
Advances in Operator Theory            (2024) 9:14 
https://doi.org/10.1007/s43036-023-00312-7

Tusi
Mathematical
Research
Group

ORIG INAL PAPER

Spectral of the nonlinear weighted superposition operator
on Fock spaces

Yonas Eshetu Felke1 · Tesfa Mengestie2 ·Mollalgn Haile Takele1

Received: 6 November 2023 / Accepted: 13 December 2023
© The Author(s) 2024

Abstract
We follow several approaches in nonlinear spectral theory and determine the various
spectral forms for the nonlinear weighted superposition operator on Fock spaces. The
results show that most of the forms introduced so far coincide and contain singeltons.
The classical, asymptotic, and connected eigenvalues, and some numerical ranges of
the operator are also identified. We further prove that the operator is both linear and
odd asymptotically with respect to the pointwisemultiplication operator on the spaces.
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1 Introduction

The superposition operator is a typical example of nonlinear operators which plays a
significant role in the study of nonlinear functional analysis, differential and integral
equations [2, 3, 21]. We may recall its definition. Let H1 and H2 be metric spaces
defined over a given domain G, and ψ be a function on G. The superposition operator
Sψ : H1 → H2 is defined by Sψ f = ψ ◦ f for all f in H1. If u is a holomorphic
functions on G as well, then the weighted superposition operator S(u,ψ) : H1 → H2
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is defined by S(u,ψ) f = Mu ·ψ ◦ f , where Mu f = u f is the pointwise multiplication
operator of symbol u. The operator S(u,ψ) reduces to Sψ and Mu , respectively, when
u = 1 and ψ(z) = z.

Though the superposition operator is known to have a long history in the context
of real-valued functions [2], there have been only some studies about its actions on
spaces of analytic functions defined over the unit disc [1, 4, 5, 7, 9, 10]. In 2022,
the second author took the study further and investigated some of the operators basic
analytical structures on Fock spaces defined over the whole complex planeC [17]. Let
H(C) denote the set of entire functions on C. Then the Fock space Fp is the space of
all f inH(C) for which

‖ f ‖p :=
(

p

2π

∫
C

| f (z)|pe− p|z|2
2 d A(z)

) 1
p

< ∞

for 0 < p < ∞, where A is the usual Lebesgue area measure on C, and for p = ∞

‖ f ‖∞ := sup
z∈C

| f (z)|e− |z|2
2 < ∞.

For easier further referencing, we now state the result from [17] which identifies the
weighted superposition operators acting between the Fock spaces.

Theorem 1.1 Let ψ, u ∈ H(C) be nonzero and 0 < p, q ≤ ∞.

1. If p ≤ q, then the following statements are equivalent.

(a) S(u,ψ) maps Fp into Fq;
(b) Either ψ(z) = az + b for some constants a and b in C and u is a constant or

ψ is a constant and u belongs to Fq;
(c) S(u,ψ) : Fp → Fq is bounded;
(d) S(u,ψ) : Fp → Fq is globally Lipschitz continuous.

2. If p > q, then the following statements are also equivalent.

(a) S(u,ψ) maps Fp into Fq;
(b) ψ is a constant and u belongs to Fq;
(c) S(u,ψ) : Fp → Fq is bounded;
(d) S(u,ψ) : Fp → Fq is globally Lipschitz continuous.

3. The map S(u,ψ) : Fp → Fq cannot be compact for all pairs of p and q.

The result shows except in the casewhenψ is a constant, everyweighted superposition
operator on Fock spaces is a superposition operator since S(u,ψ) f = αa f +bα = S� f ,
where �(z) = aαz + bα.

One of themain challenges in dealingwith nonlinear theory is the lack of reasonable
definitions to concepts that can be applied to a wide range of operators. Reasonable
definition here is in the sense that it should reduce to the familiar property in case of
linear operators and attempts to preserve or share some of the useful linear structures.
Recently, we continued the line of research in [17] and studied a number of concepts



Spectral of the nonlinear weighted... Page 3 of 21    14 

related to the topological and dynamical characteristics of S(u,ψ) on Fock spaces. Our
results showed that in several cases, the natural extensions of definitions for nonlinear
from linear fail to hold with the operator S(u,ψ) [11]. Thus, this operator may serve as
a good example for illustrating basic structural variations in the theories of linear and
nonlinear operators; which also motivates us to study the operator further.

2 The various spectral forms of S(u,Ã) on Fock spaces

The notion of spectrum for nonlinear operators has been a subject of extensive studies
in nonlinear analysis. Several attempts have been made to define the notion, but none
of the definitions proposed so far has been all encompassing as to the extent of the
spectral theory of linear operators. Simple examples show the spectrum would fail
to have even basic properties like being closed, bounded or nonempty. For a detailed
account of the subject, we refer readers to the monograph [3].

In this work, we plan to determine and compare the various spectral forms
of weighted superposition operator on Fock spaces using several proposed defini-
tions. We provide the various forms in Theorem 2.1, Theorem 2.2, Proposition 2.3,
Proposition 2.4, and Theorem 2.5. We further describe the classical eigenvalues in
Proposition 2.6, the asymptotic eigenvalues in Corollary 2.7, Connected eigenvalues
inCorollary 2.8, and some numerical ranges of the operator in Theorem2.10.We show,
in Corollary 2.9 and Corollary 2.11, that the nonlinear weighted superposition opera-
tor is both linear and odd asymptotically with respect to the pointwise multiplication
operator on the spaces.

We begin with a spectrumwhose definition goes back to Kachurovskij [15] in 1969.
Let T be a Lipschitz continuous operator on a Banach space H. The Kachurovskij
resolvent set of T is given by

ρK (T ) = {
λ ∈ K : λI − T is bijective and R(λ; T ) is Lipschitz continuous

}
,

where I denotes the identity operator, and R(λ; T ) = (λI − T )−1 is the resolvent
operator of T at λ, andK refers to the scalar set R or C which we will simply write C
in the rest of the manuscript. The complement of the set, σK (T ) = C\ρK (T ), is called
the Kachurovskij spectrum of the operator. In the case of a bounded linear operator,
this gives the usual definition of the spectrum. The Kachurovskij spectrum is always
compact but it can be empty for some operators.

In 1969, J. Neuberger [18] suggested also another approach through which the cor-
responding spectrum is always nonempty when the operator acts on complex Banach
spaces. The Neuberger spectrum for an operator T is defined by σN (T ) = C\ρN (T ),
where

ρN (T ) = {
λ ∈ C : λI − T is bijective and R(λ; T ) ∈ C1(H)

}
, (2.1)
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and C1(H) is the set of all continuously Fréchet differentiable operators onH. Recall
that T is called Fréchet differentiable at point x0 inH if there exists a bounded linear
operator L on H such that

lim‖h‖→0

‖T (x0 + h) − T (x0) − L(h)‖
‖h‖ = 0. (2.2)

The operator L is called the Fréchet derivative of T at x0. On the other hand, unlike
the theory of linear operators, the Neuberger spectrum may not be closed or bounded
[3]. This spectrum plays vital role in solvability of certain operator equations and
eigenvalue problems [18].

In 1977, Rhodius [19] provided another definition of spectrum for a continuous
operator T onH. The Rhodius resolvent set, ρR(T ), consists of all complex numbers
λ for which T − λI is bijective and R(λ; T ) is continuous as well. Then, the set
σR(T ) = C\ρR(T ) is called the Rhodius spectrum of T . For the case of bounded
linear operators, this again agrees with the usual definition of the spectrum.

Another definition was introduced by Dörfner in 1997 for a continuous operator T
as σD(T ) = C\ρD(T ), where ρD(T ) refers to the Dörfner resolvent set given by

ρD(T ) =
{
λ ∈ C : λI − T is bijective and sup

‖x‖�=0

‖R(λ; T )x‖
‖x‖ < ∞

}
. (2.3)

Note that both the Rhodius and Dörfner spectra could be empty as well. However, if
the space is infinite dimensional and the operator is compact, then zero belongs to the
Rhodius spectrum. Furthermore, the Rhodius spectrum is neither closed nor bounded.

The main difference among the various definitions considered above is the require-
ments imposed on the resolvent operator R(λ; T ), whether it is Lipschitz continuous,
Fréchet differentiable, continuous, or linearly bounded. All the spectra mentioned
above have the following forms for S(u,ψ) on Fock spaces.

Theorem 2.1 Let ψ, u ∈ H(C) be nonzero and 1 ≤ p ≤ ∞. Let S(u,ψ) be continuous
on Fp and hence either ψ(z) = az + b for some a, b ∈ C and u = α is a constant or
ψ = b is a constant and u belongs to Fp. Then,

(i) σR(S(u,ψ)) = σK (S(u,ψ)) = σN (S(u,ψ)) = {aα}. (2.4)

(i i) σD(S(u,ψ)) =
{

{aα}, b = 0

C, b �= 0.

Notice that in contrary to the dichotomy whether a = 0 or a �= 0 in the hypothesis
of the theorem, we find it easier to merge the two cases and interpret the set on the
right-hand side of (2.4) as a set containing only zero whenever a = 0. The same
interpretation applies in the rest of the manuscript as needed. As the result shows three
of the spectral forms for S(u,ψ) coincide and contain a single element. When b = 0
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in which case the operator becomes linear, the Dörfner spectrum coincides with the
other three as well.

Proof (i) Clearly, if a = 0, then S(u,ψ) f − λ f = ub − λ f is bijective for all λ �= 0.
The operator R(λ; S(u,ψ)) f = (ub − f )/λ is also Lipschitz continuous since for any
f and g in Fp

‖R(λ; S(u,ψ)) f − R(λ; S(u,ψ))g‖p =
∥∥∥ub − f

λ
− ub − g

λ

∥∥∥
p

= ‖ f − g‖p

|λ| .

Therefore, the claim for σR(S(u,ψ)) and σK (S(u,ψ)) holds in this case. On the other
hand, for a �= 0,

S(u,ψ) f − λ f = αa f + αb − λ f = (aα − λ) f + αb

is bijective only when aα �= λ. If not, it fails to be injective. In this case,

R(λ; S(u,ψ)) f = f

aα − λ
− bα

aα − λ
= Sϒ f , (2.5)

whereϒ(z) = (aα−λ)−1z−bα(aα−λ)−1. Thus, R(λ; S(u,ψ)) is itself a superposition
operator and by Theorem 1.1, it is Lipschitz continuous and hence the assertion for
σR(S(u,ψ)) and σK (S(u,ψ)) in (2.4) holds again.

Next, we consider σN (S(u,ψ)). If a = 0, then for any f in Fp and λ �= 0,

R(λ; S(u,ψ))( f + h) − R(λ; S(u,ψ)) f − Lh = −h

λ
− Lh.

Therefore, (2.2) holds with L = M−λ−1 , where M−λ−1 is the multiplication operator
with symbol −λ−1 on Fock spaces.

We may now set ψ(z) = az + b, u = α, and λ in C such that aα �= λ. Then for
each f in Fp,

R(λ; S(u,ψ))( f + h) − R(λ; S(u,ψ)) f − Lh = h

aα − λ
− Lh.

This shows (2.2) holds again with L = M(λ−aα)−1 . Hence, we arrive at the claim for
σN (S(u,ψ)) as well.

(ii) To compute σD(S(u,ψ)), let us first assume a �= 0. From above, λI − S(u,ψ) is
bijective only when λ �= aα. We proceed to check the linearly bounded condition for
the resolvent operator in (2.3). Using (2.5),

sup
‖ f ‖p �=0

‖R(λ; S(u,ψ)) f ‖p

‖ f ‖p
= |aα − λ|−1 sup

‖ f ‖p �=0

‖ f − bα‖p

‖ f ‖p
< ∞

only if b = 0. If not, consider the sequence fn = 1/n to see that the above supremum
diverges. Observe that b = 0 implies the operator S(u,ψ) is linear and hence σD(S(u,ψ))

coincides with the linear spectrum in this case.
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Similarly, if a = 0 and λ �= 0, then

sup
‖ f ‖p �=0

‖R(λ; S(u,ψ)) f ‖p

‖ f ‖p
= sup

‖ f ‖p �=0

‖ f − ub‖p

|λ|‖ f ‖p
< ∞ (2.6)

holds only when b = 0.Note also that both a and b cannot be zero sinceψ is non-zero.
	


2.1 The Furi–Martelli–Vignoli spectrum(FMV spectrum) of S(u,Ã)

The four spectra discussed in the preceding section are built on some familiar require-
ments for spectrum of bounded linear operators. Now, we consider another type of
spectrum for continuous operators which was introduced in 1978 by Furi, Martelli,
and Vignoli [14]. This spectrum is constructed differently than the familiar approach
and has found a sufficiently large varieties of interesting applications [14]. To define
the spectrum, we need some preparations. For a Banach space H, denote by Bε(H)

the closed ball with center at 0 and radius ε > 0. For a bounded set M in H, its
Kuratowski measure of noncompactness is defined by

γ (M) = inf
{
ε : ε > 0, M has a finite ε − net inH}

,

where a finite ε-net refers to a finite set {z1, z2, z3, ..., zn} inH for which M is covered
by the union of the sets z j + Bε(H), j = 1, 2, ..., n. Notice that γ (M) = 0 if and
only if the closure of M is compact. If H is finite dimensional, then γ (M) = 0 for
any bounded subset M of H.

For a continuous operator T on H, recall that the upper and lower measures of
noncompactness are defined by

[T ]A := inf
{
k : γ (T (M)) ≤ kγ (M)} and

[T ]non := sup{k : k > 0, γ (T (M)) ≥ kγ (M)
} = inf∞>γ (M)>0

γ (T (M))

γ (M)
, (2.7)

where the last equality in (2.7) makes sense whenH is infinite dimensional. In finite-
dimensional spaces, as all bounded sets are precompact, and so there exists no set M
satisfying 0 < γ (M) < ∞.

Now, the operator T is called stably solvable, if for any given compact operator S
onH with the asymptotic property

[S]Q := lim sup
‖x‖→∞

‖Sx‖
‖x‖ = 0, (2.8)

the equation T x = Sx has a solution in H. A stably solvable operator is always
surjective, and in fact in the case of linear operators, stable solvability reduces to
surjectivity but not conversely; see [2, p.130] for a counterexample. Thus, solvability
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is simply a notion in nonlinear theory that generalizes surjectivity in linear theory. We
call T is FMV-regular if it is stably solvable, [T ]non > 0, and

[T ]qua := lim inf‖x‖→∞
‖T x‖
‖x‖ > 0. (2.9)

A prototype example of an FMV-regular operator is the identity map I . The set
σFMV (T ) = C\ρFMV (T ) is the FMV-spectrum of T , where

ρFMV (T ) = {λ ∈ C : λI − T is FMV-regular} (2.10)

is its resolvent set. Unlike most of the spectra discussed above, the FMV-spectrum
is always closed but may fail to be bounded [14]. Note that setting σδ(T ) = {λ ∈
C : λI − T is not stable solvable}, σqua(T ) = {λ ∈ C : [λI − T ]qua = 0}, and
σnon(T ) = {λ ∈ C : [λI − T ]non = 0}, we may decompose the spectrum as

σFMV (T ) = σδ(T ) ∪ σqua(T ) ∪ σnon(T ).

This decomposition is not necessarily disjoint as will be shown later with the weighted
superposition operator onFock spaces. If one extends the interpretation from the theory
of linear operators, the subspectrums σδ(T ) and σq(T )∪σa(T ) are respectively called
the defect spectrum and approximate point spectrum of T . For a linear operator, the
FMV-spectrum again reduces to the usual spectrum. Our next main result identifies
the FMV-spectrum of S(u,ψ) on Fock spaces.

Theorem 2.2 Let ψ, u ∈ H(C) be nonzero and 1 ≤ p ≤ ∞. Let S(u,ψ) be continuous
on Fp and hence either ψ(z) = az + b for some a, b ∈ C and u = α is a constant or
ψ = b is a constant and u belongs to Fp. Then,

σFMV (S(u,ψ)) = {aα}. (2.11)

Even if the FMV-spectrum is modeled not as such based on some requirements from
linear spectral theory, the result shows σFMV (S(u,ψ)) again contain only a single
element and coincides with most of the spectral forms in Theorem 2.1.

Proof Depending on the values of a, we consider two different cases.
Case 1: Assume a �= 0. Then, λ f − S(u,ψ) f = λ f − aα f − αb is surjective if

and only if λ �= aα. We proceed to show that all λ in C such that λ �= aα satisfy the
condition for stable solvability of λI − S(u,ψ). Let S be a compact operator on Fp

satisfying (2.8). Considering the equation

λ f − S(u,ψ) f = S f ,

and rewriting it further, we have

(
− S

λ − aα
+ I

)
f = αb

λ − aα
. (2.12)
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Now for each λ �= aα, the operator − S
λ−aα

is compact. By Fredholm Alternative
Theorem [16, Theorem 3.4.24], it follows the operator

− S

λ − aα
+ I

is invertible. Thus, the equation in (2.12) is solvable in Fp, namely that

f =
(

− S

λ − aα
+ I

)−1( αb

λ − aα

)
.

Therefore,

σδ(S(u,ψ)) = {aα}. (2.13)

We now check condition (2.9) and compute

[λI − S(u,ψ)]qua = lim inf‖ f ‖p→∞
‖(λ − aα) f − αb‖p

‖ f ‖p

≤ lim inf‖ f ‖p→∞

(
|λ − aα| + |αb|

‖ f ‖p

)
= |aα − λ|. (2.14)

On the other hand,

[λI − S(u,ψ)]qua = lim inf‖ f ‖p→∞
‖(λ − aα) f − αb‖p

‖ f ‖p

≥ lim inf‖ f ‖p→∞

∣∣∣∣|λ − aα| − |αb|
‖ f ‖p

∣∣∣∣ = |aα − λ|. (2.15)

Now, by (2.14) and (2.15),

[λI − S(u,ψ)]qua = |aα − λ| > 0

if and only if aα �= λ, and hence

σqua(S(u,ψ)) = {aα}. (2.16)

Next, we compute σnon(S(u,ψ)). Let M be a bounded set and fi + Bε(Fp) for i =
1, 2, 3, ..., n be a finite ε-net for M . Then, for each f in M , there exists h f ∈ Bε(Fp)

and f j in { f1, f2, ..., fn} such that f = f j + h f . It follows that

λ f − S(u,ψ) f = λ f − aα f − bα = (λ − aα)( f j + h f ) − bα

= (
(λ − aα) f j − bα

) − (λ − aα)h f .
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Since (λ − aα)h f belongs to the disc B|λ−aα|ε(Fp), the set

{
(λ − aα) fi − bα, i = 1, 2, ..., n

}

is a finite |λ − aα|ε-net for the set S(u,ψ)(M), and hence

γ
(
(λI − S(u,ψ))(M)

) ≤ |λ − aα|ε. (2.17)

Since (2.17) holds for every ε-net for M, taking the infimum over ε gives

γ
(
(λI − S(u,ψ))(M)

) ≤ |λ − aα|γ (M). (2.18)

We proceed to show the relation in (2.18) is in fact an equality. To this end, let gi +
Bε(Fp) for i = 1, 2, 3, ..., n be a finite ε-net for S(u,ψ)(M). Then for f in M ,

λ f − S(u,ψ) f = λ f − aα f − bα = (λ − aα) f − bα = g j + t f

for some t f ∈ Bε(Fp) and g j in {g1, g2, ..., gn}. Solving the equation for f

f = g j + bα

λ − aα
+ t f

λ − aα
.

Since t f /(λ − aα) belongs to the disc Bε|λ−aα|−1(Fp), the sets

{
g j + bα

λ − aα
, i = 1, 2, ..., n

}

is a finite ε|λ − aα|−1-net for M . Consequently,

γ (M) ≤ ε|λ − aα|−1

and hence γ
(
(λI−S(u,ψ))(M)

) ≥ |λ−aα|γ (M) after taking the infimumwith respect
to all possible ε. This together with (2.18) imply

γ
(
(λI − S(u,ψ))(M)

) = |λ − aα|γ (M).

Therefore,

[λI − S(u,ψ)]non = inf∞>γ (M)>0

γ
(
(λI − S(u,ψ)

)
(M))

γ (M)
= |λ − aα|,

and hence

σnon(S(u,ψ)) = {aα}. (2.19)

Now, the assertion in the theorem follows from (2.13), (2.16) and (2.19).
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Case 2: Assume a = 0. The proof of this case is a simple variant of the first case.
We only have to replace α by u and λ − aα by λ and run the same argument to arrive
at

σδ(S(u,ψ)) = σqua(S(u,ψ)) = σnon(S(u,ψ)) = {0},

and completes the proof. 	


2.2 The Feng-spectrum of S(u,Ã)

Unlike the linear case, the spectra considered above do not necessarily contain the
classical eigenvalues of a given nonlinear operator. In 1977, another spectrum related
to the FMV-spectrum was introduced by W. Feng [12] applying k-epi mapping the-
ory aiming that the spectrum should contain all the eigenvalues. The FMV-spectrum
takes into account the asymptotic properties of the operator while the Feng-spectrum
considers the operators global structure as defined below. Denote by B(H) the family
of all open, bounded, and connected subsets � of a Banach space H containing the
zero vector. A continuous operator T : � → H is called k-epi on � for k ≥ 0 if
T �= 0 on the boundary ∂�, and for all operators G : � → H satisfying [G]A ≤ k
and G(x) = 0 on �, the coincidence equation T x = Gx has a solution x in �. We
call T simply epi on � if the operator G above is compact. Now for � ∈ B(H), we
may set

V�(T ) = inf
{
k ≥ 0 : T is not k-epi on �

}

and

Tvk = inf
�∈B(H)

V�(T ). (2.20)

The problem of finding a map T which is not k-epi for any k > 0 was solved by Furi
[13] in 2002. Furi showed that the map x → ‖x‖x satisfies this property over any
infinite dimensional Banach space H .

Now, the operator T onH is Feng regular(F-regular) if Tvk , [T ]non , and [T ]bin are
all positive, where

[T ]bin := inf
0 �=x∈H

‖T x‖
‖x‖ . (2.21)

In this case, the set

ρF (T ) = {λ ∈ C : λI − T is F-regular} (2.22)
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is the Feng-resolvent of T , where its complement σF (T ) = C\ρF (T ) is called the
Feng-spectrum of T . The spectrum can be also decomposed as

σF (T ) = σvk(T ) ∪ σbin(T ) ∪ σnon(T ),

where σvk(T ) = {
λ ∈ C : [λI − T ]v = 0

}
, σbin(T ) = {

λ ∈ C : [λI − T ]bin = 0
}
,

and σnon(T ) = {
λ ∈ C : [λI − T ]non = 0

}
. As in the case of FMV-spectrum, such

decomposition need not be disjoint.
For a linear operator, this precisely gives the familiar spectrum again. Like the

FMV-spectrum, the Feng-spectrum is always closed but may be unbounded. For the
operator S(u,ψ) on Fock spaces, we prove the following.

Proposition 2.3 Let ψ, u ∈ H(C) be nonzero and 1 ≤ p ≤ ∞. Let S(u,ψ) be continu-
ous onFp and hence eitherψ(z) = az+b for some a, b ∈ C and u = α is a constant
or ψ = b is a constant and u belongs to Fp. Then,

σF (S(u,ψ)) =
{

{aα}, b = 0

C, b �= 0.
(2.23)

Proof Note that if the given operator does not vanish at the origin, as explained by W.
Feng in [12], the spectrum becomes the whole complex plane. In our case, S(u,ψ) fails
to vanish at the origin only when b �= 0 and hence the corresponding case in (2.23)
holds.

On the other hand, if b = 0, then by [12, Theorem 5.2]

σFMV (S(u,ψ)) ⊆ σF (S(u,ψ)) ⊆ σK (S(u,ψ)). (2.24)

Then, the claim follows after an application of Theorem 2.1 and Theorem 2.2. This
case can be alternatively deduced from the fact that the operator is linear when b = 0.
Then, the spectrum is the set containing all points λ in C for which λI − S(u,ψ) fails
to be bijective. 	


2.3 Remark

We remark that the various forms of spectra studied above for S(u,ψ) can be also
considered when the operator acts between two different Fock spaces Fp and Fq for
1 ≤ p, q ≤ ∞. Suppose the operator S(u,ψ) maps Fp into Fq . If p < q and f in Fp,

λ f − S(u,ψ) f =
{

(αa − λ) f + bα, a �= 0

λ f − ub, a = 0,
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belongs to Fp for all λ in C. Since the inclusion Fp ⊂ Fq is proper in this case [23,
Theorem 2.10], the operator λI − S(u,ψ) is not surjective for any λ. Therefore,

σR(S(u,ψ)) = σK (S(u,ψ)) = σN (S(u,ψ)) = σD(S(u,ψ))

= σFMV (S(u,ψ)) = σF (S(u,ψ)) = C.

On the other hand, if p > q, then by Theorem 1.1 the operator S(u,ψ) maps Fp into
Fq only when a = 0 and u belongs to Fq . Since

λ f − S(u,ψ) f = λ f − ub, (2.25)

using the proper inclusion of Fq in Fp, we can find a function f in Fp for which
the expressions in (2.25) fails to belong to Fq unless λ is zero. Thus, the operator
λI − S(u,ψ) does not exist.

2.4 TheVäth phantom for S(u,Ã)

In 2001, another kind of spectrum for nonlinear operators was introduced by Väth
[20] which finds lots of interesting applications. This spectrum is based on the local
structure of operators unlike the FMV and Feng which, respectively, are based on
the asymptotic and global structures. To define the notation, let us first provide some
technical preliminary concepts and notations. For � ∈ B(H), we call a bounded
T : � → H is strictly epi on � if it is k-epi on � for some k > 0 and

inf
x∈∂�

‖T x‖ > 0. (2.26)

The map T is called properly epi on � if T is zero- epi on � and γ (T |�) > 0.
Now, T is V-regular onH if there exists some � ∈ B(H) such that T is strictly epi

on �, and V-regular if there exists some � ∈ B(H) for which T is properly epi on �.
Now, the phantom, φ(T ), and large phantom, �(T ), are, respectively, defined by

φ(T ) = {
λ ∈ C : λI − T is not v-regular

}
(2.27)

and

�(T ) = {
λ ∈ C : λI − T is not V-regular

}
. (2.28)

Said differently, a scalar λ belongs to φ(T ) if and only if λI − T fails to be strictly
epi on any set � in B(H). On the other hand, λ belongs to �(T ) if and only if for any
set � in B(H) either [(λI − T )|�]non = 0 or λI − T is not epi on �.

Both of the spectra in (2.27) and (2.28) are closed and coincide with usual spectrum
for linear operators. Furthermore, by [20]

φ(T ) ⊆ �(T ) ⊆ σFMV (T ). (2.29)
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Proposition 2.4 Let ψ, u ∈ H(C) be nonzero and 1 ≤ p ≤ ∞. Let S(u,ψ) be continu-
ous onFp and hence eitherψ(z) = az+b for some a, b ∈ C and u = α is a constant
or ψ = b is a constant and u belongs to Fp. Then,

φ(S(u,ψ)) = �(S(u,ψ)) = {aα}. (2.30)

Proof Using the same covering argument used as in the proof of Theorem 2.2, it is
straightforward to see that

[(λI − S(u,ψ))|�]non =
{

|λ − aα|, a �= 0

|λ|, a = 0.

for any� inB(Fp). This togetherwith (2.29) and (2.11) imply that�(T ) = σFMV (T ).
Next, we compute φ(S(u,ψ)). Let us first consider a �= 0 and b = 0. Then φ(S(u,ψ))

agrees with the usual spectrum and the claim follows easily from the bijectively condi-
tion for λ f − S(u,ψ). Suppose now that a �= 0 and b �= 0. Given that φ(T ) is contained
in �(T ), it suffices to show whether λ = aα belongs to φ(T ). To this end, for each f
in Fp,

λ f − S(u,ψ) f = bα,

and, hence, λI − S(u,ψ) is not surjective. Thus, the operator is not strictly epi on any
set � in B(Fp).

It remains to check when a = 0 and, hence, λ f − S(u,ψ) f = λ f − ub. But this
follows as in the case of a �= 0 and b �= 0. 	


2.5 The spectrum of S(u,Ã) at a point

Motivated by the fact that many concepts in nonlinear analysis are of local nature,
Calamai, Furi, andVignoli [6] in 2009 introduced the notion of spectrum of a nonlinear
operator at a point. Let us recall the definition, and let H1 and H2 be Banach spaces
and T : U → H2 be continuous, where U is an open subset of H1. Let q ∈ U and
Uq be the open neighborhood {x ∈ H1 : x + q ∈ U } of 0 ∈ H1. We define a local
continuous operator Tq : Up → H2 by Tq(x) = T (x +q)−T (q). Let B(q, r) denote
the open ball in H1 centered at q with radius r > 0. Suppose that B(q, r) ⊆ U and
consider the number

γ
(
T |B(q, r)

) = sup

{
γ (T (A))

γ (A)
, A ⊆ B(q, r), γ (A) > 0

}
,

which is nondecreasing as a function of r. Thus, we define

γq(T ) = lim
r→0

γ (T |B(q, r)).
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Similarly, we define another characteristic dq(T ) as

dq(T ) = lim inf
x→0

‖Tq(x)‖
‖x‖ .

A map T is said to be regular at point q if dq(T ) and γq(T ) are positive and Tq is
0-epi at 0. We may now define the spectrum of T at the point q as the set

σ(T , q) = {
λ ∈ C : λI − T is not regular at q

}
.

This spectrum is closed and agrees with the classical spectrum in the linear case. It
also finds applications in tackling bifurcation problems; see [2, 6] for more.

For the weighted superposition operator on Fock spaces, the spectrum at a point
coincides with some of the spectra studied above as shown in the next result.

Theorem 2.5 Let ψ, u ∈ H(C) be nonzero and 1 ≤ p ≤ ∞. Let S(u,ψ) be continuous
on Fp and hence either ψ(z) = az + b for some a, b ∈ C and u = α is a constant or
ψ = b is a constant and u belongs to Fp. Then, for any g in Fp,

σ(S(u,ψ), g) = {aα}. (2.31)

As a consequence, we notice that the result is independent of the point g. Moreover,
the spectrum at a point is nonempty for all points in the space.

Proof Weclaim that S(u,ψ) is Fréchet differentiable at each point g inHwith derivative
given by

S′
(u,ψ)(g) = Maαg.

For a �= 0, we compute

lim‖h‖p→0

‖S(u,ψ)(g + h) − S(u,ψ)(g) − Maα(h)‖p

‖h‖p

= lim‖h‖p→0

‖aαh − Maα(h)‖p

‖h‖p
= 0

as asserted. A similar argument holds when a = 0.
Now by [6, Corollary 4.25 ],

σ(S(u,ψ), g) = σ
(
S′
(u,ψ)(g)

)
.

Thus, it suffices to find the spectrum of the operator S′
(u,ψ)(g) using linear spectral

approach. A simple computation shows that aα when a �= 0 and 0 when a = 0 are the
only eigenvalues of S′

(u,ψ)(g). Except when λ equals to these values, we also notice
that λI − S′

(u,ψ)(g) is a bijective map on Fp. 	
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2.6 The classical and asymptotic eigenvalues of S(u,Ã)

Now, we turn to the notion of eigenvalues for S(u,ψ). Defining the notion as in the case
of linear operators(classical), we first prove the following.

Proposition 2.6 Let ψ, u ∈ H(C) and 1 ≤ p ≤ ∞. Let S(u,ψ) be continuous on Fp

and hence either ψ(z) = az + b for some a, b ∈ C and u = α is a constant or ψ = b
is a constant and u belongs to Fp. Then,

σclass(S(u,ψ)) =

⎧⎪⎨
⎪⎩
C\{aα}, a �= 0 and b �= 0

{aα}, b = 0

C\{0}, a = 0.

(2.32)

Another noteworthy difference has been identified here in contrast to linear operators.
Unlike the linear case, Theorem 1.1 and Proposition 2.6 show that most of the different
nonlinear spectra considered so far fail to contain the point spectrum. Thus, S(u,ψ) is
a good example of operators on spaces of analytic functions which illustrates several
variations between linear and nonlinear theories. We remind that the Feng-spectrum
was constructed in such a way that it contains all the point spectrum. In this case, if
S(u,ψ) fixes the origin, then as noted before b = 0. Thus, the spectrum in (2.32) is
clearly contained in (2.23).

Proof Let us first assume a = 0. Then, S(u,ψ) f − λ f = ub − λ f = 0 implies
f = (ub)/λ is an eigenvector for every non-zero λ in C since ub is nonzero. On the
other hand, if λ = 0, then either u or b must be zero which contradicts the hypothesis
in the proposition.

Next, suppose a �= 0 and

S(u,ψ) f − λ f = aα f + bα − λ f = (aα − λ) f + bα = 0.

It follows that fλ = bα(λ− aα)−1 is an eigenvector for each λ in C such that λ �= aα

and b �= 0. If aα = λ, then b must be zero as u is nonzero. In this case, fλ can be any
nonzero vector. Therefore, the claim in (2.32) follows.

There has been also efforts to define the notion of eigenvalue differently than the
classical linear way. A related notion in this regard has been asymptotic eigenvalue
σapp(T ). Let T be a continuous operator on a Banach space H. A number λ in C

belongs to σapp(T ) if there exists an unbounded sequence xn inH such that

lim‖xn‖→∞
‖λxn − T xn‖

‖xn‖ = 0.

The next corollary shows the asymptotic point spectrum of S(u,ψ) coincides with some
of the spectra in Theorem 2.1. 	

Corollary 2.7 Let ψ, u ∈ H(C) be nonzero and 1 ≤ p ≤ ∞. Let S(u,ψ) be continuous
on Fp and hence either ψ(z) = az + b for some a, b ∈ C and u = α is a constant or
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ψ = b is a constant and u belongs to Fp. Then,

σapp(S(u,ψ)) = {aα}.

Proof If a = 0, then for λ in C and any unbounded sequence fn in Fp

lim‖ fn‖p→∞
‖λ fn − S(u,ψ) fn‖p

‖ fn‖p
= lim‖ fn‖p→∞

‖λ fn − ub‖p

‖ fn‖p

≥ lim‖ fn‖p→∞

∣∣∣∣|λ| − |b|‖u‖p

‖ fn‖p

∣∣∣∣ = |λ|.

Here we can chose fn = n. Therefore, λ belongs to the asymptotic point spectrum in
this case only when λ = 0.

Similarly, if a �= 0, then

lim‖ fn‖p→∞
‖λ fn − S(u,ψ) fn‖p

‖ fn‖p
= lim‖ fn‖p→∞

‖(λ − aα) fn − αb‖p

‖ fn‖p

≥ lim‖ fn‖p→∞

∣∣∣∣|λ − aα| − |bα|
‖ fn‖p

∣∣∣∣ = |λ − aα|,

and hence the assertion holds taking fn = n. 	


2.7 The point phantom and connected eigenvalues of S(u,Ã)

The notation of asymptotic eigenvalues discussed above takes into account the struc-
ture of the FMV-spectrum while the classical eigenvalues are associated to the
Feng-spectrum. In [3, p.193], another notion which takes into account the structure of
theVäth Phantom has been introduced. A scalar λ inC is called a connected eigenvalue
of an operator T on H if the nullset

N (λI − T ) = {x ∈ H : T x = λx}

of λI − T contains an unbounded connected set containing the zero element. Then,
the point phantom of T refers to the set

φconn(T ) = {
λ ∈ C : λ connected eigenvalue for T

}

In case of a bounded linear operator T , this gives again the familiar definition of
eigenvalue.

Corollary 2.8 Let ψ, u ∈ H(C) be nonzero and 1 ≤ p ≤ ∞. Let S(u,ψ) be continuous
on Fp and hence either ψ(z) = az + b for some a, b ∈ C and u = α is a constant or
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ψ = b is a constant and u belongs to Fp. Then,

φconn(S(u,ψ)) =
{

{aα}, a �= 0 and b = 0

{}, otherwise.

Proof Clearly, if a = 0, then λ f − S(u,ψ) f = λ f − ub = 0 holds only when λ �= 0,
and hence f = ub/λ �= 0. In this case, the corresponding nullset does not contain
even the zero element. Consequently, there exists no connected eigenvalue.

Assume a �= 0 and λ f − S(u,ψ) f = (λ − aα) f − αb = 0. Now if λ �= aα, then
the equation gives that f = bα/(λ − aα). Thus, the corresponding nullset contains
only one element and no connected eigenvalue in this case either. On the other hand, if
λ = aα and b = 0, then the corresponding null set contains the whole space Fp. The
case for λ = aα and b �= 0 gives not connected eigenvalue. This proves the claim. 	


2.8 Asymptotic linearity and some numerical ranges of S(u,Ã)

We now turn our attention to the asymptotic linearity and the numerical range of
weighted superposition operator on Fock spaces. A bounded operator T on a Banach
space H is called asymptotically linear if there exists a bounded linear operator L on
H such that

lim‖x‖→∞
‖T x − Lx‖

‖x‖ = 0. (2.33)

Such an operator is called the asymptotic derivative of T . For backgroundmaterials on
this topic, we again refer to [3]. Now, another immediate consequence of Theorem 1.1
shows the weighted superposition operator is asymptotically linear with a respect to
the multiplication operator.

Corollary 2.9 Let ψ, u ∈ H(C) be nonzero and 1 ≤ p ≤ ∞. Let S(u,ψ) be continuous
on Fp and hence either ψ(z) = az + b for some a, b ∈ C and u = α is a constant or
ψ = b is a constant and u belongs to Fp. Then, S(u,ψ) is asymptotically linear with
the multiplication operator Maα f = αa f for a �= 0 and the zero operator otherwise.

As in the case of spectrum, there exists so far no single definition of numerical
range for nonlinear operators that encompasses all the basic properties from linear
operator perspective. Many attempts have been made to define the concept and relate
it to the various spectral sets. In this section, we use some of the definitions and
compute numerical ranges for weighted superposition operator on the Fock space.
Zarantonello [22] defined the notion of numerical range on Hilbert spaces as follows.
Let T be continuous on a Hilbert space H. Then, the numerical range of T is the set

NZ (T ) =
{ 〈T x − T y, x − y〉

‖x − y‖2 , x, y ∈ H
}
. (2.34)

Later in 1978, Furi, Martelli, and Vignoli presented another definition [14] which finds
its own application in solving differential equations. For a given continuous operator
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T onH, the authors defined another continuous operator

T N x = 〈T x, x〉‖x‖−2x .

Then, the numerical range of T is

NFMV (T ) =
{
λ ∈ C : lim inf‖x‖→∞

‖T N x − λx‖
‖x‖ = 0

}
. (2.35)

We note in passing that the definition in (2.34) coincides with the definition in the
linear operator case where as the definition in (2.35) coincides with the closure of
the numerical range. In contrast for linear operators, both NZ (T ) and NFMV (T )

are not necessarily bounded for nonlinear operators. In particular for the weighted
superposition operator, a consequence of Theorem 1.1 shows the two definitions give
the same numerical range.

Theorem 2.10 Letψ, u ∈ H(C) be nonzero and S(u,ψ) be continuous onF2 and hence
either ψ(z) = az + b for some a, b ∈ C and u = α is a constant or ψ = b is a
constant and u belongs to F2. Then

NZ (S(u,ψ)) = NFMV (S(u,ψ)) = {aα}. (2.36)

Proof For a �= 0, and f , g ∈ F2,

〈S(u,ψ) f − S(u,ψ)g, f − g〉
‖ f − g‖22

= aα〈 f − g, f − g〉
‖ f − g‖22

= aα. (2.37)

On the other hand, if a = 0, then

〈S(u,ψ) f − S(u,ψ)g, f − g〉
‖ f − g‖22

= 0. (2.38)

From (2.37) and (2.38), the assertion for NZ (S(u,ψ)) in (2.36) holds.
Next, we proceed to compute NFMV (S(u,ψ)). Let a �= 0 and consider the operator

SN(u,ψ) f = 〈S(u,ψ) f , f 〉
‖ f ‖22

f = 〈aα f + bα, f 〉
‖ f ‖22

f =
(
aα + αb f (0)

‖ f ‖22

)
f .

This implies

‖SN(u,ψ) f − λ f ‖2
‖ f ‖2 =

∥∥∥∥
(
aα + αb f (0)‖ f ‖−2

2

)
f

‖ f ‖2 − λ f

‖ f ‖22

∥∥∥∥
2

=
∣∣∣∣aα − λ + αb f (0)

‖ f ‖22

∣∣∣∣ ≥
∣∣∣∣|aα − λ| −

∣∣∣αb f (0)‖ f ‖22
∣∣∣
∣∣∣∣.
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It follows that

lim inf‖ f ‖2→∞
‖SN(u,ψ) f − λ f ‖2

‖ f ‖2 ≥ lim inf‖ f ‖2→∞

∣∣∣∣|aα − λ| −
∣∣∣αb f (0)‖ f ‖22

∣∣∣
∣∣∣∣

≥ |aα − λ| (2.39)

from which we must have aα = λ.
Similarly, for a = 0,

SN(u,ψ) f = b〈u, f 〉
‖ f ‖22

f

and

lim inf‖ f ‖2→∞
‖SN(u,ψ) f − λ f ‖2

‖ f ‖2 = lim inf‖ f ‖2→∞

∣∣∣∣b〈u, f 〉
‖ f ‖22

− λ

∣∣∣∣ ≥ |λ|.

From this and (2.39), the second equality in (2.36) follows. 	


2.9 Odd and asymptotically odd S(u,Ã)

Another common property of all continuous linear operators is that they all are odd.
Recall that a continuous operator T on a Banach space H is odd if T (−x) = −T (x)
for all x inH. It is called asymptotically odd if there exists a continuous odd operator
T on the space such that [T − T ]Q = 0. The operator T is known as the asymptotic
derivative of T . A natural question is whether there exists an odd nonlinear weighted
superposition S(u,ψ) on Fock spaces. The following corollary answers the question
negatively.

Corollary 2.11 Letψ, u ∈ H(C) be nonzero and S(u,ψ) be continuous onF2 and hence
either ψ(z) = az + b for some a, b ∈ C and u = α is a constant or ψ = b is a
constant and u belongs to F2. Then,

1. S(u,ψ) is odd if and only if it is linear.
2. S(u,ψ) is asymptotically odd with the multiplication operator Maα f = αa f for

a �= 0 and the zero operator otherwise.

Proof The first part follows easily since S(u,ψ)(− f ) = −S(u,ψ)( f ) implies b = 0. To
verify (ii), note that for a �= 0,

[S(u,ψ) − Maα]Q = lim sup
‖ f ‖p→∞

‖αa f + αb − aα f ‖p

‖ f ‖p
= 0.

Similarly, for a = 0, we have

[S(u,ψ) − M0]Q = lim sup
‖ f ‖p→∞

‖S(u,ψ) f ‖q
‖ f ‖p

= lim sup
‖ f ‖p→∞

‖bu‖q
‖ f ‖p

= 0.



   14 Page 20 of 21 Y. E. Felke et al.

Table 1 Various spectra and numerical ranges of S(u,ψ) on Fock spaces

Spectra & N-range a = 0 a �= 0 a �= 0, b = 0 a �= 0, b �= 0 b = 0 b �= 0

σR(S(u,ψ)) {0} {aα}
σK (S(u,ψ)) {0} {aα}
σN (S(u,ψ)) {0} {aα}
σFMV (S(u,ψ)) {0} {aα}
σD(S(u,ψ)) C {aα} C

σF (S(u,ψ)) {aα} C

φ(S(u,ψ)) {0} {aα}
�(S(u,ψ)) {0} {aα}
φconn(S(u,ψ)) {} {aα} {}
σ(S(u,ψ), g) {0} {aα}
NZ (S(u,ψ)) {0} {aα}
NFMV (S(u,ψ)) {0} {aα}
σclass (S(u,ψ)) C\{0} {aα} C\{aα}
σapp(S(u,ψ)) {0} {aα}

	


2.10 Concluding remarks

For the sake of easy comparison, we summarize the main results obtained about the
various spectra and numerical ranges of the operator S(u,ψ) in the following table. The
numbers a, b, and α are as in Theorem 1.1 and g is any point in Fp.
The table clearly shows that several forms of the spectra and the numerical ranges
for S(u,ψ) not only coincide but are singletons. Furthermore, the operator is nonlinear
in four of the cases where the spectrum or classical eigenvalue set contain more than
singletons. But the sets in these cases are either the whole complex plane or an element
less. We also notice that the operator admits connected eigenvalues only when it is
linear, that is when b = 0.
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1. Alvarez, V., Márquez, M., Vukotić, D.: Superposition operators between the Bloch space and Bergman
spaces. Ark. Mat. 42, 205–216 (2004)

2. Appell, J., Zabrejko, P.: Nonlinear Superposition Operators. Cambridge University Press, Cambridge
(1990)

3. Appell, J., De, E., Vignoli, A.: Nonlinear Spectral Theory. de Gruyter, Berlin (2004)
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