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Abstract
We provide a characterization when the quaternionic numerical range of a matrix is a
closed ball with center 0. The proof makes use of Fejér–Riesz factorization of matrix-
valued trigonometric polynomials within the algebra of complex matrices associated
with quaternion matrices.
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1 Introduction

In this paper, we are interested in studying when the quaternionic numerical range is
the closed unit ball in the algebra of quaternions. The quaternionic numerical range
was introduced in [14] and several basic properties were derived in [2, 3, 14, 19].
More recent papers include [1, 6, 17]. For the case of nilpotent quaternionic matrices,
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some circularity results appear in [5]. In the case of complex matrices, it was derived
(beyond the nilpotent case) in [16, Theorem 4.5] that for a complex matrix B ∈ C

n×n,

its numerical range is the closed unit disk if and only if there exist P0, P1 ∈ C
(n−1)×n,

so that B = 2P∗
0 P1 and P∗

0 P0 + P∗
1 P1 = In . We will be deriving a quaternionic

version of this result. To do this, we need to study Fejér–Riesz factorization in the
algebra of complex matrices associated with quaternion matrices. This algebra, which
we will call the QRC-subalgebra, consists of matrices of the form

[
A B

−B A

]
∈ C

2n×2n,

where C = (ci j ) denotes the matrix obtained from C = (ci j ) by taking entrywise
complex conjugates.Here, ‘QRC’ stands for ‘QuaternionsRepresented asComplexes’.
It should be noted that in [9], for instance, these matrices are referred to as being
‘symplectic’.However, as the term ‘symplectic’ is also used for other types ofmatrices,
we will use the QRC-subalgebra terminology. The classical Fejér–Riesz factorization
result has its application in filter design (see, e.g., [11]), wavelet design (see [7]), and
H∞-control (see, e.g., [10]). Factorizations in this context are numerically found via
solving Riccati equations (see [15]) or semidefinite programming (see, e.g., [12]).

The paper is organized as follows. In Sect. 2, we will derive the Fejér–Riesz fac-
torization in the QRC-subalgebra. In Sect. 3, we will provide a characterization when
the quaternionic numerical range equals the closed unit ball in the quaternions. Before
we start, we will introduce our notational conventions.

1.1 Notation

For notation regarding basic quaternion linear algebra, we refer to the monograph
[18]. Every quaternion in H is of the form: quaternion number

x = x0 + x1i + x2j + x3k,

where x0, x1, x2, x3 ∈ R and the elements i, j, k satisfy the following formulas:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Note that multiplication in H is not commutative. Denote the conjugate quaternion
conjugate quaternion of x by x = x0 − x1i − x2j − x3k and the norm of x ∈ H by

‖x‖ = √
x∗x =

√
x20 + x21 + x22 + x23 ∈ R. For a quaternion matrix A, let A denote

the matrix obtained from where each entry is the conjugate of the corresponding entry
in A.

For A ∈ H
n×n, where

A = A0 + iA1 + jA2 + kA3, with Ai ∈ R
n×n, i = 0, 1, 2, 3,
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we write A = B + jC where B := A0 + iA1 ∈ C
n×n and C := A2 − iA3 ∈ C

n×n .
There exists a complex matrix ωn(A) associated with A, defined by

ωn(A) =
[

B C
−C B

]
∈ C

2n×2n .

Then, ωn is an isomorphism of the real algebra Hn×n onto the real unital subalgebra
�2n (subalgebra of C2n×2n)

�2n :=
{[

B C
−C B

]
: B,C ∈ C

n×n
}

of C2n×2n . As mentioned before, we will call this subalgebra the QRC-subalgebra
where ‘QRC’ stands for ‘Quaternions Represented as Complexes’. For a nonsquare
matrix A ∈ H

m×n written as A = B+ jC, B,C ∈ C
m×n,we use the notationωm,n(A)

and �2m,2n

�2m,2n :=
{[

B C
−C B

]
: B,C ∈ C

m×n
}

.

The map ωm,n : Hm×n → �2m,2n is invertible, and the inverse of ωm,n is denoted
by ω−1

m,n . When the sizes are clear from the context, we may drop the subscripts and
simply write ω(A).

The following properties can be found in [18, Section 3.4] and [21]. For X ,Y ∈
H

n×n and s, t ∈ R be arbitrary, we have

(i) ωn(In) = I2n;
(ii) ωn(XY ) = ωn(X)ωn(Y );
(iii) ωn(sX + tY ) = sωn(X) + tωn(Y );
(iv) ωn(X∗) = (ωn(X))∗;
(v) X is invertible if and only if ωn(X) is invertible; if so, then ωn(X−1) =

(ωn(X))−1.

Furthermore, define the matrix

Jn := ω(j) ⊗ In =
[

0 In
−In 0

]
,

where ⊗ is the Kronecker product.
We denote the numerical range of a quaternion matrix A ∈ H

n×n by

WH(A) = {
x∗Ax : ‖x‖ = 1, x ∈ H

n} ⊂ H.

Note that if q ∈ WH(A), and u ∈ Hwhere ‖u‖ = 1, then u∗qu ∈ WH(A). In general,
u∗qu 
= q. For basic information on the quaternionic numerical range, see for instance
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[18, Section 3.3]. The subset of complex elements in WH(A) is known as the bild of
A, denoted

B(A) := WH(A) ∩ C.

Although the bild may not be convex, the upper bild B+(A) = WH(A) ∩ C
+ is

always convex; see [19]. Here, C+ = {z ∈ C : Imz ≥ 0} is the closed upper half
plane. Note that B(A) is symmetric with respect to the real axis. Indeed, if j∗αj =
α ∈ B(A). Thus, knowing just B+(A) provides full information on B(A), since
B(A) = B+(A) ∪ B+(A) (where the bar indicates taking complex conjugates).

Let D = {z ∈ C : ‖z‖ < 1} and D = {z ∈ C : ‖z‖ ≤ 1} denote the open
and closed unit disks in C and T = {z ∈ C : ‖z‖ = 1} the unit circle. Finally, let
B = {q ∈ H : ‖q‖ < 1} and B = {q ∈ H : ‖q‖ ≤ 1} denote the open and closed unit
balls in H.

2 Fejér–Riesz factorization in the QRC-subalgebra

Lemma 2.1 Let C ∈ C
2n×2n . Then C ∈ �2n if and only if JnC J ∗

n = C .

Proof Take C ∈ C
2n×2n, where

C =
[
C11 C12
C21 C22

]
.

Then

JnC J ∗
n =

[
0 In

−In 0

] [
C11 C12

C21 C22

] [
0 −In
In 0

]
=

[
C22 −C21

−C12 C11

]
,

which is equal to C if and only if C11 = C22 and C12 = −C21. Hence, C ∈ �2n if
and only if JnC J ∗

n = C . ��
Lemma 2.2 Let C ∈ C

2n×2n . Then, 1
2

(
JnC J ∗

n + C
) ∈ �2n .

Proof Take C ∈ C
2n×2n, where

C =
[
C11 C12
C21 C22

]
.

Then

1

2

(
JnC J ∗

n + C
) = 1

2

([
0 In

−In 0

] [
C11 C12

C21 C22

] [
0 −In
In 0

]
+

[
C11 C12
C21 C22

])

= 1

2

([
C22 −C21

−C12 C11

]
+

[
C11 C12
C21 C22

])

= 1

2

[
C22 + C11 −C21 + C12

−C12 + C21 C11 + C22

]
∈ �2n . ��
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Note that if C ∈ �2n, then JnC J ∗
n = C, and hence

1

2

(
JnC J ∗

n + C
) = C .

The following result provides Fejér–Riesz factorization in the QRC-subalgebra
�2n . The result is a variation of [12, Proposition 4.6], which was based on [8, Sec-
tion 3]; see also [4, Theorem 2.4.19].

Theorem 2.3 Let Q(z) = Q−mz−m + · · ·+ Qmzm ≥ 0, z ∈ T, where Q j ∈ �2n . Let

Z =

⎡
⎢⎢⎢⎣
Q0 Q−1 . . . Q−m

Q1 0 . . . 0
...

...
...

Qm 0 . . . 0

⎤
⎥⎥⎥⎦ , and introduce the convex set

G =
{
X ∈ C

2nm×2nm | A(X) := Z −
[
X 0
0 02n

]
+

[
02n 0
0 X

]
≥ 0

}
.

Then, G has elements Xmax and Xmin that are maximal andminimal with respect to the
Loewner ordering, respectively; i.e., Xmax, Xmin ∈ G have the property that X ∈ G
implies Xmin ≤ X ≤ Xmax. Writing Xmax = (Xmax

i j )mi, j=1 and Xmin = (Xmin
i j )mi, j=1,

we have that Xmax
i j , Xmin

i j ∈ �2n .

Moreover, consider the set

A =
{
A = (Ai j )

m
i, j=0 ∈ C

2n(m+1)×2n(m+1) A = A(X) for some X ∈ G
}
.

Then, A(Xmax) is the unique element in A, so that Amm is maximal (or equivalently,
A00 is minimal) in the Loewner order. Also, A(Xmin) is the unique element in A so
that A00 is maximal (or equivalently, Amm is minimal) in the Loewner order. Finally,
we may factor A(Xmax) and A(Xmin) as

A(Xmax) =
⎡
⎢⎣
H∗
0
...

H∗
m

⎤
⎥⎦[

H0 . . . Hm
]
, A(Xmin) =

⎡
⎢⎣
K ∗
0
...

K ∗
m

⎤
⎥⎦ [

K0 . . . Km
]

(2.1)

with Hi , Ki ∈ �2n, i = 0, . . . ,m, and put H(z) = ∑m
k=0 Hkzk, K (z) = ∑m

k=0 Kkzk .
Then

Q(z) = H(z)∗H(z) = K (z)∗K (z), z ∈ T.

Proof Without the restriction that Q j , Hj , K j ∈ �2n, the statement is covered by [12,
Proposition 4.6]. For a block matrix B = (Bi j )i, j , where Bi j ∈ C

2n×2n, we define

J (B) :=
(
1

2

(
Jn Bi j J

∗
n + Bi j

))
i, j

.
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In other words, we perform the operation C �→ 1
2

(
JnC J ∗

n + C
)
to each block entry.

It is easy to see that the operation J preserves positive semidefiniteness. In addi-
tion, J (Z) = Z and J (A(X)) = A(J (X)). This now yields that when X ∈ G,

then J (X) ∈ G. As J preserves positive semidefiniteness, it also follows that
X ≤ Y implies J (X) ≤ J (Y ). Thus, Xmin ≤ X ≤ Xmax implies J (Xmin) ≤
J (X) ≤ J (Xmax). As J (Xmin),J (Xmax) ∈ G, we also have Xmin ≤ J (Xmin) and
J (Xmax) ≤ Xmax.Observe thatJ does not change the trace of aHermitianmatrix, and
thus, Tr(Xmin) = Tr(J (Xmin)) and Tr(J (Xmax)) = Tr(Xmax). But then, it follows
that J (Xmin) = Xmin and J (Xmax) = Xmax, and thus Xmax

i j , Xmin
i j ∈ �2n . Finally,

the spectral theorem for quaternionic matrices [9, Theorem 3.3 and Proposition 3.7]
implies that the factorizations in (2.1) can be kept within the QRC-subalgebra. ��

In fact, we have that H(z) is co-outer and K (z) is outer (see [12, Section 4] or
[4, Section 2.4] for the definitions); when Hm and K0 are invertible, this means that
det H(z) 
= 0 for z ∈ C\D and det K (z) 
= 0 for z ∈ D.

3 Circularity of the quaternionic numerical range

For A ∈ H
n×n, we consider also the numerical range of the complex matrix ω(A)

W (ω(A)) =
{
y∗ω(A)y : ‖y‖ = 1, y ∈ C

2n
}

.

Since W (ω(A)) is always convex by the famous Toeplitz–Hausdorff Theorem [13,
20] and B(A) sometimes not, we know that the two sets do not coincide in general.
However, we will see that B(A) is the unit disk if and only if W (ω(A)) is the unit
disk.

We start off with some auxiliary results. The following lemma follows from the
proof of [14, Theorem 35].

Lemma 3.1 [14] For A ∈ H
n×n follows B(A) ⊆ W (ω(A)) .

Proof Let q ∈ B(A). Hence, there exists a vector x ∈ H
n, where ‖x‖ = 1, such that

q = x∗Ax ∈ C. Thus, ω(q) = ω(x)∗ω(A)ω(x), where

ω(q) =
[
q 0
0 q

]
=

[
x∗
C −x∗

H
x∗
H x∗

C

] [
AC AH

−AH AC

] [
xC xH

−xH xC

]
,

with A = AC + jAH and x = xC + jxH . Using that

1 = ‖x‖2 = ‖xC + jxH‖2 = ‖xC‖2 + ‖xH‖2 =
∥∥∥∥
[

xC
−xH

]∥∥∥∥
2

,

it follows that

q = [
x∗
C −x∗

H

]
ω(A)

[
xC

−xH

]
∈ W (ω(A)). ��
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In general, the other inclusion will not hold. For example, if A ∈ H
1×1 is not

real, then B(A) = {α, α} where α and α are the eigenvalues of ω(A) ∈ C
2×2; and

W (ω(A)) will be the line segment between α and α.

Next, we show that the two sets B(A) andW (ω(A)) do coincide when either one is
the closed unit disc, with B(A) = D the stronger condition, sinceW (ω(A)) is convex.

Lemma 3.2 For A ∈ H
n×n, it follows that B(A) = D is equivalent to WH(A) = B.

Proof Assume B(A) = D. Let q ∈ B where q = q0 + iq1 + jq2 + kq3 with ‖q‖2 =∑3
p=0 |qp|2 ≤ 1. Then

q̃ = q0 + i

∥∥∥∥∥∥
⎡
⎣q1
q2
q3

⎤
⎦

∥∥∥∥∥∥ ∈ D = B(A) = WH(A) ∩ C.

Hence, q̃ ∈ WH(A) and by [2, Lemma 2] also q ∈ WH(A). For the other inclusion,
let q ∈ WH(A) where q = q0 + iq1 + jq2 + kq3. Then

q0 + i

∥∥∥∥∥∥
⎡
⎣q1
q2
q3

⎤
⎦

∥∥∥∥∥∥ ∈ B(A) = D,

from which follows

1 ≥ |q0|2 +
∥∥∥∥∥∥
⎡
⎣q1
q2
q3

⎤
⎦

∥∥∥∥∥∥
2

=
3∑

p=0

|qp|2 = ‖q‖2.

Hence, q ∈ B.

For the other direction, assumeWH(A) = B. Take z ∈ B(A) = WH(A)∩C. Thus,
‖z‖2 ≤ 1 which proves z ∈ D. For the other inclusion, take z ∈ D where z = x + iy
and x, y ∈ R Thus ‖z‖2 = x2 + y2 ≤ 1. Then, x + iy ∈ H and x + iy ∈ B = WH(A).

Using [2, Lemma 2], it follows that z ∈ B(A). ��

The following lemma follows from [2, Theorem 2], which states that if WH(A) is
convex, then B(A) = W (ω(A)). We will provide a proof as it makes the paper more
self-contained.

Lemma 3.3 For A ∈ H
n×n, if B(A) = D, then B(A) = W (ω(A)).

Proof If B(A) = D, thenD ⊆ W (ω(A)) using Lemma 3.1. Hence, it remains to show
that W (ω(A)) ⊆ D.

Since B(A) = D, it follows that WH(A) = B. Let α ∈ W (ω(A)). Then, α =
u∗ω(A)u, where u ∈ C

2n and ‖u‖ = 1. Decompose u =
[
u1
u2

]
, where u1, u2 ∈ C

n,



33 Page 8 of 14 A. van der Merwe et al.

and define w :=
[−u2
u1

]
. Note that

w∗u = −u∗
2u1 + u∗

1u2

= −uT2 u1 + uT1 u2

= −(uT1 u2)
T + uT1 u2 = 0.

Define x := u1 − ju2 ∈ H
n . Then, ‖x‖ = 1 and for some β ∈ C

[
α β

−β α

]
=

[
u∗
w∗

]
ω(A)

[
u w

]

=
[
u∗
1 u∗

2
u∗
2 u∗

1

]
ω(A)

[
u1 − u2
u2 u1

]
= ω(x)∗ω(A)ω(x).

Hence, α + jβ ∈ WH(A) = B. Thus, ‖α‖2 + ‖β‖2 = ‖α + jβ‖2 ≤ 1, and therefore,
‖α‖ ≤ 1, which proves α ∈ D. ��

Before we can state and prove our main result, we require the following results. For
the results that are known, we omit the proofs and provide only a reference.

Lemma 3.4 [2, Corollary 1] Let A ∈ H
n×n . Then, R ∩ WH(A) is a closed interval.

Lemma 3.5 [2, Theorem 3] For A ∈ H
n×n, WH(A) is convex if and only if R ∩

WH(A) = {Re(q) : q ∈ WH(A)} .

Corollary 3.6 Let A ∈ H
n×n and WH(A) ⊆ B. If ±1 ∈ WH(A), then WH(A) is

convex.

Proof Since WH(A) ⊆ B, we have

{Re(q) : q ∈ WH(A)} ⊆ [−1, 1].

As ±1 ∈ R ∩ WH(A), if follows by Lemma 3.4 that:

[−1, 1] ⊆ R ∩ WH(A).

Then

[−1, 1] ⊆ R ∩ WH(A) ⊆ {Re(q) : q ∈ WH(A)} ⊆ [−1, 1].

Thus

R ∩ WH(A) = {Re(q) : q ∈ WH(A)} ,

and by Lemma 3.5 WH(A) is convex. ��
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Our main result is the following description of quaternionic matrices whose bild is
the unit disk.

Theorem 3.7 Let A ∈ H
n×n . Then, B(A) = D if and only if there exist P0, P1 ∈

H
n−1×n, such that

P∗
0 P0 + P∗

1 P1 = In and
1

2
A = P∗

0 P1.

Proof Assume there exist P0, P1 ∈ H
n−1×n, such that

P∗
0 P0 + P∗

1 P1 = In and
1

2
A = P∗

0 P1.

Then

ω(P0)
∗ω(P0) + ω(P1)

∗ω(P1) = I2n and
1

2
ω(A) = ω(P0)

∗ω(P1).

Since ω(P0), ω(P1) ∈ C
2(n−1)×2n, it follows by [16, Theorem 4.5] that

W (ω(A)) = D, and hence, by Lemma 3.1, we have B(A) ⊆ D. From [2, Theo-
rem 1], it follows:

WH(A) ⊆ {a0 + p : a ∈ R, p ∈ H, Re(p) = 0, a0 + ‖p‖i ∈ B(A)}.

Therefore, it is clear that WH(A) ⊆ B.

Next, note that

In − 1

2
A − 1

2
A∗ = (P0 − P1)

∗(P0 − P1) ≥ 0,

where P0 − P1 ∈ H
n−1×n . Hence, Ker(P0 − P1) is non-trivial. Take x ∈ H

n where
x ∈ Ker(P0 − P1) and ‖x‖ = 1. Then

0 = x∗(P0 − P1)
∗(P0 − P1)x

= x∗
(
In − 1

2
A − 1

2
A∗

)
x

= x∗x − 1

2
x∗Ax − 1

2
x∗A∗x

= 1 − Re
(
x∗Ax

)
.

Since x∗Ax ∈ WH(A), it follows that ‖x∗Ax‖ ≤ 1, and hence, 1 = x∗Ax ∈ WH(A).

In a similar way, it can be proven that −1 ∈ WH(A) using

In + 1

2
A + 1

2
A∗ = (P0 + P1)

∗(P0 + P1) ≥ 0.
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Hence, by Corollary 3.6, it follows that WH(A) is convex, and therefore, B(A) =
W (ω(A)) = D by Lemma 3.3.

For the other direction, assume B(A) = D. By Lemma 3.3, it then follows that
B(A) = W (ω(A)). Thus, |x∗ω(A)x | ≤ 1 for all x ∈ C

2n where ‖x‖ = 1. This is
equivalent to

Re
(
eiθ x∗ω(A)x

)
≤ 1, for all θ and ‖x‖ = 1,

which can be rewritten as

1

2
x∗ (

eiθω(A) + e−iθω(A)∗
)
x ≤ x∗x, for all θ and ‖x‖ = 1.

Hence

I2n − 1

2

(
eiθω(A) + e−iθω(A)∗

)
≥ 0 for all θ,

or equivalently

I2n − 1

2

(
zω(A) + 1

z
ω(A)∗

)
≥ 0 for all z ∈ T.

Define Q0 := I2n and Q1 := − 1
2ω(A). Then, Q j ∈ �2n for j = −1, 0, 1, where

Q−1 := Q∗
1, and

Q(z) :=
1∑

j=−1

Q j z
j ≥ 0 for all z ∈ T.

By the Fejér–Riesz factorization (Theorem 2.3), there exist P̃0, P̃1 ∈ �2n, such that

Q(z) = (
P̃0 + z P̃1

)∗ (
P̃0 + z P̃1

)
, for all z ∈ T,

and in fact, we choose the factorization that corresponds to the choice Xmin in Theo-
rem 2.3. By equating coefficients, it follows that:

P∗
0 P0 + P∗

1 P1 = In and
1

2
A = P∗

0 P1,

where ω(P0) = P̃0 and ω(P1) = P̃1, for some P0, P1 ∈ H
n×n. Hence, it remains to

prove that we are able to reduce the size of P0 and P1.
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Note that since z ∈ W (ω(A)) for any z ∈ T, there exists a y ∈ C
2n, ‖y‖ = 1, such

that z = y∗ω(A)y. Then

y∗ (
P̃0 + z P̃1

)∗ (
P̃0 + z P̃1

)
y = y∗Q(z)y

= y∗
(
I2n − 1

2
zω(A) − 1

2

1

z
ω(A)∗

)
y = 0,

which proves that P̃0 + z P̃1 is singular for all z ∈ T. We reason by contradiction that
P̃0 is singular. If P̃0 is non-singular, then

P̃0 + z P̃1 = P̃0
(
I2n + z P̃−1

0 P̃1
)

= P̃0
(
I2n − z

(
−P̃−1

0 P̃1
))

.

Using that

det
(
I2n − z

(
−P̃−1

0 P̃1
))

= 0

only holds when 1
z is an eigenvalue of −P̃−1

0 P̃1, of which there are at most 2m, we
arrive at a contradiction. Hence, P̃0 is singular. By a similar argument, it follows that
P̃1 is singular.

Write

0 ≤
[
P̃0
P̃1

]∗ [
P̃0 P̃1

] =:
[

P 1
2ω(A)

1
2ω(A)∗ I2n − P

]
,

where we recall that we made the choice corresponding to Xmin in Theorem 2.3. This
results in choosing the largest P in the Loewner order, which we denote by Pmax.

Furthermore

rank

[
Pmax

1
2ω(A)

1
2ω(A)∗ I2n − Pmax

]
= rank Pmax.

To see this, we use the generalized Schur complement of Pmax which equals

B := I2n − Pmax − 1

2
ω(A)∗P(−1)

max
1

2
ω(A) ≥ 0,

with P(−1)
max the Moore–Penrose generalized inverse of Pmax. From

rank

[
Pmax

1
2ω(A)

1
2ω(A)∗ I2n − Pmax

]
= rank Pmax + rank B,

it follows that

rank

[
Pmax

1
2ω(A)

1
2ω(A)∗ I2n − Pmax

]
≥ rank Pmax.
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Suppose

rank

[
Pmax

1
2ω(A)

1
2ω(A)∗ I2n − Pmax

]
> rank Pmax.

Then, B 
= 0. Furthermore,

[
Pmax

1
2ω(A)

1
2ω(A)∗ I2n − Pmax − B

]
=

[
Pmax

1
2ω(A)

1
2ω(A)∗ 1

2ω(A)∗P(−1)
max

1
2ω(A)

]
≥ 0.

Now
[
Pmax + B 1

2ω(A)

1
2ω(A)∗ I2n − (Pmax + B)

]
≥ 0,

and since Pmax + B > Pmax, this is a contradiction.
Let

k = rank Pmax = rank

[
Pmax

1
2ω(A)

1
2ω(A)∗ I2n − Pmax

]
.

Since Pmax = P̃∗
0 P̃0 and rank P̃0 < 2n,we have that k < 2n. Since 0 as an eigenvalue

of Pmax has evenmultiplicity (see, e.g., [21, Corollary 5.1]), we have that k ≤ 2(n−1).
Then, by the spectral theorem in quaternions [9, Proposition 3.7], there exist R0, R1 ∈
�2(n−1)×2n, such that

[
Pmax

1
2ω(A)

1
2ω(A)∗ I2n − Pmax

]
=

[
R0
R1

]∗ [
R0 R1

]
.

Now, S0 = ω−1(R0) ∈ H
(n−1)×n, S1 = ω−1(R1) ∈ H

(n−1)×n gives us the desired
matrices, so that A = 2S∗

0 S1 and S∗
0 S0 + S∗

1 S1 = In . ��
Let us illustrate Theorem 3.7 in a simple example.

Example 3.8 Let A =
⎡
⎣0 a1 0
0 0 a2
0 0 0

⎤
⎦ . Then, one easily checks that B(A) is a disk with

center 0 (see also [5]). In this case, let

P0 =
(
1 0 0
0 ā2

2 0

)
, P1 =

(
0 a1

2 0
0 0 1

)
.

Then, A = 2P∗
0 P1.Moreover,when‖a1‖2+‖a2‖2 = 4weobtain that P∗

0 P0+P∗
1 P1 =

I3. Therefore, under this condition, we have that the numerical range of A is the closed
unit ball in H.
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