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Abstract
For an arbitrary normed spaceX over a field F ∈ {R, C},we define the directed graph
�(X ) induced by Birkhoff–James orthogonality on the projective space P(X ), and
also its nonprojective counterpart �0(X ).We show that, in finite-dimensional normed
spaces, �(X ) carries all the information about the dimension, smooth points, and
norm’s maximal faces. It also allows to determine whether the norm is a supremum
norm or not, and thus classifies finite-dimensional abelian C∗-algebras among other
normed spaces. We further establish the necessary and sufficient conditions under
which the graph �0(R) of a (real or complex) Radon plane R is isomorphic to the
graph �0(F

2, ‖ · ‖2) of the two-dimensional Hilbert space and construct examples of
such nonsmooth Radon planes.
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1 Introduction and preliminaries

How important is a given relation? The question is intentionally vague and its answer
depends very much on the context, i.e., on the choice of objects of study. One can
measure the importance of the relation by using graphs: The vertices, typically (though
not always), are all the elements of a given object and two vertices are connected by
a directed edge if they are related. This approach concentrates on the relation alone
and leaves aside how the relation interacts with other structures/operations inside the
object. Having built the graphs on two objects within the same category (like the
category Mat of matrix algebras), one can then examine how close the two objects
are if the relation on them behaves in exactly the same way. Technically, if the two
graphs are isomorphic, does it imply that the two objects are isomorphic? We call this
an isomorphism problem and if the answer is yes on objects within some category,
then the relation is clearly very important there. For example, it was shown in [17] that
commutativity has exactly this property in the category Mat(C) of complex matrix
algebras. The same relation alone can tell if a given nonabelian finite group is simple
and can also distinguish among them [1, 11, 23], although it is less powerful on general
groups [7, 9].

Anothermeasure of the importance of the relation iswhether it can classify elements
with a particular property inside an object. We call this property recognition problem.
Presently, we investigate these questions in the category Ban of finite-dimensional
Banach spaces. In this paper, we focus our attention on the relation of Birkhoff–James
orthogonality.

Given a normed vector space X over the field F ∈ {R, C}, there are sev-
eral nonequivalent possibilities to equip it with orthogonality relation. One of the
most known and investigated among them is Birkhoff–James orthogonality (BJ-
orthogonality for short), denoted in the present paper by x ⊥ y. In the words of
Birkhoff [4] (choosing the origin to be a point which he denoted by p, since Birkhoff
considered vectors of the form −→pq), it is defined as a condition that no point on the
(extended) line containing 0 and y is nearer to x than 0. Equivalently, x ⊥ y if

‖x + λy‖ ≥ ‖x‖; λ ∈ F.

Birkhoff then proved in [4] that if any given line has at most one perpendicular to
any given point outside of this line, then the above relation on a three-dimensional
(real) space is symmetric, i.e.,

x ⊥ y ⇐⇒ y ⊥ x,

if and only if the norm is induced by an inner product. The first condition here is
interpreted as follows: let � be a line passing through some distinct points x and y,
and let z be an arbitrary point which does not belong to �. Then there exists at most
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one point w ∈ � such that −→wz = z − w ⊥ y − x = −→xy (this is equivalent to the fact
that the norm on X is rotund, i.e., strictly convex).

This orthogonality relation was further developed (again in real spaces) by James
in a series of papers [13–15]; in particular in [14, Theorem 1] he managed to remove
the rotundness condition from Birkhoff’s result by a nice application of Kakutani’s
[16, Theorem 3] classification of inner-product spaces using the norm of a projection.
Note that Kakutani’s proof works only in real spaces, however, it can be extended
without altering its statement to complex normed spaces as well (see [6]). Thus, by
[14, Theorem 1], the symmetricity of BJ-orthogonality is equivalent to the fact that
the norm is induced by an inner product, for any normed space of dimension at least
three and over any field F = R, C. The interesting part of this result is that it classifies
inner product spaces purely in terms of the BJ-orthogonality relation without using
additional operations available in every vector space (additivity and multiplicativity
by scalars).

A natural tool to investigate this further (i.e., the information on a normed space
encoded by the properties of BJ-orthogonality) is via a graph of the relation. More
precisely, to every normed space X , we associate a directed graph (i.e., a digraph)
�0 = �0(X )whose vertices are all the elements ofX and vertices x, y form a directed
edge x → y if x ⊥ y. Observe that x ⊥ x if and only if x = 0. Therefore, x = 0 is
the only vertex with a loop in the graph �0.

Since Birkhoff–James relation is clearly homogeneous in a sense that x ⊥ y if and
only if (λx) ⊥ (μy) for every λ,μ ∈ F, there is another natural digraph, � = �(X ),

associated withX . Its vertex set equals PX := {[x] = Fx; x ∈ X \{0}} (i.e., a vertex
in�(X ) is a one-dimensional subspace ofX ), and two vertices [x], [y] form a directed
edge (denoted [x] → [y]) if some, hence any, of their representatives x ∈ [x] and
y ∈ [y] satisfy x ⊥ y. Observe that �(X ) has no loops. Observe also that �(X ) is a
quotient graph of the induced subgraph of �0(X ) obtained by removing its only loop
vertex, under the relationFx = Fy on�0(X )\{0}.We call� = �(X ) an orthodigraph
in the sequel.

Because an orthodigraph was defined over a projectivization rather than a space
itself, it encodes one additional piece of information besides the BJ-orthogonality,
namely, linear dependence between two vectors. This subtlety is by no means auto-
matic (see [2, Example 3.9]) and may on the one hand appear rather restrictive, while,
on the other hand, makes our key results valid for general norms.

For a subset�we denote by |�| its cardinality. If S is a subset of a (general) digraph
�̂ then x → S will be a shorthand for the statement that x → s for every s ∈ S, i.e.,
x forms a directed edge with every element in S. Recall that a clique in digraph �̂ is a
subset of pairwise connected vertices. Given a vertex x in a (general) digraph �̂, we
let

x⊥ := {y ∈ �̂; x → y}

be its outgoing neighborhood, i.e., the set of vertices that have an edge from x . Also,

⊥x := {y ∈ �̂; y → x}
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denotes its incoming neighborhood, i.e., the set of vertices that have an edge to x .
Notice that for [x] ∈ �(X ) we have

[x]⊥ = {[y] ∈ �(X ); [x] ⊥ [y]};

similarly for x⊥ with x ∈ �0(X ). Actually, since BJ-orthogonality is homogeneous,

[z] ∈ [x]⊥ if and only if [z] ⊆ x⊥ (x ∈ X \{0});
z ∈ x⊥\{0} if and only if [z] ∈ [x]⊥ (x ∈ X \{0}). (1.1)

Similar description/connections hold for/between ⊥x and ⊥[x].
Given a subset of vertices S ⊆ �0(X ), its span, Span S, is the set of vertices

obtained by taking the linear span of S in the vector space X . With our first result we
show that the operation of taking the spans is graphological in smooth normed spaces
(that is, the span can be computed by studying the connection in the graph alone and,
consequently, �(Span S) = Span�(S) for every bijection � which preserves BJ-
orthogonality in both directions). We furthermore show that the dimension is also a
graphological property in a general normed space.

Theorem 1.1 Let X be a normed space over F. Then dimX < ∞ if and only if the
clique number of �0(X ) is finite. If the clique number of �0(X ) is finite, then

dimX = min

{
|�|; � is a finite subset of �0(X ) with

∣∣∣∣
⋂
x∈�

x⊥
∣∣∣∣ = 1

}
. (1.2)

Furthermore, if X is a smooth finite-dimensional space and S is a subset of �0(X ),

then

span(S) =
⋂

x∈�0(X )
x→S

x⊥ and

dim(span(S)) = dimX −min

{
|�|; � ⊆ �0(X ) with

⋂
x∈�
x→S

x⊥ = span(S)

}
.

Remark 1.2 The proof will show that both formulas for the dimension inside Theo-
rem 1.1 also hold if �0(X ) (which contains exactly one loop vertex) is replaced by
�(X ) (which contains no loop vertices), the only difference is that in (1.2) we mini-
mize the cardinality of subsets � ⊆ �(X ) with

∣∣⋂
x∈� x⊥

∣∣ = 0. In this light, we can

define the dimension, dim �̂, of any digraph �̂, as follows:

(i) dim �̂ = ∞ if �̂ contains an infinite clique,
(ii) dim �̂ is given by (1.2) if �̂ has a finite clique number and a loop vertex,

(iii) dim �̂ = min
{
|�|; � is a finite subset of �̂(X ) with

∣∣⋂
x∈� x⊥

∣∣ = 0
}
if �̂ is

loopless with a finite clique number.
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(We follow the convention that min∅ = ∞.)

Recall that a nonzero point x in a vector space X is smooth if it has a unique
supporting functional (a normalized functional f is supporting for x if f (x) = ‖x‖).
It is easy to see that x is smooth if and only if λx is smooth for every nonzero λ ∈ F.

With this in mind, we call a point [x] in a projective space PX to be smooth if some,
hence any, of its representatives is a smooth point in X .

Aface of the norm’s unit ball is a convex subset F on the norm’s unit sphere such that
if x, y are different normalized vectors whose open line segment {λx+ (1−λy); 0 <

λ < 1} intersects F, then already x, y ∈ F . We define F ⊆ P(X ) to be a face if we
can choose a representative for each [x] ∈ F such that {x; [x] ∈ P(X )} is a face of
X . A face is maximal if it is not properly contained in a bigger face.

Given a (nonzero) point in a normed space, can we determine if it is smooth from
BJ-orthogonality relation alone? Such a point corresponds to some vertex in orthodi-
graph andwe can equivalently ask: Canwe determinewhether this vertex comes from a
smooth point by studying only its connections within the digraph?We give an affirma-
tive answer in Lemmas 2.7 and 2.8 below but the answer is rather technical (likewise
we show in Corollary 2.11 below how to collect all vertices that correspond to a max-
imal face). We temporarily content ourselves with a slightly less precise corollary of
this classification: Every bijection between the projectivizations of normed spaces X
andY which strongly preserves BJ-orthogonality (that is, every isomorphism between
orthodigraphs) must preserve smooth points andmaximal faces. Recall that the dimen-
sion of orthodigraph was defined within Remark 1.2.

Theorem 1.3 Let X ,Y be normed spaces over F. If orthodigraph �(X ) is finite-
dimensional, then an orthodigraph isomorphism �(X )→ �(Y) maps smooth points
onto smooth points and maps maximal faces onto maximal faces. Furthermore, Y is
finite-dimensional and dimX = dimY .

Our final main result allows us to distinguish the supremum norm on a finite-
dimensional space from any other norm in terms of �(X ) alone.

Theorem 1.4 Let (X , ‖ · ‖) be a finite-dimensional normed space over F. Then, the
following conditions are equivalent:
(i) There exists a linear bijection A : X → F

n such that ‖x‖ = ‖Ax‖∞ for some
n ∈ N.

(ii) The cardinality of {x⊥; x ∈ �(X ), and x is smooth} is minimal possible
among all the norms on X .

(iii) |{x⊥; x ∈ �(X ), and x is smooth}| = dimX .

This has the following immediate application to orthodigraphs of finite-dimensional
commutative C∗-algebras. It is well-known [5, II.2.2.4 and II.1.1.3.(2)] that any com-
mutative C∗-algebra A is ∗-isomorphic to C0(�), the C∗-algebra of all continuous
complex functions on a locally compactHausdorff space� vanishing at ‘infinity’, with
the norm ‖g‖ = max{|g(t)|; g ∈ �}. If A is finite-dimensional, then � is finite, so
A is isomorphic to (Cn, ‖ · ‖∞) with componentwise multiplication for some n ∈ N.

Hence, Theorem 1.4 solves the problem of classification of commutative C∗-algebras
among general finite-dimensional normed spaces.
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We remark that Tanaka [26, Proposition 4.5, Theorem 4.6, and Corollary 4.7] has
recently obtained a similar classification of supremum norm based on topological
properties of ultrafilters associated with outgoing neighborhoods of �0(X ). More-
over, he has obtained [27] another formula for computing the dimension, which does
not directly use (ortho)digraphs as does our formula in (1.2), but is again based on
topological properties of ultrafilters associated with�0(X ).We are indebted to Profes-
sor Tanaka for sending us his preprint. A different approach to compute the dimension,
based on BJ-orthogonality in a projective space, can be found in [2, Lemma 2.3 and
Remark 2.4].

The proofs of ourmain results will be given in Sect. 2.We now summarize the rest of
the results of our paper where we study how far Theorems 1.3 and 1.4 can be extended
from the projective orthodigraph, �(X ), to its nonprojective counterpart, �0(X ). For
this purpose, in Sect. 3, we introduce the class of BJ-normed spaces. In particular, if the
norm onX is rotund or smooth, thenX is BJ-normed.However, as Example 4.4 shows,
the converse is not true. ByCorollaries 3.5 and 3.6, in BJ-normed spaces smooth points
can be distinguished from the nonsmooth ones even in the nonprojective setting, so
Theorem 1.3 remains valid for an isomorphism �0(X ) → �0(Y). Besides, as shown
in Lemma 3.7, if X and Y are BJ-normed spaces, then any isomorphism between
�0(X ) and �0(Y) induces an isomorphism between �(X ) and �(Y).

However, these results are no longer valid for arbitrary normed spaces. Recall that a
two-dimensional normed spacewhere BJ-orthogonality is symmetric is called aRadon
plane. In Lemmas 3.11 and 3.12, we establish the necessary and sufficient conditions
under which the graph �0(R) of a (real or complex) Radon plane R is isomorphic
to the graph �0(F

2, ‖ · ‖2) of the two-dimensional Hilbert space. In Examples 3.13
and 3.17, we construct a nonsmooth Radon planeR over F ∈ {R, C} such that �0(R)

and �0(F
2, ‖ · ‖2) are isomorphic. Notice, in contrast, that for a nonsmooth Radon

plane R, Theorem 1.3 implies that �(R) and �(F2, ‖ · ‖2) are not isomorphic, since
the normon (F2, ‖ · ‖2) is smooth.Next, in Example 3.19,we show that the assumption
about a BJ-normed space is essential in Corollary 3.6. In Sect. 4, we end with some
related results and concluding remarks.

2 Proofs of main results

It will be beneficial to utilize the norm’s subdifferential at a vector x, denoted by ∂‖x‖
(see [19, Definition 1.9] and [10, Definition 1.2.4]), which is defined as

∂‖x‖ = { f ∈ X ∗; ‖y‖ − ‖x‖ ≥ Re ( f (y − x)) for all y ∈ X }.

We note that the subdifferential set at a nonzero vector x coincides with the set of all
supporting functionals at x (see [19, Lemma 5.10] and [10, Example 1.2.16]). By [15,
Theorem 2.1] (which is stated for real spaces but the proof works for complex ones as
well), we have x ⊥ y if and only if there exists a supporting functional f at x which
annihilates y. Hence,
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x⊥ =
⋃

f ∈∂‖x‖
Ker f . (2.1)

Recall that, if X is a complex normed space with dimX = n, by restriction of
scalars we may regard it as a 2n-dimensional real normed space, which, to avoid the
confusion,we denote as (XR, ‖ · ‖R). IfX is a real normed space, thenwe setXR = X .

Then, a face F of the norm’s unit ball in X is called exposed if

F = {x ∈ X ; ‖x‖ = 1 and f (x) = ‖ f ‖}

for some R-linear functional f on X , i.e., f ∈ X ∗
R
, the dual space of XR.

Lemma 2.1 Let X be a normed space over F ∈ {R, C}. The face F of the norm’s unit
ball in X is exposed if and only if

F = {x ∈ X ; ‖x‖ = 1 and f (x) = ‖ f ‖} (2.2)

for some F-linear functional f on X , i.e., f ∈ X ∗.
Proof IfF = R, then the statement is immediate from the definition of an exposed face,
so letF = C.Assume first that F is an exposed face, and let f be the correspondingR-
linear functional. Then it is a real part of a C-linear functional f̃ (x) := f (x)− i f (i x)
which has the same norm as f . For any x ∈ F, we have ‖ f ‖ = ‖ f̃ ‖ ≥ | f̃ (x)| =
| f (x)− i f (i x)| = √| f (x)|2 + | f (i x)|2 ≥ | f (x)| = ‖ f ‖, so f (i x) = 0 and f̃ (x) =
f (x) = ‖ f̃ ‖. Thus F = {x ∈ X ; ‖x‖ = 1 and f̃ (x) = ‖ f̃ ‖}.
Conversely, let F = {x ∈ X ; ‖x‖ = 1 and f (x) = ‖ f ‖} for some C-linear

functional f on X . By [22, p. 58], its real part (Re f ) is an R-linear functional which
satisfies ‖(Re f )‖ = ‖ f ‖. Therefore, F = {x ∈ X ; ‖x‖ = 1 and (Re f )(x) =
‖(Re f )‖}, so F is an exposed face. �

Recall that an exposed point of the norm’s unit ball is a singleton exposed face.
Note that, for an exposed point x, the functional f in (2.2) may not be unique, so there
might exist two distinct functionals f and g of unit norm such that

{x} = {x ∈ X ; ‖x‖ = 1 and f (x) = g(x) = 1}.

The smooth points of a normed space are related to the exposed points of the dual
space as follows.

Lemma 2.2 Let (X , ‖ · ‖) be a finite-dimensional normed space over F. The set of
supporting functionals of smooth points inX coincideswith the setExp(X ∗)of exposed
points in the dual norm.

Proof Let x ∈ X be a smooth point and f be its unique supporting functional. Let us
consider the evaluation functional ϕx defined on X ∗ by ϕx (g) = g(x). Note that, for
g of norm one, we have ϕx (g) = 1 if and only g is a supporting functional of x . Since
f is the unique supporting functional of x, we have

{ f } = {g ∈ X ∗; ‖g‖ = ϕx (g) = 1}.
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So, f is an exposed point of X ∗.
Conversely, let f be an exposed point of X ∗. Then, there exists a functional ϕ on

X ∗ of norm one such that { f } = {g ∈ X ∗; ‖g‖ = ϕ(g) = 1}. Since X is reflexive,
there exists x ∈ X such that ϕ = ϕx . It means

{ f } = {g ∈ X ∗; ‖g‖ = ϕx (g) = g(x) = 1}.

Therefore, f is the unique supporting functional for x . Hence, x is a smooth point
whose supporting functional is f . �

We note that, in any finite-dimensional normed spaceX over F, the convex span of
its exposed points is dense in its closed unit ball. For F = R, the proof can be found in
[20, Theorem 18.7]. For the case F = C, we note that the set of exposed points in X
coincides with the set of exposed points in XR, and then the real case can be applied.

Corollary 2.3 Let (X , ‖ · ‖) be a finite-dimensional normed space over F. Then X
has at least n = dimX smooth points whose supporting functionals are linearly
independent.

Proof As shown above, the convex span of Exp(X ∗), the set of all exposed points in
a dual space, is dense in the closed unit ball. So X ∗ has a basis consisting of exposed
points f1, . . . , fn ∈ Exp(X ∗). By Lemma 2.2, these are the supporting functionals of
some smooth points x1, . . . , xn . �
Remark 2.4 Note that this has no counterpart in infinite-dimensional spaces. In fact,
the Banach space �1(	) of summable sequences over an uncountable index set 	 has
no smooth points; see [19, Example 1.4(b)].

Corollary 2.5 Let X be a finite-dimensional normed space over F. Then

∣∣∣{x⊥; x ∈ �(X ), and x is smooth}
∣∣∣ ≥ dim(X ). (2.3)

Proof By Corollary 2.3, there exist n = dimX smooth points x1, . . . , xn ∈ X whose
supporting functionals f1, . . . , fn form a basis of the dual space X ∗, and there-
fore, their kernels are pairwise distinct. Since each of the points xi is smooth, we
have x⊥i = Ker fi . Hence, if [xi ] denotes the corresponding projective point, then
[x1]⊥, . . . , [xn]⊥ are also pairwise distinct. �
Corollary 2.6 If X contains infinitely many pairwise BJ-orthogonal vectors, then
dimX = ∞. Otherwise, dimX equals the cardinality of the smallest subset � ⊆ X
such that x ⊥ z for every x ∈ � implies z = 0, that is,

dimX = min
�⊆X⋂

x∈� x⊥={0}
|�|.

Proof The infinite-dimensional case is covered in [3, Corollary 3.1 and Theorem 3.5].
Assume next n := dimX < ∞. By Corollary 2.3, there exist n smooth points



Birkhoff–James classification of norm’s properties Page 9 of 33    43 

x1, . . . , xn ∈ X such that their (unique) supporting functionals fx1, . . . , fxn are lin-
early independent. Hence,

n⋂
i=1

x⊥i =
n⋂

i=1
Ker fxi = {0}.

By letting � = {x1, . . . , xn} we see that

min
�⊆X⋂

x∈� x⊥={0}
|�| ≤ n.

Conversely, consider any � = {x1, . . . , xk} ⊆ X with |�| = k < n, and for each xi
let fxi be one of its supporting functionals. Then, Ker fxi ⊆ x⊥i for all 1 ≤ i ≤ k.
Since k < n, we have, by subadditivity of codimension on intersections of spaces,
{0} �=⋂k

i=1 Ker fxi ⊆
⋂k

i=1 x⊥i , which proves that

min
�⊆X⋂

x∈� x⊥={0}
|�| ≥ n,

and the result follows. �

Proof of Theorem 1.1 Notice that z ∈⋂
x∈� x⊥ implies Fz ⊆⋂

x∈� x⊥, so this inter-
section is either infinite or else it has exactly one element. Hence, (1.2) follows directly
from Corollary 2.6.

If one replaces digraph �0(X ) by its projective counterpart �(X ), then the inter-
section

⋂
[x]∈�[x]⊥ is either empty or else it contains at least one point in projective

space. The former case is equivalent to
⋂

x∈�0
x⊥ = {0}, where �0 ⊆ X is the col-

lection of vectors obtained by taking a single representative x from each projective
point [x] ∈ � (thus, |�0| = |�|). This validates the claim in Remark 1.2.

As for the second part, let X be a smooth space with dimX = n and let
dim(span(S)) = k.Recall [15, Theorem 4.2] that, in smooth spaces, BJ-orthogonality
is right additive (note that [15] deals with real normed spaces only but the proof of
[15, Theorem 4.2] for complex normed spaces follows along the same lines). Hence,
x → S is equivalent to x → (Span S) as well as to x⊥ ⊇ Span S. There exist
exactly n− k linearly independent functionals f1, . . . , fn−k which annihilate Span S.

Without loss of generality assume ‖ fi‖ = 1 and let x1, . . . , xn−k be the normal-
ized vectors such that fi (xi ) = 1 for all 1 ≤ i ≤ n − k. Hence, fi is a supporting
functional for xi so, being in a smooth space, we have x⊥i = Ker fi . It follows that⋂n−k

i=1 x⊥i =
⋂n−k

i=1 Ker fi = Span S. This gives

Span(S) =
n−k⋂
i=1

x⊥i ⊇
⋂

x∈�0(X )
x→S

x⊥ ⊇ Span(S),
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and hence
⋂

x ∈ �0(X )

x → S

x⊥ = span(S). It also implies that

min

{
|�|; � ⊆ �0(X ) with

⋂
x∈�
x→S

x⊥ = span(S)

}
≤ n − k.

Similarly to the proof of Corollary 2.6, we get the reversed inequality, and the result
follows. �

We now show how, on a projective space, BJ-orthogonality alone knows which
lines are smooth and which are not. This will be done separately for two-dimensional
spaces and for spaces of dimension at least three. Recall from Remark 1.2 that the
dimension can be computed with the help of BJ-orthogonality alone. For simplicity,
we will typically denote the points in �(X ) simply by x, y, . . . instead of [x], [y], . . . .
Lemma 2.7 Let X be a two-dimensional real or complex normed space. Then, the
following conditions are equivalent:
(i) A vertex x ∈ �(X ) corresponds to a smooth point in PX .

(ii) |x⊥| = 1.

Proof Recall that x⊥ coincides with a collection of all projective points that are anni-
hilated by supporting functionals of some representative x̂ ∈ x . By definition, two
different supporting functionals of x̂ are linearly independent, so they have different
kernels, and, in two-dimensional spaces, each nonzero functional annihilates a unique
projective point. Hence, |x⊥| is equal to the cardinality of different supporting func-
tionals of a representative x̂ ∈ x . Therefore, the result follows because x is nonsmooth
if and only if its representative has at least two supporting functionals. �
Lemma 2.8 Let X be a finite-dimensional normed space over F with n = dimX ≥ 3.
Then, the following conditions are equivalent:
(i) A vertex x ∈ �(X ) corresponds to a smooth point in PX .

(ii) There exists (n − 2) vertices x3, . . . , xn ∈ �(X ) such that

|x⊥ ∩ x⊥3 ∩ · · · ∩ x⊥n | = 1.

Moreover, for every reordering of this (n − 2)-tuple of vertices, we can define

� := {y ∈ �(X ); |x⊥ ∩ y⊥ ∩ x⊥4 ∩ · · · ∩ x⊥n | = 1},

and then x⊥4 ∩ · · · ∩ x⊥n ∩ x⊥ ∩⋂
y∈� y⊥ = ∅.

Proof (i)⇒ (ii). By Corollary 2.3, there exist n smooth points x̂1, . . . , x̂n ∈ X whose
supporting functionals f1, . . . , fn form a basis for the dual space; let xi := Fx̂i ∈ PX
be the corresponding projective points. Then

x⊥i = {z ∈ PX ; z ⊆ Ker fi }. (2.4)



Birkhoff–James classification of norm’s properties Page 11 of 33    43 

Let x ∈ PX be a smooth point and fx be a unique supporting functional of some
representative x̂ ∈ x . After reordering f1, . . . , fn we can assume that

fx , f2, . . . , fn

form a basis for the dual space X ∗. Choose now any reordering of x̂3, . . . , x̂n; for
simplicity we consider only the identical reordering. Then

dim

(
Ker fx ∩ Ker f ∩

n⋂
i=4

Ker fi

)
= 1, f ∈ { f2, f3};

and since fx , fi are the only supporting functionals at the smooth points x̂ and x̂i ,
respectively, we have, by (2.4):

∣∣∣∣x⊥ ∩ w⊥ ∩
n⋂

i=4
x⊥i

∣∣∣∣ = 1, w ∈ {x2, x3}.

As such, x2, x3 ∈ �. Since fx , f2, . . . , fn form a basis in X ∗, we clearly have

n⋂
i=4

Ker fi ∩ Ker fx ∩ (Ker f2 ∩ Ker f3) = 0, so

x⊥4 ∩ · · · ∩ x⊥n ∩ x⊥ ∩
⋂
y∈�

y⊥ ⊆ x⊥4 ∩ · · · ∩ x⊥n ∩ x⊥ ∩ x⊥2 ∩ x⊥3 = ∅,

as claimed.
¬ (i)⇒¬ (ii). Let x be nonsmooth. Then its representative x̂ ∈ x has at least two

F-linearly independent supporting functionals f1, f2. Consider now any set of (n−2)
projective points x3, . . . , xn ∈ �(X ) which satisfies

|x⊥ ∩ x⊥3 ∩ · · · ∩ x⊥n | = 1; (2.5)

if no such n − 2 tuple exists, then there is nothing to do.
Let fi be an arbitrary supporting functional at a representative x̂i ∈ xi , i = 3, . . . , n.

Then, f1, f3, . . . , fn are linearly independent, since otherwise Ker f1 ∩ Ker f3 ∩
· · · ∩ Ker fn would be at least two-dimensional subspace with every line inside it
corresponding to a projective point contained in x⊥ ∩ x⊥3 ∩ · · · ∩ x⊥n , contradicting
(2.5). Similarly, f2, f3, . . . , fn are linearly independent. However, f1, f2, f3, . . . , fn
are linearly dependent, since otherwise Ker f1 ∩ Ker f3 ∩ · · · ∩ Ker fn and Ker f2 ∩
Ker f3 ∩ · · · ∩Ker fn would correspond to two distinct projective points contained in
x⊥∩x⊥3 ∩· · ·∩x⊥n , again contradicting (2.5). Since f1 and f2 are linearly independent,
without loss of generality we may assume that f3 can be expressed through a linearly
independent set f1, f2, f4, . . . , fn .
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Consider now an arbitrary y ∈ �, i.e.,

|x⊥ ∩ y⊥ ∩ x⊥4 ∩ · · · ∩ x⊥n | = 1,

and an arbitrary supporting functional f at some representative of y.Arguing as before,
the functionals f1, f2, f , f4, . . . , fn are linearly dependent, so f can be expressed
as a linear combination of f1, f2, f4, . . . , fn . Hence, there exists a projective point
z ∈ PX with

z ⊆
⋂
i �=3

Ker fi = Ker f ∩
⋂
i �=3

Ker fi

and every line in the latter intersection clearly corresponds to a point inside x⊥∩ y⊥∩
x⊥4 ∩ · · · ∩ x⊥n (by (2.4)). Thus, for any y ∈ �,

z ∈ x⊥ ∩ x⊥4 ∩ · · · ∩ x⊥n ∩
⋂
y∈�

y⊥,

as claimed. �
Note that (2.5) in the proof above is possible even with a nonsmooth point x . Say, if

∂‖x‖ = {(1, λ, 0); 0 ≤ λ ≤ 1}, and if x1 is a smooth point with ∂‖x1‖ := (1, 2, 0),
then x⊥ ∩ x⊥1 contains a single line [e3]. Moreover, it is also possible that in (2.5)
not all xi are smooth. Say, if ∂‖x‖ = {(1, λ, 0, 0); 0 ≤ λ ≤ 1} and ∂‖x1‖ =
{(0, λ, 1, 0); 0 ≤ λ ≤ 1} and ∂‖x2‖ = (0, 1, 0, 0). Then, x⊥ ∩ x⊥1 ∩ x⊥2 contains
just [(0, 0, 0, 1)].
Lemma 2.9 Let X be a normed space over F and let {x j ; j ∈ J } be a collection of
projective points in PX . Then, the following conditions are equivalent.

(i) There exists a projective point z ∈ PX such that z⊥ ⊆⋂
j∈J x⊥j .

(ii) There exist representatives x ′j of x j such that the convex hull of {x ′j ; j ∈ J }
lies in a common face of the norm’s unit sphere.

Proof (i) �⇒ (ii). Let ẑ and x̂ j be norm-one representatives of z and x j , respec-
tively. Clearly, z⊥ ⊆ ⋂

j∈J x⊥j implies ẑ⊥ ⊆ ⋂
j∈J x̂⊥j . Therefore, by (2.1), every

supporting functional f of ẑ satisfies Ker f ⊆⋂
j∈J x̂⊥j .

Now, fix a supporting functional f of ẑ. Then, using [15, Theorem 2.1], we get
| f (̂x j )| = 1 for all j ∈ J . It means there exists α j with |α j | = 1 such that f (̂x j ) = α j

for all j ∈ J . Considering x ′j = x̂ j/α j , we get f (x ′j ) = 1 for all j ∈ J . Hence, all
x ′j belong to a common face

F = {̂x; ‖x̂‖ = 1 and f (̂x) = 1}.

(ii) �⇒ (i). Let there exist representatives x ′j of x j such that the convex hull of
{x ′j ; j ∈ J }, say C, lies on a common face F of the norm’s closed unit ball. In
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particular, for any ŷ ∈ C, we have ‖ŷ‖ = 1. By [20, Theorem 6.2], the relative
interior of C is nonempty. Let ẑ be in the relative interior of C and let f ∈ ∂ ‖̂z‖ be
any of its supporting functionals. We claim that

Ker f ⊆
⋂
j∈J

(x ′j )⊥.

To see this, fix an index j ∈ J . Using [20, Theorem 6.4], we obtain that there exists
0 < ε < 1 such that ‖(1− t)x ′j + t̂ z‖ = 1 for all t ∈ [0, 1+ ε]. Then

∣∣ f (x ′j )(1− t)+ t
∣∣ = ∣∣ f ((1− t)x ′j + t̂ z)

∣∣ ≤ ‖(1− t)x ′j + t̂ z‖ = 1

for all t ∈ [1− ε, 1+ ε]. In particular, with t = 1± ε, we get
∣∣1± ε( f (x ′j )−1)

∣∣ ≤ 1,
which gives f (x ′j ) = 1. So, f is a supporting functional for x ′j also. By (2.1),

Ker f ⊆ (x ′j )⊥.

Since f ∈ ∂‖z‖ was an arbitrary, using (2.1) again, we get

z⊥ ⊆
⋂
j∈J

(x ′j )⊥. (2.6)

�
Remark 2.10 The proof of Lemma 2.9 also shows the following three statements.

(i) Let {x j ; j ∈ J } be a collection of projective points in PX . Then
⋂

j∈J x⊥j
contains z⊥ for some z ∈ X if and only if there exists representatives x ′j of x j
such that all the elements in the convex hull of {x ′j ; j ∈ J } are of norm one.

(ii) Wehave a stronger statement than (i)�⇒ (ii) inLemma2.9: If there exists a linear
functional f onX such that Ker f ⊆⋂

j∈J x⊥j , then there exist representatives
x ′j of x j such that the convex hull of {x ′j ; j ∈ J } lies in a common face of the
norm’s unit sphere.

(iii) If C is a face of norm’s closed unit ball and z1 and z2 are in the relative interior
of C, then z⊥1 = z⊥2 (since (2.6) holds for an arbitrary point z in the relative
interior of C and since we may take {x j ; j ∈ J } = C).

We recall that F ⊆ P(X ) is a face (or an exposed face) if we can choose a repre-
sentative for each [x] ∈ F such that {x; [x] ∈ P(X )} is a face (or an exposed face,
respectively) of X . As an immediate corollary of Lemma 2.9, we get the characteri-
zation of maximal faces in a projective space in terms of the orthodigraph.

Corollary 2.11 A collection of vertices F ⊆ �(X ) forms a maximal face of PX if and
only if the following conditions are satisfied:
(i)

⋂
x∈F x⊥ contains z⊥ for some z ∈ �(X ),

(ii) F ∪ {y} does not satisfy (i) for any y ∈ �(X )\F .
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Finally, we provide proofs of our main theorems.

Proof of Theorem 1.3 The proof that dimX = dimY follows from Theorem 1.1 and
Remark 1.2. The proof of the fact that an orthodigraph isomorphism �(X ) → �(Y)

maps smooth points onto smooth points then follows fromLemmas2.7 and2.8. Finally,
the proof of the fact that an orthodigraph isomorphism �(X )→ �(Y) maps maximal
faces onto maximal faces follows from Corollary 2.11. �
Proof of Theorem 1.4 (i)�⇒ (ii). A linear isometry A : X → F

n is a diffeomorphism,
so itmaps smooth points onto smooth points and induces a graph isomorphismbetween
�(X , ‖ · ‖) and �(Fn, ‖ · ‖∞). Therefore, it suffices to prove that the equality in (2.3)
of Corollary 2.5 is achieved with the supremum norm

‖(x1, . . . , xn)‖∞ = max{|x1|, . . . , |xn|}

on F
n . Note that this norm is differentiable at a point x = (x1, . . . , xn) if and only if

exactly one of the components of x has a maximal absolute value. Moreover, if exactly
the i-th component of x ∈ F

n has a maximal absolute value, then ∂‖x‖∞ = {μe∗i }
for some unimodular μ, where ei is the i-th standard basis vector and e∗i is a dual
functional, i.e., e∗i (e j ) = δi j , the Kronecker delta. Therefore,

x⊥ = Ker e∗i

consists of all vectors with zero i-th component. As such, the outgoing neighborhood
of a smooth projective point [x] := Fx ∈ �(X ) consists of all the lines in Ker e∗i and
thus in this case we obtain an equality in (2.3).

(ii) �⇒ (iii). Without loss of generality, we may assume that X = F
n with n =

dimX . Now, the implication immediately follows from (2.3) and the fact that the
equality can be achieved if the norm on X is supremum norm.

(iii)�⇒ (i). If (iii) holds, then, by Lemma 2.2, there exist exactly n different kernels
corresponding to the exposed points inX ∗.Therefore, if x∗1 , . . . , x∗n ∈ X ∗ are exposed
points with pairwise different kernels, then every other exposed point inX ∗ is a scalar
multiple of one of them. As such, the set of exposed points in X ∗ equals

Tx∗1 ∪ · · · ∪ Tx∗n

where T = {−1, 1} (if F = R) or T is a unimodular group (if F = C). In both
cases, the set of exposed points is compact and hence their convex span is already a
closed subset. Therefore, in X ∗ the extreme points coincide with exposed ones. By
a suitably chosen linear bijection, we can assume that the extreme points in X ∗ are
Te∗1, . . . , Te∗n . Clearly then, the norm on X ∗ is a taxi-cab, so (i) holds by duality. �

3 BJ-norms and their properties

Let us start by proving the following lemma, which uses the fact that � is a quotient
graph of �0\{0}. It indicates once again that � is more restrictive than �0.
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Lemma 3.1 Let X and Y be normed spaces over F. If �(X ) is isomorphic to �(Y),

then also �0(X ) is isomorphic to �0(Y).

Proof Let � : �(X )→ �(Y) be an isomorphism. For every projective point � ∈ PX
and �(�) ∈ PY, choose their representatives �′ ∈ � and �(�)′ ∈ �(�), respectively.
Then, the induced map  : �0(X )→ �0(Y), defined by

(λ �′) = λ�(�)′,

is a graph isomorphism. �
However, as we show at the end of this section,�0(X ) and�0(Y) being isomorphic

does not always imply that �(X ) and �(Y) are isomorphic. We now introduce a class
of norms, where the converse of the above lemma is true. Within the introduced class,
we could easily adapt Lemmas 2.7 and 2.8 to the setup of orthodigraph �0(X ) of the
original normed space X rather than its projectivization, �(X ).

Definition 3.2 We say that the elements x, y ∈ X are BJ-equivalent (denoted by
x ∼BJ y) if x⊥ = y⊥ and ⊥x = ⊥y.

Since BJ-orthogonality is homogeneous, every two nonzero points in Fx are
BJ-equivalent. However, the converse is not always true: in (R3, ‖ · ‖∞) the
points (1, 1/2, 0) and (1, 1/3, 0) are clearly linearly independent, but still are BJ-
equivalent (see [2, Example 3.9]).

Definition 3.3 A norm is called a BJ-norm if BJ-equivalent elements are always lin-
early dependent.

Observe that, in a BJ-normed space X , the equivalence classes induced by BJ-
equivalency relation are {0} and points in PX .

Lemma 3.4 If a norm is rotund or smooth, then it is a BJ-norm.

Proof Assume first that X has a rotund norm. Take any x, y ∈ X \{0} with x⊥ = y⊥.

From (1.1), it is straightforward that this is equivalent to [x]⊥ = [y]⊥, which, by [2,
Lemma 2.6], implies [x] = [y], as claimed.

Assume now that (X , ‖ · ‖) is a smooth normed space. Take two linearly indepen-
dent x, y ∈ X and choose a norm-attaining functional f with f (x) �= 0 and f (y) = 0
(it exists by Hahn–Banach theorem). Without loss of generality we may assume that
‖ f ‖ = 1.Choose z ∈ X such that f is a supporting functional at z. Then, z ∈ ⊥y.But
since ‖ · ‖ is smooth norm, f is the unique supporting functional at z and f (x) �= 0,
so z /∈ ⊥x . Hence, ⊥x �= ⊥y. �

As we will show in the last section, the class of BJ-norms is broader and contains
not only smooth or strictly convex norms. However, as we have already mentioned,
not every norm is a BJ-norm.

For the class of BJ-normed spaces X , we can easily see that smooth points can
be described not only in terms of the projective orthodigraph �(X ) but also from the
digraph �0(X ) whose vertex set consists of all vectors in X .

Recall that 0 is the only vertex in �0(X ) with a loop.
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Corollary 3.5 LetX be a two-dimensional BJ-normed space over F. Then, the follow-
ing conditions are equivalent for x ∈ �0(X ):
(i) x corresponds to a smooth point in X .

(ii) x ∈ �0(X ) has no loops and every two elements of x⊥ are BJ-equivalent.

Proof Immediately follows from Lemma 2.7 and Definition 3.3 of a BJ-norm. �
Wecall a subset� ⊆ �0(X ) to be aBJ-set if any twovertices in� areBJ-equivalent.

In other words, � is completely contained in a single BJ-equivalence class.

Corollary 3.6 Let X be a finite-dimensional BJ-normed space over F with n =
dimX ≥ 3. Then the following conditions are equivalent for x ∈ �0(X ):
(i) x corresponds to a smooth point in X .

(ii) x ∈ �0(X ) has no loop and there exist (n − 2) loopless vertices x3, . . . , xn in
�0(X ) such that x⊥ ∩ x⊥3 ∩ · · ·∩ x⊥n is a BJ-set. Moreover, for every reordering
of this (n − 2)-tuple of vertices we can define

� := {y ∈ �0(X ); x⊥ ∩ y⊥ ∩ x⊥4 ∩ · · · ∩ x⊥n is a BJ-set},

and then x⊥4 ∩ · · · ∩ x⊥n ∩ x⊥ ∩⋂
y∈� y⊥ = {0}.

Proof Follows from Lemma 2.8 and Definition 3.3 of a BJ-norm. �
The following statement is immediate from the above two corollaries: if X ,Y

are BJ-normed spaces over F with dimX < ∞, then every digraph isomorphism
� : �0(X )→ �0(Y) maps smooth points onto smooth points.

Next, we prove that the converse of Lemma 3.1 holds for BJ-normed spaces.

Lemma 3.7 Let X and Y be BJ-normed spaces over F. If �0(X ) and �0(Y) are
isomorphic, then �(X ) and �(Y) are also isomorphic.

Proof Let� : �0(X )→ �0(Y) be an isomorphism. For every projective point � ∈ PX
choose its representative �′ ∈ �. Since 0 ∈ �0(X ) is the only vertex with a loop, we
clearly have �−1(0) = {0}. Therefore,

(�) := [�(�′)]

is awell-definedmap from�(X ) to�(Y).Clearly, is a strong graph homomorphism.
Since X is a BJ-normed space, for all x �= 0 it holds that

Fx = {y ∈ X ; y⊥ = x⊥ and ⊥y = ⊥x}.

Since Y is also a BJ-normed space and � is an isomorphism, we have

�(Fx) = F�(x).

Then, injectivity and surjectivity of the induced map  are straightforward. �
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Furthermore, in Examples 3.13 and 3.17 we construct a nonsmooth two-
dimensional normed space X over F ∈ {R, C} such that there exists a (nonho-
mogeneous) bijection between X and a Hilbert space (F2, ‖ · ‖2) which preserves
BJ-orthogonality in both directions. In other words, �0(X ) and �0(F

2, ‖ · ‖2) are iso-
morphic but, by Lemma 2.7, �(X ) and �(F2, ‖ · ‖2) are not isomorphic. This will
show that the BJ-norm assumption is essential in Corollary 3.5.

By [14, Theorem 1], if dimX ≥ 3, then BJ-orthogonality in X is symmetric if and
only if the norm on X is induced by the inner product. However, this result does not
hold for dimX = 2. Two-dimensional normed spaces, in which BJ-orthogonality is
symmetric but the norm is not induced by an inner product, are called Radon planes.
Their first examples are due to Birkhoff [4] and James [14, p. 561]. We provide a
complete characterization of real Radon planes which was obtained by Day [8]. We
denote x ⊥⊥ y if x ⊥ y and y ⊥ x for some x, y ∈ X .

Remark 3.8 [8, pp. 330–333] Let X be a two-dimensional real normed space. Then,
BJ-orthogonality in X is symmetric if and only if modulo a linear transformation its
unit sphere SX can be obtained by the following procedure:

(i) Choose (auxiliary) any two-dimensional real normed space Y .

(ii) Find any two normalized vectors x, y ∈ Y with x ⊥⊥ y (they always exist by
[28, Theorem 2]).

(iii) Find supporting functionals fx , fy ∈ Y∗ with fx (x) = fy(y) = 1 and fx (y) =
fy(x) = 0.

(iv) Choose a coordinate system in Y with x and y at (1, 0) and (0, 1), correspond-
ingly. Similarly, choose a coordinate system in Y∗ with fx and fy at (0, 1) and
(−1, 0).

(v) Set the first and the third quadrants of SX equal to the first and the third quadrants
of SY , set the second and the fourth quadrants of SX equal to the second and
the fourth quadrants of SY∗ .

Tanaka showed in [24, Theorem 4.7] that orthodigraphs of real smooth Radon
planes are isomorphic to the orthodigraph of the Euclidean plane. We now extend his
result. We will rely on the following simple lemma.

Lemma 3.9 Let f : [a, b] → R be a nonconstant continuous function and let
g : [a, b] → R be a function whose image is at most countable. Then the image
of f + g contains continuum many points.

Proof The image of the continuous function f is a nondegenerate interval. Let (xt )t ∈
[a, b] be continuum many points which f maps bijectively onto � := ( f (xt ))t . Let
� = g([a, b]) be at most countable set. Then the same is true for

�′ := �−� =
⋃
y∈�

(�− y),

and the set � is partitioned into continuum many equivalence classes under the equiv-
alence relation f (xt ) � f (xs) if f (xt ) − f (xs) ∈ �′. The f -preimages of these
equivalence classes partition the set (xt )t into continuummany disjoint sets. And f +g
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is injective on the representatives because if ( f + g)(x ′t ) = ( f + g)(x ′s) for two repre-
sentatives of distinct preimages, then f (x ′t )− f (x ′s) = g(x ′s)− g(x ′t ) ∈ �−� = �′,
which contradicts the fact that f (x ′t ) and f (x ′s) are not equivalent. �

For brevity, we will refer to the real affine dimension of a norm’s face F as simply
the dimension of F .

Lemma 3.10 Let R := (F2, ‖ · ‖R) be a Radon plane over F ∈ {R, C}, and x ∈ R
be a point in the norm’s unit sphere. Then, the following statements hold.

(i) There exists a norm’s face Fx such that

x⊥ = FFx . (3.1)

The dimension of Fx equals 0 if and only if x is a smooth point.
(ii) If, moreover, the boundary points of each nonzero-dimensional face in R are

smooth, then:
(a) If x is nonsmooth, then z⊥ = Fx for any z ∈ Fx . Consequently, each point

in Fx is BJ-orthogonal only to Fx, and x is BJ-orthogonal only to FFx .
(b) Given an arbitrary nonzero-dimensional norm’s face F inR,we haveFF ⊆

FFx for some nonsmooth normalized point x ∈ R.

Proof (i). Assumefirst that x is nonsmooth. Then, it has at least twoF-linear supporting
functionals, and their kernels are distinct one-dimensional subspaces ofF

2. Therefore,
by [15, Theorem 2.1], there exist at least two normalized linearly independent vectors

y1, y2 ∈ x⊥,

and since ‖ · ‖R is a Radon norm,we also have x ∈ y⊥1 ∩y⊥2 .Then, again by [15, Theo-
rem 2.1], there exist supporting functionals f1, f2 : F

2 → F of y1 and y2, respectively,
such that

f1(x) = f2(x) = 0. (3.2)

Then their kernels are the same, and hence f1, f2 must be linearly dependent. Since
they are normalized, f2 = μ f1 for some unimodular number μ. By replacing y2
with μy2 ∈ x⊥, we achieve that y1, (μy2) both share the same supporting functional
f := f1 = f2. Following along the same lines shows that for any normalized z ∈ x⊥
there exists a unimodular number μz such that f is a supporting functional of μz z. It
is straightforward that then there exists a convex set

Fx := f −1(1) ∩ BR (3.3)

(where BR is the norm’s closed unit ball) such that x⊥ ⊆ FFx . Conversely, if z ∈ Fx ,
then f is its supporting functional which, by (3.2), annihilates x, so z ⊥ x, and since
R is a Radon plane, this implies x ⊥ z, that is, z ∈ x⊥. Thus x⊥ = FFx . Note that,
by (3.3) and Lemma 2.1, the set Fx is actually a norm’s (exposed) face.
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Clearly, (3.1) holds also for a smooth point x, if we let Fx to be the norm-one
representative in the one-dimensional kernel of the supporting functional at x .

(ii). We first prove item (b). It is not hard to see that each point z in the relative
interior of F is smooth: namely, z is the middle point of some nontrivial line segment

[y1, y2] ⊆ F,

and then, if f is any F-linear supporting functional for z = y1+y2
2 , it follows that

1 = f (z) = f (y1)+ f (y2)

2
.

Since ‖ f ‖ = ‖y1‖ = ‖y2‖ = 1, we have | f (y1)|, | f (y2)| ≤ 1, and then the triangle
inequality implies that

f (y1) = f (y2) = 1. (3.4)

Notice also that y1 and y2 must beF-linearly independent because otherwise y2 = μy1
for some unimodular μ �= 1, and then ‖z‖ = ∥∥ y1+y2

2

∥∥ = |1+μ|
2 < 1, a contradiction.

Therefore, they form a basis for F
2. It then follows from (3.4) that the supporting

functional at z is unique, so z is smooth. By the hypothesis, the boundary points
of F are also smooth. Then, by (ii) �⇒ (i) of Lemma 2.9 (whose proof can be easily
adapted to work also in nonprojective setting), for every z, w ∈ F we have z⊥ = w⊥,

and it is a one-dimensional subspace of F
2 (spanned by, say, x), so

⋃
z∈F

z⊥ = Fx . (3.5)

Since ‖ · ‖R is a Radon norm, together with (3.1) this gives us that FF ⊆ FFx .
To prove (a), note that, for a nonsmooth point x, the dimension of Fx is greater

than 0, so we can apply (3.5) to F = Fx . �
Lemma 3.11 Let R := (R2, ‖ · ‖R) be a real Radon plane and let ‖(x, y)‖2 :=√|x |2 + |y|2 be the Euclidean norm. Then the following conditions are equivalent:
(i) �0(R) is isomorphic to �0(R

2, ‖ · ‖2).
(ii) Both boundary points of each one-dimensional face inR are smooth.

Proof (ii)�⇒ (i). If ‖ · ‖R is smooth, then this follows by Tanaka’s [24, Theorem 4.7].
Otherwise, by Lemma 3.10, for each nonsmooth point x there exists a one-dimensional
norm’s face Fx such that each point in Fx is BJ-orthogonal only to Rx, and x is
BJ-orthogonal only to RFx . Conversely, each point of a one-dimensional norm’s
face F is BJ-orthogonal to a unique one-dimensional subspace spanned by a nons-
mooth point. There are at most countably many nonsmooth points, and hence also the
same cardinality of maximal one-dimensional faces; they can be paired into mutually
BJ-orthogonal pairs (x, Fx ), so that no other nonzero point inR is in BJ-orthogonality
relation to any nonzero point in Rx ∪ RFx .
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We next show that there are continuum many smooth points in the norm’s unit
sphere, which do not belong to a one-dimensional face. To see this, note that the
norm’s unit sphere is not a square, so its portion can be parametrized as (x, f (x))
for some nonconstant convex function f : (α, β) → R. It is a classical result [20,
Theorems 23.1 and 24.1] that f (x) has left, f ′−(x), and right, f ′+(x), derivative at
every point of its domain, they monotonically increase and coincide except possibly
at countably many points. The graph of its subdifferential,

G∂ f := {(x, x∗) ∈ R
2; x∗ ∈ R, f ′−(x) ≤ x∗ ≤ f ′+(x)},

is a continuous curve in R
2 which may contain horizontal and vertical line segments.

Moreover,

(x, x∗) ∈ G∂ f if and only if (x, f (x)) ⊥ (1, x∗).

Indeed, if (x, f (x)) is a smooth point, then its supporting functional is given by norm’s
gradient at this point, which is perpendicular to the tangent vector of the level curve
parametrized by x �→ (x, f (x)). If (x, f (x)) is a nonsmooth point, then, by using
[20, Theorem 25.6], we obtain that its subdifferential is the convex hull of all possible
limits of gradients at smooth points on SR converging to (x, f (x)). It follows that each
vertical segment in G∂ f corresponds to a point in (x, f (x))⊥ for a fixed nonsmooth
point x ∈ (α, β), and it also follows that two points (x1, x∗1 ), (x2, x∗2 ) ∈ G∂ f do not
belong to the same horizontal/vertical line segment if and only if (x1, f (x1))⊥ �=
(x2, f (x2))⊥.

We may clearly assume that f ′ is defined also at points where f is not differen-
tiable, by requiring that x �→ f ′(x) is right continuous. Since it is increasing, a quick
application of Stieltjes integral shows that there exists a finite positive measure μ,

supported on the interval (a, b), such that f ′(x) = μ((a, x]) is its cumulative dis-
tribution function. Consider a purely atomic measure μp, supported on the at most
countable set of nonsmooth points x1, x2, . . . ∈ (a, b) and defined by

μp({xi }) := f ′+(xi )− f ′−(xi ),

i.e., the length of the vertical line segment of G∂ f at Xi .

Notice thatμ−μp is a continuousmeasure. It cannot be zero, because then f ′would
be a cumulative distribution function of a purely atomic measure μp, and as such G∂ f

would consist only of horizontal and vertical line segments, so that the end points of
one-dimensional norm’s faces (which correspond to horizontal line segments of G∂ f )
would be nonsmooth, a contradiction. Then, f ′ is a sum of a nonconstant continuous
increasing function g : x �→ (μ − μp)((a, x]) and an increasing function which is
constant except for jumps at x1, x2, . . . .Thus, by Lemma 3.9, f ′(x) attains continuum
many different values. By the above, this translates to the fact that the norm’s unit
sphere contains continuum many smooth points x with x⊥ pairwise distinct.

We can now construct the graph isomorphism � : �0(R) → �0(R
2, ‖ · ‖2) as

follows: Let SF be a collection of mutual BJ-orthogonal pairs (Rxi , RFxi ), where
xi is a nonsmooth point on the norm’s unit sphere, and Fxi is the corresponding
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face. It contains at most countably many pairs. With each such pair we associate
a pair of orthogonal points ((ci , si ), (−si , ci )) ∈ (R2, ‖ · ‖2). By the last paragraph,
(R2, ‖ · ‖R) still contains continuummanymutual BJ-orthogonal pairs (Fx, Fx ′) con-
sisting of smooth points. Then there exist bijections ϕi : RFxi \{0} → R\{0}, and
also a bijection ϕ : R

2\⋃
i (Rxi ∪ RFxi ) onto R

2\⋃
i (R(ci , si ) ∪ R(−si , ci )) which

maps smooth mutual BJ-orthogonal pairs onto orthogonal pairs. Hence the mapping
� : (R2, ‖ · ‖R)→ (R2, ‖ · ‖2) defined by

(i) �(0) = 0,
(ii) �(λxi ) = λ(ci , si ) and �(λz) = ϕi (λz)(−si , ci ) for z ∈ Fxi and λ ∈ R\{0},
(iii) �(x) = ϕ(x) if x /∈⋃

i (Rxi ∪ RFxi )

is a bijection which preserves BJ-orthogonality in both directions, i.e., it is a graph
isomorphism between �0(R

2, ‖ · ‖R) and �0(R
2, ‖ · ‖2).

¬(ii) �⇒ ¬(i). Suppose that F = [x1, x2] is a one-dimensional norm’s face with
a nonsmooth end point x1. Then, x⊥1 properly contains y⊥, where y = x1+x2

2 is the
midpoint of F . Notice that such property cannot take place in Hilbert spaces, so there
can be no graph isomorphism between �0(R

2, ‖ · ‖R) and �0(R
2, ‖ · ‖2). �

We have a similar classification for complex Radon planes:

Lemma 3.12 SupposeR := (C2, ‖ · ‖R) is a complexRadon plane and let (C2, ‖ · ‖2)
be a Hilbert space with the norm ‖(x, y)‖2 :=

√|x |2 + |y|2. Then the following
conditions are equivalent:
(i) �0(R) is isomorphic to �0(C

2, ‖ · ‖2).
(ii) (a) The boundary points of each nonzero-dimensional face inR are smooth, and

(b) the set {x⊥; x ∈ �0(R)} has continuum many points.

Proof (ii) �⇒ (i). By Lemma 3.10, for any normalized point x there exists a norm’s
face Fx such that x⊥ = CFx , and Fx is zero-dimensional if and only if x is a smooth
point. Besides, if x is nonsmooth, then each point in Fx is BJ-orthogonal only to Cx,
and x is BJ-orthogonal only to the points in CFx . Moreover, if F is a norm’s face of
dimension greater than 0, then CF ⊆ CFx for some nonsmooth normalized point x .
As a consequence, the whole space C

2 decomposes into a union

C
2 = {0} ∪

⋃
x

(C∗x ∪ C
∗Fx ); C

∗ = C\{0} (3.6)

where the union runs over all ‖ · ‖R-normalized vectors x which belong to zero-
dimensional maximal faces. Moreover, the points in C

∗x and in C
∗Fx are mutually

BJ-orthogonal, but are BJ-orthogonal to no other nonzero point and no other nonzero
point is BJ-orthogonal to a point in C

∗x ∪ C
∗Fx . In addition, either (C∗x ∪ C

∗Fx )
and (C∗y ∪ C

∗Fy) are equal or they are disjoint.
Also, by part (b) of assumption (ii) there are continuum many such pairs. We can

now construct a graph isomorphism � : �0(R) → �0(C
2, ‖ · ‖2) as follows. We

partition the two-dimensional Hilbert space into continuum many pairwise disjoint
pairs, consisting of mutually orthogonal vectors, by the formula
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C
2 = {0} ∪

⋃
0≤t,θ<π/2

(
C
∗(cos t, e4θ i sin t) ∪ C

∗(−e−4θ i sin t, cos t)
)
. (3.7)

With each of the continuum many pairwise distinct pairs (C∗x, C
∗Fx ) that constitute

the union in (3.6) we bijectively associate a pair, indexed by tx , θx , from the union
in (3.7). For any x there exists a bijection ϕx : C

∗Fx → C
∗. Then, the mapping

� : (C2, ‖ · ‖R)→ (C2, ‖ · ‖2) defined by

(i) �(0) = 0,
(ii) �(λx) = λ(cos tx , e4θx i sin tx ) and �(λz) = ϕx (λz)(−e−4θx i sin tx , cos tx ) for

z ∈ Fx and λ ∈ C
∗

is a bijection which preserves BJ-orthogonality in both directions, i.e., it is a graph
isomorphism between �0(C

2, ‖ · ‖R) and �0(C
2, ‖ · ‖2).

¬(ii) �⇒ ¬(i). Clearly, the orthogonality graph of the two-dimensional Hilbert
space contains continuum many different outgoing neighborhoods. Namely, if c, s
are real numbers with c > 0 and c2 + s2 = 1, then (c, s)⊥ = C(−s, c) are pair-
wise distinct. In addition, every isomorphism � : �0(R) → �0(C

2, ‖ · ‖2) satisfies
�(x⊥) = �(x)⊥. So, if part (b) of item (ii) does not hold for a complex Radon
planeR, there can be no isomorphism. It remains to prove that no isomorphism exists
in the case when there is a face F of R with dimaff F > 0 which contains a non
smooth point on its relative boundary. Firstly, as shown before, the relative interior of
F consists of smooth points only. Let w ∈ F be a nonsmooth point on its boundary.
Since dimaff F > 0, there exists a point x ∈ F in its relative interior, so x is smooth,
and hence x⊥ coincides with the one-dimensional kernel of the supporting functional
at x . One can easily adapt the proof of (ii) �⇒ (i) of Lemma 2.9 to work also in non-
projective setting, and it shows that x⊥ is properly contained in w⊥. Notice that such
property cannot take place in Hilbert spaces, so there can be no graph isomorphism
between �0(C

2, ‖ · ‖R) and �0(C
2, ‖ · ‖2). �

An example of a real Radon planeRwhose orthodigraph, �0(R), has only finitely
many outgoing neighborhoods is the Hexagonal norm (it is the image under a linear
bijection of a norm which in the first quadrant coincides with ‖ · ‖∞ and in the sec-
ond quadrant coincides with its dual, ‖ · ‖1). Clearly, in this case, �0(R) cannot be
isomorphic to �0(R

2, ‖ · ‖2), because the latter contains uncountably many different
outgoing neighborhoods.

We next show that there do exist nonsmooth real Radon planesR such that �0(R)

and �0(R
2, ‖ · ‖2) are isomorphic.

Example 3.13 Consider an arbitrary normed space (R2, ‖ · ‖) whose unit sphere sat-
isfies the following conditions:

(i) it is symmetric with respect both to the x-axis and the y-axis;
(ii) it contains a nontrivial line segment parallel to the x-axis;
(iii) it passes through ±(1, 0) and ±(0, 1);
(iv) it is smooth at all points, except for, possibly, ±(1, 0).

An example of such a unit sphere is depicted in Fig. 1. Let us denote x = (1, 0) and
y = (0, 1). Clearly, x ⊥⊥ y. Hence, there exists a Radon plane (R2, ‖ · ‖R) such that
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Fig. 1 The original norm on R
2

the first and the third quadrants of its unit sphere coincide with those of (R2, ‖ · ‖). In
other words, only striped areas are changed in Fig. 1.

The ⊥ relation is symmetric on (R2, ‖ · ‖R). Since the unit sphere is convex, for
any z from the horizontal line segment we have z ⊥ x, and thus x ⊥ z. Therefore, x is
a nonsmooth point of (R2, ‖ · ‖R) (even when it is a smooth point of (R2, ‖ · ‖)). We
denote by z0 the rightmost point of the horizontal line segment I in the first quadrant of
the unit sphere (if x is a nonsmooth point of the original norm, then I is also extended
to the second quadrant).

Assume that there is a nonsmooth pointw �= ±x on the unit sphere of (R2, ‖ · ‖R).

Then, w must belong to the second or to the fourth quadrant, and there exist linearly
independent normalized u, v such that w ⊥ u and w ⊥ v. Since the unit sphere is
convex and x ⊥ z0, we may assume that u and v belong to the first quadrant and lie
between z0 and x . By the symmetry of⊥ on (R2, ‖ · ‖R),we have u ⊥ w and v ⊥ w.

But the norm’s unit sphere is strictly convex on the interval between z0 and x, so we
obtain a contradiction.

Therefore, there are only two types of pairs of BJ-orthogonal lines in (R2, ‖ · ‖R):

(i) Rx ⊥⊥ Rz for any z from the horizontal line segment I of the unit sphere;
(ii) all other lines are divided into pairs of mutually BJ-orthogonal lines.

We denote R
∗ I = {αz; α ∈ R

∗, z ∈ I }. Then, it is easy to construct a (non-
homogeneous) bijective mapping � : (R2, ‖ · ‖R) → (R2, ‖ · ‖2) which preserves
BJ-orthogonality in both directions:

(i) �(0) = 0;
(ii) �(R∗x) = R

∗(1, 0);
(iii) �(R∗ I ) = R

∗(0, 1);
(iv) � maps the rest of mutually BJ-orthogonal lines in (R2, ‖ · ‖R) bijectively onto

the rest of mutually BJ-orthogonal lines in (R2, ‖ · ‖2).
Therefore, � is a graph isomorphism between �0(R

2, ‖ · ‖R) and �0(R
2, ‖ · ‖2).

For our further purposes, we will need an absolute nonsmooth real Radon planeR,

i.e., a Radon plane such that its unit ball is nonsmooth but symmetric with respect
both to the x-axis and the y-axis. The latter condition is equivalent to the fact that the
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Fig. 2 Absolute nonsmooth Radon plane

norm on R satisfies the equality

‖(a, b)‖R = ‖(|a|, |b|)‖R; (a, b) ∈ R
2.

Note that the following example is a particular case of Example 3.13.

Example 3.14 Let X be an absolute nonsmooth two-dimensional real normed space
whose unit sphere is given by Fig. 2 for some unknown decreasing smooth function
η(ξ) and unknown value 0 < ξ0 < 1. We now write down a system of equations
which guarantees that X is a Radon plane and present one of its solutions.

Consider any vector on the unit sphere v = (ξ, η(ξ)), ξ0 < ξ < 1. Recall that the
supporting functional atv equals the norm’s gradient atvwhich is always perpendicular
to the tangent vector of the norm’s unit sphere. Therefore, v⊥ = R(1, η′(ξ)), so v is
BJ-orthogonal to a unit vector u = (α(ξ), α(ξ)η′(ξ)), ξ0 < α(ξ) < 1, which belongs
to the fourth quadrant. Since BJ-orthogonality on any Radon plane is symmetric and u
is a smooth point of the norm, we have u⊥ = Rv, so the symmetry of our Radon plane
with respect to the x-axis implies that α(α(ξ)) = ξ. By the continuity, α satisfies the
boundary conditionsα(ξ0) = 1 andα(1) = ξ0.For instance, we can takeα(ξ) = ξ0/ξ.

Since u is a unit vector from the fourth quadrant, we have

η(α(ξ)) = −α(ξ)η′(ξ). (3.8)

Then, α(α(ξ)) = ξ implies that

η(ξ) = −ξη′(α(ξ)). (3.9)

We now differentiate (3.8), multiply it by ξ and substitute (3.9) to obtain

ξα(ξ)η′′(ξ)+ α′(ξ)(ξη′(ξ)− η(ξ)) = 0. (3.10)

By substituting α(ξ) = ξ0/ξ and multiplying the resulting equation by ξ2/ξ0, we get

ξ2η′′(ξ)− ξη′(ξ)+ η(ξ) = 0. (3.11)
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Its general solution is η(ξ) = c1ξ + c2ξ ln ξ, c1, c2 ∈ R. But η(1) = 0, so c1 = 0.
Since η′(ξ0) = 0, we then have ξ0 = 1/e, and η(ξ0) = 1 implies that c2 = −e. Thus
η(ξ) = −e ξ ln ξ. One can verify that η(ξ) indeed satisfies (3.8).

Example 3.14 allows us to construct a nonsmooth complex Radon plane. The first
examples of complex Radon planes were given by Oman [18, pp. 43–48, Construc-
tions III, IV and V], though he did not obtain a complete characterization for them.
His constructions use the following result:

Lemma 3.15 [18, Theorem 3.4] A two-dimensional normed space X over F ∈ {R, C}
is a Radon plane if and only if there exists an isometry � : X → X ∗ such that
�(x)(x) = 0, x ∈ X .

Lemma 3.16 [18, Theorems 3.4 and 3.5] LetR = (F2, ‖ · ‖R) be a Radon plane over
F ∈ {R, C}, x, y ∈ R, x ⊥ y and ‖x‖R = ‖y‖R = 1. Then for any a, b, c, d ∈ F we
have |ad − bc| ≤ ‖ax + by‖R · ‖cx + dy‖R, and the inequality becomes an equality
if and only if ax + by ⊥ cx + dy.

Example 3.17 Let (R2, ‖ · ‖R) be an absolute nonsmooth Radon plane from Exam-
ple 3.14, and consider X = C

2 with the norm defined by

‖(a, b)‖X := ‖(|a|, |b|)‖R.

By [18, pp. 45–48, Constructions IV and V], this is indeed a normed space. Any linear
functional in X ∗ can be identified with (̂c, d) for a certain (c, d) ∈ C

2 whose action
is given by (̂c, d)(a, b) = ca + db. Then Ker ̂(−d, c) = C(c, d) and ‖ ̂(−d, c)‖X ∗ =
‖(c, d)‖X , since for any (a, b) ∈ X we have

| ̂(−d, c)(a, b)| = | − da + cb| ≤ |da| + |cb|
= |d||a| + |c||b| ≤ ‖(|c|, |d|)‖R · ‖(|a|,−|b|)‖R
= ‖(|c|, |d|)‖R · ‖(|a|, |b|)‖R = ‖(c, d)‖X · ‖(a, b)‖X .

The inequality in the second line follows from Lemma 3.16. The norm of ̂(−d, c)
is achieved on (a, b) ∈ X if and only if (|a|,−|b|) ⊥ (|c|, |d|) in (R2, ‖ · ‖R) and
Arg(−da) = Arg(cb),where Arg(ξ) denotes the argument of ξ ∈ C.We also assume
here that Arg(0) = Arg(ξ) for any ξ ∈ C.

Hence, the mapping � : X → X ∗ defined by �((c, d)) = ̂(−d, c) is an isometry
which satisfies Lemma 3.15, so X is a complex Radon plane. Besides, (a, b) ⊥ (c, d)

in X if and only if (|a|,−|b|) ⊥ (|c|, |d|) and Arg(−da) = Arg(cb).
Let us denote x = (1, 0) and I = {(ξ, 1); ξ ∈ C, |ξ | ≤ 1/e}. There are again

only two types of pairs of BJ-orthogonal lines in X :

(i) Cx ⊥⊥ Cz for any z ∈ I ;
(ii) all other lines are divided into pairs of mutually BJ-orthogonal lines.

Clearly, this means that x is a nonsmooth point of X , so X is a nonsmooth com-
plex Radon plane. Similarly to Example 3.13, we can construct a (nonhomogeneous)
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bijective mapping � : X → (C2, ‖ · ‖2) which preserves BJ-orthogonality in both
directions, and this mapping is an isomorphism between �0(X ) and �0(C

2, ‖ · ‖2).
By using Examples 3.13 and 3.17 we can also show that the assumption that X is

a BJ-normed space is essential in Corollary 3.6. Let X be a complex normed space,
x, y ∈ X . We denote x ⊥R y if x and y are BJ-orthogonal as elements of the real
normed space XR, which is obtained from X by restricting the scalars to the field of
real numbers.

Lemma 3.18 Let X and Y be normed spaces over F, and Z = X ⊕2 Y with

‖(x, y)‖Z =
√
‖x‖2X + ‖y‖2Y . Then for any nonzero x ∈ X we have

(x, 0)⊥ = x⊥ ⊕ Y,

⊥(x, 0) = ⊥x ⊕ Y .

Proof Let us denote the norm’s directional derivatives at u in direction of v by

D−(u; v) := lim
t↗0

‖u + tv‖ − ‖u‖
t

and D+(u; v) := lim
t↘0

‖u + tv‖ − ‖u‖
t

.

By [15, Theorem 3.2], we have u ⊥R v if and only if D−(u; v) ≤ 0 ≤ D+(u; v).

Now note that, by continuity of the norm,

D±((x, 0); (y, z)) = lim
t→±0

‖(x + t y, t z)‖Z − ‖(x, 0)‖Z
t

= lim
t→±0

√
‖x + t y‖2X + ‖t z‖2Y − ‖x‖X

t

= lim
t→±0

‖x + t y‖2X + t2‖z‖2Y − ‖x‖2X
t
(√
‖x + t y‖2X + ‖t z‖2Y + ‖x‖X

)

= lim
t→±0

(‖x + t y‖X − ‖x‖X )(‖x + t y‖X + ‖x‖X )

2t‖x‖X
= lim

t→±0
‖x + t y‖X − ‖x‖X

t
= D±(x; y).

Hence, (x, 0) ⊥R (y, z) if and only if x ⊥R y. In the complex case, we use a general
result that u ⊥ v if and only if u ⊥R λv for all λ ∈ C. Then, (x, 0) ⊥ (y, z) if and
only if (x, 0) ⊥R λ(y, z) = (λy, λz) for all λ ∈ C which, by above, is equivalent to
x ⊥R λy for all λ ∈ C, and then to x ⊥ y.

For the second part of the statement, note that (y, z) ⊥ (x, 0) if and only if√
‖y‖2X + ‖z‖2Y = ‖(y, z)‖Z ≤ ‖(y, z) + λ(x, 0)‖Z =

√
‖y + λx‖2X + ‖z‖2Y for

all λ ∈ F. Clearly, this is equivalent to ‖y‖X ≤ ‖y + λx‖X for all λ ∈ F, that is, to
y ⊥ x . �
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Example 3.19 Consider X = (F2, ‖ · ‖R) from Example 3.13 or 3.17, Y =
(Fn, ‖ · ‖2) with n ∈ N, and Z = X ⊕2 Y . Then dimZ = 2+ n ≥ 3.

We denote w̃ = (w, 0) ∈ Z for any w ∈ X . Since x̃ = (x, 0) is a nonsmooth point
in X ⊕ {0}, it is also a nonsmooth point in Z.

Let e1, . . . , en be the standard basis in Y, and consider the vectors x1 =
(0, e1), . . . , xn = (0, en). By Lemma 3.18, x⊥j = X ⊕ e⊥j and x̃⊥ = x⊥ ⊕ Y,

where x⊥ = {αz; α ∈ F, z ∈ I }. Hence

x̃⊥ ∩ x⊥1 ∩ · · · ∩ x⊥n = x⊥ ⊕ {0} = FI ⊕ {0}.

Again by Lemma 3.18, for any nonzero z ∈ FI we have z̃⊥ = z⊥ ⊕ Y = Fx ⊕ Y =
⊥z ⊕ Y = ⊥ z̃, so FI ⊕ {0} is a BJ-set.

Without loss of generality we can consider only the identity permutation of
x1, . . . , xn . Let

� = {w ∈ �(X ); x̃⊥ ∩ w⊥ ∩ x⊥2 ∩ · · · ∩ x⊥n is a BJ-set}.

Clearly, x1 ∈ �. Besides, for any z ∈ I we have x̃⊥ ∩ z̃⊥ ∩ x⊥2 ∩ · · · ∩ x⊥n = Fx1
which is also a BJ-set, so z̃ ∈ �. Thus

x̃⊥ ∩ x⊥2 ∩ · · · ∩ x⊥n ∩
⋂
w∈�

w⊥ ⊆ z̃⊥ ∩ (FI ⊕ {0}) = {0},

and the condition (ii) of Corollary 3.6 is satisfied for a nonsmooth point x̃ .

4 Related results and concluding remarks

Let X be a normed space over F and x ∈ X . Let us recall a few facts about the norm’s
subdifferential set as defined in Sect. 2.

(i) The subdifferential set is also related to the right hand derivative of the norm as
follows (see [10, Theorem 1.2.9]):

∂‖x‖ = { f ∈ X ∗; Re f (y) ≤ D+(x, y) for all y ∈ X }, (4.1)

D+(x, y) = max{Re f (y); f ∈ ∂‖x‖}. (4.2)

(ii) The subdifferential set ∂‖x‖ is a convex subset of X ∗ (because convex sum of
two supporting functionals is a supporting functional).

(iii) The point x ∈ X is smooth if and only if ∂‖x‖ is a singleton set and only
contains the functional f defined as f (y) = D+(x, y) = D−(x, y) (see [10,
Corollary 1.2.10]).

Now we give a characterization for the condition x⊥ ⊆ y⊥, which complements
Lemma 2.9.
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Proposition 4.1 Let X be a normed space over F and let x, y ∈ X . Then

x⊥ ⊆ y⊥ ⇐⇒ (∃α ∈ F\{0} such that ∂‖αx‖ ⊆ ∂‖y‖)
⇐⇒ (∃α ∈ F\{0} such that D+(αx, z) ≤ D+(y, z) ∀z ∈ X )

.

Proof We first prove the equivalence:

x⊥ ⊆ y⊥ ⇐⇒ (∃α ∈ F\{0} such that ∂‖αx‖ ⊆ ∂‖y‖).
The converse implication follows from (2.1) and the fact that y⊥ = (αy)⊥.

Now, let x⊥ ⊆ y⊥.Without loss of generality wemay assume that ‖x‖ = ‖y‖ = 1.
Using (2.1), we obtain x⊥ =⋃{Ker f ; f ∈ ∂‖x‖}. Let f be a supporting functional
at x . Then x⊥ ⊆ y⊥ implies Ker f ⊆ y⊥. It follows from [15, Theorem 2.1] that
| f (y)| = 1, i.e., there exists unimodular α such that f (y) = α.

Hence for f , g ∈ ∂‖x‖ there exist unimodular α, β such that f (y) = α and
g(y) = β. Since ( f + g)/2 also belongs to ∂‖x‖, there exists unimodular γ such that

α+β
2 =

(
f+g
2

)
(y) = γ.

Thus, |α + β| = 2, so it follows from |α| = |β| = 1 that α = β, and hence
∂‖αx‖ ⊆ ∂‖y‖. The last equivalence follows directly from Eqs. (4.1) and (4.2). �
Corollary 4.2 Let X be a normed space and let x, y ∈ X . We have

x⊥ = y⊥ ⇐⇒ (∃α ∈ F\{0} such that ∂‖αx‖ = ∂‖y‖)
⇐⇒ (∃α ∈ F\{0} such that D+(αx, z) = D+(y, z) ∀z ∈ X )

.

By Lemma 2.9, two smooth vectors belong to the same face if and only if they have
the same supporting functional, which, in finite-dimensional spaces, coincides with
their gradients. This yields the next observation.

Corollary 4.3 Two smooth normalized vectors in a finite-dimensional normed space
lie on the same face of the norm’s unit ball if and only if their gradients are equal.

We show next that there do exist nonsmooth and nonrotund real BJ-norms. The
following example proves the existence of such a norm in R

3, but it can be easily
generalized to R

n with n ≥ 3.

Example 4.4 Consider

‖(x, y, z)‖ :=
{√

2
√
x2 + y2 + z2, |z| ≤ √

x2 + y2;√
x2 + y2 + |z|, otherwise.

To see that this is indeed a norm, we only need to prove the triangle inequality. This
will be done indirectly by studying the set of points C where ‖ · ‖ ≤ 1. Notice first
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that, by Cauchy–Schwarz–Bunyakovsky inequality, applied to (
√
x2 + y2, |z|) and

(1, 1), we immediately have

√
x2 + y2 + |z| ≤ √2

√
x2 + y2 + z2, (4.3)

and the equality holds if and only if |z| = √
x2 + y2. Therefore, the set C coincides

with a cone {(x, y, z) ∈ R
3; √

x2 + y2 + |z| ≤ 1}, when |z| ≥ √
x2 + y2, and a

Euclidean ball of radius 1/
√
2, otherwise. By (4.3), this ball is inscribed into the cone,

so it touches it tangentially, and as such the function ‖ · ‖ is smooth at nonzero points
of intersection |z| = √

x2 + y2. Also, C is invariant under rotation around the z-axis,
more precisely, under the action of a matrix U ⊕ 1 where U is an orthogonal (2× 2)
matrix. Hence C coincides with a rotational body obtained by rotating C ∩ ({0} ×
(−∞, 0] × R) around the z-axis. One can compute that the boundary points of this
intersection lie on a convex curve

y(z) =
{
−

√
1
2 − z2, |z| ≤ 1

2 ;
|z| − 1, 1

2 < |z| ≤ 1.

As such,

C = {(y cos θ, y sin θ, z) ; 0 ≤ θ ≤ 2π, y ≤ 0, ‖(0, y, z)‖ ≤ 1} ,

being a rotation of a convex planar region, is also convex. Moreover, C is clearly a
compact, absorbing, and balanced set whose boundary points lie outside the open ball
of radius 1/

√
2. Therefore, by [22, Theorem 1.35], its Minkowski functional is a norm

whose closed unit ball coincides with C . Then, Minkowski functional must be equal
to ‖ · ‖, and the triangle inequality follows.

We proceed to show that ‖ · ‖ is a BJ-norm. It suffices to verify that there exist no
linearly independent normalized vectors u, v ∈ R

3 such that u⊥ = v⊥ and ⊥u = ⊥v.

Assume otherwise. By Lemma 2.9, after replacing, if needed, v with −v we achieve
that u and v belong to the same norm’s face, i.e., the same face of norm’s unit ball C .

Clearly, neither u nor v can coincide with the only two nonsmooth points (0, 0,±1)
of C because then one among u⊥, v⊥ would be a hyperplane, while the other would
be a union of several distinct hyperplanes, contradicting u⊥ = v⊥. Hence, both u, v

are smooth and belong to the same face. Since u⊥ = Ker fu, where fu is a supporting
functional at u which can be identified with the norm’s gradient at u,we see that ∂‖u‖
and ∂‖v‖ are parallel. Now, the norm’s gradient at a smooth point (x, y, z) is easily
seen to be

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2(x, y, z)√

x2 + y2 + z2
, |z| ≤ √

x2 + y2;(
x√

x2 + y2
,

y√
x2 + y2

, sign z

)
, otherwise.
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Therefore, under our assumption that u, v are two distinct points which belong to the
same face, the two gradients at u = (u1, u2, u3) and v = (v1, v2, v3) are parallel if

and only if |u3| ≥
√
u21 + u22 and |v3| ≥

√
v21 + v22 and (u1, u2) is parallel to (v1, v2).

By a suitable rotation around the z-axis and multiplication by ±1 (which are both
isometries of our norm, hence preserve the in-coming and out-going neighbourhoods),
we can achieve that normalized and smooth points u, v satisfy u = (0, u2, 1 − u2)
and v = (0, v2, 1 − v2) with 0 < u2, v2 ≤ 1/2. The only smooth points in ⊥u
which lie on the hyperplane � = {0} × R

2 are the ones whose supporting functional
annihilates u. Since supporting functional is given by the norm’s gradient, we hence
see that the only such points are (0, λ(1 − 1/u2), λ) where λ ∈ R. They clearly do
not belong to ⊥v ∩�, therefore, ⊥u �= ⊥v. Thus we have shown that ⊥u = ⊥v and
u⊥ = v⊥ for some nonzero u, v if and only if Ru = Rv.

A norm on a finite-dimensional real vector space is called polyhedral if its closed
unit ball is the intersection of finitely many closed halfspaces. This is equivalent to
having only finitely many faces (see, e.g., [20, Theorem 19.1] for an evenmore general
result).

Proposition 4.5 Let (X , ‖ · ‖) be a real finite-dimensional normed space. Then the
norm ‖ · ‖ is polyhedral if and only if

∣∣{x⊥; x ∈ �(X )}∣∣ <∞.

Proof If the norm ‖ · ‖ is polyhedral, then it has finitely many faces. Using
Remark 2.10, we obtain x⊥ = y⊥ for all x, y in the relative interior of any par-
ticular face. By [20, Theorem 18.2], the norm’s unit sphere is a disjoint union of
relative interiors of its faces, and hence

∣∣{x⊥; x ∈ �(X )}∣∣ <∞.

Conversely, assume that |{x⊥; x ∈ �(X )}| = m.Let x1, . . . , xm be points of�(X )

such that x⊥i �= x⊥j for all i �= j . Since for any y ∈ �(X ) we have y⊥ = x⊥i for some
1 ≤ i ≤ m, Lemma 2.9 implies that y and xi belong to the same face. Therefore,
the number of faces of the unit ball is less than equal to m. Hence, the norm ‖ · ‖ is a
polyhedral norm. �

Finally, let us conclude with some observations.

(A) Recall that a complexification of a real normed space (X , ‖ · ‖) is a complex
vector space XC = C ⊗R X equipped with a complex norm ‖ · ‖C that agrees
with ‖ · ‖ on the real subspace 1⊗RX .Our next example shows that there might
exist different complexifications (Y1, ‖ · ‖1) and (Y2, ‖ · ‖2) of (X , ‖ · ‖) such
that projective orthodigraphs �(Y1) and �(Y2) are not isomorphic. For exam-
ple, consider two complexifications of the real Euclidean space (Rn, ‖ · ‖2):
the complex Hilbert space (Cn, ‖ · ‖2) and the Taylor minimal complexifica-
tion (Cn, ‖ · ‖T). These two complexifications of (Rn, ‖ · ‖2) are not isometric
because their isometry groups are not isomorphic (see [12, Example 6.1]). By
James’ result, BJ-orthogonality in (Cn, ‖ · ‖T) is not symmetric, so projective
orthodigraphs �(Cn, ‖ · ‖2) and �(Cn, ‖ · ‖T) are not isomorphic.

(B) Corollary 2.11 holds even if we replace the word ‘maximal face’ by ‘maximal
exposed face’. This follows from the fact that, in a finite-dimensional normed
space, a maximal face is always exposed. To see this, assume that F is the
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norm’s maximal face. Let A = Spanaff F be its (real) affine span. If F is zero-
dimensional, then let z ∈ F be its unique point. Otherwise, let z be an arbitrary
point from the (nonempty) relative interior of F . Consider a linear subspace
V = A − z, so that A = V + z. Since either V = 0 or z belongs the relative
interior of F, for any v ∈ V we have z + λv ∈ F for λ ∈ R with small enough
|λ|, see [20, Corollary 6.4.1]. But ‖x‖ = 1 for all x ∈ F, so for any v ∈ V
it holds that D±(z; v) = 0, and thus, by [15, Theorem 3.2], z ⊥ v. It follows
from [15, Theorem 2.1] that there exists an R-linear functional f with ‖ f ‖ = 1
such that f (z) = 1 and V ⊆ Ker f . Then, f (F) ⊆ f (A) = f (V + z) = {1},
so F ⊆ f −1(1) ∩ BX , where BX is the norm’s closed unit ball of X . Since
this intersection is also a face, and F, being a maximal face, cannot be properly
contained in another face, it follows that F = f −1(1) ∩ BX . Thus F is an
exposed face.

(C) In particular, each maximal face in a complex Radon plane R takes the form
f −1(1) ∩ BR for some normalized C-linear functional f , so its dimension is
either 0 or 2. Thus, condition (ii) of Lemma 3.12 is also equivalent to: (a′) The
boundary points of each two-dimensional face inR are smooth, and (b′) the set
{x⊥; x ∈ �0(R)} has continuum many points.

(D) Note that in the proof of Lemma 3.4 we showed that for a smooth norm the
condition ⊥x = ⊥y implies Fx = Fy. With the out-going neighborhoods we
can saymore: in [2, Lemma 2.6] it was proved that a norm onX is strictly convex
if and only if, given x, y ∈ X \{0}, the condition x⊥ = y⊥ implies Fx = Fy.

(E) One way to interpret the existence of an isomorphism in item (i) of Lemmas 3.11
and 3.12 (and the existence of appropriate nonsmooth Radon planes as guaran-
teed byExamples 3.13 and3.17) is that orthodigraph�0 cannot detect nonsmooth
norms on two-dimensional spaces. In this regard, its projective counterpart,
orthodigraph � is again more restrictive: by Lemma 2.7, there can be no iso-
morphism between �(R) for a (real or complex) nonsmooth Radon plane and
�(F2, ‖ · ‖2) for a (real or complex) two-dimensional Hilbert space.

(F) Let R be a smooth real Radon plane which is not isometrically isomorphic to
a two-dimensional Hilbert space �22, and, for a nonempty index set I , let c0(I )
denote the Banach space of all systems (an)n∈I such that {n ∈ I ; |an| ≥ ε} is
finite for each ε > 0. In a recent paper, Tanaka [25, Theorem 3.13] showed that
Banach spacesR⊕∞c0(I ) and �22⊕∞c0(I ) are not isometrically isomorphic, but
still there does exist a homogeneous bijection � : R⊕∞ c0(I )→ �22⊕∞ c0(I ),
which preservers BJ-orthogonality in both directions. Because it is homoge-
neous, it hence induces a graph isomorphism between projective orthodigraphs
�(R ⊕∞ c0(I )) and �(�22 ⊕∞ c0(I )). This shows that, in nonsmooth normed
spaces, orthodigraphs cannot completely classify the norms up to isometry.

(G) Shortly after the submission of this paper we were informed that Saikat Roy
and Ryotaro Tanaka just recently obtained yet another classification, parallel to
our Lemma 3.11, of real Radon planes with �0(R) � �0(R

2, ‖ · ‖2) (see [21,
Corollary 2.14 and Theorems 3.10 and 3.13]). Moreover, [21, Example 3.16]
supplements our Example 3.14 of a nonsmooth and nonrotund real Radon plane
Rwhich satisfies this condition. However, to the best of the authors’ knowledge,
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our Lemma 3.12 and the accompanying Example 3.17, for the complex Radon
planes, are completely new.

(H) For a complex normed space X , if we define two norm’s faces F1 and F2
to be equivalent if there exists a unimodular scalar μ such that F1 = μF2,
then the result for complex normed space corresponding to Proposition 4.5
states as follows. There exists finitely many nonequivalent norm’s faces if and
only if

∣∣{x⊥; x ∈ �(X )}∣∣ < ∞. We also remark that this characterization
is valid even in nonprojective case. More precisely, there exists finitely many
nonequivalent norm’s faces in a finite-dimensional normed space (X , ‖ · ‖) if
and only if

∣∣{x⊥; x ∈ �0(X )}∣∣ <∞. This follows directly because from (1.1),
we see that there is bijective correspondence between {x⊥; x ∈ �(X )} and
{x⊥; x ∈ �0(X )\{0}} given by [x]⊥ ←→ x⊥.
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