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Abstract

We introduce a construction of Dirichlet forms on von Neumann algebras M associated
to any eigenvalue of the Araki modular Hamiltonian of a faithful normal non-tracial
state, providing also conditions by which the associated Markovian semigroups are
GNS symmetric. The structure of these Dirichlet forms is described in terms of spatial
derivations. Coercivity bounds are proved and the spectral growth is derived. We intro-
duce a regularizing property of positivity preserving semigroups (superboundedness)
stronger than hypercontractivity, in terms of the symmetric embedding of M into its
standard space L2(M) and the associated noncommutative L? (M) spaces. We prove
superboundedness for a special class of positivity preserving semigroups and that some
of them are dominated by the Markovian semigroups associated to the Dirichlet forms
introduced above, for type I factors M. These tools are applied to a general construc-
tion of the quantum Ornstein—Uhlembeck semigroups of the Canonical Commutation
Relations CCR and some of their non-perturbative deformations.
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1 Introduction and description of the results

The structure of completely Dirichlet forms with respect to lower semicontinuous,
faithful traces on von Neumann algebras is well understood in terms of closable deriva-
tions taking values in Hilbert bimodules (see [14] and the recent [38, 39]). However,
for applications to Quantum Statistical Mechanics (see [4-7, 10, 11,22, 23,25, 27-30,
40]) and Quantum Probability (see [12, 26]) or to deal with general Compact Quan-
tum Groups, is unavoidable to consider quadratic forms which are Markovian with
respect to non-tracial states or weights. Concerning the structure of Dirichlet forms of
GNS-symmetric Markovian semigroups, one is invited to consult the recent [38, 39].
In QSM, for example, the relevant states one wishes to consider are the KMS equi-
libria of time evolution automorphisms which are non-tracial at finite temperature. In
the CQGs situation, on the other hand, the Haar state is a trace only for the special
subclass of CQGs of Kac type. In several most studied CQGs the Haar state is not
a tracial state, as for examples for the special unitary CQGs SU, (N). In this frame-
work a detailed understanding has been found for the completely Dirichlet forms
generating translation invariant completely Markovian semigroups of Levy quantum
stochastic processes. The construction relies on the Schiirmann cocycle associated to
the generating functional of the process (see [13]).

On the other hand, a general construction of completely Dirichlet forms on the standard
form of a o -finite von Neumann algebra with respect to a faithful, normal state in the
sense of [8, 9, 16-18], has been introduced in [23, 24, 35] and by Y.M. Park and his
school (see [4, 5, 28-30]) with applications to QSM of bosons and fermions system and
their quasi-free states. In this approach the Dirichlet forms depend upon the explicitly
knowledge of the modular automorphisms group of the state.

In this work we formulate a general and natural construction of a completely Dirich-
let form, Markovian with respect to a fixed normal, faithful state wq, associated to each
non zero and not necessarily discrete eigenvalue of the Araki modular Hamiltonian
In Ag. Hence, by superposition, one has a malleable tool to construct completely
Dirichlet forms and completely Markovian, modular symmetric, semigroups start-
ing from the spectrum of the modular operator Aq or its associated Araki modular
Hamiltonian In Ag. Compared to Park’s approach, this has the advantage to avoid the
explicit use of the modular automorphism group. The present method generalizes the
construction of bounded Dirichlet form of [8] Proposition 5.3 and that of unbounded
Dirichlet forms of [8] Proposition 5.4, removing the assumption of self-adjointness
and affiliation to the centralizer for the coefficients.

The framework of the construction is that of Dirichlet forms and Markovian semi-
groups on standard forms (M, L2(M), L%_(M ), J) of von Neumann algebras M as in
[8] and related modular theory [1, 2, 6, 34, 36, 37]. In particular, we associate in Sect. 2,
a one-parameter family of unbounded, J-real, non negative, densely defined, closed
quadratic forms (£}, .7-'1);) on L?(M) satisfying the first Beurling—Deny condition to
each densely defined, closed operator (Y, D(Y)) affiliated to M, thus generating Co-
continuous, contractive semigroups on L?(M) which are positivity preserving (in the
sense that they leave globally invariant the positive self-polar cone Li(M )). More-
over, the quadratic form (£, .7-'%) is Markovian with respect to the cyclic vector
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& € L2(M )+ representing wy, in the strong sense that 5?} [E0] = O, if and only if &
lies in the domain both of Y and its adjoint Y* and & := Y& is an eigenvector of the
modular operator Ag associated to the non zero eigenvalue A > 0. This construction
applies, in particular, to any eigenvector & of any non zero eigenvalue of Ag.
Further, we investigate the fact that, by definitions, each (Ek, ]-")X,) is the quadratic
form of an M-bimodule derivations (d}, D(d})) on the standard bimodule L*(M).
In particular we show that in the Markovian case both (£}, F5) and (d}, D(dy))
are represented by the symmetric embedding on L?(M) of the unbounded, spatial
derivations §y :=i[Y, -] on M provided by the operator (¥, D(Y)) affiliated to M.
In the subsequent Sect.3, we prove natural lower bounds for the Dirichlet form
(&, F )A,) in terms of the quadratic forms of the affiliated operators Y*Y, YY*, [Y, Y*]
and derive implications on the lower boundedness and discreteness of spectrum of
(& FP).

By the general theory, using the symmetric embeddings of the von Neumann algebra M
into the standard Hilbert space L?(M) and the embedding of L%(M) into the predual
space M, = L'(M), provided by the modular theory of the state w, completely
Markovian semigroups 7; on L>(M) extend to completely (Markovian) contractive
semigroups on M and on L!(M) (weak*-continuous in the former case and strongly
continuous in the latter one).

In Sect. 4, we introduce an extra regularity property of positivity preserving semigroups
called superboundedness as the boundedness of T; from L*(M) to M for all t > 1
and some #y > 0. In case fo = 0 we call this property ultraboundedness. We prove
that superboundedness holds true with respect to a finite temperature Gibbs state
@(-) = Tr (-e—PoHo) /Tr(e_ﬂoHO) on a type I factor M, for the semigroup generated
by the generalized sum Hy+J HyJ and that the property is stable with respect to
domination of positivity preserving semigroups.

In Sect.5 we apply the framework above to investigate a class of Dirichlet forms
associated on a type I, factor which are Markovian with respect to a Gibbs state of
the Number Operator of a representation of the CCR algebra. The construction fully
generalizes that of Quantum Ornstein—Uhlenbeck semigroups introduced in [12]. In
particular we prove the subexponential spectral growth rate of the generator and the
domination of the Markovian semigroup with respect to the semigroup generated by
Ho-+J HoJ (this special class of semigroups is discussed in Appendix 7.1).

In Sect. 6 we apply the tools developed in the previous sections to construct Dirichlet
forms associated with dynamics generated by deformations of the Number Operator.
In Appendix we represent the generators of a class of positivity preserving semigroups
as generalized sums and we clarify superboundedness for abelian von Neumann alge-
bras.

2 Dirichlet forms and derivations on von Neumann algebras standard
forms

Let (M, L3(M), L%r(M ), J) be a standard form of a o-finite von Neumann algebra
(for this subject and the related modular theory we refer to [6, 7, 36, 37]).
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Let wg be the faithful normal state on M represented by the cyclic vector &y € LEL (M)
as

wo(x) = Golx§o) 2y X € M.

The anti-linear, densely defined operator on L?(M) defined on the left Hilbert algebra
by

Mgy > xég— x*&y xeM,

is closable. Its closure Sp has a polar decomposition So = J Aé/ % where the anti-
unitary part J is called the modular conjugation and Ag := S; S is a densely defined,
self-adjoint, positive operator on L>(M), called the modular operator of wy, defining
the modular automorphism group of M by o, (x) := Affoa " for x € M and
t € R. On the w*-dense, involutive, sub-algebra of its analytic elements My C M, the
modular group can be extended to any ¢ € C. For any x, y € My and z, w € C, this
extension satisfies
o (xy) = 020 (X)00(y), 00, () =0 (o0 (), (020(x))" = o (x¥).

We will make use of the symmetric embedding of M into its standard Hilbert space
L3(M):

io: M — LAXM)  ig(x) := Ay *x&.

Amonyg its properties we recall that it is weak™-continuous, injective with dense range
and positivity preserving in the sense that io(x) € L*(M), if and only if x € M.
Also it maps the closed and convex set of all x € M such that 0 < x < 1 onto the
closed and convex set of all £ € L%r(M ) such that 0 < & < &j. The projection of
a J-real vector &€ = J& € L?(M) onto the closed, convex set & — L2+(M ) wil be
denoted by & A &.

A Dirichlet form [8] Definition 4.8 with respect to (M, wp) is a lower bounded and
lower semicontinuous quadratic form

E:L*(M) > (—00, 0],

with domain F := {& € L?>(M) : £[€] < 400}, satisfying the properties
(i) Fis densein L*(M),
(ii) E[JE] = E[£] for all & € L?(M) (reality),
(iii) E[€ A &) < E[€] forall € = J& € L*>(M), (Markovianity).
(€, F) is said to be a completely Dirichlet form if its ampliation on the algebra
(M ® M,(C), wg R try,) defined by

i,j=1

& LAM ® My(©), w9 ®tr,) > [0, +00] & [[&,1,1 ] == Y €&

i,j=1
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is a Dirichlet form for all n > 1 (tr,, denotes the tracial state on the matrix algebra
M, (C)).
A Co-continuous, self-adjoint semigroup {7} : ¢ > 0} on L2(M) is called

(1) positivity preserving if T;§ € Li(M) forall &£ € L2+(M) andt > 0;
(i1) Markovian with respect to wy if it is positivity preserving and for & = J& €
L*(M)

(iii) completely positive (resp. Markovian) if the extensions 7" := T; ® I,, to LXM®
M, (C), wg ® tr,,) are positivity preserving (resp. Markovian) semigroups for all
n>1.

In [8] Definition 2.8, property ii) above, Markovianity, was indicated as sub-
Markovianity.

As a result of the general theory, Dirichlet forms are automatically nonnegative
and Markovian semigroups are automatically contractive see [8] Proposition4.10
and Theorem 4.11.

Dirichlet forms (€, F) are in one-to-one correspondence with Markovian semi-
groups {7; : t > 0}: the self-adjoint, positive operator (H, D(H)) associated to
(E,F)by E[E] = ||«/ﬁ§||iz(M) for all £ € F, being the semigroup generator
T,=eM t>0.

Cy-continuous, self-adjoint, positivity preserving semigroups are in one-to-one
correspondence with nonnegative, densely defined, real, lower semicontinuous
quadratic forms satisfying the following first Beurling—Deny condition (weaker
than Markovianity)

§=J5eF = &reF and  E(5415-) =0,
equivalently stated (see [8] Proposition 4.5 and Theorem 4.7]) as
E=JEeF = [§leF and E[§]] = 5]

On the other hand, the first Beurling—Deny condition and the conservativeness
condition

&eF, El&l=0

together imply the Markovianity of closed forms (£, F) (see [8] Lemma 2.9 and
Theorem 4.11).

2.1 Dirichlet forms associated to eigenvalues of the modular operators

The forthcoming construction of Dirichlet forms is based on the following well known
fact (see [6] Proposition 2.5.9, [34, 37] page 19; see also [2] where von Neumann

) Birkhauser



22 Page6of47 F.E.G. Cipriani and B. Zegarlinski

algebras with states having the logarithmic of the modular operators with spectrum
consisting only of isolated eigenvalues are characterized).

We recall that a densely defined, closed operator (Y, D(Y)) on L2(M) is affiliated to M
if for any 7/ € M’ and any & € D(Y) one has z’D(Y) € D(Y) and Y (7'§) = 2/ (Y§&)
or, equivalently, if and only if its graph G(Y) C L*(M) @ L*(M) is left globally
invariant (z’ ®z)G(Y) € G(Y) under the actionof 7/ ®z' € M’ @ M’, forany 7’ € M’
(see [36]).

For any operator (Y, D(Y)) affiliated to M, the operator j(Y) := JY J is affiliated to
M.

Lemma 2.1 For any &€ € D(Sy) = D(A(l)/z) there exists a densely defined, closed
operator (Y, D(Y)) affiliated to M such that

(i) o € D(Y) N D(Y™),

(ii) &€ = Y&y and So(&) = Y*&. iii) Among the operators (Y, D(Y)) with the prop-
erties i) and ii) above, there exists a minimal one (Yo, D(Yo)) obtained as the
closure of the closable operator (Yo, D(Yy)) defined by

D(Yy) :=M'&.,  Yo(y'&) := y'&.

Proof The operator (Yo, D(Yy)) is affiliated to M because the action of any w’ € M’
leaves globally invariant the domain M’&p and w’Yo(y'&0) = w'y’é = Yo(w'y'&p) for
any y' € M’. The operator (Yy, D(Yy)) is closable because it is in duality with the
densely defined operator Zo : M'&y — L>(M) given by Zo(z'&y) := z'So€ in the
sense that

(8010 (v'60)) = (Z0ly's) = (+"*Z%0l8) = (42522 olg )
= (v6185 2260 ) = (78 %6 1v80) = (/S0 1Y'%0)
= (Zo ('&0) 1Y) -

Clearly by definition Yo&y = & and the calculation above implies Y& = So&. If
(Y, D(Y)) is a closed operator affiliated to M with properties (i) and (ii) above, then,
as & € D(Y), we have y'&y € D(Y) for all y) € M’ so that M'§y € D(Y) and
Y (y'&) = y'Y& = y'E = Yo(y'&), which shows that (Y, D(Y)) is a closed extension
of (Yo, D(Yo)). o

This representation will be applied below to eigenvectors & (if any) of the modular
operator.

Lemma 2.2 Let (Y, D(Y)) be a densely defined, closed operator affiliated to M and
w, v > 0. Then defining d;f’v : D(d;f’v) — L%(M) as

dy’=i(nY —vj(Y*)) D(dy"):=DX¥)NJD(Y"),
it results that (dg’v, D(d#’”)) is a densely defined, closable operator on L*(M).

W Birkhauser
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Proof Since J2 = I, we have D(j(Y*)) = JD(Y*) so that d}"” is well defined
on D(dff 'Y). By hypotheses, j(Y*) is densely defined, closed and affiliated to the
commutant von Neumann algebra M’. Hence Y and j(Y*) strongly commute and the
contraction semigroup e/ o ¢~/ II = o~1lJ ¥ o ¢=11¥] with parameter ¢ > 0
strongly converges to the identity operator on L>(M) ast — 0. Since dg Voe o
eI = i (Y o e o e 1IN — o=t o j(¥Y*) 0 V) is a bounded
operator for any ¢ > 0, we have that D(d},"") is dense in L>(M).

To prove the statement concerning closability, observe that reasoning as above with
Y* in place of Y and Y** = Y in place of Y*, we have that uY* — v j(Y) is densely
defined on D(Y*) N JD(Y). Moreover, since

(dy"nig) = (i (n¥ —vj (Y*))ni¢)
=—ipn¥nlO)+iv(j (Y*)nlg) neD(dy’):=DX¥)NJD(Y*)
=—ip (Y*¢) +iv(nlj(X)g) ¢ eD(Y*)NnJDY)
=l —i(nr*—vjm)c),

the adjointof (dy"", D(dy"")) is anextension of (—i (uY*—vj(Y)), D(Y*)NJ D(Y)).
It is thus densely defined and consequently (d}"", D(d}'")) is closable. o

Lemma 2.3 Let (Y, D(Y)) be a densely defined, closed operator affiliated to M. Then
the J-real part of the domain D(Y) is invariant under the modulus map:

§eDY), J&¢=§ = [§leDX)

and || Y|E||| = ||YE|. In particular, if § = & — &_ is the polar decomposition of a
J-real vector§ = J& € D(Y), then &L = (16| £&)/2 € D(Y) and

IYELll < IYEIl.

Proof Consider first the case where Y is bounded, and let s’y € M’ be the supports in
M’ of the positive and negative parts £+ of a J-real £ € L>(M). Then (Y&, |YE_ ) =
(Ys! & |Ys &) = (s), YE|s_YE ) = Osince & L & imply s/, s = 0, by [1]
Theorem 4. Thus

IYE|> = (YE|YE) = (Y&, — YE_|YE, — YE)

= (YE; + YE_|YE +YE) = | YIE||%.
To deal with the general case, fix § = J& € D(Y) = D(|Y|) and consider the
family of bounded operators Y|, := |Y|(I + elY])~! € M for e > 0 as well as the

spectral measure E!Y! of the self-adjoint operator |Y|. Applying the result concerning
the bounded case, for all ¢ > 0 we have

+00 v 2
E}} . (dn
/0 6111 44

A 2 2 1Y ’
—— = |||Y =Y = E. . (dr

(1 +er)?

) Birkhauser



22 Page8of47 F.E.G. Cipriani and B. Zegarlinski

Letting ¢ | 0, by the Monotone Convergence Theorem we have [£| € D(|Y]) = D(Y)
and [[Y|&]ll = IYE]. o

Lemma 2.4 Let (Y, D(Y)) be a densely defined, closed operator affiliated to M and
w,v > 0. Let § € D(dff'v) = DXY)N JDY*) be a J-real vector with polar
decomposition § =&, —&_. Then&y € D(Y) N D(Y™) and

(YEulj (Y)&-) = 0.

Proof If Y € M the assertion is true because in that case Y*j(Y*) is positivity pre-
serving. To deal with the general case, let Y = U|Y| be the polar decomposition of Y.
By the previous Lemma 2.3, since § = J&€ € D(Y), we have &1 € D(Y) = D(|Y)).
Since also Y* is a densely defined, closed operator affiliated to M and, by assump-
tion, & = J& € JID(Y*) = D(Y*), again by Lemma 2.3 we have §&_ € D(Y*)
too so that (Y& |j(Y*)EZ) = (|YIEL|j(Y)U*j(U*)E-) (here we implicitly used
the fact that U* j(U*)é— € D(]Y|) since &~ € D(]|Y|) by the previous Lemma 2.3,
U € M and j(]Y]) is affiliated to the commutant algebra M’). Since U € M so that
U* j(U*) is positivity preserving, it is enough to prove that (|Y|n|j (|Y|)n") > 0 for all
n,n € D(YHN Li(M). Since |Y| and j(]Y]) strongly commute, we can represent
the value (|Y|n|j(IY])n’) as an integral over the product of the spectral measures of
the two operators

(IYInljaYDpn') = /

(B x BTV (dr i) 2o
[0,400)2

Setting f:(A) := A/(1 + eA) we have 0 < f,(A) < X and lim,_,¢ fz (1) = A. By the
Dominated Convergence Theorem we have

(0 EJD) (dh i) 2

(IYInliqYDn') =/

[0,400)2

— lim (
e—0 [0,+OO)2

= lim (1Y Dnlj (£:(1Y D))
= lim (0l f:(1YDj (/1Y 1)) = 0

EVl < B ") (dr, dX) fo(0) - £o V)

since f:(|Y|) € M and f.(1Y])j(f:(1Y])) is positivity preserving. m]
Theorem 2.5 Let (Y, D(Y)) be a densely defined, closed operator affiliated to M such

thaté&y € D(Y)ND(Y*)and ¢, v > 0. Thenthequadraticformg)’f’v : fy — [0, +00)
on L*(M)

&)= Mg e gy + 14526 oy Fr = D) 0D (a5
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is densely defined, closable, J-real (recall that ||d;’*“§ ||%2(M) = ||d§f’UJ§ ”i2(M)) and

satisfies the first Beurling—Deny condition
t=JeeFy = E&eFy and &V (5 0.

Its closure (Sff v .7-'# V) satisfies the first Beurling—Deny condition too and generates
a contractive, positivity preserving semigroup {T; : t > 0}. Moreover, (Eff’v, .7-'{;’”) is
a conservative, in the sense that

&eFy', & [&]=0,

completely Dirichlet form with respect to (M, wo) and the associated completely
Markovian semigroup is conservative, in the sense that

Tis5p=% t=>=0,

ifand only if Y&y € L>(M) is an eigenvector of the modular operator corresponding
to the eigenvalue (L/v

véoe D (A7), AY*Y& = (u/mYs.

Proof Since Fy = D(Y) N JD(Y*) N D(Y*) N JD(Y) = DY) N D(Y*) N
J(D(Y) N D(Y*)), we have JFy = Fy and & = J& € Fy. Since djy’"J& =
i(WY — vIY*IVJE = i(WYJE — vIY*E) = iJ(uWJYJE — vY*E) = Ji(vY*E —
uJYJE) = Jd;’*“é for all £ € Fy and, exchanging the role of Y and Y*, we have
dyl'JE = Jdy "€ too, we get

&g = |a g P+ Lyt = oyt + Lo |
=&/ [€]§ € Fy,

which proves that the quadratic form (£}, Fy) is J-real.

Consider now a J-real vector £ € Fy, its polar decomposition & = &, — &_ with
respect to the self-polar cone Lﬁ_(M ) and recall that, by definition, |§| := &4 + &_.

By the previous lemma, |£| € Fy so that &L = (] £&))2 € Fy.Then, if sy € M
(resp. s’ € M’) are the supports of &1 in M (resp. M), we have

(dy "Exldy 'E-) = (WY Ex — vj(Y)EL (WY - — vj(YT)E)
= WYL ELIYsLE) + VP (V)54 ] j(YF)s-6-)
—v (YL (Y)E) + (g YED))

= —uo((VELLT &) + (()EYED) ) <0

) Birkhauser
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by Lemma 2.4. Since, analogously, (dy*&|dy*_) < 0 we have &V (£416-) <0
and consequently the first Beurling—Deny condition is satisfied by (5# v Fy)

E=JteFy = |EleFy and EPUNEN < EFVEL

To establish the same condition for the closure (£}, F},""), we adapt the proof of
[8] Proposition 5.1 (according the suggestions which there precede it).

On one hand, since J is an isometry for the graph norm of (é:# ", Fy) and Fy is a core
for (5{,i vF if ’U),then J is an isometry for the latter form too and the closure form is
J-real.

On the other hand, let & = J& € F4"" be a fixed J-real vector and let &, € Fy
be a sequence converging to it in the graph norm of (£}, F}"). Since the Hilbert
projection 1 > 7 of the J-real part of L?(M) onto the closed, convex cone Li (M)
is norm continuous and [n| = 214 — 7, it follows that the modulus map n +— |n|
is norm continuous too. Then, since the form E# "V is norm lower semicontinuous on
L2(M), it follows that

£ 1811 < tim inf £,

] = liminf £"[|&,]] < lim inf £V [£,]

= lim inf £)"[£,] = £V [£].

The first Beurling—Deny condition is thus verified and, by [8] Proposition 4.10, it
follows that the semigroup {7; : ¢ > 0} has the desired properties.

Concerning the conservativeness property, notice that &y € Fy C .7-'# VUIf 51’,‘ Vgl =
0 then Ey[&] = O so that dj'"& = 0 which implies u¥Y& = vj(Y*)& =
vJY*&) and, for any x € M, pu(x§lY&0) = v(x§olJY*&) = v(¥Y*&olJxép) =
(Yol xTE) = v(Ix*TE|YE) = v(Ix*&|YE) = v(Ag xE|YE) since
Y is affiliated to M and Jx*J € M’. Setting A> := pu/v, this in turn implies

((A(l)/2 — 221)x&|Y&) = O for all x € M and, since M& is a core for A(1)/2, it

follows that Y&q € D(A(l)/z) and A(l)/zYéo = (u/v)Y&p, i.e. Y& is an eigenvalue of
the modular operator with eigenvalue u/v.

On the other hand, if Y& € D(A(l)/z) and A(l)/zYEo = (u/v)Y&p, using the identities
above, it follows that dj""& = 0 and dY'& = d}y""J& = djy"& = 0 so that
&) = EylEol = 0,ie. (E", Fi") is conservative. By [8] Proposition 4.10, given
conservativness, the first Beurling—Deny property and Markovianity are equivalent for
quadratic forms as well as the positivity preserving property and the Markovianity are
equivalent for the associated semigroups.

Concerning the complete Markovianity of the Dirichlet form, we notice that for any
n > 1, the ampliation (£})" : L*(M ® M,(C), wy ® tr,) — [0, 400, defined
as (5;)”[[&,]-];"].:1] i= >} ;=1 €l& j], has the same structure as &} More pre-
cisely, a closed operator Y" := Y ® I, is densely defined on D(Y") := D(Y) ®alg
L*(M,(C), tr,) C L*(M ® M, (C), wo @ tr,) and one may check that (5));)" = 5})),,.
If& € D(Y) N D(Y*) and Y& € L%(M) is an eigenvector of the modular operator
A(l)/ 2 of the state wo on M, corresponding to the eigenvalue w/v, then, denoting by
tn € L?*(M,,(C), tr,) the unit vector representing the trace state, it easily verified that

W Birkhauser
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&0 ®¢, € DY) N DY) and that Y (&0 ® ¢,) = Y&o ® ¢, is an eigenvalue of
the modular operator of the state wy ® tr, on M ® M,,(C), corresponding to the same
eigenvalue it /v. Applying the results obtained above to the form (5 )" in place of £},
we get its Markovianity for any n > 1 and complete Markovianity of the associated
semigroup. O

Notation.If 1> € Sp(A(])/ 2) \{O}isa strictly positive eigenvalue of the modular operator

-1
and /v = A%, thend} "’ = ,/,uvdl)}’A dyl' =1 5d*.* and &yt = ,uvfll,’)‘ .
Since now on, we will adopt the simphﬁed notation
-1
&= Sﬁ’)‘ .
Remark. To any eigenvector £ € D(Sp) of A(l)/ 2 or, equivalently, of the Araki Hamil-
tonian In Ao, we associate a completely Dirichlet form £ )’} choosing a densely defined,
closed operator (Y, D(Y)) as in Lemma 2.1. For this choice there exists a canonical
candidate, namely (Yo, D(Yp)). In general (£}, .7-'1);) may depend upon the operator

(Y, D(Y)) and not only upon the eigenvector £ = Y& it represents. The next result
shows how this is connected to the GNS symmetry of the Markovian semigroup.

Theorem 2.6 (GNS symmetry) Let (Y, D(Y)) be a densely defined, closed operator
affiliated to M, ., v > 0 such that & € D(Y) N\ D(Y*) and Y& € L*(M) is an
eigenvector of(Al/2 D(Al/z))for the eigenvalue \* = ju/v. Then, for anyt € R,
(i) the densely defined, closed operator (Y;, D(Y})) = (AgYAa”, AYD(Y)),
affiliated to M, verifies & € D(Y;) N D(Y}), Y& = z¥'Y& € L*(M) and
Y; = AYY on the subspace M'&y;
(ii) (5)", ‘7:1);;) is a Dirichlet form with respect to (M, &y) coinciding with

Ty = AY(Fp) & Inl = E[Ay ).

If, moreover, M’so‘g D(Y) isacore for (Y, D(Y)), then, foranyt € R, we have
(iii) (Yi, D(Yn) = A¥" Y, D(Y)), forany t € R;
(iv) (6’1’}” .7-'?,,) = (&}, .7-'));), the associated Markovian semigroup is symmetric

(T; (x§0)[yé0) = (x&0lTi(y60)) x,yeM, 1=0

and, in particular, it commutes with {Ag 1t e R},
v) The semigroup generated by (5%0, f%o) is GNS symmetric (notations of Lemma
2.1).

Proof (i) Since, forany ¢ € R, one has Al &) = &, it follows that&y € D(Y,)ND(Y;"),
Yi6o = AjY& = A¥YE € L*(M) and Yi(2'50) = 2'Yigo = AM - Z'YE =
AHE LY (&) for any 77 € M’; (ii) thus Y;& is an eigenvector of (Al/2 D(Al/z))
for the eigenvalue A> and, by Theorem 2.5, (5),’, fxt) is a well defined Dirichlet
form. The displayed identity follows from the identities d;‘t Y= Allody o A",

) Birkhauser



22 Page 120f47 F.E.G. Cipriani and B. Zegarlinski

d“ "= Al o dl” o AyY, valid, for any r € R, on .7-'1/r Fy and the fact that this

space is a form core for n 5?){[7]] and n — S}A,[AO nl.

(iii) Since the core M'&q for (Y, D(Y)) is invariant under the group {A : t € R}, it
is a core also for (Y;, D(Y;)), for any fixed ¢ € R. Since, by i), ¥; = )L‘P“ Y on this
common core, we have D(Y;) = D(Y) and ¥, = A% . Y, for any t € R; iv) since,
by iii), (5”{, f)},‘z) = (&}, .7-'%) for any ¢ € R, ii) implies that (£}, .7-"%) is invariant
under the unitary group {Af)’ : t € R} so that the Markovian semigroup it generates
commutes with { Ag : t € R} and it is GNS symmetric by [8] Theorem 6.6; v) follows
from iv) as, by definition, M’ is a core for (Yo, D(Yp)). o

2.2 Representation of Dirichlet forms as square of commutators

In this section we show how to represent the Dirichlet forms on L?(M) constructed
above, in terms of generalized commutators, i.e. unbounded spatial derivations on M.
We recall that (Sg, D(Sp)) is an unbounded conjugation, i.e. anti-linear and idem-
potent on its domain. Thus Sg is the identity operator on D(Sp) or, more explicitly,
that & € D(Sp) implies So§ € D(Sp) and So(So&) = &. In other terms, the image
of Sy coincides with its domain and Sp = S ! holds true as an identity between

densely defined, closed operators. In terms of the polar decomposition Sy = J Al/ 2

we have J AO/ 2 = A, 127 as an identity between densely defined, closed opera-
tors. This means, in particular that the modular conjugation exchanges domains as
follows JD(AI/Z) = D(A_l/z) D(Al/z) JD(A, 1/2) More in general, one
has the intertwining relation f (Ay ) = Jf(Ap)J between closed operators valid
for any Borel measurable function f :[0,400) — C (see Introduction to Chap-
ter 10 in [36]). The relation, which is equivalent to JD(f(Ao_l)) = D(f(Ap)) and
F(AHE = Jf(Ag)JE for all € € D(f(Ay")), will be mostly used for power
functions f.

Among its consequences, we will make use of the following:

(a) for any @ € IR, the closed operator JAf is an unbounded conjugation on its
domain D(A"‘)'

b So = JAy L A
operators: in fact, D(A
but since D(A, ~1/4

1/45 c D(A1/4

4y Al/ *is an identity between densely defined, closed

_1/4JA1/4) A {%_ c D(A1/4) 1/45 c D(A_1/4)}
) = JD(A” ) one has D(A_l/4JA1/4) (£ € D(A”“) -
) = D(Al/z) and, for all & € D(Al/z),

(857104 = (05740) 8 = (1) ol = 0

) (J Al/ 4 D(Al/ 4)) is a closed extension of the densely defined operator (A(l)/ 4So,
D(So)) in fact, the latter operator is well defined since ¢ € D(Sp) implies
St € D(Sp) = D(AYD C DAY and also AY*Sor = AY*sylc =

(1)/4 71/2]{ 71/4‘]; _ JA1/4§
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(d)

(e)

®

g

(A_l/4J D(Al/4)) = (JAI/4 D(Al 4)) is a closed extension of the densely
defined operator (SpA; '/, D(A_l/4)ﬂD(A1/4)) in fact D(SpAy ") = {¢ €
D(AG"™ a5 e e DS = (¢ e DA ag e e DA =
DAy n D(A1/4) and JAY*e = TN A5 e = Song ¢ forall ¢ e
D(A_1/4) N D(A1/4)

Let My € M be the involutive w*-dense sub- algebra of analytic vectors of the
groupo“?. Forany y € M, the operator A, / 1/ *on L*(M)is densely defined
on ig(Mp) and closable. Its closure is a bounded operator belonging to M, which
coincides with the analytic extension of the map R > ¢ > o,°(y) € My C M
evaluated at t = —i /4

1/2

/4 —1/a
(a8 ya5") =00 € Mo c M

and 0_1/4(y)i0(x) = ip(yx) for all x € My;
by Proposition in Section 9.24 in [36], for any y € My and any o € C one has
the important identity

D (A§yAs") = D (45%)

and the boundedness of the operator AJyA;* on D(A;*). Since J D(Al/ 2) =
D(A, 12 ), the case o = 1/2 implies that D(SpySp) = D(Sp) and the bounded-
ness of the operator SoySp on D(Sp);

the involutive sub-algebra M, := JMyJ C M’ coincides with the set of analytic
vectors of the modular group of the commutant M’ associated to the state deter-
mined by &y € L?(M). The left Hilbert sub-algebra Mp&y C Mé&y C L3(M) is
dense in L2(M) and it coincides with the symmetric embedding of the algebra of
analytic elements

Moéo = io(Mp),

as it results from the identity ig(y) = 071/4 (y)&o valid forall y € My. Also, Mo&g
is J-invariant

Jip(y) =io(y*) vy € My.

Lemma 2.7 Ifn € D(So), the densely defined operator (L,, D(Ly)) given by

D(Ly) = io(Mo) > io(y)  Lyio(y) := Jo2 ;") 1

is closable since its adjoint is an extension of the densely defined operator B : D(B) —
L*(M)

D(B):= Mg >7& B (&) =2 Son.
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The densely defined operator (R, D(Ry)) given by
D(Ry) :=io(Mo) 2 io(y)  Ryio(y) 1= 0, (y)Jn

satisfies the relation R,y = J Ly J from which it follows that it is closable too.
Proof Since & = J& € DAy = DAY yag™h, ayty = aag"?, veo €
D(AY?) and AY?yE) € D(A;'*), we have
1/4 —1/4 1/4
Ja0, 080 =7 (8 v a5 ) g0 = 17"y 6

1/4 1/2 1/4 .
= JAO/ JAO/ v& = AO/ y&o = io(y)-

Since, moreover, w'*&) = A(l)/2Jw/§o for all w € M’ and Jaf?/4(y*)J e M’ for all
y € My, for 7/ € M’ we have

(60lLaio) = (2601700, Tn) = ((J02,407)7) <6oln)
= (A2 T2 000, 6oln) = (250 (1A )

= (78 n1"i0() = (¢ Sonlio()) = (B (<80) lio(2)) .

The relation between the operators £, and R, follows from the identities io(y™*)
1/4 1/4 —1 2 —1/4 1/4
A yEe = A Sovn) = A AT P E) = A7 (k) = T vk
Jig(y) for all y € My and the fact that J is idempotent and it leaves D(L,) =
D(Rn) = ip(Mp) globally invariant: J L, Jio(y) = JLyio(y*) = JJcrﬁ’,.M(y)Jn
Ryio(y). o

Lemma 2.8 Let& € D(So) and fix, by Lemma 2.1, a densely defined, closed operator
(X, D(X)) affiliated to M such that

g0 € D(X)ND(X™), §&=X&, So(X&) = X"&.

Then the following properties hold true:

(i) the intersection of domains D(X) N D(X*) contains My&;
(ii) the images of My&o under (X, D(X)) and (X*, D(X*)) are contained in D(Sp)

X (y&0) € D(So), X*(y*&) € D(Sp),  forall y e My
and
So(Xy&o) = y*X*60, So(X*y*§0) = yX& forall y € Mo;
Consider the densely defined operators on L*(M) given by

71/4

Leio(y) := J(AY Yy g, haay*e  io(y) € io(Mp) =: D(Le),
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1/4

. —1/4
Reio(y) = (A yag"

VA So®)  io(y) € io(Mo) =: D(Ry).
These are closable, by Lemma 2.7, since Le = Ly, and Re = Ry for n =
AY*e € D(So) and

(iii) for any y € Mo we have

Xyoe D(A*).  Leion) = Ay Xyéo;
(iv) forany y € My we have
4 . 4
yXé €D (A(l)/ ) . Reio(y) = A(l)/ yXéo;

(v) Lg is affiliated with M, Rg is affiliated with M' and R = J L¢ J;
(vi) the operator A(l)/4XA(;1/4
Lg;
(vii) the operator JA(I)/4X*A61/4J is well defined on io(My) and there it coincides
with Re;
(viii) If € = X& is an eigenvector of A(l)/ 2 corresponding to the eigenvalue A*> > 0,
with A > 0,

is well defined on in(My) and there it coincides with

AP Xgo = 2% X&,
then Lg = AX and Re = »~'JX*J on io(M).

Proof (i) As X and X* are affiliated to M and & € D(X) N D(X™), it follows that
M'& C D(X)ND(X*) and, afortiori, that Mo&y = M)§y0 C M'&y C D(X)ND(X*).
(i) Since Mp& is a core for (Sp, D(Sp)), there exists a sequence x, € My such
that ||x,&0 — X& |l — 0 and |lx& — X*&l| — 0. As mentioned at item f) of the
introduction of the present section, since y € My, the operator Syy*Sp is bounded on
D(Sp) and then on My&y C D(So). Thus x,y§y € D(Sp) is a Cauchy sequence in
L%(M) as

Ixny&0 — xmy&oll = | So (y*x580 — y*x580) | = | Soy*So (xn€0 — xm&0) |
< [ Soy*So| - xn&o — xméoll -

Analogously, So(x,y&0) = y*x & € L?(M) is a Cauchy sequence too as

150 (eny0) = So Gemy&0) 1l = || y* 2580 — y¥xnol| < Iy*1 - || xi80 — xmbo] -
Hence x,y& € D(So) is a Cauchy sequence in the graph norm of the closed
operator (So, D(Sp)) and the image of n := lim, x,y& € D(Sp) is given by
Son = lim, y*x; & = y*X*&. Since X is affiliated to M, X&y — x,& € D(So)

and Spy*Sp is bounded on D(Sy), for 7/ € M’ we have
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(&0l X y&0 — xnyo) = (X*&0 — x;E0lyz™*0) = (y*So (X&o0 — xané0) IS5 (2'§0))
= ((Soy*So) (X& — xn0) 12'60))
< [1Soy*Soll - 1X&0 — xx&o0ll - 12'€0ll.

By the density of M'&y in L?(M), it follows that || Xy&y — x,y& | < [1Soy*Soll -
I X& — xné0ll = 0 as n — oo and we have Xy§y = n € D(Sp) and So(Xy&p) =
So(n) = y*X*& for any y € Mp.

As Sg is the identity operator on D(Sp), from Syp(X&) = X*& it follows that
X*&y € D(Sp) and So(X*&p) = X&p. Thus (X*, D(X™)) satisfies the same hypotheses
as (X, D(X)) and the statements involving (X*, D(X*)) can be deduced from those
involving (X, D(X)) proved above, by substitution and the fact that the sub-algebra
M, is involutive.

The operator Lg is well defined since § € D(Sp) = D(Al/z) implies A(l)/4§ €
D(AYY and JA)*E € ID(AYYH = Dag'h = D(A”4 o7, since
& € D(Sp) implies So& € D(Sp), analogous relations imply that J Al/ 4505 €
D(A1/4yA0 l/4) so that R¢ is well defined too.

As first step to prove (iii), we show that D(Aé/ 4) is a left My-module, i.e. y¢ €
D(A 14 ) for any y € MO and ¢ € D(A1/4) (a fact probably known in literature).
Notice first that since O'_l /4(y) € My we have

Uiu?/4(y)é:0 eD (A(l)/4> =D (ASIM)/*A(I)M) ’

which means, in particular, that y*AO a® 4(y)§0 € D(A /4 ) and implies
|U,,/4()’)| §o = (071/4()’))*02)/4()’)%_0 = (7,/4()’ )071/4()’)50

——14 —1/4 1/4
= Ay Py ag e (g0 = Ay A 0™ (0

= A‘1/4y*A‘/“a‘“?/4<y>Aé/ £
= £y My 0 (0 ()0

= Ay My e, (1
=A_1/4 " l/zyéo

= A,y Iyt g,

Since i is positivity preserving, setting ¢ := ||of? /4(y) |12, we thus obtain the bound

¥ Iy Ig0 = A (160,016 ) = io (104 01P) < - o.

Consider now a sequence x,& € ME&p converging to { € D(A(l)/ 4) in the graph

1/4 1/4 . .
norm of (A%, D(AY")). Then lim,, [lyx,& — y¢|l < llyll - lim, [|x,& — ¢|| = 0.
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Since A(l)/4xn$0 e L3(M) is a Cauchy sequence, we have ((x, — x,)J (x,, —
xXm)JE0l€0) = (tngo — xmolJ (x5 — x35)J&0) = (xn0 — Xm0l Ay/* (xw — xm)E0) =
||A(l)/ 4x,,$o — A(l)/ 4xm.§0||2 — 0 and, by analogous identities, the self-polarity of
L2 (M) and the bound above, we get [| Ay * yx, 80— Ayt yxm€oll? = (Cou—xm) T (X0 —

) JE0ly* Ty*T&0) < €+ (e —Xm)J (n — ) JEol0) — 0.Thus yx,&0 € D(Ay"™)
converges in the graph norm of (A]/4 D(A1/4)) to y¢ € D(A1/4) The arbitrariness
ofy e Mpand ¢ € D(A, /4 ) implies that D(A, /4 ) is an My-module.
1/4 Aal/4j,0nehas
)~ ! so that the closed operator J AO/ is idempotent on its domain:

Coming back to the proof of (iii), notice that, by the identity J A,
7 A1 /4 — Al /4

(1 e (s). (8 e=c veen(al).

Thus, fory € Mpand ¢ € D(A1/4) we have y*¢ = y*(JA(l)/4)2§ and, since y* € My
implies y*¢ € D(Al/ ), we have y*¢ = (JA1/4)2y*(JA(1)/4)2§ too. Applying this
identity to ¢ := JAO/ n for any n € D(AO/ ), we have (JA(I)M) (JA1/4)n =

—1
(JA(I)/4)y* (JA(I)M) n,i.e.
Ayt aaytn = an) e an ne bay™.

Since, by hypotheses, X&; € D(A(l)/z), we may apply the identity to 1 := A(l)/4X“§0 €

D(A1/4) to get

Ayt aayt (A(l)/4X$0> TNy gyt xe
= Jo% (3T Ay e = Leio(y).
Since, by (ii), Xy& € D(So) = D(AY?) € D(AY*) and S;1 = A;'/? 7, we have
Xy&o = S5 (So(Xy&0) = S5 (v X*&0) = Ay Iy T A Xéo
and we conclude the proof of (iii) by

1/4Xy$0 / J *]Al/4( 1/4X§0> = Leio().

To prove (iv), notice first that, since Sg is the identity operator on D(Sp) and
X& € D(Sp), we have X*& = So(X&) € D(So)) = D(AY?), X& =
So(X*&), Ay X*E& € D(AY™) and, for all y € M, JAY*Xx*&) € DA, =
D(AI/4 1/4) Since, as shown above, yX&§ € D(A, / ) for all y € My as
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—1/4

X&) € D(Al/z) C D(A1/4) and JAI/2 A, JA(I)/ as closed operators, we

have
1 4 1 4 1/2 1/4 —1/4 1/4
Jiyxe = A, ySa(X*sm SyInPxrEy = A yag Ay sE)
=0 ,/4()’)JA So(€) = Rgio(y).

To prove (v), i.e. that L_g is affiliated with M, let us start to notice that for z’ € M
and y € My, setting z := JA51/4 /*Al/4J A1/4J ’*JA_1/4 = (Jz/*J) €
M, since Ay'*T = JAy* and A;?7E) € D(A]/z) C D(A‘/“) D(JA‘/“)
we have z€) = JA01/4 /*A(l)/“Jso = JA; e = 01/4 o P&
JJAI/4 1/21/5,‘0 = A(;]Mz’éo, 7€ = A(l)/4z§o = ai”?/4(z)§o and

io(y) =2 Ay yag ey = 20 ()80 = 0%, (17
=02 (104D = 0%, (yD)E0 = i0(y2)
so that z'io(y) € Moéo = D(Lg). Since O’ 9() e M,y e M, X is affiliated to M,
véo € D(X), yz&p € D(X) by i), using 111) we have
LeZio(y) = Leio(y2) = Ay Xyzo
= A xya, g
A1/4XyA 1/4 /A1/4$
= Ay Xyo () €0
= Ao () X0

1/4

1/4 —1/4 . 1/4
_A/ 16?2(2)A0/ /Xy“;‘

=0, (‘7;791 (Z/)> Lgio(y)
=7 Lgio(y).

Since by Lemma 2.7 R, = JL,J, for n € D(Sy) we have Re = JL:J for & €
D(A(IJ/Z), This is equivalent to (J @ J)G(Rg) = G(L¢) and implies (J @ J)g(R_g) —
g(L_g), ie. R_g =J L_gJ as an identity between densely defined closed operators.

To prove (vi), notice that, by (i) we have ig(y) € D(AEIM) and A51/4io(y) = yé& €
D(X) and by ii) we have that XA_1 4io(y) = Xyéo € D(So) C D(A(l)/4). Hence
io(y) € DA, X A5 and (A”“XA& Yio(y) = Aé/“Xyso = Leio(y).

To prove (vii), notice that, since y&y € D(Sp) and Sop = AO JA1/4 on D(Sp),
we have y*& = So(vé0) = Ay /1T Ay vEe = Ay Jig(»). By i) and i), y*& €
D(X*), X*y*& € D(Sp) and yX& = So(X*y*€)) € D(Sp) C D(AY*) so that by
(iv), Reio(y) = Ay *yX& = (A" S0)(X*y*&). Since Ag/*So = J A¢* on D(S0),
we have
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Reio(v) = (85*50) (X*y*60) = (7a¢") (x"y"&0) = (Va5 x"A5"*7 ) ()

/4

showing that J Al 6 1/ 4J is densely defined on ig(My) and there it coincides

with Rg.

To prove the first identity in (viii), notice that, by the Spectral Theorem, £ = X§ is
an eigenvector of A /4 with elgenvalue A >0: A1/4X§0 = A - X&p. By the density of
Mg in L*(M) and for all z/ € M, we then have

(8olLeio(v) = (50l A X vé0)
0l Xv0)
X*golyéo)

1/4 —1/4 1/2
F2ag Ay xs0lvo)

A1/4 / 1/4

—1/4

(
(ag*2a;
(

2o (ag '8y I xglyeo)
( XEonEo)
W (2 1/4X€0|A1/4y50>
2 (280 Xgoliom)

A

2 (2T X&lio ()
A (2 X Eolio(y)
= (&lrXio(y)) -

1/4 /JA1/4

To prove the second identity in (viii), we first need to show that the adjoint of the
densely defined operator (AI/ 4x A_l/ 4 ,i0(Mp)) (which is closable by ( operator
(A x*AY*, Mo&). By i), for x € My and since ig(x) = o™ ,(x)E0 € Moo C
D(X™), we have JX*ip(x) = JX*JJio(x) = JX*Jip(x*) = JX*Jaf’?M(x*)éo
Since J X*J is affiliated to M’, o (x*) € M and by ii) awo 1) € D(JX*J),
we have

TX*ig() = 6, ()T X* TE = 00, ()T X 6o = 0%, (*) ] So(X&0)
=0, (x Ay (X&),

The hypothesis that X& is an eigenvalue of A '/2 then implies J X*ip(x) = A% -
1/4(x*)X§0 which in turn, by ii), implies JX*lo(x) = 2% So(X*o l/4(x)§0) €

D(So) = D(Al/z) C D(Al/ ) so that X*A 1/4x$0 = X*ip(x) € JD(A1/4) =
D(A, ;%) and x& € D(Afl/4 1/4) For all y € M\, we may then compute
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(&l (25" x 85 ) iom) = (8¢ *xé0l (x25"*) i0(»)
= (x=ay*x0la5 o)
= ((a5"*x*ag"*) xolio)

so that x& € D((AY XA; %) and (A; 4 x* A xg = (A x A,

Since by vi) and the first identity proved above we have

) x&p.

(A})/“XA(;”‘*) xE = Lex&o = A - Xx£o

for all x&) € Moo = io(Mo) = D(Lg) C D(AY*xay'*

have

) N D(X), by i) we then

(A VA xxA ‘/4) xE = AX*x&  xEo € Mok C D (Ag”“x A1/4) N D(XY).

To finalize the proof of the second identity in viii), rewrite the eigenvalue equation
satisfied by & = X&p as JX*J& = AI/ZXSO = A2X&p so that, for all y € My, we

have
Reio(y) = Ay *yX&
=272 A YU X DE
=272 A Xy

=)\—2-J( Ay x 1/4) Ayt yeo
=172 7 (a9 xm g Jioy)
=272 J( Ay x 4)1 )
=172 7 (80 XA 0, 05

=272 IX 0, (M
=272 IX Tio(y).

O

Lemma 2.9 Let & € D(Sy) be eigenvector of A(l)/ 2 corresponding to the eigenvalue
A% > 0 and fix a densely defined, closed operator (X, D(X)) affiliated to M such that

& € D(X)NDX™), & =X&, So(X&) = X"&.

Then Soé € D(Sp) = D(A(l)/z) is eigenvector ofA(l)/2 corresponding to the eigenvalue
)\'—2
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Proof On one hand we have Spé = J A(l)/ 25 = A% . JE&. On the other hand, since

IDAYY = DA% and Sy = S5 on D(AY?) = D(Sp) = D(S;") we have
Sof = Sy ' = Ay 2 JE so that AY*SpE = JE = 172 - SpE. O

Combining the results obtained, we have

Corollary 2.10 Let & € D(Sp) be an eigenvector of A(])/z corresponding to the eigen-
value 2> > 0 and fix a densely defined, closed operator (X, D(X)) affiliated to M
such that

&€ DX)NDX"), &=X&, So(X&)=X"&.

Then for all y € My we have
. 1/4
(Lg — Re)io(y) = Ay (Xy — yX)éo 2.1)
and
(Lsye — Rspedio(y) = Ay (X*y — yX*)go. 2.2)

The commutator [X, y] := Xy — yX is in general only densely defined if X is
affiliated to M but, within the hypotheses assumed at the beginning of this section, the
vector &y belongs to the domain of [X, y] and its image [ X, y]&o belongs to D(A(l)/4).
This may justify the notation

io([X, YD) := A Xy —yX)& vy € My.

In the following we will use the notation j(X*) := JX*J.
Next result shows that the symmetric embedding i intertwines the unbounded spatial

derivations 8x, 8x+ on M with the unbounded bimodule derivations d, d§;l on
L3(M).

Proposition 2.11 (Bimodule derivations and spatial derivations) Let & € D(Sy) be
eigenvector of A(l)/ 2 corresponding to the eigenvalue \> > 0 and fix a densely defined,

closed operator (X, D(X)) affiliated to M such that
& € D(X)ND(X"), &= X&, So(X&)=X"&.
Then, setting d := i(AX — A~ j(X*)) and di = i X — A (X)), we have
dhio(y) = ioG[X. YD) dy. io(y) = ioGIX*.y]) v € Mo

Otherwise stated, setting 8x(y) = i[X, y] for any y € My, on the *-algebra My we
have

. . 71 . .
d;”(olozmoSX d;“(* oip =1igodx+.
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Proof For y € My we have 01”9/4(y) € My, Joﬁ)?/4(y)1 € M|, and

4 .
T, () TE = Jo (g0 = T A vEo = Jio(y).

Since X* is affiliated with M and & € D(X™), we have (Jcrf?/4(y)1)$o € D(X™)
and

J(XMio(y) = J X" Jio(y)
= IX* (100,007 ) &

-7 (Jai“g/4(y)1) X*&

=0, (NI X "6

= o™, (A Xéo

=atya) xg

=i A yXE.
Since AXig(y) = Leio(y) = Ay *Xy& we have too dhip(y) = i(AX —
W XNio(y) = iny (XyE — yXE) = io(i[X.y]) = io(3x()). The proof
of the second identity is similar. O

Theorem 2.12 Let & € D(Sy) be an eigenvector of A(l)/z corresponding to the eigen-
value \*> > 0 and (X, D(X)) a densely defined, closed operator affiliated to M such
that

£ € DX)ND(X"), &=X&, So(§)=X"&.

Then the completely Dirichlet form (%, F }’\() constructed above may be represented
as

Exlio] = llio(X, YDIITayy) + lio (X", yDIT2 0y ¥ € Mo
= llio@x 72, + lio@Gx- N2,
on the L*(M)-dense, J-invariant subspace My&y = io(M) C Fx C .7:));.

Remark 2.13 These results prove a fortiori that and under the stated assumptions, the
form

io(y) > A2 Nlio(TX, yDI7 2, + NioX*, ¥D17 240,
extends to a completely Dirichlet form on L?(M) with respect to the cyclic vector
& € Li(M ). If &y would be the vector representing a finite, normal, faithful trace

state wo, this result would follow from the general theory relating completely Dirichlet
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forms and closable bimodule derivations on von Neumann algebras with trace (see

[14]).

3 Coercivity of Dirichlet forms

In this section we still keep the assumption that & € D(Sp) is an eigenvector of A(l)/ 2
corresponding to the eigenvalue 22 > 0 (we still assume A > 0) and (X, D(X)) a

densely defined, closed operator affiliated to M such that
g e DX)NDXY), &=X&. So&) = X"%.

We prove below natural lower bounds on the Dirichlet form &L, F }() constructed
in Sect.2, which lead to coercivity. Recall that (€%, F )l() is defined as the closure of

the densely defined, J-real, closable quadratic form g)k( : Fx — [0, 4+00) on L2(M)
given by

~ —1
n € Fx = D(dy) N D(dy. ),

- 2 -2
Exlnl = ||d§'7”L2<M> + Hd’kf* "‘ L2(M)

where d;‘( =i(AX —A71j(X*)) and d)‘:l = i(A~1X* — 1j(X)) are defined on the
domain

Fx=DX)NDX*NJ (D(X) N D(X™))

09ntaining the L?(M)-dense, J-invariant subspacejo (Mp) = Myéy C F x. Obviously
Fyx is a form core for (€%, f;}) and on it S;‘( and E)A( coincide.
We start showing an alternative representation of the Dirichlet form.

Theorem 3.1 The following representation holds true for the quadratic form (€%, Fx):

Exlnt =32 (IXn1 4+ 1Xn12) + 372 (1X 0l + 1 X" 7))
=2[(Xn|IX*Tn) + (X*n|IXJIn)] n e Fx.

@3.1)

Proof In the following, we repeatedly use the fact thatif N € B(h) is a von Neumann
algebra acting on a Hilbert space / and (A, D(A)), (B, D(B)) are densely defined,
closed operator on # affiliated to N and N’, respectively, then

(An|Bt) = (B*n|A*¢)  n e D(A)ND(BY), &€ D(B)NDA".
This identity follows directly if B € M’ is bounded since then B* € M’ and n €
D(A) implies B*n € D(A) and AB*n = B*An so that (An|B¢) = (B*An|¢) =
(AB*n|¢) = (B*n|A*¢). In general we may approximate B weakly by B, := B(I +
e|B)"'eM ase | 0.
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We start the proof of the result setting
dyi=i(X—jxM),  Vi=i(1-27") X+ j(x)
and using the splittings
dy =dx + Vi dfy. =dx-+ Vi

for any n € Fx to have the representation

2 -1 2
E4Um = x> + laxen I + | Vi |* + | Vi'n| +

(3.2)
-1 -1
(dxnlVin) + (Vinldxn) + (dxnivi'n) + (Vi nidxen)
Since
. 2 .
ldxnll> = (X — (X Dn|" = 1X0l* + 1 (X*)nl?
—[Xn1j (X ")) + (X nlj(XOn)].
Idx=nll* = II(X* = jCOI* = 1X*nl> + 117 (X)n|?
— [(Xnli (X)) + X0l (XOm)]
the sum of the first two addends in (3.2) equals
ldxnll® + lIdx=nll* = 1 Xnl* + 17 (Xl + 11X 01 + 17 Ol (33)

= 2[(Xn[j (X)) + (X*nlj (XOm)].

Since also

Vil = (1 = 2" H2AX + (X)X + j (X))
= =221 X0l1P + 11 (X *)nl*+
AXnlj (X)) + (X*nlj(X)m)].
Ve nl? = (1= D27 X+ j X X + (X))
= (1= DA UX* I + 11 XOn >+
AN X1 O + (Xnlji(X)n)]
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the sum of the third and fourth addends in (3.2) equals

IVEnI? + Ve il =

= DXAX0I* + 1O + 7" = DA2AX* 0 + 1 (X)nlH)+

[(1 =272+ (1 =027 (Xl (X ) + (Xl (X)n) = (3.4)
= D2AX0I* + 1 COn1?) + 07" = DAAX*0l1* + 11 (X)nlH)+

20. = D2 (X0l (XHm) + (Xl j (X))

Since we have too

dxn|Vgn) + (Vinldxn) =

(1= 27H[X = jEDNAX + JXND + (AX + j(XNIX = j(Xn)] =
(1= 2" H[AIX I + Xnlj(XHm) — AX*nlj(X)n) — 1 (X nl>+

AMXnl1? = 2(Xn]j (X)) + (X017 XOm) — 17 (XHn)?].

the sum of the fifth and sixth addends in (3.2) equals

dxnlVEn) + (Vinldxn) =
(1 =2~ H[2al X0l = 2117 (X*)nl*+ (3.5)
(1= D)X nlj (X)) + (X*n1j(X)n)]

and, analogously, the sum of the seventh and eighth addends in (3.2) equals

(axnVi="n) + (Vi "nldxn)
= (1 =227 1X*n)* = 201 (X)nl? (3.6)
+ (L= 27X 1 XOm) + Xnlj (X))

By substitution of (3.6), (3.5) and (3.4) in (3.2) we obtain

Enl = (ldxnll* + lldx=n|*)
= (= D*UAX01* + 117 XOn1? + A~ = DAAUX 0l + 11 (X *)nll?)
+200 = DA (X1 (X)) + (X*n1j (X))
+ (1= 27H[2a X0l = 211 (X0
+ (1= DXl (X)) + (X*n]j (X)n)]
+ (=227 IX P = 21 (X)n))?
+ (1= 2D 1 X + (Xnlj(X*m)]
=[x =D+ 20 = D]AUXnl* + i XOnl*)
+ 0T = D220 = D]AX* I + 117 (X Hnl*)
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+ 20 =0 =2 + 200 = DPATT(Xnlj (X)) + (Xn]j(X)n)
= 2 = DUXnI> + 11/ GOl + A2 = DAX* I + 11/ (X)nll*)

+ 200 = DG = DA 20— DA (X1 (X)) + (X1 (X))
= 2 = DUXnI> + 11i GOl + A2 = DAX* I + 117 (X*)nll*)

+[=200 = D2 200 — DPATT(Xnlj (X)) + (Xl (X)n)
= (2 = DUXnI> + 11 COnl®) + A2 = DAX* I + 11 (X*)nll?)

and then, by (3.3), we finally obtain (3.1) for any n € fx

kIl = (Ildxnl* + lldx=nll*) + A* = DAXnl* + 11 X)n*)+
72 = DAX I + 17 (X))
= 22X 0l + XTIl + 220X 0l + 1 X*Tn)?)—
2[(XnlJ X*In) + (X*nlI X In)].

m}

Corollary 3.2 (Lower bound) The following lower bounds hold true for any ¢,5 > 0
and any n € Fx

Exnl = (32 = &) X2 + (32 = 672) 1X Il + G2 = ) Xl P+

—2 2\ y 2 37
(x e )X Inlll”.

In particular, fore =6 = 1 and any n € Fx we have
Exlnl = 02 = 1) (IXnl2 + 1XIn12) + 672 = D (IX*012 + 1X*I011?) 3.8)
Proof The result follows from (3.1) and the identities, valid for ¢, § > 0,

21Xyl + &2 (X = [(Xnlj(X*m) + X9l XOm] = ld5nl* = 0
8| x*n|* 4872 1 Xl = [(X*n1j (X)) + Xnlj(X*)m] = dnl® = 0.

O

We address now the problem to find conditions on (X, D (X)) sufficient to guarantee
that the lower bounds above are coercive for our Dirichlet form. By this we mean
bounds in which the Dirichlet form dominates a quadratic form with a certain degree of
discreteness of the spectrum such as existence and finite degeneracy of a ground state,
spectral gaps or emptiness of essential spectrum. The conditions will be formulated
in terms of relative smallness of the quadratic form of the self-commutator [X, X*]
with respect to the quadratic form of X™*X and they will be exploited in Sect.5 when
M is a type I factor.
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Let us denote by (tx, D(tx)) and (tx+, D(ty)), the densely defined, positive, closed
quadratic forms defined as

tx[nl == Xnl*> ne D(tx) :== D(X),
txs[n] == IX*nlI> 0 e D(tx+) := D(X™),

whose associated positive, self-adjoint operators are (X*X, D(X*X)) and (X X*,
D(XX*)).
Consider also the quadratic form (¢%, D(g%)) given by

Gkl == 2 = DIXnlI> + A2 = DIX*nI>  n € D@G%) = D(X) N D(X*).
By the densely defined quadratic form (go, D(qo)) defined as
qolnl == tx«[n] — tx[nl = I X*nlI* — IXnlI* 71 € D(go) := D(X) N D(X*),

on D(gy) = D(X) N D(X*) we can write

2 2
G=0-2") i+ (2= 1) o= (A =27) e+ (1-22) g0

and regard g )A( as a perturbation of a multiple of ty or fx+ by a multiple of go. Notice that
qo is the form of the self-commutator [ X, X*] = X X™* — X*X, at least on D(X*X) N
D(XX™).

Using the quadratic form (QA , F ) given by

OkInl = gknl+dklInl  ne Fx = DX) N DX*) NJ(DX)N DX,
the lower bound (3.8) can be written as
Ol < &l ne Fx. 3.9

Although Q})‘( is densely defined, since ig(Mo) = Mo&y C Fx by Lemma 2.8 ii), it is
not necessarily lower bounded, closable or a proper functional.

For sake of clarity, we recall some definition we will use concerning lower bounded
quadratic forms (A, D(A)), (B, D(B)) and their associated self-adjoint operators
(A, D(A)), (B, D(B)) on a Hilbert space h (see [19]):

(i) (A, D(A)) is e-bounded w.rt. (B, D(B)) for ¢ > 0, if D(B) € D(A) and
A[E] < & - B[E] + bg - ||€]|* for some b, > 0 and all £ € D(B); the infimum of
all such ¢ is the form bound of (A, D(A)) w.r.t. (3, D(B));
(i1) (A, D(A)) is small (resp. infinitesimally small) w.r.t. (B, D(B)) if its form bound
is strictly less than one (resp. vanishes);
(iii) (A, D(A)) is e-bounded w.r.t. (B, D(B)) for ¢ > 0, if D(B) € D(A) and
|AE|? < & | BE||> + bg - ||€||* for some b, > 0 and all € € D(B); the infimum

of all such ¢ is the operator bound of (A, D(A)) w.r.t. (B, D(B));
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@iv) (A, D(A)) is small (resp. infinitesimally small) w.r.t. (B, D(B)) if its operator
bound is strictly less than one (resp. vanishes);

(v) (A, D(A)) is said an infinitesimal perturbation of (I3, D(B)) if D(I3) € D(A)
and (A — B, D(B)) is infinitesimally small w.r.t. (B, D(B));

(vi) (A, D(A)) is said infinitesimally perturbation of (B, D(B)) if D(B) € D(A)
and (A — B, D(B)) is infinitesimally small with respect to (B, D(B));

It is well known that (iii) implies (i), (iv) implies (ii) and (vi) implies (v);

(vii) (A, D(A)) has purely discrete spectrum if this is made by discrete eigenvalues
only (isolated eigenvalues of finite degeneracy); by the Min-Max Theorem this
holds true if and only if (A, D(A)) is proper in the sense that {§ € D(A) :
€Nl < 1, A[€] < 1} is relatively compact in 4.

Theorem 3.3 (Coercivity) Assume (c})k(, D(X) N D(X*)) to be lower bounded and
closable, denote by (qg‘(, D(qg‘()) its closure and by (Q;‘(, D(Q;‘()) the associated
lower bounded, self-adjoint operator. Then

(i) (Q;‘( F x) is lower bounded, closable and its closure (Q%, D(Q})) bounds the
Dirichlet form

Qknl < Em ne Fy < D(Q%); (3.10)

if moreover, the self-adjoint operator associated to (Q)‘ , D(Q;‘()) has discrete
spectrum, then the spectrum of the self-adjoint operator (H};, D(H )};)) associated
to (€%, fg}) is discrete too.

(ii) (Q%.D(Q%)) is affiliated to M, (j(Q%),JD(Q%)) is affiliated to M' and
D(Q%) N JD(Q%) is dense in L*(M).
Assume now on D(X) = D(X*), D(X*X) = D(XX*) and the quadratic form
(g0, D(qo)) to be infinitesimally small with respect to (tx, D(tx)). Then

(iii) the form (c}ﬁ}, D (X)) is lower bounded, closed and (Q%, D(Q))‘()) equals the
Friedrichs extension of the lower bounded, densely defined, symmetric operator

D(N}) := D(X*X) = D(XX")

3.11
Ni=0—2D2 XX+ 2= 1D [X, X*; G

(iv) in particular, the conclusions in (iii) subsist if the self-commutator ([X, X*],
D(X*X)) is infinitesimally small w.r.t. (X*X, D(X*X)) and in this case

(0%. D(0%)) = (N%, D(X*X)). (3.12)

If moreover the spectrum of (X*X, D(X*X)) is discrete, then the spectrum of
the generator (H}, D(H ));)) of the Dirichlet form is discrete too.

Proof (i) Since (é;}, D(X) N D(X™)) is lower bounded and closable and J is iso-
metric, the quadratic form J(D(X)ND(X™)) 2 n +— c}ﬁ\([Jn] is densely defined,
lower bounded and closable too. This implies that (QA , F x) is lower bounded
and closable as a sum of forms sharing these same properties. The lower bound
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(3.10) follows from (3.9) and the lower boundedness of (@* ,F x). The last asser-
tion concerning discreteness of spectra follows from the Min-Max Theorem.

(ii) Since (X, D(X)) and (X*, D(X™*)) are closed operators affiliated to M, it follows
that for any unitary u’ € M’ we have u’(D(X) N D(X*)) € D(X)N D(X*) and
cjﬁ‘( [u'n] = (jﬁ‘( [n]foranyn € D(X)ND(X*).By approximation, these invariance
still hold true for the closure (g%, D(g%)) and implies that for all unitaries u’ €
M’ and all n € D(Q%) one has u'n € D(Q%) and Q%u'n = u’'Q%n. Hence
(Q%. D(Q%)) is affiliated to M, (j(Q%), D(j(Q%))) is affiliated to M’, the
operators strongly commute and have a common dense core.

(iii) Since D(X) = D(X*) and (g9, D(X)ND(X*)) = (qo, D(X)) is infinitesimally
small with respect to (tx, D(X)), the sum é;‘( =—2"DH2ax+02=1)-qo
is lower bounded and closed since (tx, D(X)) is lower bounded and closed.
Since gg = tx» — ty is infinitesimally small with respect to #x on the common
domain D(X) = D(X™), we have that tx« is relatively bounded with respect to
tx and that ry is relatively bounded with respect to tx+. As D(X*X) = D(XX™)
by assumption, the symmetric operator (N}, D(N ;‘()) is densely defined and
lower bounded since its quadratic form is the restriction of the lower bounded
form (g%, D(X)) to D(X*X), ie. (n|Nyn) = q%[n] for all n € D(X*X).
Since D(X*X) is form core for (tx, D(X)) and (g, D(X)) is an infinitesimal
perturbation of a multiple of it, D(X*X) is a form core for (é;‘(, D(X)) too.
Since, by definition, the Friedrichs extension of (N%, D(X* X)) is the self-adjoint
operator associated to the closure of its quadratic form (c})k(, D(X*X)), it results
that (Q%, D(Q%)) coincides with it.

iv) In this case the operator (N%, D(N }()) is an infinitesimal symmetric perturbation
of a multiple of the self-adjoint operator (X*X, D(X*X)) and it is self-adjoint
by the Kato-Rellich Theorem. Since it is also lower bounded, it has to coincides
with its Friedrichs extension (Q%, D(Qg‘()).

To prove the last assertion, recall that the spectrum of a lower bounded self-
adjoint operator is discrete if and only if its associated quadratic form is proper
(see [15]). Now, by a general corollary of the Min-Max Theorem, if the spectrum
of (A — A_I)ZX *X is discrete, then the spectrum of N )A( is discrete too, as the
latter operator is the sum of the former and the lower bounded self-adjoint oper-
ator ()»’2 — DX, X*], all with domain D(X™*X). Hence, the lower bounded,
closed quadratic form (§%, D(X)) of (N}, D(X*X)) is a proper functional and
consequently the lower bounded, closed form (Q%, D(Qﬁf)) is proper too, as a
sum of proper functionals. The lower bound (3.10) then implies that the Dirichlet
form is a proper functional.

O

4 Superboundedness of a class of semigroups on type | von Neumann
algebras

In this section we introduce a further continuity property, called superboundedness, for
positivity preserving semigroups on standard forms of o -finite von Neumann algebras,
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showing that the property is owned by a class of semigroups on type I, factors. Also we
show how this property persists under domination of positivity preserving semigroups.
As usual, ig : M — L%*(M) denotes the symmetric embedding of a o-finite von
Neumann algebra M endowed with a faithful normal state wy € M, represented by
£ € L3(M).

Definition 4.1 (Excessive vectors and superboundedness)

(i) The vector & € Li(M ) is (o, ty)-excessive or excessive, for some yy, typ > 0,
with respect to a positivity preserving semigroup {7; : r > 0} on L>(M) if the
maps e~ "' T, are Markovian w.r.t. & for any ¢ > ;.

Markovian semigroups are just those for which & is (0, 0)-excessive;

ii) a positivity preserving semigroup {7; : t > 0} is superbounded if for some

yo,10 = 0

(a) & € Li(M) is (yo, to)-excessive,
(b) T,(L2(M)) C iop(M) for all t > to.

If we endow the subspace ig(M) < L2(M) by the norm of the von Neumann algebra,
i.e. |lip(x)|lar := llx||pr for x € M, then superboundedness implies the boundedness
of T; as a map from (L32(M), Il - 1l2) to ((o(M), || - llm) for all # > #y. In fact, by the
norm continuity of the symmetric embedding ig : M — L*(M), the norm || - ||y
is stronger than the Hilbert norm | - ||» so that the continuous maps 7; : L?(M) —
L2(M) are closed when considered from the Hilbert space L2(M) to the Banach space
(io(M), || - lIm) and, by the Closed Graph Theorem, they result to be bounded (notice
that this involves only condition (b) in Definition 4.1).

We shall refer to part (b) of superboundedness writing ||7; | 123y < +00 for all
t > 1o and to part b) of supercontractivity writing ||T¢ || 2(pp— py < 1 forall z > 1.
By the Markovianity of e/ T; required in (i), bounded, positivity preserving maps
S; : M — M satisfying the relations io(S;(x)) = T;(ip(x)) for x € M are well
defined and one has, for suitable scalars b; > 0,

IS < €™, USexllm < b - NlioG)ll 2y X €M, 1> 10

Consider the noncommutative spaces L? (M, wg) for p € [2, +o0] defined by the
symmetric embedding iy : M — L2(M) (see [21]). By complex interpolation it
follows that a superbounded semigroup is hypercontractive too in the sense that there
exists Tp > 0 such that 7; is bounded from L?(M) to L*(M, wy) for t > Tp.

The following observation will be useful later on.

Lemma 4.2 (Superboundedness by domination) Let {¢~'C0 : t > 0} be a super-
bounded semigroup on L*>(M) such that, for some yy, tg > 0

& € Li_(M) is (yo, to)-excessive.

Let {e7'C1 : t > 0} be a Co-continuous, self-adjoint, positivity preserving semigroup
such that, for some y1,t; > 0

& € Li(M) is (y1, t1)-excessive.
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tG

If the semigroup {e~'C1 : t > 0} is dominated by the semigroup {e='90 : t > 0} in the

sense
eftGl

n<e %y npellM), t>0, (4.1)

then {e='C1 1 t > 0} is superbounded with

el = e

y Ml me L. >0V (42)

L2(M)—=M
Proof The superboundedness of {¢~/C% : t > 0} and the domination (4.1) imply
that e~/ (Li (M)) C ip(M4) forany t > 9 V #;. Since Li(M) linearly generates
L2(M), it follows that e 'C1(L2(M)) C io(M) for all t > o V 11 so that {e7C1 :
t > 0} is superbounded. The bound (4.2) follows from the domination (4.1) and the
superboundedness of {e~1C0 . ¢ > 0). O

4.1 A class of superbounded Markovian semigroups on a type I, factor

Let 4 be a Hilbert space and consider the type I factor M := B(h). Its (Hilbert-
Schmidt) standard representation acts, by left composition, on the space L2(M) =
L2(h) of Hilbert-Schmidt operators on %, where the standard cone Li(M ) = L%_(h)
is that of operators in L2 (k). The modular involution is given by the operator adjoint:
JE =& for& € L2(h) and the right representation of B(h) on L2(h) is given by
right composition.

Let Hyp be a lower bounded, self-adjoint operator affiliated to B(h) (i.e. any self-
adjoint, lower bounded operator on /) and consider the strongly continuous semigroup
on L?(h) given by

Tip=e oy (e_tH"J(n)> =eMoopoe™  pe L2h).

Its self-adjoint generator G on L?(h), defined by Go(§) :=lim;—¢ ! (§ —T;&)on
the subspace D(Gg) C Lz(h) for whose vectors the limit exists, coincides with the
generalized sum Hy-+J HyJ (see [19]) of the closed operators Hy and J Hy J, affiliated
to the commuting von Neumann algebras given by the left and right representations
of B(h) on L%(h) (see Lemma 7.1 in Appendix). The operator Hy, resp. J HyJ, is
considered here as acting on a suitable dense subspace of the Hilbert—Schmidt space
L%(h) by left, resp. right, composition. For example, Go(§) = Hpo& + & o0 Hy €
L2(h) for those & € L2(h) such that the operators Hy o & and & o Hy are densely
defined, closable and bounded on their domains and their closures are Hilbert-Schmidt
operators. To ease notation, the operators Hy o &, & o Hy will be represented by the
juxtaposition Hyp&, & Hy of the symbols of the operators Hy and & so that, the formula
above appears Go(£) = Ho& + & Hy. For further details on Hilbert-Schmidt standard
form we refer to [12] Section 2.
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Lemma 4.3 If Hy has discrete spectrum Sp(Hy) :={A; : j € N}! with the increasing
eigenvalues written with repetitions according to the their multiplicity, then

(i) Go has discrete spectrumtoo given by Sp(Go) = {A;j+Ar € R: (j, k) € NxN};

(ii) ifng,(A) :==0{j € N : &; < A} is the eigenvalue counting function of Hy, then
the eigenvalue counting function of G is bounded by ng,(A) < (ng, (A — ko))z,
reR

Proof Let Hy = Y ;- M Px be the spectral decomposition of Hy as an operator acting
on h. Then the spectral decomposition of G is given by

oo
Go= Y (j+M)PjJPJ,
j.k=0

since {P;J PxJ : j,k = 0} is a complete family of mutually orthogonal projections
acting on the standard Hilbert space L*(h) such that

(Hyo+ JHoJ)PjJ P J = HyP;jJ P J + PjJHyPJ = \jP;jJPJ + M Pj P J
= +A)PjJPJ.

Thus G has the discrete spectrum indicated in the statement and since A jt A< A
implies both A; + A9 < A and A¢9 + A < A, the bound ng,(A) < ny (A — )»0)2 holds
true for A € R. |

Suppose now the lower bounded, self-adjoint operator Hy on & to have a discrete
spectrum Sp(Hy) := {A; : j € N} such that, for some g > 0,

o0
Tr(e PHoy = Ze_ﬂ)"‘ < 400,
k=0

so that the Gibbs state on B(h) with density matrix pg := e ~#H0 /Tr(e=PH0) is well
defined

wg(x) :=Tr(xpg) x e B(h)

and its representative positive vector is given by &y := pé/ ‘e L%r(h). Recall that in
/4

this case the symmetric embedding ig : B(h) — L2(h)is given by ip(x) = pé x,olé/4

for x € B(h).

—tGo

Theorem 4.4 (i) The Cy-continuous, self-adjoint semigroup {e 2t > 0} is posi-
1/2

tive preserving and &y := pg € L%L(h) is (—2(xo A 0), 0)-excessive,

IN={0,1,---}
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—tGo

(ii) the semigroup {e 1t > 0} is superbounded with

||6’7IGO||L2(M)_>M <e @B s A,

In particular, if Ao > 0, the semigroup is Markovian and supercontractive.

Proof Replacing Hy with Hy + B! InTr(e #H0), we may just consider the case
Tr(e PHoy = 1.

(i) If & € L% (h), since e~'M0 is self-adjoint, we have e 700& = (¢7Ho)y*ge~1H0 ¢
L%r(h) for any + > 0, showing that the semigroup is positivity preserving. Since
Mo < Hp and B > 0, for any r > 0 we have

. - /2 _ - - .
e 1008 = ¢ tHopﬂ/ e~!Ho — ,—BHo/4,~2tHy ,~pHo/4

< e—ZI)L()e—ﬂHo/4e—ﬁH0/4 — e—ZZAO%.O

so that &y is (—2(Xo A 0), 0)-excessive.
(ii) For & € L*>(h) andt > B/4 we have x := e~ (=P/VHogo=(=B/HHo ¢ B(ph) and

io(x) = ,O/_};/4Xp/13/4 — e—ﬂH0/4e—(f—ﬁ/4)HOEe—(l—ﬂ/4)H0€—ﬁH0/4

— e—tHOSe—tHO — e_tGOS.

Since for t > /4 we have [|e=(=P/DHo| g < e==F/D20 we get

Ixl By < Ixll 2y = le™ P/ DHog ==V oy

< [le™ PO g 11 L2y lle™ BP0 g

< eGP g |

5 General quantum Ornstein-Uhlenbeck semigroups

In this section we apply the above framework to construct a family of Dirichlet
forms and Markovian semigroups, a special case of which is the quantum Ornstein—
Uhlenbeck semigroup studied in [12]. While in [12] we computed explicitly the
spectrum of the generator and proved the Feller property with respect to the algebra of
compact operators, here we prove, for each semigroups we construct, subexponential
spectral growth rate and domination with respect to positivity preserving semigroups
belonging to a natural related class (see Appendix 7.1).

On the Hilbert space h := [ 2(N), consider the C*-algebra of compact operators KC(h).
The Number Operator (N, D(N)), defined by the natural basis e := {ex € I2(N) :
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k € N} as

D(N) =1 cr-ex: Y k- lex|* < +o0 Ney :=kex keN,
keN keN

generates the Cy-continuous group of automorphisms « := {&; € Aut(fC(h)) : t € R}
a;(B) == "™V Be7™N B e K(h), teR.

For any B > 0 there exists a unique (o, 8)-KMS state wg, satisfying the KMS condi-
tion

wpg(Aaig(B)) = wg(BA)

for «-analytic elements A, B, given by, in terms of the density matrix,

pﬂ = (1 — e_ﬁ) e_’B 1 —e Ze Pk wﬁ(A) = Tr(A,Oﬁ), A S ’C(h)
keN

(pr being the projection onto Cey). The von Neumann algebra M generated by the
GNS representation of wg can be identified with B(h) and the normal extension of
wg on it is still given by the formula above for any A € B(h). The extension of
the automorphisms group « to a Cg-continuous group on B(h) is given by the same
formula above on IC(h).

In the Hilbert—Schmidt standard form of M := B(h) described in Sect. 4.1, the cyclic
and separating vector representing wg is given by

& = pé/z =1 —eBe N2 ¢ L%_(h).

The action of the Hilbert algebra unbounded conjugation operator Sy on L2 (h), char-
acterized as So(x&p) := x*&y for x € B(h), can be identified on a suitable domain
D(Sp) C L*(h) with

-1/2 1/2
So(n) = pg / 77*:0/3/

1/2

and its polar decomposition So = J A" is provided by the modular operator

l 2 1/2 2 T _AN/2_ BN/
o () = py*npy 1? = e PNI2neBNZ e D(Sp).

The modular group of wg, satisfying the modular condition wg (Aoiuf (B)) = wg(BA),

for analytics elements A, B, is then given by cf,wﬁ = a_g, for t € R. Regarding the
Number Operator N as an operator affiliated to B(/) in its normal representation
on L?(h) (i.e. acting, on a suitable domain of the Hilbert—Schmidt operators, by left
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composition), we have that the modular (Araki) Hamiltonian is given by the strong sum
of the densely defined, self-adjoint operators N and —J N J (belonging to commuting
von Neumann algebras)

—InAg=BN—JNJ

and its (discrete) spectrum is given by Sp(— In Ag) = BZ. Consequently Sp(A(l)/ 2) =

eP?/? with uniform multiplicity one.
Let us consider the annihilation and creation operators (A, D(A)), (A*, D(A*)) on h,
defined on the domain D(A) := D(\/ﬁ) =: D(A*) as

Aeg:=0, Aex :=+kex_y ifk>1  A%er:=+vk+ leg keN.

They satisfy the Canonical Commutation Relations AA* = A*A + I, as closed oper-
ators defined on D(N), and allow to represent the Number Operator as N = A*A. All
these operators and their functional calculi are understood as affiliated to B(h) acting
by left composition on operators belonging to the Hilbert-Schmidt class L2 (k).

Let us consider the family of operators affiliated to B(h)

D(Xm) =D (N'"/Z) Xm = (A" m e N\ {0). (5.1)
Lemma 5.1 (i) Foranym > 1 and A,zn = e P2 we have

D(X,) =D (X;) = D (N"2). D (X;,Xn) = D (X X},) = DIN™)
X X = A"(AM" = (N +m)(N+m —1)---(N+2)(N + 1) (5.2)
X Xi = (AH"A™ = N(N = )(N =2)--- (N — (m — 1))

and the self-commutator ([ X, X1, D(N™)) is a self-adjoint operator, infinites-
imally small with respect to (X5, X,u, D(N™)) and (N, D(N™));

(ii) Xm& = (A*)"&y € L*(h) is an eigenvector of A(l)/z corresponding to the eigen-
value )2,
X & = (A)"& € L%(h) is an eigenvector of A(l)/z corresponding to the eigen-
value ).,2.

Proof (i) Formulae (5.2) follow by induction starting from the case m = 1. They show
that the self-commutator is a polynomial in N of degree (m — 1) and this implies the
remaining conclusion. (ii) Since A*e; := \/mEkJ,_l fork € N, we have (A*&y)ex =
A*(pé/z(ek)) = (1 — e Y27 Bh2p%¢, = (1 — e P)1/2e=PK/2 Jk F lex4+1 and
then for, any m € N, we have too ((A*)"&)er = (1 — e P)/2e PKI2(A*Y1ep =
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(1 — e PY12e=BkI2 [k + T /k + m ejym so that

(67 ((A%"&0) ) ex = (o (A" 9 %) 05 Drer = o ((47)"ex)
= Vk+ 1k +mpg ecsm

=(1- (3_’3)1/2 e PUEM2 fe Tk +megim
= "2 ((AM)"&0) ex.

Hence (A*)"& e L*(h) is eigenvector of A(l)/ 2 corresponding to the eigenvalue
A2 := e~™P/2 The other series of eigenvalues follow from Lemma 2.9. O

We are now in position to apply Theorem 2.5 with ¥ = X,,,, A = e P/ &) = p;/z

L*(P(N))

and consider the Dirichlet form (SA:':I, Fx") on L*>(I*(N)) and its generator
(HY". D(Hy")).

The following result generalizes, in particular, some of those obtained in [12] for
the quantum Ornstein—Uhlebeck semigroup, corresponding to the present parameter
m=1.

€

Theorem 5.2 (Spectral growth rate) For m > 1 and )\;211 = e MBI2 the operator
(H )”:"n, D(H;’:l )) has discrete spectrum and subexponential spectral growth rate

Tr(eitH?A(’r:) <400 t>0.
Proof By Lemma 5.1 (i) above, the self-adjoint operator
)vm R -1 2 * -2 *
Ny = (dm =2y ) X X + (27 = 1) [Xom, X5 ]

has, on its domain, the following explicit form

N (xfn - 1) AT (A" 4 (A,;Z — 1) (A*)" A™

(2= 1)+ D)+ (32 = DNV = D (N = (n = 1))

2
(4 + 22 = 2) N puct V) = (3w = 21 ) N o pact (), (5.3)

where p;,—1 : R — Ris asuitable polynomial of degree (m — 1) with real coefficients.
Since for any ¢ € (0, 1) one has b}, := inf;>o(e(Ap — )»,;1)2 s™ + pm—1(s)) > —o0
and (A, — A,;")? = (2sinh(mB/4))* > 0, (N*';, D(N™)) is lower bounded, self-
adjoint with subexponential spectral growth rate
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Tr (elN;’r:> < e nTr (e_’(l_g)()‘m—)\ml)zN"'>

ad 2
— ot N7 ot =) (=3, ) K"

, t >0,
k=1

by [31] Proposition 1.2.15. Applying Lemma 4.3, these same properties (having
discrete spectrum and sub-exponential spectral growth rate) hold true for the sum
Ny +j(Ny™). Also, since D(X,) = D(X}) = D(N"/2) and D(X},Xp) =
D(X,, X)) = D(N™), by Theorem 3.3 (iii) and (iv) with the notations there intro-
duced, we deduce spectrum discreteness and growth rate for H ?}Z too:
Tr(e_tH’A"':) <Tr <e_t(N;’:z H(N)A":?)> =Tr <e_tN§’r?1 Je_tN)A‘I:? J)
_tN)Lm 2
- (Tr(e 6)? =0

O
Theorem 5.3 (Domination) For m > 1 and k,zn = e "PBI2 the following properties

hold: .
_ m . ..
the Markovian semigroup {e My ¢ > 0}, associated to the Dirichlet form

(5;’:’”, .7-';}’:’) dominates the Markovian semigroup {e~'C1 : t > 0}, generated by the
closed, self-adjoint operator (G, D(G1)) on L?(h) given by
D(G1) := D(N™)NJD(N™)
G = (Ai CXE X F A2 me;,‘;) i) (Afn X5 X+ 0t XX )
which can be expressed as

e G = e B (e“B'") (n) = e Brupe™Bn e L2(M),

by the self-adjoint, positive operator (Bp, D(By)) = ()\,zn X X, + k;z .
XX, D(N™)), affiliated to M := B(h) in its left action on L2(M) = L%(h).

Proof Set (qo. D(qo)) := (4" . Fy") and consider the forms (g1, D(g1)). (w, D(w))

given by D(q1) := .7:'X,,, =: D(w) and

a1l =3, (1Xnn I + 1Xo 0l ) +h? (1X0IP + 1X5Im12)
win] = 2 [(XmnlJ X5 In) + (X5nlJ X J0)].
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so that on D(q;) := fxm, the representation (3.1) of the form (5)‘:'; , ]—'?{:l) can be
written as

q1n] = qolnl +wln]l  n € D(qy).

As, by definition, (go, D(qo)) is a Dirichlet form, its associated self-adjoint operator

(Go, D(Gp)) == (H)A(Z D (HJA(Z))

generates a Markovian, hence a Cp-continuous, self-adjoint, positivity preserving,
semigroup {e /¢ : ¢ > 0}. Since, by definition (see statement and proof of Theorem
2.5) and (5.1), Fx,, = D(X,y) N D(X%) N J(D(X,) N D(XE)) = D(N™/?) N
JD(N™/?), the quadratic form (g1, D(q1)) is closed and the associated self-adjoint
operator is just (G1, D(G1)). Since {e7'G1 .t > 0} is positivity preserving (see
Appendix 7.1), to apply Lemma 4.2, we exploit the characterization of domination
between positivity preserving semigroups on standard forms of von Neumann algebras,
established in [3] Theorem 3.1: the semigroup {¢~*“! : t > 0} is dominated by
{e7!C0 : ¢ > 0} if and only if each one of the following properties is verified:

(@) D(q1) < D(qo),

(b) qo(ml¢) < qi(nl¢) forall n, ¢ € D(g1) N L3 (M),

(¢) if n € D(go) N LE.(M), ¢ € D(g1) N L3 (M) and n < ¢, then n € D(q1).

Condition a) holds true since D(q1) = fxm c f;}""n =: D(qop). To prove b),
consider the set C(e¢) € L2(h) of all Hilbert-Schmidt operators which are finite
linear combination of the partial isometries {e; ®e; : j, k € N} of the natural basis
e:={ex € h:k € N} and set C4(e) := C(e) N L% (h), Cr(e) := C(e) N LE (),
where L2 (h) = L2 (h) — L% (h) is the self-adjoint part of L(h). Since {¢; ® ¢} :
j, k € N}is aHilbert basis for L2(h), C(e) is dense in L2(h). For A € L]i{(h) and
B € C(e) we have (B* 4+ B)/2 € Cr(e) and ||A — (B*+ B)/2|l» < |A — B2
so that Cr(e) is dense in L%R(h). For any B € Cr(e) we have By € Cy(e)
since Cr(e) = UjeN Lﬂ%{(hj), where hj := Lin{ex € h : k =0, ..., j}, and if
B e L%R(h j) for some j € N, then By € L%R(h ;j)- Since the Hilbertian projection
of L]%{(h) onto L%r(h) is a contraction, for any A € Lﬁ_(h) and B € Cr(e) we
have ||A — Bi |2 = ||A+ — B4]l2 < ||A — B||» showing that the cone C (e) is
dense in the positive cone Li(h).
It follows from Lemma 5.1 that C(e) is a J-invariant core for (X,,;,, D(X,;)) and
(X, D(X,)) which is left globally invariant by both operators: X,,(C(e)) <
C(e), X;;(C(e)) S C(e). Let P; the finite rank projection on & with range
hj, for any j € N. Then if n,¢ € Ci(e) then X, = P;jX,; P¢ and
X;n = P;X;, Pn for sufficiently large j, k € N. Since Pjy,, X, P;j € B(h),
(Pj Xy Pjym)J (Pj Xy Pjip)J is positivity preserving and we have

(XinlIXmIC) = (nl(Pj X Pjym) J (P;XmPjem)JI ) > 0.
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By the core property, the positivity of (X;n|JX,J¢) extends to any n,¢ €
D(X3) N JD(X,,) and an analogous reasoning shows that (X,,n|J X} J¢) > 0
is true for any n, { € D(X,,) N JD(X}). Since D(q1) = fxm, altogether these
properties allows to check b) as follows for 1, { € D(g1) N Li(M )

a1(lg) — qomle) = wnle) = 2[(XmnlI X5 TC) + (XinlI XmJC)].

To check c¢), since D(q1) := fxm is core for (E;\(”’,”, f;‘(:"’l), let n, € D(q1) be a
sequence such that

li,{n (cIo[nn —nl+ . — nll%]) =0.

Let n, A ¢ := Proj(n,, ¢ — Li(M)) be the Hilbert projection of 1, € Li(M)
onto the closed and convex set { — L%r(M) C L]%R(M). Since, by Lemma 4.4 in
[8], we have n, A& = ¢ Ay = Ny — (E — ny)—, the continuity of the Hilbert
projections and the fact that n < ¢, imply

im [y = my Agll2 = limfln =0, + (€ =)= l2 = 1€ =2 = 0.

Since {e7'¢0 : t > 0} and {¢~'C! : ¢ > 0} are positivity preserving, by Proposition
4.5 iii) in [8] we have

mmAC € D),  qolnn NSl < qolnn A &1+ qolnn Vv &1 < qolna] + qol¢].

Since 1, A ¢, ¢ € D(q1) and, by definition, n, A { < ¢, we have also (using the
property of the quadratic form w established in the proof of b)) w[n, A¢] < w[¢]
so that

q1lnn A &1 = qolnn A &1+ wing A &1 < qolnnl + qol¢] + wl¢] = qolnn] + q1l¢].

Since the quadratic form (g1, D(g1)) is closed on L%(M), it is lower semicon-
tinuous when considered as a functional on L2(M) taking values in the extended
positive half-line [0, 400] and it is finite exactly on D(q;). We then have

qiln] = liminfgi[n, A L] < limninf(qo[nn] + q1l¢]) = qoln] + q1[¢] < 400

so that n € D(q1). By [3] Theorem 3.1, {¢ /¢! : t > 0} is dominated by {e €0 :
)LITI
t>0}:e 01y < e_tHan forall n € Li(M) and ¢ > 0. Choosing 1 := &y one

o
has e 701y < e Hxiy & < & forall r > 0 so that {e~*C1 : ¢ > 0} is Markovian.

O
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6 Dirichlet forms associated to deformations of the CCR relations

In this section we outline the construction of Dirichlet forms associated to deformations
of annihilation and creation operators in the framework and notations of Sect.5. To
use the tools of Sect.2 to this end, we need to represent eigenvectors of (isolated)
eigenvalues of the Araki Hamiltonian as in Lemma 2.1.

6.1 Deformation of the CCR relations

Let g : R — R be a function vanishing on (—o0, 0], strictly increasing on [0, +00)
and satisfying, for 8 > 0 and ¢ € N to be fixed later,

(e.¢]
Znée_ﬂg(") < 4o00. 6.1)
n=0
Consider the automorphisms group of the C*-algebra of compact operators
o (B) = 8N Be=i8WN) 4 c R B e K(h)

whose Gibbs equilibrium state wg(-) = Tr(-pp) is represented by the density matrix
pp 1= e =P/ Z(B) with partition function Z(8) := Tr(e PM). Let & := py/*
L2+(h) be the cyclic vector giving rise to the modular group of the normal extension
of wg to B(h)

0, " (B) = a_p(B) = e "PENI B i1PsN) B c B(h), teR.

Then Ag n) = pl’é’ nog i for all n € L?(h) and the Araki Hamiltonian is the strong
sum

InAg = —Bg(N) — j(g(N)).
Since for each m,n € N, vy, , := B(g(m) — g(n)) is an eigenvalue of In Ag with
eigenvector e, Qe € L?(h) and {e,, ®ey : m,n € N} is a Hilbert basis, the spectrum
of In Ag is

sp(nAg) = {vm.n :m,n € N}.

All eigenvalues are isolated if, for example,

.. . 8m)—gn)
liminf ——— >
m>n>0 m-—n

0.

Proposition 6.1 Suppose v := v, , > 0 to be an isolated eigenvalue of the Araki
Hamiltonian withm > n, set £ .= m —n € Nandlet f € CSO(R) be a Schwartz
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function whose Fourier Transform? f € C°(R) is supported by [v — e, v + €] and is
strictly positive on (v — e, v + ¢), with f(v) =1, for

0 < e < dist(v, sp(In Ag) \ {v}).

A

Then, setting k(t) := B(g(t +£)) — g(t)) and p(t) == f(k(t)) fort € R, we have

(i) sp(k(N)) C sp(nAg) and v € sp(k(N)) is an isolated eigenvalue of k(N)
acting on h;
(ii) p(N) is the spectral projection of N corresponding to the Borel set

B:={n"eN:gm)—gmn) =g+ — g} S sp(N)

and p(N — £ - 1) is the spectral projection of N corresponding to B + £ C N;
iii) the densely defined, closed operator (X, D(X)) on h, given by

D(X):=D (NW) X = p(N)o A’ (6.2)

where A is the annihilation operator defined in Sect. 5, satisfies the relations

XX*=(N+1)---(N+£-Dp(N)
X*X=NWN-0I)---(N—{—-1)-Dp(N—2£-1)
(X, X*]=(WN+1)---(N+L£-I)p(N)—
NN-=D---(N—=—=1)-Dp(N—=£-1);

6.3)

iv) if B is unbounded, (X*X, D(NY)) and (XX*, D(N")) are unbounded with dis-
crete spectra;

v) if B and B + ¢ differ by a finite set, then ([X, X*1, D(NY)) is infinitesimally
small with respect to (N¢, D(NY);

vi) & 1= X& € L*(h) is an eigenvector of In A with eigenvalue v:

(InAg)§ =v-§.

Proof i) follows from sp(k(N)) = {vyym—nnw 0 €N} C {vy, :m,neN} =
sp(In Ap); ii) follows from i), the assumption on ¢ and the Spectral Theorem; iii) by
the CCR we have

NA=AN —1), A*N = (N — I)A* (6.4)

as identities among closed operators on their common domain D (N>/2). By induction

AHA=N(N—-1)---(N—(—=1)-1), AAH'=(N+ID)---(N+¢€-1)

2 Fourier transform convention: f (s) := fR dif (1)e'st.
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on the domain D(NY) so that, by (6.2), one gets the first relation (6.3)
XX* = p(N)AY A p(N) =(N+1)--- (N +£-D)p(N).

Since, by (6.4), p(N)A = Ap(N — I), by induction one obtains the second relation
(6.3) X*X = (AN p(N)A = (AHAp(N—€- 1) =N(N—=1)---(N—({—1)-
I)p(N — £ - I); the last relation (6.3) follows by difference; iv) follows from (6.3)
and the fact that N(N —I)--- (N —( —1)-I)and (N +1)---(N + £ -1) are
polynomials; v) in this case p(N) — p(N — £ - I) has finite rank and (N + 1) - - - (N +
£-1)— NN —1)---(N — (£ —1)-1) is polynomial of degree at most £ — 1; vi)
since sp(In Ag) N[v —e,v+¢] = {v} and f(v) = 1, by the Spectral Theorem, the
spectral projection P of In A, corresponding to {v}, can be represented as

P=fnay) = / def (e’ "0 = / def (1) Al
R R
since £ € D(AY) = D(N*/?) by (6.1), by (6.4) we have

| | P
N (4%E0)) = plf o (4%E0) ) 0 9" = plf A 0y 05"
_ e—itﬁg(N)eitﬂg(N+l~1)Aiip/;/2 _ itk(N) (AZ(50)>-

Hence, P(A'%0) = [pdif ()™ ™ (Al ) = (FK(N)AY)E) = X (&) =: &
does not vanish and it is an eigenvector of In Ag corresponding to the eigenvalue v. O

Example (1) If g(t) = tforanyf € R, B =N, p(N) = I, X = A® and we reproduce
the "unperturbed" case treated in Theorem 5.2.

) If g(t) ==t +[t/2] fort > 0,n € 2N is even and m € 1 4+ 2N is odd, then
¢ e€1+2Nisodd, g(m)—g(n) =3¢/2—1/2and B={n' e N: g(m)—gn) =
g’ +¢€) —g(n)} =2N.

Remark 6.2 The canonical commutation relations CCR arise in the spectral analysis of
the quantum harmonic oscillator, which can be considered the canonical quantization
of the classical harmonic oscillator whose phase space is the plane R?. D. Shale and
W. F. Stinespring constructed in [32] a quantum system which can be regarded as the
quantization of a harmonic oscillator whose phase space is the hyperbolic plane H?
with a fixed negative constant curvature k < 0. It can be also considered as a quantum
harmonic oscillator with self-interaction, the coupling constant being proportional to
the curvature. In their work the authors found that the dynamics is generated by an
Hamiltonian H = hwN proportional to the Number Operator and that annihilation
and creation operators are replaced by operators X and X* satisfying a deformed CCR

[X,X*]=h-I—kK -N.
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A similar commutation relation is satisfied by X := A% where A is the annihilation
operator

=[4% ] = a4 @]+ 4. 2] 4
= A[A, A®]A* + AA*[A, A*] +[A, A*]A*A 4+ A*[A, A*]A
= AA*+ AA* + A*A + A*A =21 +4N.

—tH2 . ) :
Inreference to Sect. 5, e Hx, ,compared with the quantum Ornstein—Uhlenbeck semi-

A
group e Hx, (see [12]), could be called quantum Ornstein—Uhlenbeck hyperbolic
semigroup.
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7 Appendix
7.1 Generators of a class of positivity preserving semigroups

Let (A, D(A)) be a lower bounded, self-adjoint operator affiliated to a von Neumann
algebra M and consider the Co-continuous, self-adjoint, positivity preserving semi-
group on L?(M), defined by

TtA = e_tAj (e_tA) —e A getAy t>0.

If (ga, D(g4)) is the lower bounded, closed quadratic form of (A, D(A)), then the
lower bounded, closed quadratic form of (j(A)), JD(A))is givenby JD(ga) > n —
galJn] and the quadratic form (t4, D(ga) N JD(qa)) given by t4[n] := qaln] +
qalJn]is lower bounded and closed as a sum of forms sharing these same properties.

Lemma 7.1 The lower bounded, closed, quadratic form of the Cy-continuous, self-
adjoint semigroup {TIA 1t > 0}isgivenby (ta, D(qga) NJ D(qa)) and the associated
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self-adjoint generator; i.e. the generalized sum A+ j(A) (see [19]), is given by the
closure A + j(A)

TtA ey (e—tA> — 1A _ AT, > 0.

Proof Since (ga, D(q4)) is lower bounded, for n € L*(M) the limit

lim 1! [(n = 7m) ]
= lim 1! (1 =) + (7 n1s = e 4um) |

exists in R if and only if both limits on the right-hand side exist in R, i.e. if and only
if n € D(ga) N JD(qa) and in this case lim,_ o+ t ' [(n|(I — T)n)] = qaln] +
qalJn] =: ta[n]. Hence the lower bounded, closed quadratic form of {TtA >
0} is (ta, D(ga) N JD(ga)) and this form is densely defined. As (A, D(A)) and
(j(A), JD(A)) are affiliated to commuting von Neumann algebras, they strongly
commute and the sum (A+ J(A), D(A)NJ D(A)) is densely defined, lower bounded,
symmetric and essentially self-adjoint so that A+j(A) = A + j(A). O

7.2 Superbounded semigroups on abelian atomic von Neumann algebras.

The von Neumann algebra B(h) is atomic and this suggests to have a look at the
superboundedness property in the abelian situation of atomic measured spaces.

Let (X, m) be a locally compact, second countable, Hausdorff space, endowed with
a fully supported Borel measure. Consider a real valued function U such that e~V €
L' (X, m) and define a probability measure by

my .= eiUm// e Ydm.
X

By the unit norm function ug := e~Y/2/|e=V/2

the integral with respect to my by

lL2cx.m) € L*(X, m), one recovers

/ vdmy = (MO|UUO)L2(X,m)’
X

one has the embedding ip : L®(X,m) — L2(X,m) io(v) = wvug with

||i0(w)||L2(x,m) = ”w||L2(X,mU)‘
A Cy-continuous semigroup T; : L>(X,m) — L*(X, m) is Markovian with respect
to my (in the sense we are discussing in this work, i.e. the one introduced in [8]), if

O0<v<u = 0<Tiv<uy t=>0.
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Such a semigroup induces a semigroup on the abelian von Neumann algebra L (X, m)
by

S;: L¥(X,m) — L™¥(X,m)  io(Su) = Ti(io(w)) u e L®(X,m),
which is Markovian in the usual sense
O<u<l = 0<Su<l +t>0.

The definition of superboundedness considered above on von Neumann algebras, in
the commutative setting reduces to say that 7; is superbounded with respect to my if

T, (LX) Cio (L¥(X,m) 1> 1o
for some #y > 0 and
lull oo x.my < vll2ex,m)

whenever Tyv = iog(u) forv € L2(X, m),u € L®(X,m) and t > fo. In other words,
T; is superbounded with respect to my, if the induced Markovian semigroup satisfies

Il SeuellLoo(x,my < NioGO N L2(x my = Nl L2(x u e L>(X,m), > 1.
(X,m) (X,my)

Incase (X, m) is an atomic measured space, the classical definition of super or ultracon-
tractivity typically trivializes (see [15] Section 2.1): this happens, for example, if m is
the counting measure because of the contractive embedding L2(X,m) C L®(X, m).
Superboundedness however may still be non trivial.

Let (X, m) be a countable, atomic measured space and let m = e’hmo for some
function & and the counting measure mg. To simplify notations, we assume that

||e_U||L1(X,m) =1
For a fixed nonnegative measurable function V : X — [0, +00) let us consider the
semigroup

T, L*(X,m) = L*(X,m) Tw:=e Vv >0

which is clearly Markovian with respect to the probability measure my .

Lemma 7.2 The semigroup T; is supercontractive with respect to my if and only if
(U+h)y/V € L®(X, m).

More precisely, T; extends to a contraction from L2(X,my) to L*(X, m) if and only

if
1
t>tg = §”(U+h)+/v||oo~
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In case m is the counting measure we have to = U /V ||co/2.

Proof On one hand, if 7y is finite and # > ftg, the result follows from || S;v|e =

[lve ™" oo < ||U€_IV||L2(X,m0) = ||U€’(U+h)/2_tv||L2(x,mU) < Il z2(x,my)- On the
other hand, if [|Sivllec < [lvllz2(x ) for some 7o > 0 and all 7 > 19, choosing
v =l forany x € X, wehave 1o > [[(U + 1)1+ /V]o0/2. O
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