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Abstract
In the present paper, we first study the wandering subspace property of the shift 
operator on the I

a
 type zero based invariant subspaces of the weighted Bergman 

spaces L2
a
(dA

n
)(n = 0, 2) via the spectrum of some Toeplitz operators on the Hardy 

space H2 . Second, we give examples to show that Shimorin’s condition for the shift 
operator fails on the I

a
 type zero based invariant subspaces of the weighted Bergman 

spaces L2
a
(dA

𝛼
)(𝛼 > 0).

Keywords The weighted Bergman spaces · Quotient module · Beurling type 
theorem · Wandering subspace property

Mathematics Subject Classification 47A15 · 47A20

1 Introduction

Let T be a bounded linear operator on a Hilbert space H. We say that M is an invari-
ant subspace for T if M is a closed subspace of H and Tf ∈ M whenever f ∈ M . Let 
� be the open unit disk in the complex plane, and let H(�) be the space consisting of 
all analytic functions on � . The Hardy space H2 is defined as:
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where f (z) =
∑∞

n=0
anz

n is the power series representation of f. Let �  be the bound-
ary of the unit disk � . A function �(z) in H2 is called inner if |�(z)| = 1 a.e. on �  . 
The famous Beurling theorem [2] says that every invariant subspace of the multi-
plication operator Tz on the Hardy space H2 other than {0} has the form �H2 , where 
�(z) is an inner function. To generalized the Beurling theorem, for a bounded linear 
operator T on a Hilbert space H, let M ⊖ TM be the orthogonal complement of TM 
in M, it is also called a wandering subspace of T on M. We say that T possesses the 
wandering subspace property on the invariant subspace M of T if:

where [M ⊖ TM] is the invariant subspace of T generated by M ⊖ TM . And we say 
that the Beurling type theorem for T holds on H if (1.1) holds for all invariant sub-
spaces M of T. The Beurling theorem implies that the Beurling type theorem holds 
for Tz on H2 . The following is a basic problem in functional analysis:

Question 1 Describe the invariant subspaces of T and find whether T possesses the 
wandering subspace property on these invariant subspaces.

Let dA be the normalized Lebesgue area measure on � , and let:

The space L2(�, dA
�
) consists of complex valued functions f on � such that:

It is well-known that L2(�, dA
�
) is a Hilbert space with the above norm. For any 

𝛼 > −1 , we define:

then L2
a
(dA

�
) is a closed subspace of L2(�, dA

�
) . These spaces will be called the 

weighted Bergman spaces. Let B
�
 denote the shift operator on L2

a
(dA

�
) which maps 

every f ∈ L2
a
(dA

�
) to zf. If � = 0 , for convenience, the Bergman space L2

a
(dA0) and 

the Bergman shift B0 will be denoted by L2
a
 and B , respectively.

In 1996, Aleman, Richter and Sundberg [1] proved that the Beurling type theo-
rem holds for B on L2

a
 . Later, different proofs of the Beurling theorem for B on L2

a
 

were given in [6, 7, 9]. In [9], Shimorin proved the following theorem.

Theorem 1.1 (Shimorin’s theorem) Let T be a linear operator on a Hilbert space H 
with the properties: 

H2 =

{
f ∈ H(�) ∶ f (z) =

∞∑
n=0

anz
n,

∞∑
n=0

|an|2 < ∞

}
,

(1.1)[M ⊖ TM] = M,

dA
𝛼
(z) = (𝛼 + 1)(1 − |z|2)𝛼dA(z)(𝛼 > −1).

‖f‖ =

�
∫
�

�f (z)�2dA
𝛼
(z)

� 1

2

< +∞.

L2
a
(dA

�
) = H(�) ∩ L2(�, dA

�
),



The wandering subspace property and Shimorin’s condition… Page 3 of 34 2

 (i) ‖Tx + y‖2 ≤ 2
�‖x‖2 + ‖Ty‖2� for allx, y ∈ H , and

 (ii) ∩∞
n=1

TnH = {0} , then T possesses the wandering subspace property on H.

Remark 1.2 The above condition (i) is equivalent to say that T is bounded and 
bounded below on H and satisfies the following equation:

If T satisfies the condition (ii) on H, then we say that T is analytic on H.

Definition 1.3 We say that Shimorin’s condition for T holds on H if T satisfies the 
above conditions (i) and (ii) (see [12]).

Shimorin’s theorem implies that T possesses the wandering subspace property on H 
if Shimorin’s condition for T holds on H. As an application of Shimorin’s theorem, it is 
proved that for any −1 < 𝛼 ≤ 0 the Beurling type theorem holds for B

�
 on L2

a
(dA

�
) , and 

then as a corollary, they gave a simpler proof of the Beurling type theorem on the Berg-
man space. One year later, Shimorin proved that for any −1 < 𝛼 ≤ 1 the Beurling-type 
theorem holds for B

�
 on L2

a
(dA

�
) (see [10]). The first step to solve Question 1 is to ver-

ify whether Shimorin’s condition for the operator T holds on the invariant subspaces. It 
is always difficult to verify directly according to Definition 1.3, for example, the repro-
ducing kernel Hilbert spaces with the complicate kernel functions. If Shimorin’s condi-
tion for the operator T fails on some invariant subspaces, then we must try other ways to 
solve Question 1.

The famous example is the zero-based invariant subspaces of the weighted Bergman 
spaces L2

a
(dA

𝛼
)(𝛼 > −1).

Definition 1.4 For any n ≥ 1, 𝛼 > −1 , now suppose the sequence 
A = {a1, a2,… , an,…} ⊂ �(may be same). Let:

then IA is an invariant subspace of B
�
 . The subspace IA is called a zero based invari-

ant subspace of L2
a
(dA

�
) (see [3]). When A = {a1, a2,… , an} is a finite set of points 

inside � , for distinguishing the difference, we denote by:

In particular, let A = {a} , the kernel function for the Ia type zero based invariant 
subspaces of L2

a
(dA

�
) (see [3]) is:

In the present paper, we give the following theorem to show that Shimorin’s condi-
tion for the shift operator fails on the Ia type zero-based invariant subspaces of the 
weighted Bergman spaces L2

a
(dA

𝛼
)(𝛼 > 0).

TT∗ + (T∗T)−1 ≤ 2I.

IA =

{
f ∈ L2

a
(dA

�
) ∶ f (a1) = f (a2) = ⋯ = f (an) = ⋯ = 0

}
,

Ia1,a2,…,an
= IA.

K𝛼

a
(z,w) =

1

(1 − w̄z)𝛼+2
−

(1 − |a|2)𝛼+2
(1 − āz)𝛼+2(1 − w̄a)𝛼+2

.
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Theorem  1.5 If 1 − |a| small enough, then Shimorin’s condition fails for B
�
 on 

the Ia type zero based invariant subspaces of the weighted Bergman spaces 
L2
a
(dA

𝛼
)(𝛼 > 0) ; or equivalently,

holds for some f ∈ Ia as |a| → 1− , where B∗

�,Ia
 denotes the adjoint of the restriction 

B
�
|Ia.

We study the zero based invariant subspaces of the weighted Bergman spaces is also 
due to the following facts:

Hedenmalm and Zhu [4] have showed that for any 𝛼 > 4 there exists some Ia type 
zero based invariant subspaces of L2

a
(dA

�
) don’t possess the wandering subspace 

property. So in this case, the Beurling type theorem for B
�
 on L2

a
(dA

�
) fails. In [9], 

Shimorin conjectured that the critical value for the Beurling type theorem on the 
weighted Bergman spaces L2

a
(dA

�
) is � = 1 . In 2004, Hedenmalm and Perdomo [3] 

essentially proved that the Beurling type theorem fails in L2
a
(dA

�
) for 𝛼 > c , where 

c ≈ 1.04 . It is natural to discuss the following question:

Question 2 Does Shimorin’s condition for B
�
 hold on all Ia type zero based invariant 

subspaces of L2
a
(dA

�
) with � ∈ (1,+∞)?

Theorem 1.5 gives a negative answer to Question 2. Then we must try other ways 
to solve the following natural question:

Question 3 Does B
�
 possess the wandering subspace property on the Ia type zero 

based invariant subspaces of L2
a
(dA

�
) with � ∈ (1,+∞)?

In [12], the authors gave a positive answer for the case of � = 2 of Question 3 
and proved the case of � = 2 of Theorem 1.5. To solve Question 3, let �2, � 2 be the 
bidisk and torus which are the Cartesian product of 2 copies of � and �  , respec-
tively. The Hardy space H2(�2) over the bidisk �2 consists of holomorphic functions 
f on �2 satisfying:

where � is the normalized Haar measure on � 2 . It is also well-known that H2(�2) is 
a Hilbert space. Let M be a closed subspace of H2(�2) , we say that M is a submod-
ule if M is invariant under multiplication operators Tz and Tw . In particular, for any 
subset X ⊂ H2(�2) , let:

where A(�2) is the bidisk algebra, that is the closure of polynomials in z and w under 
the norm of H∞(�2) . Then [X] is a submodule, it is called the submodule generated 

(1.2)
�
B
𝛼
B
∗

𝛼,Ia
f , f

�
+

��
B
∗

𝛼,Ia
B
𝛼

�−1

f , f
�
> 2‖f‖2

‖f‖2 ∶= sup
0<r<1∫� 2

�f (r𝜁)�2d𝜎(𝜁) < ∞,

[X] = clos
{
span

[
A(�2)X

]}
,
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by X. The orthonormal complement of a submodule is called a quotient module. 
Let (Sz, Sw) be the two variable Jordan block which are the compression operators 
defined on a quotient module N, more precisely,

where PN is the projection of H2(�2) onto N.
In particular, let K1 = [z − w] be the submodule generated by z − w , and let 

N1 = H2(�2)⊖ K1 be the related quotient module. As we know, the quotient mod-
ule N1 plays a great role in many situations since the compression operator Sz on 
N1 is unitarily equivalent to the Bergman shift on L2

a
 . In [11], by lifting the Berg-

man shift as Sz on N1 , Sun and Zheng gave a proof of the Beurling type theorem 
for B on L2

a
 . In [12], the authors considered the submodule K0 = [(z − w)2] and the 

related quotient module N0 = H2(�2)⊖ K0 . Let H1
0
= [z − w]⊖ [(z − w)2] , then 

N0 = N1 ⊕H
1
0
 , and the following lemma [12] holds:

Lemma 1.6 Define S1
z
= Sz|H1

0
 , then S1

z
 and B2 are unitarily equivalent.

The space L∞(� ) is the collection of all essentially bounded measurable func-
tions on �  . For each �(ei�) ∈ L∞(� ) , the Toeplitz operator with symbol �(ei�) is 
the operator T

�
 defined by:

for each f in H2 , where P is the orthogonal projection of L2 onto H2 . By some state-
ments in [12], we get the following theorem:

Theorem 1.7 For any 0 ≠ a ∈ � , then Ia ≠ [Ia ⊖ B2Ia] holds in L2
a
(dA2) if only and 

if:

is an eigenvalue of Toeplitz operator T
�
 with an eigenvector

satisfying

where

Szf = PNzf , Swf = PNwf , ∀f ∈ N,

T
�
f = P�f

�a = −
1 − (1 − |a|2)4
|a|2(1 − |a|2)4

f =

∞∑
i=0

Ci
3
zi

∞∑
i=0

∞∑
k=3

|Ci
k
|2 < ∞,
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and

The last part of the proof of Theorem  8 in [12] has in fact proved that 
�a ∉ �(T

�
) . We believe that Theorem  1.7 is a general phenomenon in the case 

of all zero based invariant subspaces of L2
a
(dA

𝛼
)(𝛼 > 1) . We also believe that B

�
 

does not possess the wandering subspace property on some zero-based invariant 
subspaces of L2

a
(dA

𝛼
)(𝛼 > 1) and it will substantiate Shimorin’s conjecture. Our 

basic problem is to find and prove the general phenomenon, and then, we prove 
the wandering subspace property of B

�
 on all zero based invariant subspaces of 

L2
a
(dA

𝛼
)(𝛼 > 1) via the spectrum of some Toeplitz operators on the Hardy space 

H2 . It is obvious that Question 3 is a special case of our basic problem. In the 
present paper, we prove the similar phenomenon in the case of Bergman space 
and reprove the wandering subspace property of the Bergman shift on the Ia type 
zero-based invariant subspaces. The following is our main theorem:

Theorem 1.8 For any 0 ≠ a ∈ � , then Ia ≠ [Ia ⊖ BIa] holds in L2
a
 if only and if:

is an eigenvalue of Toeplitz operator T
�
 with an eigenvector:

satisfying:

where

and

(1.3)

�(ei�) =
1

(1 − |a|2)2
[

1

(1 − ae−i�)2
− 1

]

+
1

1 − |a|2
[

1

(1 − ae−i�)3
− 1

]

+
1

(1 − |a|2)3
(

1

1 − ae−i�
− 1

)
,

(1.4)Ci
k+2

=
�√

k
�2 k−1�

j=0

āk−1−jC
i+j

3
, k ≥ 2, i ≥ 0.

�a = −
1 − (1 − |a|2)2
|a|2(1 − |a|2)2

f =

∞∑
i=0

Ci
1
zi

∞∑
i=0

∞∑
k=1

|Ci
k
|2 < ∞,

(1.5)�(ei�) =
1

1 − |a|2
(

1

1 − ae−i�
− 1

)
,
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Through Theorems 1.7 and 1.8, we conjecture that the following proposition 
holds for the general case of the weighted Bergman spaces L2

a
(dAn)(n = 0, 1, 2,…)

.

Conjecture 1 For any 0 ≠ a ∈ � , then Ia ≠ [Ia ⊖ BnIa] holds in 
L2
a
(dAn)(n = 0, 1, 2,…) if only and if:

is an eigenvalue of Toeplitz operator T
�
 with an eigenvector

satisfying:

where

and

We believe that the proof of Conjecture 1 will make progress in solving Ques-
tion 3, but we cannot prove it in this paper. This paper is arranged as follows. 
In Sect.  2, we prove Theorem 1.7. In Sect.  3, we give an equivalent condition 
that Sz does not possess the wandering subspace property on any fixed invariant 
subspace of Sz on N1 . In this part of the research process, we simply get the same 
characterization of M00 as in [11]. In Sect. 4, we give the proof of Theorem 1.8, 
and then as a corollary, we reprove that the Bergman shift possesses the wander-
ing subspace property on all Ia type zero based invariant subspaces. In Sect. 5, 
we prove Theorem 1.5.

In this paper, for a Hilbert space H and a bounded linear operator T on it, we 
denote by Lat(T) the lattice of invariant subspaces for T on H.

(1.6)Ci
k
=
�√

k
�0 k−1�

j=0

āk−1−jC
i+j

1
, ∀k ≥ 2, i ≥ 0.

�a = −
1 − (1 − |a|2)2+n
|a|2(1 − |a|2)2+n

f =

∞∑
i=0

Ci
n+1

zi

∞∑
i=0

∞∑
k=n+1

|Ci
k
|2 < ∞,

(1.7)�(ei�) =

1+n∑
i=1

1

(1 − |a|2)2+n−i
(

1

(1 − ae−i�)i
− 1

)
,

(1.8)Ci
k+n

=
�√

k
�n k−1�

j=0

āk−1−jC
i+j

n+1
, k ≥ 2, i ≥ 0.
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2  The proof of theorem 1.7

Let

then {�̃�1, �̃�2,…} is an orthonormal basis of H1
0
 (see [12]). In [12], the authors have 

proved the following proposition:

Proposition 2.1 (Corollary 2 in [12]) Let M ⊂ H
1
0
 and M ∈ Lat(S1

z
) , then 

M ≠ [M⊖ S1
z
M]H1

0
 if and only if there exists a nonzero solution for the following 

equations of Ci
k
(k ≥ 2, i ≥ 0) : 

 (i) ⟨f 0
i+1

, z⟩ + 6Ci
2
= 0(i ≥ 0);

 (ii) −
√
2⟨f 0

i+1
, �̃�2⟩ − 4Ci+1

2
+

10

3
Ci
3
= 0(i ≥ 0);

 (iii) 
�

3k

(k+1)(k+2)
⟨f 0
i+2

, �̃�
k
⟩ −

�
3(k+3)

(k+1)(k+2)
⟨f 0
i+1

, �̃�
k+1⟩ + C

i+2

k
−

2(k+3)

k+1
C
i+1

k+1
+

(k+3)(k+4)

(k+1)(k+2)
C
i

k+2
= 0(k ≥ 2, i ≥ 0);

 (iv) 
∑∞

i=0

∑∞

k=2
�Ci

k
�2 < ∞,

where

for any i ≥ 0 , and �̃�1, �̃�2,… is an orthonormal basis of H1
0
 as mentioned above.

In this section, we first point out that Proposition 2.1 can be written in the follow-
ing simple form:

Theorem 2.2 Let M ⊂ H
1
0
 and M ∈ Lat(S1

z
) , then M ≠ [M⊖ S1

z
M]H1

0
 if and only 

if there exists a nonzero solution for the following equations of Ci
k
(k ≥ 3, i ≥ 0) : 

(a) ⟨f 0
i+1

, �̃�k⟩ = −

√
(k+1)(k+2)√

3k
Ci+1
k

+
(k+3)

√
k+2√

3k(k+1)
Ci
k+1

, ∀i ≥ 0, k ≥ 2;

(b) 
∑∞

i=0

∑∞

k=3
�Ci

k
�2 < ∞,

where

�̃�k =

�
3

k(k + 1)(k + 2)

k�
i=0

(k − 2i)ziwk−i, ∀k ≥ 2,

�̃�1 = −
1√
2
(z − w),

fi =

∞∑
k=2

Ci
k

( k∑
t=1

6t − 2 − 4k

k(k − 1)
ztwk−t + wk

)
,

f 0
i
= −Sz(B

∗

M
Sz)

−1PMT∗
z
fi
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for any i ≥ 0 , and �̃�1, �̃�2,… is an orthonormal basis of H1
0
 as mentioned above.

Proof The condition (i) in Proposition 2.1 is equivalent to Ci
2
= 0 for any i ≥ 0 (see 

[12]). If Ci
2
= 0, i ≥ 0 , then condition (ii) in Proposition 2.1 is

Then by (iii), we can calculate that

In general, we can prove that (ii) and (iii) are equivalent to:

where Ci
2
= 0 for all i ≥ 0 . In fact, if k = 2 , then (2.2) is becoming:

that is (ii). If (ii) and (iii) hold, then (2.2) holds for k = 2 . We assume that (2.2) 
holds for any fixed k ≥ 2 , then by (iii),

Ci
2
= 0, fi =

∞∑
k=2

Ci
k

( k∑
t=1

6t − 2 − 4k

k(k − 1)
ztwk−t + wk

)
,

f 0
i
= −Sz(B

∗

M
Sz)

−1PMT∗
z
fi

⟨f 0
i+1

, �̃�2⟩ = 5
√
2

3
Ci
3
, ∀i ≥ 0.

(2.1)

⟨f 0
i+1

, �̃�3⟩ = −
2
√
5

3
Ci+1
3

+
√
5Ci

4
;

⟨f 0
i+1

, �̃�4⟩ = −

√
5√
2
Ci+1
4

+
7√
10

Ci
5
;

⟨f 0
i+1

, �̃�5⟩ = −

√
14√
5
Ci+1
5

+
8
√
7

3
√
10

Ci
6
,… .

(2.2)

⟨f 0
i+1

, �̃�k⟩ = −

√
(k + 1)(k + 2)√

3k
Ci+1
k

+
(k + 3)

√
k + 2√

3k(k + 1)
Ci
k+1

, ∀i ≥ 0, k ≥ 2,

⟨f 0
i+1

, �̃�2⟩ = 5
√
2

3
Ci
3
, ∀i ≥ 0,

(2.3)

�
3k

(k + 1)(k + 2)

�
−

√
(k + 1)(k + 2)√

3k
Ci+2
k

+
(k + 3)

√
k + 2√

3k(k + 1)
Ci+1
k+1

�

−

�
3(k + 3)

(k + 1)(k + 2)
⟨f 0
i+1

, �̃�k+1⟩ + Ci+2
k

−
2(k + 3)

k + 1
Ci+1
k+1

+
(k + 3)(k + 4)

(k + 1)(k + 2)
Ci
k+2

= 0,
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that is:

so (2.2) holds for k + 1 , by the induction, (2.2) holds. Conversely, if (2.2) holds, by 
the above calculations, then (ii) and (iii) hold.   ◻

Now, we give a proof of Theorem 1.7:

Lemma 2.3 (Theorem 7 in [12]) If 0 ≠ a ∈ � , then Ia ≠ [Ia ⊖ B2Ia] holds in L2
a
(dA2) 

if and only if there exists a nonzero solution for the following equations of Ci
3
(i ≥ 0) : 

(I) 

 (II) 
∑∞

i=0

∑∞

k=3
�Ci

k
�2 < ∞ , where 

Proof of Theorem  1.7 By the proof of Theorem  8 in [12], we get that (2.5) has a 
nonzero solution {Ci

3
}i≥0 satisfying:

which is equivalent to

being an eigenvalue of Toeplitz operator T
�
 ( f =

∑∞

i=0
Ci
3
zi is an eigenvector), where

(2.4)

⟨f 0
i+1

, �̃�k+1⟩ = −

√
(k + 2)(k + 3)√

3(k + 1)
Ci+1
k+1

+
(k + 4)

√
k + 3√

3(k + 1)(k + 2)
Ci
k+2

, ∀i ≥ 0,

(2.5)

∞∑
n=1

(n + 2)(n + 3)
(
ān−1Ci+1

3
+ ān−2Ci+2

3
+⋯

+ āCi+n−1
3

+ Ci+n
3

)
an = −2

1 − (1 − |a|2)4
|a|2(1 − |a|2)4 C

i
3
, i ≥ 0;

(2.6)
Ci
k+2

=
5(k + 1)(k + 2)

6(k + 4)

(
āk−1Ci

3
+ āk−2Ci+1

3

+ āk−3Ci+2
3

+⋯ + āCi+k−2
3

+ Ci+k−1
3

)
, k ≥ 2, i ≥ 0.

∞∑
i=0

|Ci
3
|2 < +∞,

�a = −
1 − (1 − |a|2)4
|a|2(1 − |a|2)4
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By Lemma 2.3, we get Theorem 1.7.   ◻

3  Beurling type theorem for S
z
 on N

1

In this section, we use the techniques in [12].

Proposition 3.1 Sz is left invertible and analytic on N1 [5].

Proof Note that an orthonormal basis of N1 is:

where

Then, we get the matrix A of Sz under the above basis:

And one calculates A∗ and A∗A , respectively:

(2.7)

�(ei�) =
1

(1 − |a|2)2
[

1

(1 − ae−i�)2
− 1

]

+
1

1 − |a|2
[

1

(1 − ae−i�)3
− 1

]

+
1

(1 − |a|2)3
(

1

1 − ae−i�
− 1

)
.

{ẽ0, ẽ1,… , ẽk,…},

ẽk =

∑k

i=0
ziwk−i

√
k + 1

, k ≥ 0.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 ⋅ 0 ⋅ ⋅

1√
2

0 0 ⋅ 0 ⋅ ⋅

0

√
2√
3

0 ⋅ 0 ⋅ ⋅

0 0

√
3

2
⋅ 0 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 ⋅

√
k+1√
k+2

⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Since A∗A is invertible(i.e. S∗
z
Sz is invertible), and therefore, Sz is left invertible.

Since, for any f ∈ N1 , there exists a sequence {an}∞n=0 such that:

Then the coordinate vector of Szf  is

Now if g ∈ ∩∞
n=1

Sn
z
N1 , there exists fn ∈ N1 such that:

For any fixed n ≥ 1 , comparing the coordinate vectors of g and Sn
z
fn , we get that the 

fist n numbers of coordinate vector of g are zero, thus g = 0 . Hence ∩∞
n=1

Sn
z
N1 = {0} , 

i.e., Sz is analytic.   ◻

For any M ∈ Lat(Sz) , let M̃ be the direct sum �M = M⊕ [z − w] . It is easy 
to verify that M̃ is an invariant subspace for Tz in H2(�2) . In Theorem  6.8 of 
[8], Richter showed that the mapping � ∶ M → M̃ is one-to-one correspond-
ence between invariant subspaces of Sz and invariant subspaces of Tz containing 
[z − w] . Let L

M̃
 be the wandering space of Tz on M̃ , we easily get the following 

theorem:

Theorem 3.2 Let M ∈ Lat(Sz) , we have the following decomposition:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1√
2

0 0 ⋅ 0 ⋅ ⋅

0 0

√
2√
3

0 ⋅ 0 ⋅ ⋅

0 0 0

√
3

2
⋅ 0 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 0 ⋅

√
k√

k+1
⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1

2
0 0 0 ⋅ 0 ⋅ ⋅

0
2

3
0 0 ⋅ 0 ⋅ ⋅

0 0
3

4
0 ⋅ 0 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 0 ⋅

k

k+1
⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎞⎟⎟⎟⎟⎟⎟⎟⎠

.

f = a0ẽ0 + a1ẽ1 +… .

A(a0, a1,… , an,…)
�

=

�
0,

1√
2
a0,

√
2√
3
a1,… ,

√
k + 1√
k + 2

ak,…

��

.

g = Sn
z
fn, ∀ n ≥ 1.

�M =

∞∑
n=0

⊕znL�M
.
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Proof Since for any function f ∈
⋂∞

n=0
Tn
z
M̃ , f and its derivatives vanish at z = 0 , 

we have 
⋂∞

n=0
Tn
z
M̃ = {0} . By the Wold decomposition theorem, we have:

  ◻

Now, let M0 be the wandering space of Sz on M . Clearly, M0 ⊂ L�M
 . Let 

M00 be the orthogonal complement of M0 in L
M̃

 . In [11], Sun and Zheng gave a 
description of M00 . In the following discussion, we give other equivalent forms 
of M00.

Lemma 3.3 [5] Let

Then {Xn}n≥0 is an orthonormal basis of K1 ⊖ zK1.

Lemma 3.4 Let M ∈ Lat(Sz) , and let PM be the projection of N1 onto M . Define 
B
∗

M
 to be the compression operator of T∗

z
 on M , i.e.,

Then B∗

M
Sz is invertible on M.

Proof By Proposition 3.1, there exists a constant C > 0 , such that:

The Cauchy–Schwarz inequality gives:

Thus, we have:

this implies that B∗

M
Sz is bounded below on M . On the other hand, note that 

B
∗

M
Sz = (Sz|M)∗Sz is an adjoint operator on M , then B∗

M
Sz is invertible on M .   ◻

Theorem 3.5 Let M ∈ Lat(Sz) , and let PM be the projection of N1 onto M . Then, 

 (i) M00 =

{
f1 + f2 ∶ f1 ∈ SzM, f2 ∈ K1 ⊖ zK1, and B

∗

M
f1 + PMT∗

z
f2 = 0

}
;

 (ii) M00 =

{
− Sz

(
B
∗

M
Sz
)−1

PMT∗
z
f + f , f ∈ K1 ⊖ zK1

}
;

�M =

∞∑
n=0

⊕znL�M
.

Xn =
1√
n + 2

�∑n

i=0
zi+1wn−i

√
n + 1

−
√
n + 1wn+1

�
, ∀n ≥ 0.

B
∗

M
q = PMT∗

z
q, ∀q ∈ M.

‖Szf‖ ≥ C‖f‖, ∀f ∈ M.

‖B∗

M
Szf‖‖f‖ ≥ �⟨B∗

M
Szf , f ⟩� = ‖Szf‖2 ≥ C2‖f‖2.

‖B∗

M
Szf‖ ≥ C2‖f‖, ∀f ∈ M,
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 (iii) M00 =

{
− hg + zPN1

g − wg(w) ∶ g ∈ H2(w), hg = Sz
(
B
∗

M
Sz
)−1

PMg
}
.

Proof Prove (i).  For any f ∈ M̃ , there exists f1 ∈ M, f2 ∈ K1 , such that f = f1 + f2 . 
On the one hand, we have the following equivalent relation:

On the other hand, if f = f1 + f2 ∈ L
M̃

 , we also have the following equivalent 
relations:

Thus we have

Hence:

Prove (ii).  For any g in M00 , by (3.3), there exists g1 ∈ SzM, g2 ∈ K1 ⊖ zK1 such 
that g = g1 + g2 and B∗

M
g1 + PMT∗

z
g2 = 0 . Since, there exists h ∈ M such that 

g1 = Szh , then B∗

M
g1 = B

∗

M
Szh = −PMT

∗
z
g2 . By Lemma 3.4, we have:

then,

This implies that:

(3.1)

f = f1 + f2 ∈ L�M
;

⇔

�
f1 + f2, Tz(M⊕ K1)

�
= 0;

⇔

�
f1 + f2, Tz(g1 + g2)

�
= 0, for any g1 ∈ M, g2 ∈ K1;

⇔ ⟨f1, Tzg1⟩ + ⟨f2, Tzg1⟩ + ⟨f2, Tzg2⟩ = 0;

⇔ ⟨B∗

M
f1, g1⟩ + ⟨PMT∗

z
f2, g1⟩ + ⟨f2, Tzg2⟩ = 0;

⇔ ⟨B∗

M
f1 + PMT∗

z
f2, g1⟩ + ⟨f2, Tzg2⟩ = 0;

⇔ ⟨B∗

M
f1 + PMT∗

z
f2, g1⟩ + ⟨PK1

T∗
z
f2, g2⟩;

⇔ B
∗

M
f1 + PMT∗

z
f2 = PK1

T∗
z
f2 = 0;

⇔ T∗
z
f2 ∈ N1, B

∗

M
f1 + PMT∗

z
f2 = 0.

f = f1 + f2 ∈ M00 ⇔ f1 + f2 ⟂ M0 ⇔ f1 ⟂ M0 ⇔ f1 ∈ SzM.

(3.2)

f = f1 + f2 ∈ M00

⇔ f1 ∈ SzM, T∗
z
f2 ∈ N1, B

∗

M
f1 + PMT∗

z
f2 = 0;

⇔ f1 ∈ SzM, f2 ∈ K1 ⊖ zK1, B
∗

M
f1 + PMT∗

z
f2 = 0.

(3.3)
M00 =

{
f1 + f2 ∶ f1 ∈ SzM, f2 ∈ K1 ⊖ zK1,

and B∗

M
f1 + PMT∗

z
f2 = 0

}
.

h = −
(
B
∗

M
Sz
)−1

PMT∗
z
g2, g1 = Szh = −Sz

(
B
∗

M
Sz
)−1

PMT∗
z
g2,

g = −Sz
(
B
∗

M
Sz
)−1

PMT∗
z
g2 + g2, g2 ∈ K1 ⊖ zK1.
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Conversely, by (3.3) again,

then we get:

Prove (iii).  For any f in K1 ⊖ zK1 , by Lemma 3.3,

where {cn}n≥0 ⊂ ℂ and satisfies that 
∑∞

n=0
�cn�2 < ∞ . Then,

Let:

since, 
∑∞

n=0
��
√
n+1√
n+2

cn
��2 ≤ ∑∞

n=0
�cn�2 < ∞ , so g ∈ H2(w) . Since

then,

Thus:

The above implies that:

M00 ⊂

{
− Sz

(
B
∗

M
Sz
)−1

PMT∗
z
f + f , f ∈ K1 ⊖ zK1

}
.

{
− Sz

(
B
∗

M
Sz
)−1

PMT∗
z
f + f , f ∈ K1 ⊖ zK1

}
⊂ M00,

M00 =

{
− Sz

(
B
∗

M
Sz
)−1

PMT∗
z
f + f , f ∈ K1 ⊖ zK1

}
.

f =

∞�
n=0

cnXn =

∞�
n=0

cn√
n + 2

�∑n

i=0
zi+1wn−i

√
n + 1

−
√
n + 1wn+1

�
,

T∗
z
f =

∞�
n=0

cn√
n + 2

∑n

i=0
ziwn−i

√
n + 1

=

∞�
n=0

cn√
n + 2

ẽn.

g(w) =
�
T∗
z
f
�
(w,w) =

∞�
n=0

√
n + 1√
n + 2

cnw
n, ∀w ∈ �,

PN1
g =

∞�
k=0

⟨PN1
g, ẽk⟩ẽk =

∞�
k=0

⟨g, ẽk⟩ẽk =
∞�
k=0

ck√
k + 2

ẽk,

(3.4)
zPN1

g − wg(w) =

∞�
k=0

ck√
k + 2

�∑k

i=0
zi+1wk−i

√
k + 1

−
√
k + 1wk+1

�
= f .

PMT∗
z
f = PMT∗

z

(
zPN1

g − wg(w)
)
= PMg.
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Conversely, for any g in H2(w) , let g(w) =
∑∞

n=0
dnw

n , where 
∑∞

n=0
�dn�2 < ∞ . Let 

cn =

√
n+2√
n+1

dn , and let f =
∑∞

n=0
cnXn . Since,

then f ∈ K1 ⊖ zK1 . By above calculations, we have f = zPN1
g − wg(w) and 

PMT∗
z
f = PMg . Hence,

this completes the proof.   ◻

Corollary 3.6 For any M ∈ Lat(Sz) , let N  be the orthogonal complement of [M0] in 
M . Then

Proof Let q ∈ N  , by Theorems 3.2 and 3.5, we have:

where m̃k ∈ M0 and un = −Sz
(
B
∗

M
Sz
)−1

PMT∗
z
fn + fn ∈ M00.

Since, q ∈ N  and q ⟂ ∨n≥0SnzM0 , taking inner product of q with Sk
z
m̃k gives

This implies that m̃k = 0 for all k ≥ 0 . Thus each function q in N  has the following 
form:

  ◻

(3.5)
M00 ⊂

{
− hg + zPN1

g − wg(w) ∶ g ∈ H2(w),

hg = Sz(B
∗

M
Sz)

−1PMg
}
.

∞∑
n=0

|cn|2 ≤ 2

∞∑
n=0

|dn|2 < ∞,

(3.6)

{
− hg + zPN1

g − wg(w) ∶ g ∈ H2(w),

hg = Sz(B
∗

M
Sz)

−1PMg
}
⊂ M00,

N ⊂

{ ∞∑
n=0

znun ∶ un = −Sz
(
B
∗

M
Sz
)−1

PMT∗
z
fn + fn ∈ M00

}
.

q =

∞∑
k=0

zkm̃k +

∞∑
n=0

znun,

(3.7)

0 =
⟨
q, Sk

z
m̃k

⟩
=
⟨
q,PN1

zkm̃k

⟩
=
⟨
q, zkm̃k

⟩

=
⟨
zkm̃k, z

km̃k

⟩
+
⟨
zkuk, z

km̃k

⟩

= ‖‖m̃k
‖‖2 +

⟨
uk, m̃k

⟩
= ‖‖m̃k

‖‖2.

q =

∞∑
n=0

znun.
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Let: Ñ =
�∑∞

n=0
znun ∶ un ∈ M00

�
 , by Corollary 3.6, we have N ⊂ �N  . Let 

un = f 0
n
+ fn , where f 0

n
= −Sz(B

∗

M
Sz)

−1PMT∗
z
fn . For convenience, denote by 

hn = −
(
B
∗

M
Sz
)−1

PMT∗
z
fn , then f 0

n
= Szhn . Let:

where 
∑∞

k=0
�Cn

k
�2 < ∞.

Lemma 3.7 Let: Ñ =
�∑∞

n=0
znun ∶ un ∈ M00

�
 . For any f ∈ Ñ  , we have the 

decomposition:

Then, f ∈ N  if and only if the following conditions are satisfying: 

 (i) Ci
0
= 0(i ≥ 0);

 (ii) ⟨f 0
i+1

, ẽk⟩ −
√
kCi+1

k−1
+
√
k + 2Ci

k
= 0, ∀i ≥ 0, k ≥ 1.

Proof Step 1. For any f in Ñ  , let f =
∑∞

n=0
znun , where un ∈ M00 . On the one 

hand, by Theorem 3.2, we have f ∈ M̃ . Thus f ∈ M ⇔ f ⟂ K1 . On the other hand, 
assume f ∈ M . Since for any k ≥ 0, m̃k ∈ M0 , we have:

so f ⟂ [M0] . This implies that:

Thus, we have the following equivalent relation:

(3.8)

fn =

∞�
k=0

Cn
k
Xk

=

∞�
k=0

Cn
k√

k + 2

�∑k

i=0
zi+1wk−i

√
k + 1

−
√
k + 1wk+1

�
, ∀n ≥ 0,

(3.9)

f =

∞�
n=0

znun, un = f 0
n
+ fn,

fn =

∞�
k=0

Cn
k√

k + 2

�∑k

i=0
zi+1wk−i

√
k + 1

−
√
k + 1wk+1

�
, ∀n ≥ 0.

(3.10)

� ∞�
n=0

znun, S
k
z
m̃k

�
=

� ∞�
n=0

znun,PN1
zkm̃k

�

=

� ∞�
n=0

znun, z
km̃k

�

= ⟨zkuk, zkm̃k⟩
= ⟨uk, m̃k⟩ = 0,

f ∈ M ⇔ f ∈ M⊖ [M0] = N.
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Step 2. It is obvious that f ⟂ K1 is equivalent to

And it is easy to verify that:

Since f 0
n
⟂ K1 , so we get:

Note that fn ⟂ zK1 and (z − w)zi−nwj ∈ zK1(n < i) , we have:

Hence, f ∈ N  is equivalent to:

Step 3. When j = 0 , since 1 ∈ N1 , so 1 ⟂ fn(n ≥ 0) , thus, we get:

On the other hand, it is easy to verify that:

Then, in this case, (3.13) is equivalent to Ci
0
= 0(i ≥ 0).

Step 4. When j ≥ 1 , it is easy to verify that:

(3.11)f ∈ N ⇔ f ⟂ K1.

⟨ ∞∑
n=0

znun, (z − w)ziwj

⟩
= 0, ∀i, j ≥ 0.

(3.12)

0 =

⟨ ∞∑
n=0

znun, (z − w)ziwj

⟩

=

i+1∑
n=0

⟨
znun, z

i+1wj
⟩
−

i∑
n=0

⟨
znun, z

iwj+1
⟩

=
⟨
ui+1,w

j
⟩
+

i∑
n=0

⟨
znun, (z − w)ziwj

⟩
.

i∑
n=0

⟨
znun, (z − w)ziwj

⟩
=

i∑
n=0

⟨
fn, (z − w)zi−nwj

⟩
.

i∑
n=0

⟨
fn, (z − w)zi−nwj

⟩
=
⟨
fi, (z − w)wj

⟩
.

(3.13)
⟨
ui+1,w

j
⟩
+
⟨
fi, (z − w)wj

⟩
= 0, ∀i, j ≥ 0.

⟨
ui+1, 1

⟩
=
⟨
f 0
i+1

, 1
⟩
=
⟨
Szhi+1, 1

⟩
=
⟨
hi+1, S

∗
z
1
⟩
= 0.

(3.14)
�
fi, z − w

�
=

�
Ci
0√
2
(z − w), z − w

�
=
√
2Ci

0
.



The wandering subspace property and Shimorin’s condition… Page 19 of 34 2

and

Then, in this case, (3.13) is equivalent to (ii).   ◻

Theorem 3.8 Let M ⊂ N1 and M ∈ Lat(Sz) , then M ≠ [M⊖ SzM] if and only if 
there exists a nonzero solution for the following equations of Ci

k
(k ≥ 0, i ≥ 0) : 

 (i) Ci
0
= 0(i ≥ 0);

 (ii) ⟨f 0
i+1

, ẽk⟩ −
√
kCi+1

k−1
+
√
k + 2Ci

k
= 0, ∀i ≥ 0, k ≥ 1;

 (iii) 
∑∞

i=0

∑∞

k=0
�Ci

k
�2 < ∞,

where

for any i ≥ 0 , and ẽ0, ẽ1,… is an orthonormal basis of N1 as mentioned above.

Proof If M ≠ [M⊖ SzM] , then there exists 0 ≠ f ∈ N = M⊖ [M⊖ SzM] . By 
the above statements, let f =

∑∞

n=0
znun , where

By Lemma 3.3, there exists an unique sequence {Ci
k
}k,i≥0 , such that:

and

By Lemma 3.7, (i)(ii) hold. Note that ⟨f 0
i
, fi⟩ = 0 for any i ≥ 0 and there exists C > 0 

(depending on M ) such that:

(3.15)

�
fi, (z − w)wj

�
=
�
fi, zw

j
�
−
�
fi,w

j+1
�

=
j + 2√

(j + 1)(j + 2)
Ci
j
,

(3.16)

�
ui+1,w

j
�
=
�
f 0
i+1

,wj
�
+
�
f 0
i+1

,wj
�

=
1√
j + 1

�
f 0
i+1

, ẽj
�
−

√
j√

j + 1
Ci+1
j−1

.

fi =

∞�
k=0

Ci
k√

k + 2

�∑k

t=0
zt+1wk−t

√
k + 1

−
√
k + 1wk+1

�
,

f 0
i
= −Sz

�
B
∗

M
Sz
�−1

PMT∗
z
fi

un = −Sz
(
B
∗

M
Sz
)−1

PMT∗
z
fn + fn ∈ M00, fn ∈ K1 ⊖ zK1.

∞∑
k=0

|Ci
k
|2 < ∞, ∀i ≥ 0,

fi =

∞�
k=0

Ci
k√

k + 2

�∑k

t=0
zt+1wk−t

√
k + 1

−
√
k + 1wk+1

�
, i ≥ 0.



 C. Wu et al.2 Page 20 of 34

then

Since f ≠ 0 , i.e. {Ci
k
}k,i≥0 are not completely zero, so {Ci

k
}k,i≥0 is a nonzero solution 

for the above equations.
Conversely, assume {Ci

k
}k,i≥0 is a nonzero solution for the above equations. Let:

then {fi}i≥0 ⊂ K1 ⊖ zK1 . Let

By Theorem  3.5, un = f 0
n
+ fn ∈ M00 for all n ≥ 0 . Let f =

∑∞

n=0
znun ∈ Ñ  , 

by Lemma 3.7 again, we have 0 ≠ f ∈ N = M⊖ [M⊖ SzM] . This implies 
M ≠ [M⊖ SzM].   ◻

As we know, the Beurling type theorem holds for Sz on N1 , thus we have the fol-
lowing corollary through Theorem 3.8 which reflect the common property of invariant 
subspaces of Sz.

Corollary 3.9 Let M ⊂ N1 and M ∈ Lat(Sz) , then the following equations of 
Ci
k
(k ≥ 0, i ≥ 0) has only zero solution:

 (i) Ci
0
= 0(i ≥ 0);

 (ii) ⟨f 0
i+1

, ẽk⟩ −
√
kCi+1

k−1
+
√
k + 2Ci

k
= 0, ∀i ≥ 0, k ≥ 1;

 (iii) 
∑∞

i=0

∑∞

k=0
�Ci

k
�2 < ∞,

where

for any i ≥ 0 , and ẽ0, ẽ1,… is an orthonormal basis of N1 as mentioned above.

‖f 0
i
‖ ≤ C‖fi‖, i ≥ 0,

(3.17)

∞�
n=0

‖un‖2 =
∞�
n=0

‖f 0
n
‖2 +

∞�
n=0

‖fn‖2 < ∞

⇔

∞�
n=0

‖fn‖2 < ∞ ⇔

∞�
i=0

∞�
k=0

�Ci
k
�2 < ∞.

(3.18)fi =

∞�
k=0

Ci
k√

k + 2

�∑k

t=0
zt+1wk−t

√
k + 1

−
√
k + 1wk+1

�
, i ≥ 0,

f 0
i
= −Sz

(
B
∗

M
Sz
)−1

PMT∗
z
fi, i ≥ 0.

fi =

∞�
k=0

Ci
k√

k + 2

�∑k

t=0
zt+1wk−t

√
k + 1

−
√
k + 1wk+1

�
,

f 0
i
= − Sz

�
B
∗

M
Sz
�−1

PMT∗
z
fi
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4  The proof of Theorem 1.8

Let:

then {Ek}k≥0 is an orthonormal basis of L2
a
 . For any fixed a ∈ � , the reproducing 

kernel of L2
a
 is

Define the operator U ∶ L2
a
→ N1 such that

Lemma 4.1 U is a unitary operator and SzU = UB , that is, Sz and B are unitarily 
equivalent.

Proof Since,

and

we get the desired result.   ◻

Remark 4.2 For any fixed a ∈ � , let Ma = UIa , then Ma ⊂ N1 and Ma is an invari-
ant subspace of Sz . Let PMa

∶ N1 → Ma be the projection operator. For any g in N1 , 
let g =

∑∞

n=0
𝛼nẽn , then,

that is:

where

Ek(z) =
√
k + 1zk, ∀k ≥ 0,

Ka(z) =
1

(1 − āz)2
=

∞∑
n=0

En(a)En(z).

UEk = ẽk, ∀k ≥ 0.

Szẽk =

√
k + 1√
k + 2

ẽk+1, ∀k ≥ 0,

BEk =
√
k + 1zk+1 =

√
k + 1√
k + 2

Ek+1, ∀k ≥ 0,

(4.1)
(I − PMa

)g =

�
(I − PMa

)g,
UKa

‖Ka‖
�

UKa

‖Ka‖
=

�
g,

UKa

‖Ka‖
�

UKa

‖Ka‖ ,

(4.2)PMa
g = g − (1 − |a|2)2

⟨
g,UKa

⟩
UKa,
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Proposition 4.3 For a ∈ � , we have:

Proof For any fixed k ≥ 0 , let: f =
(
B
∗

Ma
Sz
)−1

PMa
ẽk , then there exists 

g =
∑∞

n=0
𝛼nẽn ∈ N1 such that f = PMa

g , i.e., B∗

Ma
SzPMa

g = PMa
ẽk . By (4.2), we 

get:

Since:

then,

For convenience, let:

then,

and,

UKa =

∞∑
n=0

En(a)ẽn.

(4.3)

(
B
∗

Ma
Sz
)−1

PMa
ẽk

= −
k + 2

(k + 1)(2 − |a|2) (1 − |a|2)2Ek(a)

∞∑
n=0

n + 2

n + 1
En(a)ẽn

+
k + 2

k + 1
ẽk, ∀k ≥ 0.

(4.4)PMa
ẽk = ẽk − (1 − |a|2)2Ek(a)

∞∑
n=0

En(a)ẽn.

(4.5)S∗
z
Szẽk =

k + 1

k + 2
ẽk, ∀k ≥ 0,

(4.6)

S∗
z
Szf =

∞∑
n=0

𝛼n

n + 1

n + 2
ẽn − (1 − |a|2)2

×

( ∞∑
m=0

𝛼mEm(a)

) ∞∑
n=0

En(a)
n + 1

n + 2
ẽn

=

∞∑
n=0

n + 1

n + 2

[
𝛼n − (1 − |a|2)2

( ∞∑
m=0

𝛼mEm(a)

)
En(a)

]
ẽn.

(4.7)�n =
n + 1

n + 2

[
�n − (1 − |a|2)2

( ∞∑
m=0

�mEm(a)

)
En(a)

]
, ∀n ≥ 0,

f =

∞∑
n=0

n + 2

n + 1
𝛽nẽn, S∗

z
Szf =

∞∑
n=0

𝛽nẽn,
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Hence, B∗

Ma
SzPMa

g = PMa
ẽk if and only if the following equations hold:

and

Let:

since by Eqs. (4.9) and (4.10), we have:

this shows that Eq. (4.11) is compatible with Eqs. (4.9) and (4.10).
Let:

then by (4.7),(4.9) and (4.10), we get

and

(4.8)B
∗

Ma
Szf =

∞∑
n=0

[
𝛽n − (1 − |a|2)2

( ∞∑
m=0

𝛽mEm(a)

)
En(a)

]
ẽn.

(4.9)�k = 1 − (1 − |a|2)2|Ek(a)|2 + (1 − |a|2)2
( ∞∑

m=0

�mEm(a)

)
Ek(a),

(4.10)

�n = −(1 − |a|2)2Ek(a)En(a)

+ (1 − |a|2)2
( ∞∑

m=0

�mEm(a)

)
En(a), n ≥ 0, n ≠ k.

(4.11)Ba =

∞∑
m=0

�mEm(a),

(4.12)

∞∑
n=0

�nEn(a) = Ek(a) − (1 − |a|2)2Ek(a)

∞∑
n=0

|En(a)|2

+ (1 − |a|2)2Ba

∞∑
n=0

|En(a)|2 = Ba,

(4.13)Aa =

∞∑
m=0

�mEm(a),

(4.14)

�k =
k + 2

k + 1
+

k + 2

k + 1

[
− (1 − |a|2)2|Ek(a)|2

+ (1 − |a|2)2
( ∞∑

m=0

�mEm(a)

)
Ek(a)

]
+ (1 − |a|2)2AaEk(a),
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And one calculates that:

since,

(since, 1

(1−zw̄)2+𝛼
=
∑∞

n=0

Γ(n+2+𝛼)

n!Γ(2+𝛼)
znw̄n ) then,

that is equivalent to:

(4.15)

�n =
n + 2

n + 1

[
− (1 − |a|2)2Ek(a)En(a)

+ (1 − |a|2)2
( ∞∑

m=0

�mEm(a)

)
En(a)

]

+ (1 − |a|2)2AaEn(a), n ≥ 0, n ≠ k.

(4.16)

∞∑
n=0

�nEn(a) =
k + 2

k + 1
Ek(a) +

∞∑
n=0

n + 2

n + 1

[
− (1 − |a|2)2Ek(a)En(a)

+ (1 − |a|2)2
( ∞∑

m=0

�mEm(a)

)
En(a)

]
En(a)

+ (1 − |a|2)2Aa

∞∑
n=0

|En(a)|2

=
k + 2

k + 1
Ek(a) + Aa

− (1 − |a|2)2Ek(a)

∞∑
n=0

n + 2

n + 1
|En(a)|2

+ (1 − |a|2)2Ba

∞∑
n=0

n + 2

n + 1
|En(a)|2,

(4.17)

∞∑
n=0

n + 2

n + 1
|En(a)|2 =

∞∑
n=0

(n + 1)|a|2n +
∞∑
n=0

|a|2n

=

∞∑
n=0

Γ(n + 2)

n!Γ(2)
anān +

1

1 − |a|2 =
1

(1 − |a|2)2 +
1

1 − |a|2 ,

(4.18)

Aa =

∞∑
n=0

�nEn(a) =
k + 2

k + 1
Ek(a) + Aa

− (1 − |a|2)2Ek(a)

(
1

(1 − |a|2)2 +
1

1 − |a|2
)

+ (1 − |a|2)2Ba

(
1

(1 − |a|2)2 +
1

1 − |a|2
)
,
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Then,

Hence,

and,

By the above calculates, we can choose Aa being any positive constant, such that:

Note that:

where Ca,k is a positive constant depending only on a, k. Then,

(4.19)
0 =

k + 2

k + 1
Ek(a) − (1 − |a|2)2Ek(a)

(
1

(1 − |a|2)2 +
1

1 − |a|2
)

+ (1 − |a|2)2Ba

(
1

(1 − |a|2)2 +
1

1 − |a|2
)
.

Ba =

(
1 −

k+2

k+1

2 − |a|2
)
Ek(a).

(4.20)�k = 1 − (1 − |a|2)2|Ek(a)|2 + (1 − |a|2)2
(
1 −

k+2

k+1

2 − |a|2
)
|Ek(a)|2,

(4.21)

�m = −(1 − |a|2)2Ek(a)Em(a)

+ (1 − |a|2)2
(
1 −

k+2

k+1

2 − |a|2
)
Ek(a)Em(a), m ≥ 0, m ≠ k.

(4.22)

�m =
m + 2

m + 1

[
− Ek(a) +

(
1 −

k+2

k+1

2 − |a|2
)
Ek(a) + Aa

]
(1 − |a|2)2Em(a)

=
m + 2

m + 1

[
−

k + 2

(k + 1)(2 − |a|2)Ek(a)

+ Aa

]
(1 − |a|2)2Em(a), m ≠ k, m ≥ 0.

(4.23)
∞∑

m=k+1

|𝛼m|2 ≤ Ca,k

∞∑
m=0

(m + 1)|a|2m =
Ca,k

(1 − |a|2)2 < ∞,
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  ◻

Theorem 4.4 If a ∈ � , then Ia ≠ [Ia ⊖ BIa] holds in L2
a
 if and only if there exists a 

nonzero solution for the following equations of Ci
1
(i ≥ 0) : 

 (I) 
∑∞

n=1

�∑n−1

j=0
ān−1−jC

i+1+j

1

�
an = −

2−�a�2
(1−�a�2)2C

i
1
, ∀i ≥ 0;

 (II) 
∑∞

i=0

∑∞

k=1
�Ci

k
�2 < ∞,

where

Proof For any fixed a ∈ � , let M = Ma in Theorem 3.8, we easily calculate that:

and

Then,

(4.24)

f =

∞∑
n=0

n + 2

n + 1
𝛽nẽn

= −
k + 2

(k + 1)(2 − |a|2) (1 − |a|2)2Ek(a)

×

∞∑
n=0

n + 2

n + 1
En(a)ẽn +

k + 2

k + 1
ẽk

=
(
B
∗

Ma
Sz
)−1

PMa
ẽk, ∀k ≥ 0.

Ci
k
=

√
3√
2

√
k + 1√
k + 2

k−1�
j=0

āk−1−jC
i+j

1
, ∀k ≥ 2, i ≥ 0.

(4.25)
⟨f 0
i+1

, ẽk⟩ = −

�
Sz
�
B
∗

Ma
Sz
�−1

PMa
T∗
z
fi+1, ẽk

�

= −

�
T∗
z
fi+1,

�
B
∗

Ma
Sz
�−1

PMa
S∗
z
ẽk

�
,

S∗
z
ẽ0 = 0, S∗

z
ẽk =

√
k√

k + 1
ẽk−1, ∀k ≥ 1;

T∗
z
fi =

∞�
n=0

Ci
n√

n + 2
ẽn, ∀i ≥ 0.
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Then (ii) in Theorem 3.8 is:

If Ci
0
= 0(i ≥ 0) , let k = 1 in (4.27), we get:

Hence, (4.27) is equivalent to holding the following equations:

By the induction, we easily get that Eq.  (4.30) is equivalent to the following 
equations:

(4.26)

⟨f 0
i+1

, ẽ0⟩ =0,

⟨f 0
i+1

, ẽk⟩ = −

√
k√

k + 1

� ∞�
n=0

Ci+1
n√
n + 2

ẽn,
�
B
∗

Ma
Sz
�−1

PMa
ẽk−1

�

= −

√
k√

k + 1

� ∞�
n=0

Ci+1
n√
n + 2

ẽn,−
k + 1

k(2 − �a�2) (1 − �a�2)2Ek−1(a)

×

∞�
n=0

n + 2

n + 1
En(a)ẽn +

k + 1

k
ẽk−1

�

=

√
k + 1√

k(2 − �a�2)
(1 − �a�2)2Ek−1(a)

∞�
n=0

√
n + 2

n + 1
Ci+1
n

En(a) −
Ci+1
k−1√
k

=
(1 − �a�2)2
2 − �a�2

√
k + 1āk−1

∞�
n=0

√
n + 2√
n + 1

Ci+1
n

an −
Ci+1
k−1√
k
, ∀k ≥ 1.

(4.27)

(1 − �a�2)2
2 − �a�2

√
k + 1āk−1

∞�
n=0

√
n + 2√
n + 1

Ci+1
n

an

−

�
1√
k
+
√
k
�
Ci+1
k−1

+
√
k + 2Ci

k
= 0, ∀i ≥ 0, k ≥ 1.

(4.28)

√
2(1 − �a�2)2
2 − �a�2

∞�
n=1

√
n + 2√
n + 1

Ci+1
n

an = −
√
3Ci

1
.

(4.29)
∞�
n=1

√
n + 2√
n + 1

Ci+1
n

an = −

√
3(2 − �a�2)√
2(1 − �a�2)2

Ci
1
, ∀i ≥ 0;

(4.30)−

√
3√
2

√
k + 1āk−1Ci

1
−

1 + k√
k
Ci+1
k−1

+
√
k + 2Ci

k
= 0, ∀i ≥ 0, k ≥ 2.

(4.31)Ci
k
=

√
3√
2

√
k + 1√
k + 2

k−1�
j=0

āk−1−jC
i+j

1
, ∀k ≥ 2, i ≥ 0.



 C. Wu et al.2 Page 28 of 34

Then, Theorem 3.8 implies that Ma ≠ [Ma ⊖ SzMa] holds in N1 if and only if there 
exists a nonzero solution for the following equations of Ci

1
(i ≥ 0) : 

 (I) 
∑∞

n=1

�∑n−1

j=0
ān−1−jC

i+1+j

1

�
an = −

2−�a�2
(1−�a�2)2C

i
1
, ∀i ≥ 0;

 (II) 
∑∞

i=0

∑∞

k=1
�Ci

k
�2 < ∞,

where

And Lemma 4.1 implies that: Ia ≠ [Ia ⊖ BIa] holds in L2
a
 if and only if 

Ma ≠ [Ma ⊖ SzMa] holds in N1 , so we get the desired result.   ◻

Proof of Theorem 1.8 For any 0 ≠ a ∈ � , by Theorem 4.4, we get that Ia ≠ [Ia ⊖ BIa] 
holds in L2

a
 if and only if the following equations of Ci

1
(i ≥ 0):

under the condition (II) in Theorem 4.4 has a nonzero solution. For any i ≥ 0 , let:

Then,

Note that:

Ci
k
=

√
3√
2

√
k + 1√
k + 2

k−1�
j=0

āk−1−jC
i+j

1
, ∀k ≥ 2, i ≥ 0.

(4.32)
∞∑
n=1

( n−1∑
j=0

ān−1−jC
i+1+j

1

)
an = −

2 − |a|2
(1 − |a|2)2C

i
1
, ∀i ≥ 0,

xnm = ān−1−mCi+1+m
1

an, when 0 ≤ m ≤ n − 1, n ≥ 1;

xnm = 0, when 0 ≤ n − 1 < m.

∞∑
n=1

( n−1∑
j=0

ān−1−jC
i+1+j

1

)
an =

∞∑
n=1

n−1∑
m=0

xnm.

(4.33)

∞�
n=1

∞�
m=0

�xnm� =
∞�
n=1

n−1�
m=0

�xnm� =
∞�
n=1

�a�2n−1
n−1�
m=0

�
1

�a�
�m

�Ci+1+m
1

�

≤
∞�
n=1

�a�2n−1
� n−1�

m=0

�
1

�a�
�2m� 1

2
� ∞�

m=0

�Cm
1
�2
� 1

2

≤ C

∞�
n=1

�a�2n−1
��a�2� 1

�a�2n − 1
�

1 − �a�2
� 1

2

≤ C
�a�√

1 − �a�2
∞�
n=1

�a�2n−1 1

�a�n

= C
�a�

(1 − �a�)√1 − �a�2
< +∞,
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where C is a positive constant, so we have:

Then, (4.32) is equivalent to the following form:

That is also equivalent to the following matrix form:

where

Since, the matrix:

(4.34)

∞∑
n=1

∞∑
m=0

xnm =

∞∑
m=0

∞∑
n=1

xnm =

∞∑
m=0

∞∑
n=m+1

xnm

=

∞∑
m=0

∞∑
n=m+1

ān−1−mCi+1+m
1

an

=

∞∑
m=1

Ci+m
1

1

ām

( ∞∑
n=m

|a|2n
)

=
1

1 − |a|2
∞∑
m=1

amCi+m
1

.

(4.35)
∞∑
m=1

amCi+m
1

= −
2 − |a|2
1 − |a|2C

i
1
, ∀i ≥ 0.

(4.36)

⎛⎜⎜⎜⎜⎜⎜⎝

0 a a2 a3 a4 a5 a6 ⋅ ⋅ ⋅

0 0 a a2 a3 a4 a5 ⋅ ⋅ ⋅

0 0 0 a a2 a3 a4 ⋅ ⋅ ⋅

0 0 0 0 a a2 a3 ⋅ ⋅ ⋅

0 0 0 0 0 a a2 ⋅ ⋅ ⋅

⋅ ⋅ ⋅

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

C0
1

C1
1

C2
1

C3
1

C4
1

⋅

⎞⎟⎟⎟⎟⎟⎟⎠

= �a

⎛⎜⎜⎜⎜⎜⎝

C0
1

C1
1

C2
1

C3
1

C4
1

⎞⎟⎟⎟⎟⎟⎠

,

(4.37)�a = −
2 − |a|2
1 − |a|2 .
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is the matrix of the Toeplitz operator with symbol �(ei�) ∈ L∞(� ) with respect to 
the basis {ein�}∞

n=0
 of H2 , and let �k be the kth Fourier coefficient of �(ei�) , then

Thus, we get:

Note that (4.36) has a nonzero solution {Ci
1
}i≥0 such that:

which is equivalent to �a being an eigenvalue of Toeplitz operator T
�
 ( f =

∑∞

i=0
Ci
1
zi 

is an eigenvector). This completes the proof.   ◻

Corollary 4.5 For any a ∈ � , Ia = [Ia ⊖ BIa] holds in L2
a
.

Proof If a = 0 , then (I) in Theorem  4.4 is Ci
1
= 0, ∀i ≥ 0. If Ci

1
= 0 , then (II) in 

Theorem  4.4 holds. Hence Theorem  4.4 implies that I0 = [I0 ⊖ BI0] . By Theo-
rem 1.8, in the following process, we need to prove that �a is not an eigenvalue of 
Toeplitz operator T

�
 for any 0 ≠ a ∈ � , where,

and

Note that:

then 𝜎(T∗
𝜙
) = 𝜎(T

�̄�
) = �̄�(�) . If �a ∈ �p(T�) , since �a is real, then �a ∈ �(T∗

�
) . Note 

that

Aa =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 a a2 a3 a4 a5 a6 ⋅ ⋅ ⋅

0 0 a a2 a3 a4 a5 ⋅ ⋅ ⋅

0 0 0 a a2 a3 a4 ⋅ ⋅ ⋅

0 0 0 0 a a2 a3 ⋅ ⋅ ⋅

0 0 0 0 0 a a2 ⋅ ⋅ ⋅

⋅ ⋅ ⋅

⎞
⎟⎟⎟⎟⎟⎟⎠

𝜙k = 0, when k ≥ 0; 𝜙k = a−k, when k < 0.

(4.38)�(ei�) =

∞∑
k=1

ake−ik� =
1

1 − ae−i�
− 1.

∞∑
i=0

|Ci
1
|2 < +∞,

�a = −
2 − |a|2
1 − |a|2 ,

(4.39)�(ei�) =
1

1 − ae−i�
− 1.

(4.40)�̄�(z) =
1

1 − āz
− 1 ∈ H∞,
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where b = |a|2, x = 1

1−āz
 . That is:

Since 0 < b < 1 and |āz| < 1 for all z ∈ � , then (4.42) fails for any z ∈ � , i.e., 
𝜆a − �̄�(z) ≠ 0 on � . But 𝜆a − �̄�(z) is continuous on � , hence

This implies 𝜆a ∉ �̄�(�) , i.e., �a ∉ �(T∗
�
) , and this completes the proof.   ◻

5  The proof of Theorem 1.5

For any fixed 𝛼 > −1 , let

then {En}n≥0 is an orthonormal basis of L2
a
(dA

�
) . It is clear that B

�
 is bounded below 

and analytic on L2
a
(dA

�
) . Let f =

∑∞

n=0
�nEn ∈ L2

a
(dA

�
) , then

Lemma 5.1 Let M be an invariant subspace of B
�
 in L2

a
(dA

�
) . Then B∗

�,M
B
�
 is 

invertible on M , where the operator B∗

�,M
 denotes the adjoint of the restriction 

B
�
|M , s.t. B∗

�,M
q = PMB

∗

�
q for q in M , PM is the projection operator from L2

a
(dA

�
) 

onto M.

Proof The proof is similar to Lemma 3.4.   ◻

Remark 5.2 For any fixed a ∈ � , and any g in L2
a
(dA

�
) , we have

(4.41)
𝜆a = �̄�(z) ⇔ −(2 − |a|2) = (1 − |a|2)

(
1

1 − āz
− 1

)

⇔ −(2 − b) = (1 − b)(x − 1) ⇔ x =
1

b − 1
,

(4.42)āz = 2 − b.

inf
z∈�

|𝜆a − �̄�(z)| ≥ min
z∈�

|𝜆a − �̄�(z)| > 0.

En(z) =

√
Γ(n + � + 2)

n!Γ(� + 2)
zn, ∀n ≥ 0,

B
∗

�
f =

∞�
n=0

�n+1

√
n + 1√

n + � + 2
En.
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that is:

Repeating the same process of the proof of Proposition 4.3, we get the following 
proposition:

Proposition 5.3 For a ∈ � , we have:

Proof of the Theorem 1.5 By the Eq. (5.3), we get

By (5.2), we have:

Hence

(5.1)

(
PIa

g
)
(w) =

⟨
PIa

g,K𝛼

a
(z,w)

⟩
=

⟨
g,K𝛼

a
(z,w)

⟩

= g(w) − (1 − |a|2)𝛼+2g(a) 1

(1 − āw)𝛼+2

= g(w) − (1 − |a|2)𝛼+2g(a)
∞∑
n=0

En(a)En(w),

(5.2)PIa
g = g − (1 − |a|2)�+2g(a)

∞∑
n=0

En(a)En.

(5.3)

(
B
∗

�,Ia
B
�

)−1
PIa

Ek = −
k + � + 2

k + 1

|a|2(1 − |a|2)�+2
1 − (1 − |a|2)�+2Ek(a)

×

∞∑
n=0

n + � + 2

n + 1
En(a)En

+
k + � + 2

k + 1
Ek, ∀k ≥ 0.

(5.4)

(
B
∗

�,Ia
B
�

)−1
PIa

E0 = −(� + 2)
|a|2(1 − |a|2)�+2
1 − (1 − |a|2)�+2

×

∞∑
n=0

n + � + 2

n + 1
En(a)En + (� + 2).

(5.5)PIa
E0 = 1 − (1 − |a|2)�+2

∞∑
n=0

En(a)En.
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Since:

then it is easy to check that:

Thus, we get:

that is equivalent to:

Note that if |a| = 1 the inequality (5.10) becomes 𝛼 + 2 > 2 , so:

as |a| → 1− .   ◻
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(5.6)

⟨(
B
∗

�,Ia
B
�

)−1
PIa

E0,PIa
E0

⟩

= −(� + 2)
|a|2(1 − |a|2)�+2
1 − (1 − |a|2)�+2

(
� + 2

−
(1 − |a|2)�+2

|a|2
(

1

(1 − |a|2)�+2 − 1

))

+ (� + 2)
(
1 − (1 − |a|2)�+2

)
.

(5.7)B
∗

�
(PIa

E0) = −(1 − �a�2)�+2
∞�
n=0

En+1(a)

√
n + 1√

n + � + 2
En,

(5.8)B
∗

�,Ia
(PIa

E0) = PIa
B
∗

�
(PIa

E0) = 0.

(5.9)

�
B
𝛼
B
∗

𝛼,Ia
(PIa

E0), (PIa
E0)

�
+

��
B
∗

𝛼,Ia
B
𝛼

�−1

(PIa
E0), (PIa

E0)

�

=

��
B
∗

𝛼,Ia
B
𝛼

�−1

(PIa
E0), (PIa

E0)

�

> 2‖PIa
E0‖2 = 2

�
1 − (1 − �a�2)𝛼+2

�
,

(5.10)
− (𝛼 + 2)

|a|2(1 − |a|2)𝛼+2
1 − (1 − |a|2)𝛼+2

(
𝛼 + 2 −

1

|a|2
(
1 − (1 − |a|2)𝛼+2

))

+ (𝛼 + 2)
(
1 − (1 − |a|2)𝛼+2

)
> 2

(
1 − (1 − |a|2)𝛼+2

)
.

(5.11)

�
B
𝛼
B
∗

𝛼,Ia
(PIa

E0), (PIa
E0)

�
+

��
B
∗

𝛼,Ia
B
𝛼

�−1

(PIa
E0), (PIa

E0)

�

> 2‖PIa
E0‖2,
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