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Abstract
In this paper, we will use the convex modular �∗(f ) to investigate ‖f‖∗

Ψ,q
 on (LΦ)∗ 

defined by the formula ‖f‖∗
Ψ,q

= infk>0
1

k
sq(𝜌

∗(kf )) , which is the norm formula in 
Orlicz dual spaces equipped with p-Amemiya norm. The attainable points of dual 
norm ‖f‖∗

Ψ,q
 are discussed, the interval for dual norm ‖f‖∗

Ψ,q
 attainability is described. 

By presenting the explicit form of supporting functional, we get sufficient and nec-
essary conditions for smooth points. As a result, criteria for smoothness of 
LΦ,p (1 ≤ p ≤ ∞) is also obtained. The obtained results unify, complete and 
extended as well the results presented by a number of paper devoted to studying the 
smoothness of Orlicz spaces endowed with the Luxemburg norm and the Orlicz 
norm separately.
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1  Introduction

It is well known that smooth points and smoothness are basic concepts in geometric 
theory of Banach spaces. Smoothness of Orlicz spaces are of importance in applica-
tions of the approximation theory, the conditional expectation theory, probability limit 
theorems and the nonlinear prediction theory as well as in other applications. Criteria 
for smooth points and smoothness of Orlicz function and sequence spaces equipped 
with Luxemburg norm were given in [4, 13, 28]. Criteria for smooth points and 
smoothness of Orlicz function and sequence spaces equipped with Orlicz norm were 
given in [5, 7, 26]. But up to now, the smoothness of Orlicz function spaces equipped 
with p-Amemiya norm has not been solved. The aim of this paper is to present cri-
teria for smooth points and smoothness of Orlicz function spaces equipped with the 
p-Amemiya norm.

The rest of the paper is organized as follows. In the first part of the paper some basic 
notions, terminology and original results are reviewed, which will be used throughout 
the paper. We also recalled some properties of outer function which were introduced by 
Wisla in [30] and Köthe predual, i.e., (EΦ,p)

∗ = LΨ,q where  1
p
+

1

q
= 1 and Ψ is the 

function complementary to the Orlicz function Φ in the sense of Young. In the next part 
of the paper, we will use the convex modular �∗(f ) to investigate ‖f‖∗

Ψ,q
 on (LΦ)∗ defined 

by the formula ‖f‖∗
Ψ,q

= infk>0
1

k
sq(𝜌

∗(kf )) , which is the norm formula in Orlicz dual 
spaces equipped with p-Amemiya norm. The attainable points of dual norm ‖f‖∗

Ψ,q
 are 

discussed, the interval for dual norm ‖f‖∗
Ψ,q

 attainability is described. In the last part of 
the paper, we present the explicit form of supporting functional and get sufficient and 
necessary conditions for smooth points. As a result, criteria for smoothness of 
LΦ,p (1 ≤ p ≤ ∞) are obtained.

Let X be a real Banach space, and S(X) be the unit sphere of X. By X∗ we denote the 
dual space of X. In the sequel N and R denote the set of natural numbers and the set of 
real numbers, respectively.

For any map Φ: R → [0,∞] define

Notice that if Φ is even on R, aΦ = 0 means that Φ vanishes only at zero while 
bΦ = ∞ means that Φ takes only finite values.

A map Φ: R → [0,∞] is said to be an Orlicz function if Φ(0) = 0 , Φ is not identi-
cally equal to zero (i.e., limu→∞ Φ(u) = ∞ ), Φ is even and convex on the interval 
(−bΦ, bΦ) and left-continuous at bΦ i.e., limu→b−

Φ
Φ(u) = Φ(bΦ) . Let us notice that 

every Orlicz function Φ is continuous on the interval (−bΦ, bΦ) . Recall also that an 
Orlicz function Φ is called an N-function if it vanishes only at 0, takes only finite values 
and the following two conditions are satisfied: limu→0

Φ(u)

u
= 0 and limu→∞

Φ(u)

u
= ∞.

For every Orlicz function Φ , we define its complementary function (in the sense of 
Young) Ψ : R → [0,∞] by the formula

aΦ = sup{u ≥ 0 ∶ Φ(u) = 0}, bΦ = sup{u > 0 ∶ Φ(u) < ∞}.

Ψ(v) = sup{u|v| − Φ(u) ∶ u ≥ 0}.
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It is well known that the complementary function Ψ is also an Orlicz function when-
ever Φ(u)

u
→ 0 as u → 0 (see [18] ).

In the following, by p+(u) and p−(u) ( q+(v) and q−(v) ) we will denote the right 
and left derivatives of Φ(u) ( Ψ(v) ) at u( v) respectively. Here we define p+(bΦ) = ∞ 
and p−(u) = ∞ for all u > bΦ ( q+(bΨ) = ∞ and q−(v) = ∞ for all v > bΨ).

For every u, v ∈ R , we have the following Young Inequality:

which reduces to an equality when v ∈ [p−(u), p+(u)] if u is given, or when 
u ∈ [q−(v), q+(v)] if v is given (see [6]).

Let us underline that p+, p−, q+, q− will always mean functions, while letters 
p,  q will always refer to numbers.

Let (G,Σ,�) be a measure space with a �-finite, nonatomic and complete measure 
� and L0(�) be the set of all �-equivalence classes of real and Σ-measurable func-
tions defined on G. To simplify notations, by a characteristic function �A of a subset 
A ⊂ G we will mean the function defined by

For a given Orlicz function Φ we define on L0(�) a convex functional (called a pseu-
domodular [21]) by

The Orlicz space LΦ generated by an Orlicz function Φ is a linear space of measur-
able functions defined by the formula

By EΦ we denote the linear space of all measurable functions such that IΦ(cx) < ∞ 
for all c > 0 . It may happen that the space EΦ consists of only one element-the zero 
function. For instance, this happens if the measure � is atomless and the function Φ 
jumps to infinity (i.e., bΦ < ∞).

The Orlicz space LΦ is a Banach space when it is endowed with any of the norms:

and

which are called the Luxemburg norm, Orlicz norm and Amemiya norm, respec-
tively. Krasnoslskii and Rutickii [18], Nakano [23], Luxemburg and Zaanen [20] 

|uv| ≤ Φ(u) + Ψ(v)

�A(t) =

{
1, for t ∈ A,

0, for t ∉ A.

IΦ(x) =
∫G

Φ(x(t))d�.

LΦ = {x ∈ L0(𝜇) ∶ IΦ(cx) < ∞, for some c > 0 depending on x}.

‖u‖Φ = inf{𝜀 > 0 ∶ IΦ(u∕𝜀) ≤ 1}

‖u‖◦
Φ
= sup

�

�G

�u(t)v(t)�d𝜇 ∶ v ∈ LΨ, IΨ(v) ≤ 1

�

‖u‖A
Φ
= inf

k>0

1

k
(1 + IΦ(ku))
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proved, under additional assumptions on the function Φ , that the Orlicz norm can be 
expressed exactly by the Amemiya formula, i.e., ‖x‖◦

Φ
= ‖x‖A

Φ
 . In the most general 

case of Orlicz function Φ , the similar result was obtained by Hudzik and Maligranda 
([15]). Moreover, it is not difficult to verify that Luxemburg norm can also be 
expressed by an Amemiya-like formula (see [9, 24]), namely

In the paper [15], Hudzik and Maligranda proposed to investigate another class of 
norms given by the Amemiya formula-norms generated by the functions of the type

and

In that case we obtain a family of topologically equivalent norms (called p-Amemiya 
norms and denoted by ‖.‖Φ,p ), indexed by 1 ≤ p ≤ ∞ and satisfying the inequalities

for all 1 ≤ q ≤ p ≤ ∞.

Since that time, an intensive development of research connected with Orlicz 
spaces equipped with p-Amemiya norms have taken place, many important 
results broaden the knowledge about the geometry of these spaces (see [3, 8, 9, 
11, 12, 14, 17, 19]) and some open questions were put (see [29]).

To simplify notation, the Orlicz spaces equipped with the p-Amemiya norms 
are denoted by LΦ,p = (LΦ, ‖ ⋅ ‖Φ,p) . Further, for any function u ∈ L0 the essential 
supremum of |u| over G, i.e. sup eest∈G|u(t)| , no matter whether this number is 
finite or not, will be denoted by ‖u‖∞.

We say an Orlicz function Φ satisfies the Δ2-condition for all u ∈ R (resp., 
at infinity) [resp., at zero] if there is a constant K > 0 (resp., and a constant 
u0 ≥ 0 with Φ(u0) < ∞ ) [resp., and a constant u0 > 0 with Φ(u0) > 0 ] such that 
Φ(2u) ≤ KΦ(u) for all u ∈ R (resp., for every |u| ≥ u0) [resp., for every |u| ≤ u0 ). 
We will shortly write Φ ∈ Δ2(R) (resp., Φ ∈ Δ2(∞)) [resp., Φ ∈ Δ2(0)]. Evidently, 
Φ ∈ Δ2(R) if and only if Φ ∈ Δ2(∞) and Φ ∈ Δ2(0).

We say that an Orlicz function Φ satisfies the suitable Δ2(�)-condition if 
Φ ∈ Δ2(0) provided � is purely atomic, Φ ∈ Δ2(∞) provided � is non-atomic and 
𝜇(G) < ∞ and Φ ∈ Δ2(R) in the case of �(G) = ∞.

Further details about Orlicz spaces equipped with the Luxemburg or the Orlicz 
norm, can be found in [2, 6, 18, 20–22, 24, 25, 31]. Basic results on the Orlicz 
spaces equipped with p-Amemiya norms have been presented in [9].

‖u‖Φ = inf
k>0

1

k
max{1, IΦ(ku)}.

sp(u) =

{

(1 + up)
1

p , for 1 ≤ p < ∞,

max{1, u}, for p = ∞,

‖u‖Φ,p = inf
k>0

1

k
sp(IΦ(ku)) (1 ≤ p ≤ ∞).

(1)‖u‖Φ = ‖u‖Φ,∞ ≤ ‖u‖Φ,p ≤ ‖u‖Φ,q ≤ ‖u‖Φ,1 = ‖u‖o
Φ
≤ 2‖u‖Φ
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2 � Auxiliary result

In the paper [9], Cui et al. introduced the function �p ∶ LΦ,p → [−1,∞] by

and the functions  k∗
p
∶ LΦ,p → [0,∞),  k∗∗

p
∶ LΦ,p → (0,∞] by k∗

p
(u) = inf{k ≥ 0 ∶ 

�p(ku) ≥ 0} ( with inf � = ∞), k∗∗
p
(u) = sup{k ≥ 0 ∶ �p(ku) ≤ 0}.

It is evident that k∗
p
(u) ≤ k∗∗

p
(u) for every 1 ≤ p ≤ ∞ and u ∈ LΦ,p⧵{0}.

Set Kp(u) = {0 < k < ∞ ∶ k∗
p
(u) ≤ k ≤ k∗∗

p
(u)}.

Lemma 2.1  [9] For every 1 ≤ p ≤ ∞ and u ∈ LΦ,p⧵{0} , the following conditions 
hold: 

	 (i)	 If k∗
p
(u) = k∗∗

p
(u) = ∞, Kp(u) = � , then ‖u‖Φ,p = limk→∞

1

k
(1 + I

p

Φ
(ku))

1

p.
	 (ii)	 If k∗

p
(u) < k∗∗

p
(u) = ∞ , then the p-Amemiya norm ‖u‖Φ,p is attained at every 

k ∈ [k∗
p
(u),∞).

	 (iii)	 If k∗∗
p
(u) < ∞ , then the p-Amemiya norm ‖u‖Φ,p is attained at every 

k ∈ [k∗
p
(u), k∗∗

p
(u)].

Lemma 2.2  [9] Let Φ be an Orlicz function and let 1 ≤ p ≤ ∞ . The set Kp(u) is 
nonempty if and only if one of the following conditions is satisfied: 

	 (i)	 If p = 1 then Φ does not admit an asymptote at infinity.
	 (ii)	 If 1 < p < ∞ then Φ is not linear on [0,∞).

	 (iii)	 If p = ∞ , then for every Orlicz function Φ is Kp(u) ≠ �.
	 (iv)	 Φ takes infinite values.

Remark 2.3  By Lemma 2.2, we know for every 1 ≤ p < ∞, if Kp(u) = � , then there 
exists G0 ⊂ G such that LΦ(G0) is linearly isometric to L1 . We know that L∞ is 
the dual space of L1 and L1 is not a smooth space. For this reason we will assume 
Kp(u) ≠ � in the following whenever smooth points and smoothness are considered.

The p-Amemiya norm is defined by using of two functions: the (inner) Orlicz func-
tion Φ (more precisely: the modular IΦ ) and the outer function sp defined on the half 
line [0,∞) by

The family {sp(⋅) ∶ 1 ≤ p ≤ ∞} consists of convex, nondecreasing on [0,∞) func-
tions with exactly one common point (knot) at 0 (i.e., sp(0) = 1 for all 1 ≤ p ≤ ∞ ). 
Moreover, on the half-line [0,∞) , the functions sp(⋅) are strictly increasing for 

𝛼p(u) =

⎧
⎪
⎨
⎪
⎩

I
p−1

Φ
(u)IΨ(p+(�u�)) − 1, for 1 ≤ p < ∞,

−1, for p = ∞, IΦ(u) ≤ 1,

IΨ(p+(�u�)), for p = ∞, IΦ(u) > 1.

sp(u) =

{

(1 + up)
1

p , for 1 ≤ p < ∞,

max{1, u}, for p = ∞.
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1 ≤ p < ∞ , strictly convex for 1 < p < ∞ , and sp(u) < sq(u) for every 1 ≤ q < p ≤ ∞ 
and u > 0.

In the paper [30], Wisla introduced outer functions and presented basic properties of 
outer functions. We recall them here. A function s ∶ [0,∞) → [1,∞) will be called an 
outer function, if it is convex and

To simplify notations, we extend the domain and range of s to the interval [0,∞] by 
setting s(∞) = ∞.

Evidently, for every 1 ≤ p ≤ ∞ , sp(⋅) is an outer function.We will say that two outer 
functions s, � are conjugate (to each other) in the Hölder sense, if u + v ≤ s(u)�(v) for 
all u, v ≥ 0.

Lemma 2.4  [30] The outer function �(v) = 1 + v is conjugate in the Hölder sense 
to any outer function s(⋅).

Lemma 2.5  [30] For any outer function s(⋅) the function s∗(⋅) defined by 
s∗(v) = supu≥0

u+v

s(u)
, 0 ≤ v < ∞, s∗(∞) = ∞ , is the minimal outer function conjugate 

to s(⋅) in the Hölder sense.

Lemma 2.6  [30] If sp(u) = (1 + up)
1

p then s∗
p
(v) = sq(v) = (1 + vq)

1

q for all 
1 < p, q < ∞ with 1

p
+

1

q
= 1 . And the Hölder equality 

u + v = sp(u) ⋅ sq(v) = (1 + up)
1

p ⋅ (1 + vq)
1

q for all 0 < u, v < ∞ holds true if and 
only if u

1

q ⋅ v
1

p = 1 (i.e., up−1 ⋅ v = 1 or u ⋅ vq−1 = 1).

Lemma 2.7  [30] Let Φ, Ψ be the Orlicz functions complementary in the sense 
of Young that take finite values only. If the p-Amemiya norm ‖ ⋅ ‖Φ,p is k∗

p
-finite 

(1 ≤ p ≤ ∞) then (EΦ, ‖ ⋅ ‖Φ,p) is the Köthe predual of the Orlicz space (LΨ, ‖ ⋅ ‖Ψ,q) , 
i.e., (EΦ,p)

∗ = LΨ,q.

Orlicz spaces are endowed with the structure of Banach lattices [1]. This property 
can be used in a more refined analysis of the (topological) dual space of LΦ , which is 
denoted by (LΦ)∗ . (LΦ)∗ is represented in the following way (see [21]): (LΦ)∗ = LΨ ⊕ F , 
i.e, every f ∈ (LΦ,p)

∗ (1 ≤ p ≤ ∞) is a uniquely represented in the form

where � is singular functional, i.e., �(u) = 0 for any u ∈ EΦ,p and v ∈ LΨ,q where 
1

p
+

1

q
= 1 and Ψ is the function complementary to the Orlicz function Φ in the sense 

of Young, is the regular functional by the formula:

Let us define for each f ∈ (LΦ)
∗:

max{1, u} ≤ s(u) ≤ 1 + u for all u ≥ 0.

(2)f = v + �,

u(v) =
∫G

u(t)v(t)dt, for all u ∈ LΦ,p.
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Proofs of the next three lemmas can be found for N-functions Φ in [16], but they are 
also true for arbitrary Orlicz functions Φ (see [27], even in the more general case of 
Musielak–Orlicz functions).

Lemma 2.8  [27] Let f ∈ (LΦ)
∗ be as in (2). Then ‖f‖o

Ψ
= ‖v‖o

Ψ
+ ‖�‖o.

Lemma 2.9  [27] For any � ∈ F,

where 𝜃(u) = inf{𝜆 > 0, IΦ

(
u

𝜆

)

< ∞}.

Lemma 2.10  [27] If f ∈ (LΦ)
∗ is of the form (2), then

3 � The dual norm ‖ ⋅ ‖∗
Ψ,q

 and norm attainability

Let f ∈ (LΦ)
∗ be as in (2). Define

Cui et  al. proved that �∗(f ) is a convex modular in (LΦ)∗ (see [10]). Now, for 
1 ≤ p ≤ ∞ , on (LΦ,p)

∗ we introduce new functionals as follows

where f = v + � is of the form (2). Evidently, ‖f‖∗
Ψ,1

= ‖f‖o
Ψ

 . In the next section we 
will prove that ‖f‖Ψ = ‖f‖∗

Ψ,∞
 . We will also prove there that for any 1 ≤ q ≤ ∞ the 

functional ‖f‖∗
Ψ,q

 is a norm on (LΦ,p)
∗ and all the norms ‖f‖∗

Ψ,q
 are equivalent to each 

other.

Theorem 3.1  The ‖f‖Ψ and ‖f‖∗
Ψ,∞

 coincide, i.e.,

Proof  For any  f ∈ (LΦ,1)
∗, 𝜌∗(f ) > 1 implies �∗(f ) ≥ ‖f‖Ψ . If there exists  f ∈ (LΦ,1)

∗ , 
with 𝜌∗(f ) > 1 and 1 < 𝜌∗(f ) < ‖f‖Ψ , we have

‖f‖o
Ψ
= sup{f (u) ∶ ‖u‖Φ = 1}, ‖f‖Ψ = sup{f (u) ∶ ‖u‖o

Φ
= 1}.

‖𝜑‖ = ‖𝜑‖o = sup{𝜑(u) ∶ IΦ(u) < ∞} = sup

�
𝜑(u)

𝜃(u)
∶ u ∈ LΦ⧵EΦ

�

,

‖f‖Ψ = inf{𝜆 > 0 ∶ IΨ

�
v

𝜆

�

+
‖𝜑‖

𝜆
≤ 1}.

(3)�
∗(f ) = IΨ(v) + ‖�‖.

‖f‖∗
Ψ,q

=

⎧
⎪
⎨
⎪
⎩

inf
k>0

1

k
(1 + (𝜌∗(kf ))q)

1

q = inf
k>0

1

k
sq(𝜌

∗(kf )), for 1 ≤ q < ∞,

inf
k>0

1

k
max{1, 𝜌∗(kf )}, for q = ∞,

‖f‖Ψ = ‖f‖∗
Ψ,∞

= inf
k>0

1

k
max{1, 𝜌∗(kf )}, for all f ∈ (LΦ,1)

∗.
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a contradiction. Thus, 𝜌∗( f
𝜆
) > 1 implies ��∗( f

�
) ≥ ‖f‖Ψ , so

	�  ◻

Theorem 3.2  Let �∗(f ) be as in (3). The functional

is a norm on (LΦ,p)
∗ where 1

p
+

1

q
= 1 which is equivalent to ‖f‖Ψ:

Proof  In the case q = ∞ the thesis follows directly from Theorem 3.1. So, we can 
assume that 1 ≤ q < ∞.

Let � ∈ R . Then

so ‖ ⋅ ‖∗
Ψ,q

 is homogeneous.
Let f1,  f2 ∈ (LΦ,p)

∗⧵{0} and 𝜀 > 0 . We can find k,  l > 0 such that 
1

k
sq(�

∗(kf1)) ≤ ‖f1‖
∗
Ψ,q

+ � , 1
l
sq(�

∗(lf2)) ≤ ‖f2‖
∗
Ψ,q

+ � . By the convexity of Ψ and sq , 
we have

Letting � → 0 , we get the triangle inequality.
Further, by Theorem 3.1, we have

1 < 𝜌
∗

(
f

𝜌∗(f )

)

≤
1

𝜌∗(f )
𝜌
∗(f ) = 1,

‖f‖Ψ = inf
𝜌∗(

f

𝜆
)≤1

𝜆 = min

�

inf
𝜌∗(

f

𝜆
)≤1

𝜆, inf
𝜌∗(

f

𝜆
)>1

𝜆𝜌
∗

�
f

𝜆

��

=min

�

inf
𝜌∗(kf )≤1

1

k
, inf
𝜌∗(kf )>1

1

k
𝜌
∗(kf )

�

= inf
k>0

1

k
max{1, 𝜌∗(kf )} = ‖f‖∗

Ψ,∞
.

‖f‖∗
Ψ,q

= inf
k>0

1

k
(1 + (𝜌∗(kf ))q)

1

q = inf
k>0

1

k
sq(𝜌

∗(kf )) (1 ≤ q ≤ ∞)

(4)‖f‖Ψ ≤ ‖f‖∗
Ψ,q

≤ 2
1

q ‖f‖Ψ.

‖𝜆f‖∗
Ψ,q

= inf
k>0

1

k
sq(𝜌

∗(k𝜆f )) = �𝜆� inf
k>0

1

k�𝜆�
sq(𝜌

∗(k𝜆f )) = �𝜆� ⋅ ‖f‖∗
Ψ,q

,

‖f1 + f2‖
∗
Ψ,q

≤
k + l

kl
sq

�

�
∗
�

kl

k + l
(f1 + f2)

��

=
k + l

kl
sq

�

�
∗
�

l

k + l
kf1 +

k

k + l
lf2

��

≤
k + l

kl
sq

�
l

k + l
�
∗(kf1) +

k

k + l
�
∗(lf2)

�

≤
1

k
sq(�

∗(kf1)) +
1

l
sq(�

∗(lf2)

≤‖f1‖
∗
Ψ,q

+ ‖f2‖
∗
Ψ,q

+ 2�.
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Thus (4) holds true and ‖f‖∗
Ψ,q

= 0 ⇔ ‖f‖Ψ = 0 ⇔ f = 0 . 	�  ◻

In the following by the determinant function we shall mean the function 
defined by �q ∶ (LΦ,p)

∗ → [−1,∞],

Further, define

The support of a measurable function v ∈ LΨ,q is defined by 
supp(v) = {t ∈ G ∶ v(t) ≠ 0} . In the sequel, together with a measurable function v, 
we shall often consider a sequence (vn) of bounded measurable functions with sup-
port of finite measure defined by

for each n ∈ N , Gn = {t ∈ G ∶ |v(t)| ≤ n}, Tn ↗, 0 < 𝜇(Tn) < ∞ and 
⋃∞

n=1
Tn = G.

Lemma 3.3  [9] For every 1 ≤ q < ∞ and every a > 0

Lemma 3.4  For every essentially bounded measurable function 
f ∈ (LΦ,p)

∗ with support of finite measure, we have �∗(f ) = �
∗
0
(f ) where 

𝜃
∗
0
(f ) = inf{k > 0, IΦ(q+(

|v|

k
)) < ∞}.

Proof  Suppose that   (𝜃∗)−1(f ) < k0 < (𝜃∗
0
)−1(f ) ( with inf

1

0
= ∞) . Then 

IΦ(q+(k0|v|)) < ∞, so k0‖v‖∞ < bΨ  (otherwise  IΦ(q+(k|v|)) = ∞ for every k > k0 , 
whence k0 > (𝜃∗

0
)−1(f ) , a contradiction). Thus

Hence k0 < (𝜃∗)−1(f ) , a contradiction.

‖f‖Ψ = inf
k>0

1

k
max{1, 𝜌∗(kf )} ≤ inf

k>0

1

k
(1 + (𝜌∗(kf ))q)

1

q

=‖f‖∗
Ψ,q

≤ 2
1

q inf
𝜌∗(kf )≤1

1

k
= 2

1

q ‖f‖Ψ.

𝛽q(f ) =

⎧
⎪
⎨
⎪
⎩

IΦ(q+(�v�)) ⋅ (𝜌
∗(f ))q−1 − 1, for 1 ≤ q < ∞,

−1, for q = ∞, 𝜌∗(f ) ≤ 1,

IΦ(q+(�v�)), for q = ∞, 𝜌∗(f ) > 1.

𝜃
∗ ∶ (LΦ,p)

∗ → [0,∞), 𝜃∗(f ) = inf{k > 0 ∶ 𝜌
∗(k−1f ) < ∞},

k∗
q
(f ) ∶ (LΦ,p)

∗ → [0,∞), k∗
q
(f ) = inf{k ≥ 0 ∶ 𝛽q(kf ) ≥ 0} ( with inf � = ∞),

k∗∗
q
(f ) ∶ (LΦ,p)

∗ → (0,∞], k∗∗
q
(f ) = sup{k ≥ 0 ∶ 𝛽q(kf ) ≤ 0}.

(5)vn = v(t)�Gn∩Tn
,

max
x≥0

1 + xq−1a

(1 + xq)
1

q

= (1 + aq)
1

q .

IΨ(k0v) + k0‖𝜑‖ ≤ Ψ(k0‖v‖∞) ⋅ 𝜇(supp v) + k0‖𝜑‖ < ∞.
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Similarly, if  (𝜃∗
0
)−1(f ) < k0 < (𝜃∗)−1(f ) then IΨ(k0v) + k0‖𝜑‖ < ∞ , so 

k0‖v‖∞ ≤ bΨ in this case as well. Thus

Hence k0 < (𝜃∗
0
)−1(f ) , a contradiction. 	�  ◻

Theorem 3.5  For every f ∈ (LΦ,p)
∗⧵{0} and every 1 ≤ q < ∞ the following condi-

tions hold: 

	 (i)	 the function k → �q(kf ) is nondecreasing on [0,∞);
	 (ii)	 (0, (𝜃∗)−1(f )) ⊂ {k > 0 ∶

1

k
sq(𝜌

∗(kf )) < ∞};
	 (iii)	 the function k → 1

k
sq(�

∗(kf )) is continuous on (0, (�∗)−1(f ));
	 (iv)	 the function k → 1

k
sq(�

∗(kf )) is decreasing on (0, k∗
q
(f ));

	 (v)	 the function k → 1

k
sq(�

∗(kf )) is nonincreasing on (0, k∗∗
q
(f ));

	 (vi)	 the function k → 1

k
sq(�

∗(kf )) is increasing on (k∗∗
q
(f ), (�∗)−1(f ));

	(vii)	 the function k → 1

k
sq(�

∗(kf )) is nondecreasing on (k∗
q
(f ), (�∗)−1(f )).

Proof  Condition (i) follows immediately from the fact that both functions 
k → IΦ(q+(k|v|)) and  k → �∗(kf ) are nondecreasing on  [0,∞) . Condition (ii) is 
obvious.

(iii) The condition (iii) follows directly from the Lebesgue dominated conver-
gence theorem.

(iv) Let 0 < k1 < k2 < k∗
q
(f ) and let fn = vn + �, vn be as in (5). Since, for every 

n ∈ N and 0 < k < k∗
q
(f ) , we have

by Lemma 3.4, the numbers IΦ(q+(ki|vn|)) and IΨ(kivn), i = 1, 2 , have to be finite. 
Therefore

Let �n = min{1, (
1

k2
−

1

k1
)�q(k2fn)(1 + (�∗(k2fn))

q)
1

q
−1
} . Since k2 < k∗

q
(f ) , we have 

𝛽q(k2fn) ≤ 𝛽q(k2f ) < 0 , so 𝜀n > 0 . By the Young Inequality and Lemma  3.3, we 
obtain

IΦ(q+(k0�v�)) ≤ Φ(q+(k0‖v‖∞)) ⋅ 𝜇(supp v) < ∞.

IΦ(q+(k�vn�)) ⋅ (𝜌
∗(kfn))

q−1 = IΦ(q+(k�vn�)) ⋅ (IΨ(kvn) + k‖𝜑‖)q−1 < 1,

1

k2
sq(�

∗(k2fn)) =
1

k2
sq(IΨ(k2vn) + k2‖�‖)

=
1 + (�∗(k2fn))

q−1(IΨ(k2vn) + k2‖�‖)

k2(1 + (IΨ(k2vn) + k2‖�‖)
q)

1−
1

q

=
1 + (�∗(k2fn))

q−1(∫
G
k2�vn(t)�q+(k2�vn(t)�)dt − IΦ(q+(k2�vn�)) + k2‖�‖)

k2(1 + (IΨ(k2vn) + k2‖�‖)
q)

1−
1

q

=

(�∗(k2fn))
q−1(∫

G
�vn(t)�q+(k2�vn(t)�)dt + ‖�‖) −

1

k2
�q(k2fn)

(1 + (IΨ(k2vn) + k2‖�‖)
q)

1−
1

q

.
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Letting  n → ∞ , we get 𝜀n → 𝜀0 = min{1, (
1

k2
−

1

k1
)𝛽q(k2f )(1 + (𝜌∗(k2f ))

q)
1

q
−1
} > 0 

and

i.e., the function k → 1

k
sq(�

∗(kf )) is decreasing on (0, k∗
q
(f )).

(v) If 0 < k1 < k2 < k∗∗
q
(f ) , let fn = vn + �, vn be as in (5). Then

IΦ(q+(k2�vn�)) ⋅ (IΨ(k2vn) + k2‖�‖)
q−1 ≤ 1 . Repeating the arguments used in the 

proof of condition (iv) with slight changes: �q(k2fn) ≤ 0 and �n = 0 we get, passing 
with n to infinity, that 1

k2
sq(�

∗(k2f )) ≤
1

k1
sq(�

∗(k1f )).

(vi) Let k∗∗
q
(f ) < k1 < k2 < (𝜃∗)−1(f ) and let fn = vn + �, vn be as in (5). Then by 

Lemma 3.4, IΨ(kivn) < ∞ and  IΦ(q+(ki|vn|)) < ∞ for i = 1, 2 . Since k∗∗
q
(f ) < k1,

Thus, for every n ∈ N sufficiently large,

Let �n = min{1, (
1

k1
−

1

k2
)�q(k1fn)(1 + (�∗(k1fn))

q)
1

q
−1
} . In an analogous way as 

above, for every sufficiently large n ∈ N , we get

1

k2
sq(�

∗(k2fn))

≤

(�∗(k2fn))
q−1(∫

G
�vn(t)�q+(k2�vn(t)�)dt + ‖�‖) −

1

k1
�q(k2fn)

(1 + (�∗(k2fn))
q)

1−
1

q

− �n

=
1 + (�∗(k2fn))

q−1(∫
G
k1�vn(t)�q+(k2�vn(t)�)dt + k1‖�‖ − IΦ(q+(k2�vn�))

k1(1 + (IΨ(k2vn) + k2‖�‖)
q)

1−
1

q

− �n

≤
1 + (�∗(k2fn))

q−1(IΨ(k1vn) + k1‖�‖)

k1(1 + (IΨ(k2vn) + k2‖�‖)
q)

1−
1

q

− �n

≤
1

k1
(1 + (�∗(k1fn))

q)
1

q − �n =
1

k1
sq(�

∗(k1fn)) − �n.

1

k2
sq(𝜌

∗(k2f )) ≤
1

k1
sq(𝜌

∗(k1f )) − 𝜀0 <
1

k1
sq(𝜌

∗(k1f )),

0 < 𝛽q(k1f ) = IΦ(q+(k1�v�))(IΨ(k1v) + k1‖𝜑‖)
q−1 − 1 < ∞.

0 < 𝛽q(k1fn) = IΦ(q+(k1�vn�))(IΨ(k1vn) + k1‖𝜑‖)
q−1 − 1 < ∞.
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Letting n → ∞ we get 𝜀n → 𝜀0 = min{1, (
1

k1
−

1

k2
)𝛽q(k1f )(1 + 𝜌∗(k1f )

q)
1

q
−1
} > 0 , so

i.e., the function k → 1

k
sq(�

∗(kf )) is increasing on (k∗∗
q
(f ), (�∗)−1(f )).

(vii) Let k∗
q
(f ) < k1 < k2 < (𝜃∗)−1(f ) and let fn = vn + �, vn be as in (5). 

Then  �q(k2f ) = IΦ(q+(k�vn�)) ⋅ (IΨ(kvn) + k‖�‖)q−1 − 1 ≥ 0 . Repeating the argu-
ments used in the proof of condition (vi) with slight changes: �n = 0 we get, passing 
with n to infinity, that 1

k1
sq(�

∗(k1f )) ≤
1

k2
sq(�

∗(k2f )) . 	�  ◻

Theorem  3.6  All conditions of Theorem  3.5 hold true for q = ∞ and every 
f ∈ (LΦ,1)

∗⧵{0}.

Proof  We need to prove conditions (iv)–(vii) only.
(iv) Let 0 < k1 < k2 < k∗

∞
(f ) . Then �∗(k1f ) ≤ �∗(k2f ) ≤ 1 , because  𝛽∞(k2f ) < 0 . 

Hence

(v) Let 0 < k1 < k2 < k∗∗
∞
(f ) and let fn = vn + �, vn be as in (5). If �∗(k2fn) ≤ 1 then 

1

k2
s∞(𝜌

∗(k2f )) <
1

k1
s∞(𝜌

∗(k1f )) by (iv).

1

k1
sq(�

∗(k1fn))

=

(�∗(k1fn))
q−1(∫

G
�vn(t)�q+(k1�vn(t)�)dt + ‖�‖) −

1

k1
�q(k1fn)

(1 + (�∗(k1fn))
q)

1−
1

q

≤

(�∗(k1fn))
q−1(∫

G
�vn(t)�q+(k1�vn(t)�)dt + ‖�‖) −

1

k2
�q(k1fn)

(1 + (�∗(k1fn))
q)

1−
1

q

− �n

=
1 + (�∗(k1fn))

q−1(∫
G
k2�vn(t)�q+(k1�vn(t)�)dt + k2‖�‖ − IΦ(q+(k1�vn�))

k2(1 + (IΨ(k1vn) + k1‖�‖)
q)

1−
1

q

− �n

≤
1 + (�∗(k1fn))

q−1(IΨ(k2vn) + k2‖�‖)

k2(1 + (IΨ(k1vn) + k1‖�‖)
q)

1−
1

q

− �n

≤
1

k2
(1 + (�∗(k2fn))

q)
1

q − �n =
1

k2
sq(�

∗(k2fn)) − �n.

1

k1
sq(𝜌

∗(k1f )) ≤
1

k2
sq(𝜌

∗(k2f )) − 𝜀0 <
1

k2
sq(𝜌

∗(k2f )),

1

k2
s∞(𝜌

∗(k2f )) =
1

k2
max{1, 𝜌∗(k2f )}

<
1

k1
max{1, 𝜌∗(k1f )}

=
1

k1
s∞(𝜌

∗(k1f )).
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Assume 𝜌∗(k2fn) > 1 . Then, since �∞(k2fn) ≤ �∞(k2f ) ≤ 0 , we get
IΦ(q+(k2|vn|)) = 0. Thus, applying the Young Inequality, we obtain

Hence, we have

Letting n → ∞ , we obtain 1
k2
s∞(�

∗(k2f )) ≤
1

k1
s∞(�

∗(k1f )).
(vi) Let k∗∗

∞
(f ) < k1 < k2 < (𝜃∗)−1(f ) and let fn = vn + � , vn be as in (5). Since 

𝛽∞(k1f ) > 0 , we have 𝜌∗(k1f ) > 1 and IΦ(q+(k1|v|)) > 0 . 
Let �n = min{1, (

1

k1
−

1

k2
)IΦ(q+(k1|vn|))} . Then, by the Young Inequality,

Passing with n to infinity, we get  𝜀n → 𝜀0 = (
1

k1
−

1

k2
)IΦ(q+(k1|v|)) > 0 , so 

1

k1
s∞(𝜌

∗(k1f )) ≤
1

k2
s∞(𝜌

∗(k2f )) − 𝜀0 <
1

k2
s∞(𝜌

∗(k2f )).
(vii) Let k∗

∞
(f ) < k1 < k2 < (𝜃∗)−1(f ) and let fn = vn + � , vn be as in (5). Since 

�∞(k1f ) ≥ 0 , we have 𝜌∗(k1f ) > 1 and IΦ(q+(k1|v|)) ≥ 0 . Repeating the arguments 
used in the proof of condition (vi) with �n = 0 . We get, passing with n to infinity, 
that 1

k1
s∞(�

∗(k1f )) ≤
1

k2
s∞(�

∗(k2f )) . 	� ◻

As an immediate consequence of Theorems  3.5 and 3.6 we get the following 
theorem.

1

k2
�
∗(k2fn) =

1

k2

�

�G

k2�vn(t)�q+(k2�vn(t)�)dt − IΦ(q+(k2�vn�)) + k2‖�‖

�

=
�G

�vn(t)�q+(k2�vn(t)�)dt −
1

k2
IΦ(q+(k2�vn�)) + ‖�‖

=
�G

�vn(t)�q+(k2�vn(t)�)dt + ‖�‖

=
�G

�vn(t)�q+(k2�vn(t)�)dt −
1

k1
IΦ(q+(k2�vn�)) + ‖�‖

≤
1

k1
IΨ(k1vn) + ‖�‖ =

1

k1
�
∗(k1fn).

1

k2
s∞(�

∗(k2fn)) =
1

k2
max{1, �∗(k2fn)}

≤
1

k1
max{1, �∗(k1fn)} =

1

k1
s∞(�

∗(k1fn)).

1

k1
�
∗(k1fn) =

1

k1

�

�G

k1�vn(t)�q+(k1�vn(t)�)dt − IΦ(q+(k1�vn�)) + k1‖�‖

�

=
�G

�vn(t)�q+(k1�vn(t)�)dt −
1

k1
IΦ(q+(k1�vn�)) + ‖�‖

=
�G

�vn(t)�q+(k1�vn(t)�)dt −
1

k2
IΦ(q+(k1�vn�)) − �n + ‖�‖

≤
1

k2
(IΨ(k2vn)) − �n + ‖�‖ =

1

k2
�
∗(k2fn) − �n.
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Theorem 3.7  For every 1 ≤ q ≤ ∞ and each f ∈ (LΦ,p)
∗⧵{0} the following condi-

tions hold. 

	 (i)	 If k∗
q
(f ) = k∗∗

q
(f ) = ∞ , then ‖f‖∗

Ψ,q
= lim

k→∞

1

k
sq(�

∗(kf )).
	 (ii)	 If k∗

q
(f ) < k∗∗

q
(f ) = ∞ , then ‖f‖∗

Ψ,q
 is attained at every k ∈ [k∗

q
(f ),∞).

	 (iii)	 If k∗∗
q
(f ) < ∞ , then ‖f‖∗

Ψ,q
 is attained at every k ∈ [k∗

q
(f ), k∗∗

q
(f )].

Theorem  3.8  Every Orlicz function Ψ with bΨ < ∞ is k∗
q
-finite, i.e., 

Kq(f ) ≠ � (1 ≤ q ≤ ∞).

Proof  If bΨ < ∞ , then (𝜃∗)−1(f ) < ∞ for every f ∈ (LΦ,p)
∗⧵{0} , evidently,

Hence, k∗
q
(f ) ≤ k∗∗

q
(f ) ≤ (�∗)−1(f ) . Thus, every Orlicz function is Kq(f ) ≠ � as long 

as bΨ < ∞ . 	�  ◻

Theorem 3.9  For all f ∈ (LΦ,p)
∗⧵{0} (1 ≤ p ≤ ∞) is of the form (2). 

	 (i)	 q = 1 i.e., p = ∞ . If IΦ(bΦ�supp(v)) ≥ 1 , then K1(f ) ≠ �.
	 (ii)	 1 < q < ∞ , 1

p
+

1

q
= 1 . If � ≠ 0 , then for every Orlicz function Ψ , Kq(f ) ≠ � . 

If � = 0 and Ψ is not linear on [0,∞) , then Kq(f ) ≠ �.
	 (iii)	 q = ∞ i.e., p = 1 . For every Orlicz function Φ , K∞(f ) ≠ �.

Proof  (i) When q = 1 , �1(f ) = IΦ(q+(|v|)) − 1 . If IΦ(bΦ�supp(v)) ≥ 1 , there exists 
k > 0 such that �1(kf ) ≥ 0 . By the definition of k∗

1
(f ) , we have k∗

1
(f ) < ∞ , i.e., 

K1(f ) ≠ �.
(ii) If � ≠ 0 , then ‖𝜑‖ > 0 . We have �∗(kf ) = IΨ(kv) + k‖�‖ → ∞ as k → ∞ . 

Thus, there exists k > 0 , such that IΦ(q+(k|v|))(𝜌∗(kf ))q−1 > 1 . Hence, k∗
q
(f ) < ∞ 

i.e., Kq(f ) ≠ �.

If � = 0 . The proof is similar to Theorem 4.3 in [9], so we omit it here.

(iii) Since �∗
�

f

‖f‖∗
Ψ,∞

�

≤ 1 , we have �∞

�
f

‖f‖∗
Ψ,∞

�

= −1 , so 1

‖f‖∗
Ψ,∞

≤ k∗
∞
(f ) . Sup-

pose 1

‖f‖∗
Ψ,∞

< k < k∗
∞
(f ) for some k > 0 . Then 𝛽∞(kf ) < 0 , so �∗(kf ) ≤ 1 , whence 

k <
1

‖f‖∗
Ψ,∞

 a contradiction. Thus 0 <
1

‖f‖∗
Ψ,∞

= k∗
∞
(f ). That is K∞(f ) ≠ �. 	�  ◻

4 � Bounded linear functionals

Lemma 4.1  (Minkowski inequality) For any sequences {𝜉k}, {𝜂k} ⊂ R , we have

	 (i)	  (
∑

k ��k + �k�
q)

1

q ≤ (
∑

k ��k�
q)

1

q + (
∑

k ��k�
q)

1

q for every 1 ≤ q < ∞,
	 (ii)	 (1 + (u + v)q)

1

q ≤ (1 + uq)
1

q + v for all u, v ≥ 0 and every 1 ≤ q < ∞,

‖f‖∗
Ψ,q

=
1

k∗∗
q
(f )

sq(𝜌
∗(k∗∗

q
(f )f )) = inf

k>0

1

k
sq(𝜌

∗(kf )) < ∞.
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	 (iii)	  (1 + (
u+v

2
)q)

1

q ≤
1

2
(1 + uq)

1

q +
1

2
(1 + vq)

1

q for all u, v ≥ 0 and every 1 ≤ q < ∞

.

Proof  The part (i) follows directly from the Minkowski Inequality. If we put �1 = 1 , 
�1 = 0 , �2 = u, �2 = v , then we get the condition (ii) for 1 ≤ q < ∞ . Similarly, we 
put �1 =

1

2
 , �1 =

1

2
 , �2 =

u

2
, �2 =

v

2
 , then we get the condition (iii) for 1 ≤ q < ∞ . 	�  ◻

Theorem  4.2  Let Φ, Ψ be the Orlicz functions complementary in the sense of 
Young that take finite values only. Assuming the p-Amemiya norm ‖ ⋅ ‖Φ,p is k∗

p
-finite. 

Let f ∈ (LΦ,p)
∗ (1 ≤ p ≤ ∞) , f have the unique decomposition f = v + � where 

v ∈ LΨ,q,
1

p
+

1

q
= 1, � ∈ F . Then

Proof  By the definition of ‖f‖∗
Ψ,q

 , we have ‖f‖∗
Ψ,1

= ‖f‖◦
Ψ
= ‖v‖◦

Ψ
+ ‖�‖◦

Ψ
 and 

‖f‖∗
Ψ,∞

= ‖f‖Ψ = infl>0

�
1

l
, IΨ(lv) + l‖𝜑‖ ≤ 1

�

 . So, we will prove the cases 
of 1 < q < ∞.

For any f ∈ (LΦ,p)
∗ , if � = 0 then Orlicz space LΦ,p is order continuous, i.e, 

LΦ,p = EΦ,p . By Lemma 2.7, We have (EΦ,p)
∗ = LΨ,q . The case has been discussed. 

So we assume � ≠ 0 . By Theorem 3.9, we know Kq(f ) ≠ �.
∀ l > 0, ∀ u ∈ S(LΦ,p), take k ∈ Kp(u) , by the Young Inequality and the definition 

of conjugate outer functions, we have

where �(ku) ≤ ‖�‖ by Lemma  2.9 and IΦ(ku) = (kp − 1)
1

p < ∞ . 
So  f (u) ≤ 1

l
sq(�

∗(lf )) . Since u and l are arbitrary, we deduce that

Take l ∈ Kq(f ) , for any 𝜀 > 0 , take k0 ∈ Kp(q+(lv)) and choose y ∈ S(LΦ,p) such that 
‖𝜑‖ − 𝜀 < 𝜑(

y

k0
). Select 𝛿 > 0 such that

then pick k > 0 such that 𝜇H < 𝛿 and that

where H = {t ∈ G ∶ |y(t)| > k} . Define

‖f‖ = ‖f‖∗
Ψ,q

=

�
inf
k>0

1

k
sq(𝜌

∗(kf )), for 1 ≤ q < ∞,

inf
k>0

1

k
max{1, 𝜌∗(kf )}, for q = ∞.

lf (u) =
1

k
(< ku, lv > +l𝜑(ku)) =

1

k

�

�G

ku(t)lv(t)dt + l𝜑(ku)

�

≤
1

k
(IΦ(ku) + IΨ(lv) + l‖𝜑‖) ≤

1

k
sp(IΦ(ku)) ⋅ sq(𝜌

∗(lf )) = sq(𝜌
∗(lf )),

‖f‖ ≤ inf
l>0

1

l
sq(𝜌

∗(lf )) = ‖f‖∗
Ψ,q

.

𝜇(E) < 𝛿 ⇒
∫E

l|q+(lv(t)) ⋅ v(t)|dt < 𝜀,

∫H

l

k0
|y(t)v(t)|dt < 𝜀,

∫H

Φ(y(t))dt < 𝜀,
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Then by Lemma 4.1(ii), we have

For the arbitrary of � , we obtain ‖u‖Φ,p ≤ ‖q+(lv)‖Φ,p.

Since l ∈ Kq(f ) , that means IΦ(q+(lv)) ⋅ (�∗(lf ))q−1 = 1 . By the Young Inequality 
and Lemma 2.6, we have

Letting � → 0 , we get ‖f‖ ≥ ‖f‖∗
Ψ,q

 , combine ‖f‖ ≤ ‖f‖∗
Ψ,q

 , we have ‖f‖ = ‖f‖∗
Ψ,q

 . 	
� ◻

Theorem 4.3  For any � ∈ F⧵{0} is not norm attainable on S(LΦ,p), 1 ≤ p < ∞.

Proof  For any u ∈ S(LΦ,p), 1 ≤ p < ∞ we have

u(t) =

{
q+(lv(t)), t ∈ G⧵H,
y(t)

k0
, t ∈ H.

‖u‖Φ,p = inf
k>0

1

k
(1 + I

p

Φ
(ku))

1

p

= inf
k>0

1

k

�

1 +

�

�G⧵H

Φ(kq+(lv(t))dt +
�H

Φ(ky(t)∕k0)dt

�p� 1

p

≤
1

k0

�

1 +

�

�G⧵H

Φ(k0q+(lv(t))dt +
�H

Φ(k0y(t)∕k0)dt

�p� 1

p

≤
1

k0
(1 + (IΦ(k0q+(lv)) + 𝜀)p)

1

p

≤
1

k0
(1 + I

p

Φ
(k0q+(lv)))

1

p +
𝜀

k0
= ‖q+(lv)‖Φ,p +

𝜀

k0
.

‖f‖ ≥
1

‖u‖Φ,p

f (u) =
1

‖u‖Φ,p

(f (q+(lv)𝜒G⧵H) + f (yk−1
0

⋅ 𝜒H))

=
< lv, q+(lv)𝜒G⧵H > + < lv, yk−1

0
⋅ 𝜒H > +l𝜑(q+(lv)𝜒G⧵H) + l𝜑(yk−1

0
)

l‖u‖Φ,p

≥
< lv, q+(lv) > − < lv, q+(lv)𝜒H > + < lv, yk−1

0
⋅ 𝜒H > +l𝜑(yk−1

0
)

l‖u‖Φ,p

>
1

l‖u‖Φ,p

(IΦ(q+(lv)) + IΨ(lv) − 2𝜀 + l(‖𝜑‖ − 𝜀))

=
1

l‖u‖Φ,p

(sp(IΦ(q+(lv))) ⋅ sq(𝜌
∗(lf )) − (l + 2)𝜀)

=
1

‖u‖Φ,p

(sp(IΦ(q+(lv)))‖f‖
∗
Ψ,q

− (1 + 2l−1)𝜀)

≥
‖q+(lv)‖Φ,p

‖u‖Φ,p

‖f‖∗
Ψ,q

−
(1 + 2l−1)𝜀

‖u‖Φ,p

≥ ‖f‖∗
Ψ,q

−
(1 + 2l−1)𝜀

‖u‖Φ,p

.
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	�  ◻

Theorem  4.4  Assuming the p-Amemiya norm ‖ ⋅ ‖Φ,p is k∗
p
-finite ( 1 ≤ p ≤ ∞ ), 

f ∈ (LΦ,p)
∗⧵{0} where f = v + � is norm attainable at u ∈ S(LΦ,p) if and only if: 

	 (a)	 q = 1, p = ∞, for any l ∈ K1(f ). Then
	 (i)	  ‖�‖ = �(u),
	 (ii)	  ∫

G
lv(t)u(t)dt = IΦ(u) + IΨ(lv), and

	 (iii)	  IΦ(u) = 1.
	 (b)	 1 < p, q < ∞,

1

p
+

1

q
= 1, for any k ∈ Kp(u), l ∈ Kq(f ) . Then

	 (i)	  ‖�‖ = �(ku),
	 (ii)	  ∫

G
ku(t)lv(t)dt = IΦ(ku) + IΨ(lv), and

	 (iii)	  Ip−1
Φ

(ku)�∗(lf ) = IΦ(ku)(�
∗(lf ))q−1 = 1.

	 (c)	 q = ∞, p = 1, for any k ∈ K1(u) . Then
	 (i)	  ‖�‖ = �(ku),
	 (ii)	  ∫

G
ku(t)

v(t)

‖f‖∗
Ψ,∞

dt = IΦ(ku) + IΨ(
v

‖f‖∗
Ψ,∞

), and

	 (iii)	  �∗( f

‖f‖∗
Ψ,∞

) = 1.

Proof  When q = 1 or q = ∞ , we have ‖f‖∗
Ψ,1

= ‖f‖◦
Ψ

 and ‖f‖∗
Ψ,∞

= ‖f‖Ψ . The con-
clusions of (a) and (c) are known (see [6, Theorem 1.76, 1.77]). We need to prove 
case (b) only.

For any k ∈ Kp(u), l ∈ Kq(f ),

where �(ku) ≤ ‖�‖ holds by Lemma  2.9 and IΦ(ku) = (kp − 1)
1

p < ∞ . Suppose 
that (i), (ii) and (iii) are satisfied, then all inequalities become equalities. Hence, f is 
norm attainable at u ∈ S(LΦ,p).

Conversely, let f = v + � ∈ (LΦ,p)
∗ be norm attainable at u ∈ S(LΦ,p) . We have

𝜑(u) ≤ ‖𝜑‖ ⋅ ‖u‖Φ < ‖𝜑‖ ⋅ ‖u‖Φ,p = ‖𝜑‖.

f (u) =
1

lk
(< lv, ku > +l𝜑(ku)) ≤

1

lk
(IΦ(ku) + IΨ(lv) + l𝜑(ku))

≤
1

lk
(IΦ(ku) + IΨ(lv) + l‖𝜑‖) =

1

lk
(IΦ(ku) + 𝜌

∗(lf ))

≤
1

k
sp(IΦ(ku)) ⋅

1

l
sq(𝜌

∗(lf )) = ‖u‖Φ,p ⋅ ‖f‖
∗
Ψ,q

= ‖f‖∗
Ψ,q

,
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Then we obtain the condition (i). By the Young Inequality, the condition (ii) holds. 
By Lemma 2.6, we have the condition (iii). 	�  ◻

Theorem 4.5  Assuming the p-Amemiya norm is k∗
p
-finite. Let u ∈ LΦ,p (1 ≤ p ≤ ∞) . 

Then v ∈ S(LΨ,q) is a supporting functional of u if and only if: 

(a)	 q = 1, p = ∞. Then

	 (i)	  IΦ(
u

‖u‖Φ,∞

) = 1 , and
	 (ii)	  v = w

‖w‖Ψ,1
⋅ sign u , for some w satisfying p−(

u(t)

‖u‖Φ,∞

) ≤ w(t) ≤ p+(
u(t)

‖u‖Φ,∞

), 
�-a.e. t ∈ G.

(b)	 1 < p, q < ∞,
1

p
+

1

q
= 1. Then

	 (i)	  v = w

‖w‖Ψ,q
⋅ sign u , for some w satisfying p−(ku(t)) ≤ w(t) ≤ p+(ku(t)), �

-a.e. t ∈ G , k ∈ Kp(u) , and
	 (ii)	  IΦ(ku) ⋅ I

q−1

Ψ
(w) = 1.

(c)	 q = ∞, p = 1. Then

	 (i)	  IΨ(v) = 1 , and
	 (ii)	  p−(ku(t)) ≤ v(t) ≤ p+(ku(t)), �-a.e. t ∈ G, k ∈ Kp(u).

Proof  It is well known ‖f‖∗
Ψ,1

= ‖f‖◦
Ψ

 and ‖f‖∗
Ψ,∞

= ‖f‖Ψ , and the conclusions of (a) 
and (c) are obtained (see [6, Theorem 1.78, 1.80]). We need to prove case (b) only.

Sufficiency. Suppose  ⟨v, u⟩ = ‖v‖Ψ,q ⋅ ‖u‖Φ,p = ‖u‖Φ,p . Then v(t) ⋅ u(t) ≥ 0, �

-a.e. t ∈ G. Given v0 is norm attainable at u, take k ∈ Kp(u) , l ∈ Kq(v0) , by Theo-
rem 4.4(b-ii) and the Young Inequality, we have

By Theorem 4.4(b-iii) and � = 0 , we have IΦ(ku) ⋅ I
q−1

Ψ
(lv0) = 1 . Hence, w = l|v0| is 

as required. Now let

0 =f (u) − ‖f‖∗
Ψ,q

⋅ ‖u‖Φ,p

=
1

kl
(< lv, ku > +l𝜑(ku)) −

1

l
sq(𝜌

∗(lf )) ⋅
1

k
sp(IΦ(ku))⋅

≤
1

lk
(IΦ(ku) + IΨ(lv) + l𝜑(ku)) −

1

l
sq(𝜌

∗(lf )) ⋅
1

k
sp(IΦ(ku))

≤
1

lk
(IΦ(ku) + IΨ(lv) + l𝜑(ku)) −

1

lk
(IΦ(ku) + IΨ(lv) + l‖𝜑‖)

=
1

lk
(l𝜑(ku) − l‖𝜑‖) ≤ 0.

p−(ku(t)) ≤ l|v0(t)| ≤ p+(ku(t)), �-a.e. t ∈ G.
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Then by the Young Inequality and the definition of p-Amemiya norm,

Necessity. If condition (i) fails, i.e., lv0(t) = w(t) ∉ [p−(ku(t)), p+(ku(t))] , by Theo-
rem 4.4(b-ii) v0 is not norm attainable at u. Hence, v = w

‖w‖Ψ,q
⋅ sign u is not a sup-

porting functional of u.
If condition (ii) fails, i.e., IΦ(ku) ⋅ I

q−1

Ψ
(w) ≠ 1 . In an analogous way as above, by 

Theorem  4.4(b-iii) and � = 0 , we have v0 is not norm attainable at u. Hence, 
v =

w

‖w‖Ψ,q
⋅ sign u is not a supporting functional of u. 	�  ◻

5 � Smoothness

Let X be a Banach space. u ∈ X is called a smooth point if it has a unique supporting 
functional fu . If every u ≠ 0 is a smooth point, then X is called a smooth space. Criteria 
for smooth points of Orlicz function (sequence) spaces equipped with the Orlicz norm 
and Luxemburg norm were given in [5, 7, 13, 28]. Criteria for smoothness of Orlicz 
function (sequence) spaces equipped with the Orlicz norm and Luxemburg norm were 
given in [4, 16, 26, 27]. In this section, we provide a characterization of smooth points 
in LΦ,p (1 ≤ p ≤ ∞) and as a result, we give necessary and sufficient conditions for the 
smoothness of LΦ,p.

For any u ∈ LΦ,p (1 ≤ p ≤ ∞) , for each n ∈ N , set

Lemma 5.1  [6] For any u ∈ LΦ,

where un is defined as in (6) and 𝜃(u) = inf{𝜆 > 0, IΦ

(
u

𝜆

)

< ∞}.

By Lemma 5.1 and (1), we have

v =
w

‖w‖Ψ,q
⋅ sign u, p−(ku(t)) ≤ w(t) ≤ p+(ku(t)).

1 ≥

�

v,
u

‖u‖Φ,p

�

=
1

‖w‖Ψ,q ⋅ ‖u‖Φ,p

⟨w, u⟩

=
1

k‖w‖Ψ,q ⋅ ‖u‖Φ,p

(IΦ(ku) + IΨ(w))

=
sq(IΨ(w))

‖w‖Ψ,q
⋅

1

‖u‖Φ,p

1

k
sp(IΦ(ku)) ≥

‖w‖Ψ,q

‖w‖Ψ,q
= 1.

(6)G(n) = {t ∈ G ∶ |u(t)| ≤ n}, un(t) = u(t) ⋅ �Gn(t)
.

lim
n→∞

‖u − un‖Φ = lim
n→∞

‖u − un‖
o
Φ
= �(u),

𝜃(u) = lim
n→∞

‖u − un‖Φ,p = inf
�

𝜆 > 0, IΦ

�
u

𝜆

�

< ∞

�

.
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Lemma 5.2  [6] Let u ∈ LΦ and �(u) ≠ 0 . Then there exist two different singular 
functionals �i ∈ S(LΦ)

∗ such that �i(u) = �(u), i = 1, 2.

Theorem 5.3  Let u ∈ LΦ,p (1 ≤ p ≤ ∞) and for any singular functional � . Then we 
have 𝜃(u) < (k∗∗(u))−1 and �(u) ≤ �(u) ⋅ ‖�‖.

Proof  Let un be defined as in (6), Then un ∈ EΦ,p . We have

Letting n → ∞ , we have �(u) ≤ 1

k∗∗(u)
 . Since �(EΦ,p) = 0 then

Letting n → ∞, �(u) ≤ ‖�‖ ⋅ �(u). 	� ◻

Theorem  5.4  u ∈ S(LΦ,p) (1 ≤ p ≤ ∞),  u ≠ 0 and 𝜃(u) < 1

k
,  k ∈ Kp(u) . Then the 

supporting functional of u must be in LΨ,q where 1
p
+

1

q
= 1 and Ψ is the function 

complementary to the Orlicz function Φ in the sense of Young.

Proof  If p = 1 or p = ∞ , then [31] has given the proofs. We need to prove the cases 
of 1 < p < ∞.

Let f be the supporting functional of u. Then f has the unique decomposition 
f = v + � where v ∈ LΨ,q (1 < q < ∞), 𝜑 ∈ F . Assuming � ≠ 0 , then

For any k ∈ Kp(u), l ∈ Kq(f ), by Theorem 5.3, the Young Inequality and the defini-
tion of conjugate outer functions, we get

a contradiction. 	�  ◻

Theorem  5.5  If p−(u) is continuous and u ∈ LΦ,p⧵{0} (1 ≤ p ≤ ∞) is a smooth 
point if and only if the supporting functional of u must be in LΨ,q where 1

p
+

1

q
= 1 

and Ψ is the function complementary to the Orlicz function Φ in the sense of Young.

‖u − un‖Φ,p = inf
k>0

1

k
sp(IΦ(k(u − un)) ≤

1

k∗∗(u)
sp(IΦ(k

∗∗(u)(u − un)) < ∞.

�(u) = �(u − un) ≤ ‖�‖ ⋅ ‖u − un‖Φ,p.

f (u) =
∫G

u(t)v(t)dt + �(u).

kl =kl
�G

u(t)v(t)dt + kl𝜑(u)

≤IΦ(ku) + IΨ(lv) + kl‖𝜑‖𝜃(u)

<IΦ(ku) + IΨ(lv) + l‖𝜑‖

≤sp(IΦ(ku))sq(IΨ(lv) + l‖𝜑‖)

=sp(IΦ(ku))sq(𝜌
∗(lf )) = kl
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Proof  If p = 1 or p = ∞ , the conclusions have been proved in [26], so we omit them 
here. We need to prove the cases of 1 < p < ∞ only.

Sufficiency. Let v0 ∈ S(LΨ,q) (1 < q < ∞) be a supporting functional of u. If there 
is another supporting functional f of u, and  f = v + �, � ≠ 0 . Then f+v0

2
=

v+v0

2
+

�

2
 

will be a supporting functional of u, too. Since

By the convexity of Ψ and Lemma 4.1(iii), we have

Hence,  IΨ(k
v+v0

2
) =

IΨ(kv0)

2
+

IΨ(kv)

2
 . Since Ψ(v) is strictly convex iff q−(v) is 

strictly increasing, i.e.,  p−(u) continuous (see [6]). So  v0 = v, �-a.e. t ∈ G . Thus 
‖�‖ = 0, i.e., � = 0.

Necessity. Set f = v + �, � ≠ 0 is a supporting functional of u, then

So  u ∉ EΦ,p , by Lemma  5.2, there exist singular functionals 
�i, ‖�i‖ = 1,  �i(u) = �(u),  (i = 1, 2),   and �1 ≠ �2 . Let  fi = v + ‖�‖ ⋅ �i. Then 
f1 ≠ f2 and by Theorem 3.2, ‖f1‖∗Ψ,q = ‖f2‖

∗
Ψ,q

= 1 . By Theorem 5.3, we have

Hence, f1 and f2 are both supporting functionals of u, which shows that u is not a 
smooth point of LΦ,p . 	�  ◻

Theorem 5.6  Let u ∈ S(LΦ,p) (1 ≤ p ≤ ∞), u ≠ 0 is a smooth point iff

‖v0‖Ψ,q = inf
k>0

1

k
(1 + I

q

Ψ
(kv0))

1

q = 1 and

‖f‖∗
Ψ,q

= inf
k>0

1

k
(1 + (IΨ(kv) + k‖𝜑‖)q)

1

q = 1.

1 =‖
f + v0

2
‖∗
Ψ,q

= inf
k>0

1

k

�

1 +

�

IΨ

�

k
v + v0

2

�

+ k‖
𝜑

2
‖

�q� 1

q

≤ inf
k>0

1

k

�

1 +

��
IΨ(kv)

2

�

+

�
IΨ(kv0)

2

�

+
k

2
‖𝜑‖

�q� 1

q

≤ inf
k>0

1

k

�
1

2
(1 + I

q

Ψ
(kv0))

1

q +
1

2
(1 + (IΨ(kv) + k‖𝜑‖)q)

1

q

�

=
‖v0‖Ψ,q

2
+

‖f‖∗
Ψ,q

2
= 1.

1 = ‖f‖∗
Ψ,q

= inf
k>0

1

k
(1 + (𝜌∗(kf ))q)

1

q ) ≥ inf
k>0

1

k
(1 + I

q

Ψ
(kv))

1

q ) = ‖v‖Ψ,q

fi(u) =
�G

u(t)v(t)dt + ‖�‖ ⋅ �i(u) =
�G

u(t)v(t)dt + ‖�‖�(u)

≥
�G

u(t)v(t)dt + �(u) = f (u).

Page 21 of 27 46



	 X. Li et al. 

	 (i)	 aΨ = 0,
	 (ii)	 1 ≤ p < ∞ , Ip−1

Φ
(ku) ⋅ IΨ(p−(k|u|)) = 1 or Ip−1

Φ
(ku) ⋅ IΨ(p+(k|u|)) = 1 and 

𝜃(u) <
1

k
.

	 (iii)	 p = ∞ , 𝜃(u) < 1 and G(u) = {t ∈ G ∶ p−(|u|) < p+(|u|)} is a null set.

Proof  Necessity.
If (i) is not true, then aΨ > 0 . Suppose f = v + � (v ≠ 0) is a supporting func-

tional of u. Take l ∈ Kq(f ) , there exists c > 0 such that lc ≤ aΨ . Set

Hence

Since (v̄ + 𝜑)(u) = (v + 𝜑)(u) = ‖u‖Φ,p , we have ‖v̄ + 𝜑‖∗
Ψ,q

≥ 1 . So v̄ + 𝜑 is also a 
supporting functional of u. But v̄ + 𝜑 ≠ v + 𝜑 , thus u is not a smooth point.

(ii) Suppose I
p−1

Φ
(ku) ⋅ IΨ(p−(k|u|)) ≠ 1 . By Theorem  4.4, we have 

I
p−1

Φ
(ku) ⋅ IΨ(p−(k|u|)) = 𝛼 < 1 . If 𝜃(u) < 1

k
 , then Theorem 5.5 implies that all sup-

porting functionals of u are in LΨ,q . Therefore if Ip−1
Φ

(ku) ⋅ IΨ(p+(k|u|)) ≠ 1 , then we 
must have Ip−1

Φ
(ku) ⋅ IΨ(p+(k|u|)) > 1 . This implies that the set

contains infinitely many elements, and by Theorem 4.5(b), every v

‖v‖Ψ,q
⋅ sign u is a 

supporting functional of u, which shows that u is not a smooth point of LΦ,p.
Now, we assume �(u) = 1

k
 , the supporting functional f = v + �, � ≠ 0 and 

‖�‖ =
1−�

kI
p−1

Φ
(ku)

   i.e.,  Ip−1
Φ

(ku)(IΨ(p−(k�u�)) + k‖�‖) = 1 . By Lemma  5.2, there exist 
�1,�2 ∈ F such that ‖�i‖ = 1 and �i(u) = �(u),  (i = 1, 2) . Define 
fi = p−(k�u�) + ‖�‖ ⋅ �i  (i = 1, 2). Then f1 ≠ f2 and by Theorem  3.2, 
‖f1‖

∗
Ψ,q

= ‖f2‖
∗
Ψ,q

= 1 . By the Young Inequality and Lemma 2.6, we have

v̄ =

{
v, for t ∈ supp(u)⧵supp(aΨ),

lc, for t ∈ supp(aΨ).

‖v̄ + 𝜑‖∗
Ψ,q

≤
1

l
(1 + (IΨ(lv̄) + l‖𝜑‖)q)

1

q

≤
1

l
(1 + (IΨ(lv) + l‖𝜑‖)q)

1

q = ‖v + 𝜑‖∗
Ψ,q

= 1.

V = {v ∶ p−(k|u(t)|) ≤ lv ≤ p+(k|u(t)|), I
p−1

Φ
(ku)IΨ(lv) = 1}

fi(u) =
�G

u(t)p−(k�u(t)�)dt + ‖�‖ ⋅ �i(u)

=
1

k
(IΦ(ku) + IΨ(p−(k�u�))) + ‖�‖�(u)

=
1

k
(IΦ(ku) + IΨ(p−(k�u�)) + ‖�‖)

=
1

k
sp(IΦ(ku)) ⋅ sq(IΨ(p−(k�u�)) + ‖�‖)

≥‖u‖Φ,p ⋅ ‖fi‖
∗
Ψ,q

.
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Hence, f1 and f2 are both supporting functionals of u, which shows that u is not a 
smooth point of LΦ,p.

The paper [6] has given the proof of the necessity of condition (iii).
Sufficiency.
Let  f = v + � be a supporting functional of u, where  v ∈ LΨ,q, � ∈ F.
If 1 ≤ p < ∞ . Then Theorem  4.4(b, c) shows that p−(k|u|) ≤ l|v| ≤ p+(k|u|), 

where k ∈ Kp(u), l ∈ Kq(f ) and l =
1

‖f‖∗
Ψ,∞

 , if q = ∞ . Hence if 

I
p−1

Φ
(ku) ⋅ IΨ(p−(k|u|)) = 1 holds, then by Theorem 4.4(b, c) we deduce that � = 0 

and v =
p−(k�u�)

‖p−(k�u�)‖Ψ,q
⋅ sign u is the unique supporting functional of u. If 

I
p−1

Φ
(ku) ⋅ IΨ(p+(k|u|)) = 1 holds, by Theorem  4.4(b, c), we have � = 0 . Thus 

v =
p+(k�u�)

‖p+(k�u�)‖Ψ,q
⋅ sign u the unique supporting functional of u.

When p = ∞ . Theorem  4.4(a) and Lemma  2.9 imply that all supporting func-
tional of u are contained in LΨ,1 . By Theorem 11, we know v = p−(u)

‖p−(u)‖Ψ,1
⋅ sign u is 

the unique supporting functional at u. 	�  ◻

Theorem 5.7  LΦ,p (1 ≤ p ≤ ∞) is smooth if and only if: 

	 (i)	 aΨ = 0;
	 (ii)	 p−(u) is continuous;
	 (iii)	 Φ ∈ Δ2(∞).

Proof  Sufficiency.
The condition (iii) implies LΦ,p = EΦ,p . For any u ∈ EΦ,p, we have 𝜃(u) = 0 <

1

k
 . 

If condition (ii) holds, then for every u ∈ S(LΦ,p) , p−(u) = p+(u) , i.e., V has only one 
function where V defined as in Theorem 5.6. By condition (i) and Theorems 5.5 and 
5.6, u is a smooth point of EΦ,p.

Necessity.
The condition (i) follows from Theorem 5.6.
(ii) If  p−(u) is not continuous, then there exist A, v1, v2 such that q−(v) = A for 

all v ∈ [v1, v2] . We can find G1 ⊂ G such that

Select a > 0 such that

There exists G2 ⊂ G⧵G1 , satisfying

Set u(t) = A�G1
(t) + q−(a)�G2

(t) , then Ip−1
Φ

(u) ⋅ IΨ(p−(|u|)) = 1 . Divide the set  G1 
into two sets E and F, with �E = �F and let

(Φ(A)𝜇(G1))
p−1

⋅Ψ(p−(A))𝜇(G1) < 1.

(Φ(A)𝜇(G1) + Φ(q−(a))𝜇(G⧵G1))
p−1(Ψ(p−(A))𝜇(G1) + Ψ(a)𝜇(G⧵G1)) > 1.

(Φ(A)�(G1) + Φ(q−(a))�(G2))
p−1(Ψ(p−(A))�(G1) + Ψ(a)�(G2)) = 1.

(7)w1(t) =v1�E(t) + v2�F(t) + a�G2
(t),
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then q−(wi(t)) = A�G1
(t) + q−(a)�G2

(t) = u(t) (i = 1, 2).
Let p = 1 . Then IΨ(p−(u)) = IΨ(wi) = 1 and ‖wi‖Ψ,∞ = 1 (i = 1, 2).

Hence, w1 and w2 are both supporting functionals of  u

‖u‖Φ,1

 . Thus,   u

‖u‖Φ,1

 is not a 
smooth point of LΦ,1.

Let 1 < p < ∞ and vi =
wi

‖wi‖Ψ,q
 , by the Young inequality and Lemma 2.6, we have

Hence, vi =
wi

‖wi‖Ψ,q
(i = 1, 2) is a supporting functional of  u

‖u‖Φ,p

 , which implies u

‖u‖Φ,p

 
is not a smooth point of LΦ,p.

Let p = ∞ . In an analogous way as above, we can construct

such that Φ(A)�(G1) + Φ(q−(a))�(G2) = 1 . We define w1 and w2 as (7) and (8). Then 
u ∈ EΦ,∞ , ‖u‖Φ,∞ = 1 and IΦ(u) = IΦ(q−(wi)) = 1 . Hence

Hence, vi =
wi

‖wi‖Ψ,1
(i = 1, 2) is a supporting functional of u, which implies  u is not a 

smooth point of LΦ,∞.
(iii) Let 1 ≤ p < ∞ . We assume that Φ ∉ Δ2(∞) . By the definition of Φ ∉ Δ2(∞) , 

there exist un ↗ ∞ such that Φ((1 +
1

n
)un) > n ⋅ 2n+1Φ(un) where n ∈ N (see [6]). 

Observing that

and

(8)w2(t) =v2�E(t) + v1�F(t) + a�G2
(t),

‖u‖Φ,1 = ‖u‖o
Φ
=
∫G

u(t)p−(u(t))dt =
∫G

u(t)wi(t)dt.

1 ≥

�

vi,
u

‖u‖Φ,p

�

=

�
wi

‖wi‖Ψ,q
,

u

‖u‖Φ,p

�

=
1

‖wi‖Ψ,q
⋅

1

‖u‖Φ,p
�G

u(t)wi(t)dt

=
1

‖wi‖Ψ,q
⋅

1

‖u‖Φ,p

(IΦ(u) + IΨ(wi))

=
1

‖wi‖Ψ,q
⋅

1

‖u‖Φ,p

sp(IΦ(u)) ⋅ sq(IΨ(wi)) ≥ 1.

u(t) = A�G1
(t) + q−(a)�G2

(t)

1 = ‖
wi

‖wi‖Ψ,1
‖Ψ,1 =

∫G

wi(t)

‖wi‖Ψ,1
q−(wi(t))dt =

∫G

wi(t)

‖wi‖Ψ,1
u(t)dt.

Φ((1 +
1

n
)un) =

∫

(1+
1

n
)un

0

p−(t)dt (un > 0),
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we have

Therefore p−((1 +
1

n
)un) > 2np−((1 −

1

n
)un) . Without loss of generality, we 

assume  u2
2
⋅ p−(

u2

2
)𝜇G > 1 , then there exist disjoint {Gn} (n ≥ 3) in 

∑
 such that 

(1 −
1

n
)unp−((1 −

1

n
)un)�Gn =

1

2n
, Φ(un)�Gn =

1

2n+1
.

Define x =
∑∞

n=3
(1 −

1

n
)un�Gn

, then

We imply IΦ(x) < 1 and IΨ(p−(x)) < 1 . Thus, we have Ip−1
Φ

(x)IΨ(p−(x)) < 1.
For any l > 1 , let m > 2 satisfy (1 − 1

m
)l > 1 +

1

n
 . Then

This shows IΨ(p−(lx)) = ∞ . So we have Ip−1
Φ

(lx)IΨ(p−(lx)) = ∞.

We imply �(x) = 1 and Kp(x) = {1} . By Theorems 5.5 and 5.6, x is not a smooth 
point of LΦ,p.

Let p = ∞ . Then [4, 31] have given the proof of sufficiency in different ways. So 
we omit it here. 	�  ◻
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Φ(un) ≥
�

un

(1−
1

n
)un

p(t)dt >
1

n
unp−

((

1 −
1

n

)

un

)

(un > 0),

(

1 +
1

n

)

unp−

((

1 +
1

n

)

un

)

≥ Φ

((

1 +
1

n

)

un

)

> n ⋅ 2n+1Φ(un)

> 2n+1unp−

((

1 −
1

n

)

un

)

.

IΦ(x) + IΨ(p−(x)) =
∫G

x(t)p−(x(t))dt

=

∞∑

n=3

(

1 −
1

n

)

unp−

((

1 −
1

n

)

un

)

𝜇Gn =

∞∑

n=3

1

2n
< 1.

IΦ(x) + IΨ(p−(lx)) ≥
�G

x(t)p−(lx(t))dt

≥

∞∑

n>m

(

1 −
1

n

)

unp−

((

1 +
1

n

)

un

)

𝜇Gn

≥

∞∑

n>m

(

1 −
1

n

)

un ⋅ 2
np−

((

1 −
1

n

)

un

)

𝜇Gn = ∞.

IΦ(lx) >

∞∑

n>m

Φ((1 +
1

n
)un)𝜇Gn =

∞∑

n>m

n ⋅ 2n+1Φ(un)𝜇Gn = ∞.
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