since �∞ is amenable by 
[10, Lemma 7.10] (see also [4, Theorem 5.6.2], [7, Theorem VII.2.42]), the topo-
logical amenability of k∞(V) now follows from Propositions 3.20 and 3.23.

(i) ⇔ (iii) . This part is even easier since (ej)j∈ℕ is a common Schauder basis for 
both c0 and k0(V) , thus the density of the range of � in (13) is immediate.   ◻

5  Examples

Let us now give some concrete examples which illustrate Theorems 4.5 and 4.6.

Example 5.1 Applying Theorem 4.5, we see that the algebra � of finite sequences 
(see Example 2.5) is not topologically amenable.

Example 5.2 Consider the dual power series space DΛp

R
(�) , where 1 ≤ p ≤ ∞ and 

R ∈ {0} ∪ [1,+∞) (see Example 2.6). If R ≥ 1 , then the respective weights (r�j)j∈ℕ 
are clearly unbounded for all r > R , so DΛp

R
(�) is not topologically amenable in this 

bj ∶=

{
aj, j ∈ J1
0, j ∈ J2.

�bj� ≤ 2C

�
‖a‖n,∞�aj�vn(j) ≤ 2C

�
‖a‖2

n,∞
.

‖a − b�‖m,∞ = sup
j∈J2

�aj�vm(j).

�aj�vm(j) ≤ C�aj�vn(j)2 ≤ C‖a‖n,∞vn(j)

< C‖a‖n,∞
𝜀

2C‖a‖n,∞
=

𝜀

2
< 𝜀.

lim
k→∞

bk = a in �∞(vm).

lim
k→∞

bk = a in k∞(V).
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case (see Theorems  4.5 and  4.6). On the other hand, (r�j)j∈ℕ is bounded for each 
0 < r ≤ 1 , and so DΛ∞

0
(�) is topologically amenable by Theorem 4.6.

In fact, more is true. Indeed, all dual power series spaces DΛp

R
(�) are Schwartz 

spaces by [1, Theorem 4.9]. Also, it is clear that DΛ∞
0
(�) is unital. Now [24, Theo-

rem 12] implies that DΛ∞
0
(�) is contractible.

Finally, if p < ∞ , then DΛp

0
(�) is topologically amenable iff it is contractible iff ∑

j r
𝛼j < ∞ for some r > 0 (see Theorem 4.5).

Example 5.3 The algebra s′ of sequences of polynomial growth is contractible. This 
follows from [32, Proposition 7.3] and is explicitly mentioned in [19, Example 3.1], 
[14, Example 6.6]. Since s� = DΛ

p

0
(�) , where �j = log j (see Example 2.7), we see 

that the contractibility of s′ is also a special case of Example 5.2.

Example 5.4 As another special case of Example  5.2, we see that the Hadamard 
algebra H(�R) of germs of holomorphic functions on the disc �R (see Example 2.8) 
is not topologically amenable for R ≥ 1 . On the other hand, letting R = 0 , we see 
that the Hadamard algebra H0 of holomorphic germs at zero is contractible.

The reader may have noticed that for all the algebras mentioned in Exam-
ples  5.1–5.4 topological amenability is equivalent to contractibility. On the 
other hand, there are two obvious examples of topologically amenable co-ech-
elon algebras that are not contractible—namely, c0 and �∞ . To construct more 
examples of the same kind, let us first observe that the direct sum of two co-
echelon algebras of the same order is also a co-echelon algebra. More exactly, if 
V = (vn)n∈ℕ and W = (wn)n∈ℕ are sequences of weights on index sets I and J, 
respectively, then we have kp(I,V)⊕ kp(J,W) ≅ kp(I ⊔ J,U) , where the sequence 
U = (un)n∈ℕ of weights on I ⊔ J is given by un(i) = vn(i) if i ∈ I , and un(j) = wn(j) 
if j ∈ J . Conversely, each partition I = S ⊔ T  induces a direct sum decomposition 
kp(I,V) ≅ kp(S,VS)⊕ kp(T ,VT ) , where VS and VT consist of the restrictions to S and 
T of weights from V.

Example 5.5 Let A1 = c0 ⊕DΛ∞
0
(𝛼) and A2 = �∞ ⊕DΛ∞

0
(𝛼) . In view of the above 

discussion, A1 and A2 are co-echelon algebras of order 0 and ∞ , respectively. By 
Theorem 4.6, A1 and A2 are topologically amenable. On the other hand, A1 and A2 
are not Montel spaces, so they are not contractible by [24, Theorems 12 and 13] 
(moreover, A1 is not unital, which already implies that it is not contractible).

Of course, the above example is degenerate in a sense. Our next goal is to con-
struct a “genuine” example of a co-echelon algebra of order ∞ which is topologi-
cally amenable and unital, but is not contractible. By “genuine”, we mean that the 
algebra we are going to construct is not reduced to a direct sum of �∞ with a con-
tractible algebra of the form k∞(V) in the sense explained before Example 5.5.

Example 5.6 We fix a sequence (cj)j∈ℕ of positive numbers such that cj ≤ 1 for all j, 
and such that cj → 0 as j → ∞ . For each n ∈ ℕ define a weight vn on ℕ2 by
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Clearly, the sequence V = (vn)n∈ℕ satisfies (W1) and (W2). Furthermore, we have 
v2n ≤ v2

n
 for all n ∈ ℕ , whence V satisfies (W3). Thus kp(ℕ2,V) is a Köthe co-echelon 

algebra for all p. Since V is eventually bounded, we see that k0(ℕ2,V) and k∞(ℕ2,V) 
are topologically amenable (see Theorem 4.6). Moreover, k∞(ℕ2,V) is clearly unital.

For each i ∈ ℕ , let Li = {(i, j) ∶ j ∈ ℕ} ⊂ ℕ
2.

Lemma 5.7 If S ⊂ ℕ
2 , then k∞(S,VS) is a Banach space if and only if S ∩ Ln is finite 

for all n ∈ ℕ.

Proof We will use the well-known fact that an (LB)-space E = ind nEn (where En 
are Banach spaces, and En → En+1 are bounded linear injections) is a Banach space 
if and only if the sequence (En) stabilizes in the sense that there exists N ∈ ℕ such 
that En → En+1 is a topological isomorphism for all n ≥ N (this follows, for example, 
from [12, 19.5.(4)]).

If S ∩ Ln is finite for all n ∈ ℕ , then so is Sn =
⋃

k≤n(S ∩ Lk) . We clearly have 
vn = vn+1 = 1 outside Sn . Letting

we obtain vn ≤ Cnvn+1 everywhere on S. This readily implies that the map 
�∞(S, vn) → �∞(S, vn+1) is a topological isomorphism. Hence k∞(S,VS) is a Banach 
space.

Conversely, suppose that S ∩ Lk is infinite for some k. Since for each n ≥ k + 1 we 
have vn(k, j) = cn

j
 , and since cj → 0 as j → ∞ , we see that there is no C > 0 such that 

vn ≤ Cvn+1 on S ∩ Lk . Therefore, �∞(S, vn) → �∞(S, vn+1) is not a topological iso-
morphism, and so k∞(S,VS) is not a Banach space.   ◻

Lemma 5.8 There is no decomposition ℕ2 = S ⊔ T  such that k∞(S,VS) is a Banach 
space and such that k∞(T ,VT ) is a Montel space.

Proof Suppose that S ⊂ ℕ
2 is a subset such that k∞(S,VS) is a Banach space, and let 

T = ℕ
2⧵S . By Lemma 5.7, for each n ∈ ℕ there exists jn ∈ ℕ such that (n, jn) ∈ T  . 

We clearly have vm(n, jn) = 1 for all n ≥ m . Letting R = {(n, jn) ∶ n ∈ ℕ} , we con-
clude that

The existence of an infinite set R ⊂ T  with the above property means precisely that 
k∞(T ,VT ) is not Montel [1, Theorem 4.7].   ◻

(14)vn(i, j) =

{
cn
j
, i < n,

1, i ≥ n.

Cn = max
(i,j)∈Sn

vn(i, j)

vn+1(i, j)
,

inf
(i,j)∈R

vm(i, j)

v1(i, j)
= inf

n∈ℕ

vm(n, jn)

v1(n, jn)
> 0 (m ∈ ℕ).
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Essentially the same argument applies to k0(ℕ2,V) . However, more is true.

Lemma 5.9 Let V be the weight sequence on ℕ2 given by (14). Then k0(ℕ2,V) is not 
complete, and the underlying lcs of k0(ℕ2,V) is not isomorphic to a direct sum of a 
normed space and a dense subspace of a reflexive space.

Proof Recall from [1, Theorem  2.7] that, for each set I and each sequence 
V = (vn)n∈ℕ of weights on I satisfying (W1) and (W2), the strong dual of k0(I,V) is 
topologically isomorphic to the Köthe echelon space

where an(i) = vn(i)
−1 and A = (an)n∈ℕ is the corresponding Köthe set.

Let now I = ℕ
2 , let V be given by (14), and let E = k0(ℕ

2,V) . Assume, towards a 
contradiction, that E ≅ E0 ⊕E1 , where E0 is a normed space and E1 is a dense sub-
space of a reflexive space. Hence we have a topological isomorphism E� ≅ E�

0
⊕E�

1
 . 

Moreover, E′
0
 is a Banach space, and E′

1
 is a reflexive Fréchet space (see, e.g., [12, 

23.5.(5) and 29.3.(1)]). Now recall from [17, Corollary 25.14] that all reflexive Fré-
chet spaces are distinguished, i.e., their strong duals are barrelled. Clearly, each nor-
med space is distinguished, and a direct sum of two distinguished spaces is distin-
guished. Therefore, E′ is distinguished.

On the other hand, it is easily seen that the Köthe set A = (an)n∈ℕ on ℕ2 , where 
an(i, j) = vn(i, j)

−1 , satisfies the conditions of [17, Corollary 27.18]. Hence �1(ℕ2,A) 
is not distinguished. This is a contradiction since E� ≅ �1(ℕ

2,A) (see above).
Applying now [1, Corollary 3.5 and Theorem 3.7], we conclude that k0(ℕ2,V) is 

not complete.   ◻

Proposition 5.10 Let V be the weight sequence on ℕ2 given by (14). Then 

(i) k0(ℕ2,V) and k∞(ℕ2,V) are topologically amenable Köthe co-echelon algebras;
(ii) k∞(ℕ2,V) is unital;
(iii) k0(ℕ2,V) is not complete;
(iv) there is no decomposition ℕ2 = S ⊔ T  such that k∞(S,VS) is a Banach algebra and 

such that k∞(T ,VT ) is a contractible algebra;
(v) the underlying lcs of k0(ℕ2,V) is not isomorphic to a direct sum of a normed alge-

bra and a contractible Köthe co-echelon algebra.

Proof Properties (i) and (ii) are mentioned in Example 5.6, while (iii) is contained in 
Lemma 5.9. To prove (iv) and (v), observe that each contractible co-echelon algebra 
of order p > 0 is a Montel space (for p < ∞ this follows from Theorem 4.5, while 
for p = ∞ this is [24, Theorem 12]). Also, if a co-echelon algebra of order 0 is con-
tractible, then its completion is a Montel space [24, Theorem 13]. Now, (iv) and (v) 
follow from Lemmas 5.8 and 5.9, respectively.   ◻

𝜆1(I,A) =
�
x = (xi) ∈ ℂ

I ∶ ‖x‖n =
�

i∈I

�xi�an(i) < ∞ ∀n ∈ ℕ

�
,
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We conjecture that (v) holds for k∞(ℕ2,V) as well.
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