
Advances in Operator Theory (2023) 8:50
https://doi.org/10.1007/s43036-023-00254-0

Tusi
Mathematical
Research
Group

ORIG INAL PAPER

Global functional calculus, lower/upper bounds
and evolution equations onmanifolds with boundary

Duván Cardona Sánchez1 · Vishvesh Kumar1 ·Michael Ruzhansky1,2 ·
Niyaz Tokmagambetov3,4

Received: 23 September 2022 / Accepted: 16 February 2023 / Published online: 20 June 2023
© The Author(s) 2023

Abstract
Given a smooth manifold M (with or without boundary), in this paper we establish
a global functional calculus, without the standard assumption that the operators are
classical pseudo-differential operators, and the Gårding inequality for global pseudo-
differential operators associated with boundary value problems. The analysis that we
follow is free of local coordinate systems. Applications of the Gårding inequality to
the global solvability for a class of evolution problems are also considered.
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1 Introduction

Let M = � be a smooth manifold (with or without boundary). This work deals
with the L2-theory for the pseudo-differential calculus associated with a boundary-
value problem L�, determined by a pseudo-differential operator L on � with discrete
spectrum, having suitable boundary conditions, in the framework of the non-harmonic
analysis developed by the last two authors in [21, 32, 33]. To be precise,

• we will formulate a (Dunford–Riesz) global functional calculus for the (ρ, δ)-
Hörmander classes associated with L�.

• Once established, the functional calculus will be applied to the proof of a global
Gårding inequality on M, and in establishing the L2-boundedness for the (ρ, δ)-
class of order zero of this calculus.With the exception of the borderline caseρ = δ,

our L2-boundedness result is an analogue of the Calderón–Vaillancourt theorem
[14, 15].

• Finally, we will use the L2-theory developed, applying it to the global solvability
for a class of evolution problems on�, associated with (possibly time-dependent)
L-strongly elliptic pseudo-differential operators on M, (which is the class of ellip-
tic operators in the calculus determined by L�).

The discreteness of the spectrum of L� becomes a natural setting to study eigen-
functions expansions of L2-functions, or equivalently, in terms of its spectral
decomposition and its associated Fourier analysis, is inspired by the harmonic anal-
ysis techniques for elliptic operators on closed manifolds (or even on manifolds with
boundary, taking care of the required conditions such as the transmission property
[12]), which serve as a predominant class of operators with discrete spectrum studied
in spectral geometry, see [2–9].

Before presenting our contributions, we give a historical overview to the functional
calculus on R

n, its localisation by Seeley in [50], and the classical Gårding type
inequalities. In view of the standard conditions 1 − ρ < δ < ρ � 1 for the (ρ, δ)-
Hörmander class on compact manifolds [25], the main novelty of the present work
is the validity of our results (complex functional calculus, L2-boundedness, Gårding
inequality, etc.) in the whole range 1 � δ < ρ � 1, for the (ρ, δ)-Hörmander classes
in [21, 32, 33]. While the restriction 1 − ρ < δ < ρ � 1 in Hörmander’s calculus
implies that ρ > 1/2, we provide a global analysis for any 0 � δ < ρ � 1, for the
pseudo-differential calculus developed in [21, 32, 33].

1.1 Historical overview

In their seminal work [26], Kohn and Nirenberg introduced a calculus of pseudo-
differential operators for the classes Sm1,0(R

n ×R
n),1 which was applied by Friedrichs

andLax in their classicalwork [22] to study boundary value problems of first order. The
appearance of both works, [22, 26], in the same volume of Comm. Pure Appl. Math.
shows an immediate profound impact of the Kohn–Nirenberg calculus of pseudo-
differential operators in the development of the solvability theory of partial differential

1 Which consists of all smooth functions a satisfying |∂β
x ∂α

ξ a(x, ξ)| = O(1+ |ξ |)m−|α|, when |ξ | → ∞.
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operators. Nevertheless, the pseudo-differential technique (which means, to solve
problems inmathematics usingmicrolocalmethods), appeared before 1959 in the clas-
sical works of Mihlin, and in the theory of singular integrals developed by Calderón
and Zygmund approximating inverses of elliptic operators, and in 1959 in Calderon’s
proof of Cauchy uniqueness for a wide class of principal type operators, using a
pseudo-differential factorisation to prove a Carleman estimates [19].

Generalising the Kohn–Nirenberg classes Sm(Rn ×R
n), L. Hörmander introduced

in 1967, the classes Smρ,δ(R
n × R

n),2 0 � δ < ρ � 1, motivated by construction of
the parametrix P of the heat operator

∂t − 	x ,

which has symbol σP in the class S−1
1
2 , 12

(Rn × R
n). At the same time, in [50] Seeley,

developed the asymptotic expansions for the symbols of the complex powers of elliptic
operators. Therefore, Seeley tackled one of the fundamental problems of the functional
calculus of pseudo-differential operators. This can be regarded as the first model for a
functional calculus of pseudo-differential operators. The theory of pseudo-differential
operators got a major breakthrough when they proved to be worthwhile in the proof
of the seminal work of Atiyah and Singer on the index theory of elliptic operators on
compact manifolds [7]. The ideas developed by Seeley for functional calculus [50]
have been carried forward by several researchers. We cite [11, 13, 20, 27, 29–31, 39,
47, 48, 52, 53] to mention a very few of them. In particular, in [53], the author has
investigated only the case of complex powers of differential operators, and in [11]
the structure of the inverse of an elliptic operator, which is also considered as the
second fundamental problem of the functional calculus, has been examined by using
different techniques of Seeley. In [27], the formal theory of complex powers was
developed by Kumano-go and Tsutsumi using similar methods to those in [50], and in
[31] they developed functional calculus on connected unimodular Lie groups. On the
other hand, the functional calculus for pseudo-differential operators on the manifolds
with certain geometry (on the boundary or on the manifold itself) was studied in [20,
29, 30, 47, 48]. For example, Coriasco et al. [20] looked over the bounded imaginary
powers of differential operators on manifolds with conical singularities, Schrohe [48]
analysed the complex powers on noncompact manifolds and manifolds with fibered
boundaries, and Loya [29] explored the manifolds with canonical singularity, where
the author used the heat kernels techniques [30] in [29].

In 2014, the third author with Wirth [39] developed the global functional calculus
for the elliptic pseudo-differential operators on compact Lie groups using the globally
defined matrix symbols instead of representations in local coordinates, which is the
version of the analysis well adopted to the operator theory on compact Lie groups. The
global theory of symbols and their calculus was introduced and investigated in detail
by the third author and Turunen in [34, 36]. Hörmander classes on compact Lie groups
were investigated by Ruzhansky et al. [37] providing the characterisation of operators
in Hörmander’s classes Sm1,0 on the compact Lie group viewed as a manifold was

2 Which consists of all smooth functions a satisfying |∂β
x ∂α

ξ a(x, ξ)| = O(1 + |ξ |)m−ρ|α|+δ|β|, when
|ξ | → ∞.



50 Page 4 of 47 D. C. Sánchez et al.

given in terms of these matrix symbols, thus providing a link between local and global
symbolic calculi. Matrix-valued symbols also proved to be important in the study
of the L p-multipliers problems on general compact Lie groups [38]. The functional
calculus (complex powers of elliptic operators) has several important applications to
index theory, evolution equations, ζ -functions of an operator, Wodzicki-type (non-
commutative) residues, and Gårding inequalities [35]. We refer to [13, 52] for several
aspects of the functional calculus and extensive reviews of the above topics and to [18]
for the functional calculus of subelliptic pseudo-differential operators on compact Lie
groups.

1.2 Main results

In this paper, we work in the setting of the Fourier analysis arising from the spectral
decomposition of a model operator L� on a smooth manifold � (with or without
boundary) [32, 33].

1.2.1 The functional calculus for the non-harmonic analysis and its applications

To address the problem of the functional calculus from the view of Hörmander sym-
bolic calculus developed by the last two authors [32] in this setting, we first introduce
in Sect. 3 the concept of parameter dependent L-ellipticity with respect to a sector in
the complex plane in the setting of nonharmonic analysis and examine its properties.
In general, for the pseudo-differential operators on manifolds one puts some restric-
tions on the Hörmander symbol classes Smρ,δ [53, Section 4]; usually one requires

1 − ρ < δ < ρ, which in turn gives ρ > 1
2 . It is worth noting that, in this paper,

we allow 0 � δ < ρ � 1. This freedom on the condition on ρ and δ enables us to
handle some specific classes of operator, for example the resolvent of an L-elliptic
symbol, or its complex powers which cannot be handled by the standard theory due the
restriction ρ > 1

2 . The following is our first, and main result. Here, we establish the
complex-functional calculus for the Hörmander classes developed in [21, 32, 33]. All
the preliminaries notions, assumptions, and notations to be used in our main results
are presented in Sect. 2.

Theorem 1.1 Let m > 0, and let 0 � δ < ρ � 1. Let a ∈ Smρ,δ(M × I) be a
parameter L-elliptic symbol with respect to �. Let us assume that F satisfies the
estimate |F(λ)| � C |λ|s uniformly in λ, for some s < 0. Then the symbol of F(A),

σF(A) ∈ Sms
ρ,δ(M × I) admits an asymptotic expansion of the form

σF(A)(x, ξ) ∼
∞∑

N=0

σBN (x, ξ), (x, ξ) ∈ M × I,

where σBN (x, ξ) ∈ Sms−(ρ−δ)N
ρ,δ (M × I) and

σB0(x, ξ) = − 1

2π i

∮

∂�ε

F(z)(a(x, ξ) − z)−1dz ∈ Sms
ρ,δ(M × I).
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Moreover,

σF(A)(x, ξ) ≡ − 1

2π i

∮

∂�ε

F(z)a−#(x, ξ, λ)dz mod S−∞(M × I),

where a−#(x, ξ, λ) is the symbol of the parametrix to A − λI , in Corollary 3.3.

After developing the global functional calculus for pseudo-differential operators in
the nonharmonic analysis setting on manifolds, we present applications of functional
calculus to the Gårding inequality, L2-boundedness of pseudo-differential operators
and global solvability of evolution problems of hyperbolic/parabolic type on compact
manifolds. We will now discuss each application separately in detail.

First, we will establish a fundamental estimate first proved by Gårding [23] for
differential operators. This inequality proved to be a powerful tool to study nonlinear
equations. This was further improved and generalised by several researchers including
Agmon [1], Smith [44] and Schechter [45, 46]. The proofs given in aforementioned
papers, e.g. in [1] make use of the usual reduction of the problem to the constant
coefficient case in a special domain and then apply Fourier transform techniques. The
Gårding inequality for pseudo-differential operators on R

n is also now a well-known
and important inequality with 0 � δ < ρ � 1 and on manifolds with the restriction
1 − ρ < δ < ρ (see [54, Chapter 2]). The Gårding inequality for pseudo-differential
operators on the Euclidean space or manifolds is proved using pseudo-differential
calculus techniques [54]. For Lie groups, this was proved for the operators in the
Hörmander class (1, 0) type using the results developed by Langlands [28] for the
semigroups ofLie groups.The third author andWirth [39] haveobtained it for operators
on compact Lie groups with matrix-valued symbols under the condition 0 � δ < ρ �
1, using the global functional calculus developed by them.

In this paper, we carry forward the ideas of [39] to establish the Gårding inequality
for operators with the global Hörmander symbols [34] under the same condition 0 �
δ < ρ � 1, using the global functional calculus developed for pseudo-differential
operator in Sect. 4.

Theorem 1.2 For 0 � δ < ρ � 1, let a(x, D) : C∞
L (M) → D′

L(M) be an operator
with symbol a ∈ Smρ,δ(M × I), m ∈ R. Let us assume that

A(x, ξ) := 1

2
(a(x, ξ) + a(x, ξ)), (x, ξ) ∈ M × I, a ∈ Smρ,δ(M × I)

satisfies

|〈ξ 〉m A(x, ξ)−1| � C0.

Then, there exist C1,C2 > 0, such that the lower bound

Re(a(x, D)u, u) � C1‖u‖Hm
2 (M)

− C2‖u‖2L2(M)

holds true for every u ∈ C∞
L (M).
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The second application of the functional calculus is to prove the L2-boundedness
of global operators associated with the symbol class S0ρ,δ(�×I)with 0 � δ < ρ � 1,
which is presented in Sect. 5. With the exception of the borderline case ρ = δ, the
following result is, indeed, an analogue of the well-known Calderón–Vaillancourt
theorem [14, 15].

Theorem 1.3 Let a(x, D) : C∞
L (M) → D′

L(M) be a pseudo-differential operator
with symbol a ∈ S0ρ,δ(M × I) with 0 � δ < ρ � 1. Then, a(x, D) extends to a

bounded operator on L2(M).

In Sect. 6, we present an application of the Gårding inequality and, consequently,
an application of the functional calculus to study the existence and uniqueness of the
solution of the following Cauchy problem:

(IVP) :
{

∂v
∂t = K (t, x, D)v + f ,

v(0) = u0,

where the initial data u0 ∈ L2(M), K (t) := K (t, x, D)with a symbol in Smρ,δ(M×I),

f ∈ L2([0, T ]×M) � L2([0, T ], L2(M)),m > 0, and a suitable positivity condition
is imposed on K .

1.2.2 The philosophy of the non-harmonic analysis and its state of the art with
respect to the existing quantisation theories

We end the introduction with this short section explaining the philosophy of the non-
harmonic analysis in [21, 32, 33], and also the motivations for considering global
symbols in the setting of smooth manifolds. As both of the reviewers of this work
have remarked, there are deep difficulties when considering a pseudo-differential cal-
culus on manifolds with boundary. Indeed, an almost sharp condition is required (the
Hörmander transmission property, see Boutet de Monvel [12]). However, there are
specific situations where differential (or pseudo-differential) operators on compact or
non-compact manifolds have discrete spectrum (e.g. any elliptic operator on a closed
manifold, or the case of the harmonic oscillator on R

n) and the Fourier analysis asso-
ciated to them can provide a global notion of symbol. There are several Dirichlet type
problems on domains of R

n with a discrete set of eigenvalues associated with differ-
ential operators (for example, the Laplacian), and in that case, it is not necessary to
put on perspective the transmission property.

Before presenting the preliminaries and the proofs of our main results, we clarify
our motivation to work with such a global notion of symbol and the origin of this
notion. Indeed, the main tool of our work is the following quantisation formula (see
Theorem 2.21):

A f (x) =
∑

ξ∈I
uξ (x)σA(x, ξ) f̂ (ξ), (1.1)

and due to the extensive list of preliminaries for its understanding, we postpone its
analysis in Sect. 2.
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Fundamentally, as in the case of the torus, pseudo-differential operators are just
transformations of the Fourier inversion formula when the discrete spectrum of an
operator is available. For instance, on the torus T

n, the Fourier inversion formula is
given by

f (x) =
∑

ξ∈Zn

eξ (x) f̂ (ξ), f ∈ L1(Tn),

and any pseudo-differential operator in the sense of Hörmander [25] has the form

A f (x) =
∑

ξ∈Zn

eξ (x)σA(x, ξ) f̂ (ξ), f ∈ L1(Tn). (1.2)

Here, the Fourier coefficients f̂ (ξ) = ∫
Tn e−ξ (x) f (x)dx, ξ ∈ Z

n are defined using
the eigenfunctions eξ (x) = ei2πx ·ξ of the Laplacian 	Tn on T

n . Compare the
similitude of (1.2) with (1.1), where the sequence of functions uξ determines the
eigenfunction system of L�.

In terms of the standard differences operators,

	α
ξ = 	

α1
ξ1

· · · 	αn
ξn

, with 	ξ j μ = μ(· + e j ) − μ, 	k
ξ j

:= 	k−1
ξ j

	ξ j ,

it was proved in [34], with previous contributions by Vainikko and McLean, that a
pseudo-differential operator A is in the (ρ, δ)-Hörmander class of orderm ∈ R, if the
function σA : T

n × Z
n → C in (1.2) satisfies the following symbol inequality:

|∂β
x 	α

ξ σA(x, ξ)| � Cα,β(1 + |ξ |)m−ρ|α|+δ|β|.

Note that the aforementioned approach replaces the symbol σHor,A,which is a function
on T ∗

T
n ∼= T

n×R
n,of A,definedby local coordinates systemand theFourier analysis

under changes of coordinates by a function σA onT
n×Z

n,which, among other things,
is a much simpler object. It is easy to show that

∀(x, ξ) ∈ T
n × Z

n, σA(x, ξ) = e−ξ (x)(Aeξ )(x).

The torus is a good prototype to extend the global quantisation to any compact Lie
group G. In this case, the Fourier analysis is presented using unitary representation of
the group G, and the equivalence classes of such a unitary and irreducible representa-
tions are usually denoted by Ĝ, see [34] for more details. The group Fourier inversion
formula on G is given by

f (x) =
∑

[eξ ]∈Ĝ
dim(eξ )Tr[eξ (x) f̂ (ξ)], f ∈ L1(G),
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and any pseudo-differential operator in the sense of Hörmander [25] has the form

A f (x) =
∑

[eξ ]∈Ĝ
dim(eξ )Tr[eξ (x)σA(x, eξ ) f̂ (eξ )], f ∈ C∞(G). (1.3)

It is worth noting in (1.3) that the matrix-valued functions eξ : G → C
dξ ×dξ have

entries ei jξ , which are eigenfunctions of the Laplacian 	G on G. We have used

dim(eξ ) = dξ for the dimension of the representation space of eξ , that is, Cdξ . There-
fore, by writing explicitly the trace Tr[·] in (1.3), we obtain

A f (x) =
∑

[eξ ]∈Ĝ

∑

1�i, j,k�dim(eξ )

dim(eξ )e
i j
ξ (x)σA(x, eξ )

jk f̂ (ξ)ki , f ∈ C∞(G)

(1.4)
in terms of the matrix entries of the Fourier coefficients f̂ (ξ)ki = ∫

G f (x)ei jξ dx .
Again, compare the similitude of (1.1) with (1.4) having in mind that the functions
ei jξ are eigenfunctions of the Laplacian 	G and its corresponding eigenvalue λeξ has

geometric multiplicity equal to dim(eξ )
2. Now, it is a relevant fact in the theory of

pseudo-differential operators that the Hörmander classes on G can be again (as in
the case of the torus, that is, G = T

n, Ĝ ∼= Z
n) characterised in terms of a family of

differences operators	α
eξ (that generalises the difference operators onZ

n, re-obtaining

this class in the case of the torus) on Ĝ. By utilising these difference operators on Ĝ,

it was proved in [37] that a pseudo-differential operator A is in the (ρ, δ)-Hörmander
class of order m ∈ R on G, if its symbol σA in (1.3) satisfies inequalities of the type

‖∂β
x 	α

ξ σA(x, eξ )‖End(Cdξ )
� Cα,β(1 + λ|ξ |)

m−ρ|α|+δ|β|
2 , (x, [eξ ]) ∈ G × Ĝ.

Again, the symbol identity

∀(x, ξ) ∈ G × Ĝ, σA(x, eξ ) = eξ (x)
−1(Aeξ )(x) (1.5)

remains valid.
The pseudo-differential calculus based on the quantisation formula (1.1) in [32,

33] and the further developments of these works make use of the symbol classes
Smρ,δ(M × I) (see Definition 2.20), defined by the functions a on the global phase
space M × I such that

∣∣∣	α
(x)D

(β)
x a(x, ξ)

∣∣∣ � Cα,β 〈ξ 〉m−ρ|α|+δ|β|.

By following the spirit of the symbol formulas in (1.5), we have assumed that the
systemof eigenfunctions uξ in (1.1) satisfies theWZ-condition stated inDefinition 2.1.
The theory in [32, 33] is still a source of many open problems, among them, to remove
theWZ-condition with partial results in [33] and its relation with the Boutet deMonvel
calculus in the case of manifolds with boundary, with partial results in [16, Pages 135-
139]. Examples satisfying the WZ-conditions are presented in Sect. 2. In particular,
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Fig. 1 The construction of the pseudo-differential calculus for boundary value-problems according to the
procedure e.g. by L. Boutet de Mounvel. In this case the Hörmander transmission property is required

Example 2.2 for h = (1, . . . , 1) shows that the classes Smρ,δ(M × I) recover the
standard Hörmander classes on the torus.

In Fig. 1, we illustrate the different constructions of the pseudo-differential calculus
on smooth manifolds. For manifolds without boundary (when ∂M = ∅), the construc-
tion by Hörmander of the principal symbol is done by local coordinate systems. In the
case of manifolds with boundary (∂M �= ∅), the construction by Boutet de Monvel
[12] was inspired by the abstract consideration of two copies of themanifoldM = M+
and M ∼= M−,with a suitable orientation of their boundaries and glued them by using
the identification ∂M+ ∼ ∂M− to get a new closed manifold Ṁ = M+ ∪ M−. Then,
he used restriction and extension operators to recover an algebra of pseudo-differential
operators on the original manifold M from the ones defined in the sense of Hörmander
on Ṁ . In [32, 33], it was proposed to follow the Fourier analysis approach instead
of the geometric construction as in the calculus by Boutet de Monvel, and then to
consider transformations of the Fourier inversion formula as in the case of the torus
T
n or SU(2) ∼= S

3 or even any arbitrary compact Lie group, where these techniques
have shown to be useful and effective (see [34]). Then, the analysis of the quantisation
formula (1.1) is the main goal of the theory developed in [21, 32, 33] and also in this
work.

In contrast to the case of the torus as well as compact Lie groups, it is still an open
problem to construct a model operator L� in such a way that its Hörmander classes
Smρ,δ(M×I) could re-obtain a knownpseudo-differential calculus, as the one byBoutet
de Monvel. Indeed, the absence of symmetries in this case makes the understanding
of the classes Smρ,δ(M × I) much more difficult than that in the case of the torus or
compact Lie groups and, consequently, it leaves several open research questions. Just
to mention a few, one of the more recent developments on the subject was done in
[24], where the author links the Fourier analysis on fundamental domains of R

d , and
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the construction of a WZ-system with the Fuglede conjecture, which was outside of
the perspective of the authors of this manuscript.

2 Preliminaries: global pseudo-differential calculus associated with
boundary value problems

Let M = � be a C∞-manifold with (possibly empty) boundary ∂�. Let us formu-
late some basics of the non-harmonic analysis and the pseudo-differential calculus
developed by the third and the fourth author in [32] (see also [17, 21]):

• Consider a pseudo-differential operator L := L� of orderm on a smooth manifold
� (in the sense of Hörmander [25]) equipped with some boundary conditions (BC)
defining a space of functions endowed with a complex structure of vector space.
We assume that L equipped with these boundary conditions (BC) admits a closed
extension on L2(�). We will also assume the condition (BC+), which states that
the boundary conditions define a closed topological space.3

• The pseudo-differential operator L� is assumed to have a discrete spectrum
{λξ ∈ C : ξ ∈ I} on L2(�), and we order the eigenvalues with the occurring
multiplicities in the ascending order: |λ j | � |λk | for | j | � |k|.4

• The eigenfunctions uξ of L (associated with λξ ) and vξ of L∗ are considered to
be L2-normalised. Also, they satisfy the condition of biorthogonality, i.e.

(uξ , vη)L2 = δξ,η,

where δξ,η is the Kronecker-Delta and (·, ·)L2 is the usual L2-inner product given
by ( f , g)L2 := ∫

�
f (x)g(x)dx, f , g ∈ L2(�).

From [10], it follows that the system {uξ : ξ ∈ I} is a basis in L2(�) if and only if
the system {vξ : ξ ∈ I} is a basis in L2(�). So, from now, we assume the following:

• The system {uξ : ξ ∈ I} is a basis in L2(�), i.e. for every f ∈ L2(�) there exists
a unique series

∑
ξ∈I aξuξ (x) that converges to f in L2(�).

Let us define the following notation (L-Japanese bracket)

〈ξ 〉 := (1 + |λξ |2) 1
2m , (2.1)

which will be used later in measuring the growth/decay of Fourier coefficients of the
distributions in our context. Define the operator L◦ by setting its values on the basis

3 The assumption (BC) may be reformulated by saying that the domain Dom(L) of the operator L is linear,
and the condition (BC+) by saying that Dom(L) and Dom(L∗) are closed in the topologies of C∞

L (�) and

C∞
L∗ (�), respectively, with the latter spaces and their topologies introduced in Definition 2.4.

4 Let us denote by uξ the eigenfunction of L corresponding to the eigenvalue λξ for each ξ ∈ I, so that
Luξ = λξ uξ , in �, for all ξ ∈ I. Here, the system of eigenfunctions uξ satisfy the boundary conditions
(BC) discussed earlier. The conjugate spectral problem is L∗vξ = λξ vξ , in � for all ξ ∈ I, which we
equip with the conjugate boundary conditions denoted by (BC)∗. This adjoint problem is associated with
the adjoint L∗ := L�∗ of L.
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uξ by
L◦uξ := λξuξ , for all ξ ∈ I; (2.2)

we can informally think of 〈ξ 〉, ξ ∈ I, as the eigenvalues of the positive (first order)

pseudo-differential operator (I + L◦ L)
1
2m .

The following technical definition will be useful to single out the case when the
eigenfunctions of both L and L∗ do not have zeros (WZ stands for ‘without zeros’):

Definition 2.1 The system {uξ : ξ ∈ I} is called a WZ-system if the functions
uξ (x), vξ (x) do not have zeros on the domain � for all ξ ∈ I, and if there exist
C > 0 and N � 0 such that

inf
x∈�

|uξ (x)| � C〈ξ 〉−N , inf
x∈�

|vξ (x)| � C〈ξ 〉−N ,

as 〈ξ 〉 → ∞. Here, WZ stands for ‘without zeros’.

One can find examples and a discussion of WZ-systems in [32, Section 2]. There
are plenty of problems where this conditions holds, and a few of them are described
below.

Example 2.2 For this example, we set M = � with � := (0, 1)n and h > 0 i.e. h =
(h1, . . . , hn) ∈ R

n : h j > 0 for every j = 1, . . . , n. The operator L� =: O(n)
h on �

is defined by the differential operator

O(n)
h :=

n∑

j=1

∂2

∂x2j
,

together with the boundary conditions (BC):

h j f (x)|x j=0 = f (x)|x j=1, h j
∂ f

∂x j
(x)|x j=0 = ∂ f

∂x j
(x)|x j=1, j = 1, . . . , n,

(2.3)
and the domain

Dom(O(n)
h ) = { f ∈ L2(�) : 	 f ∈ L2(�) : f satisfies (2.3)}.

To describe the corresponding biorthogonal system, we first note that since b0 = 1
for all b > 0, we can define 00 = 1. In particular, we write

hx = hx11 · · · hxnn =
n∏

j=1

h
x j
j

for x ∈ [0, 1]n . Then, with I = Z
n, the system of eigenfunctions of the operator Lh

is

{uξ (x) = hxe2π i x ·ξ , ξ ∈ Z
n},
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and the conjugate system is

{vξ (x) = h−xe2π i x ·ξ , ξ ∈ Z
n},

where x · ξ = x1ξ1 + · · · + xnξn . Note that uξ (x) = ⊗n
j=1uξ j (x j ), where uξ j (x j ) =

h
x j
j e

2π i x j ξ j .

It is easy to see that the system of eigenfunctions of the operator L� = O(n)
h is a

Riesz basis in L2(�). These families also form WZ-systems

Example 2.3 We briefly give another example of a non-local boundary condition, see
[32, Example 2.4] for details. We now consider M = [0, 1] and the operator L� =
−i d

dx on � = (0, 1) with the domain

D(L�) =
{
f ∈ W 1

2 [0, 1] : a f (0) + b f (1) +
∫ 1

0
f (x)q(x)dx = 0

}
,

where a �= 0, b �= 0, and q ∈ C1[0, 1]. We assume that a + b + ∫ 1
0 q(x)dx = 1, so

that the inverse L−1
� exists and is bounded. The operator L� has a discrete spectrum

and its eigenvalues can be enumerated so that

λ j = −i ln
(
−a

b

)
+ 2 jπ + α j , j ∈ Z,

and for any ε > 0 we have
∑

j∈Z
|α j |1+ε < ∞. If m j denotes the multiplicity of

the eigenvalue λ j , then m j = 1 for sufficiently large | j |. The system of extended
eigenfunctions

u jk(x) = (i x)k

k! eiλ j x : 0 � k � m j − 1, j ∈ Z, (2.4)

of the operator L� is a Riesz basis in L2(0, 1), and its biorthogonal system is given
by

v jk(x) = lim
λ→λ j

1

k!
dk

dλk

(
(λ − λ j )

m j

	(λ)
(ibeiλ(1−x) + i

∫ 1

x
eiλ(t−x)q(t)dt)

)
,

0 � k � m j − 1, j ∈ Z, where 	(λ) = a + beiλ + ∫ 1
0 eiλxq(x)dx . It can be shown

that eigenfunctions eiλ j x satisfy

∑

j∈Z

‖eiλ j x − ei2π j x‖2L2(0,1) < ∞.

In particular, this implies modulo finitely many elements, and the system (2.4) is a
WZ-system.
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In the sequel, unless stated otherwise,wheneverwe use inverses u−1
ξ of the functions

uξ , we will suppose that the system {uξ : ξ ∈ I} is a WZ-system. However, we will
also try to mention explicitly when we make such an additional assumption.

2.1 Global distributions generated by the boundary value problem

Now, we will present the spaces of distributions generated by the boundary value
problem L� and by its adjoint L∗

� and the related global Fourier analysis. We first
define the space C∞

L (�) of test functions.

Definition 2.4 The space C∞
L (�) := Dom(L∞

� ) is called the space of test functions
for L�. Here, we define

Dom(L∞
� ) :=

∞⋂

k=1

Dom(Lk
�),

where Dom(Lk
�), or just Dom(Lk) for simplicity, is the domain of the operator Lk,

in turn defined as

Dom(Lk) := { f ∈ L2(�) : L j f ∈ Dom(L), j = 0, 1, 2, . . . , k − 1}.

The operators Lk, k ∈ N, are endowed with the same boundary conditions (BC). The
Fréchet topology of C∞

L (�) is given by the family of norms:

‖ϕ‖Ck
L

:= max
j�k

‖L jϕ‖L2(�), k ∈ N0, ϕ ∈ C∞
L (�). (2.5)

Analogously, we introduce the space C∞
L∗(�) corresponding to the adjoint operator

L∗
� by

C∞
L∗(�) := Dom((L∗)∞) =

∞⋂

k=1

Dom((L∗)k),

where Dom((L∗)k) is the domain of the operator (L∗)k,

Dom((L∗)k) := { f ∈ L2(�) : (L∗) j f ∈ Dom(L∗), j = 0, . . . , k − 1},

which satisfy the adjoint boundary conditions corresponding to the operator L∗
�. The

Fréchet topology of C∞
L∗(�) is given by the family of norms:

‖ψ‖Ck
L∗ := max

j�k
‖(L∗) jψ‖L2(�), k ∈ N0, ψ ∈ C∞

L∗(�). (2.6)

Remark 2.5 If L� is self-adjoint, i.e. if L∗
� = L� with the equality of domains, then

C∞
L∗(�) = C∞

L (�). On the other hand, since we have uξ ∈ C∞
L (�) and vξ ∈ C∞

L∗(�)
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for all ξ ∈ I, we observe that the biorthogonality condition of the systems {uξ }ξ∈I ,

and {vξ }ξ∈I implies that the spaces C∞
L (�) and C∞

L∗(�) are dense in L2(�).

In general, for functions f ∈ C∞
L (�) and g ∈ C∞

L∗(�), the L2-duality makes sense
in view of the formula

(L f , g)L2(�) = ( f , L∗g)L2(�). (2.7)

Therefore, in viewof the formula (2.7), itmakes sense to define the distributionsD′
L (�)

as the space which is dual to C∞
L∗(�). Note that the respective boundary conditions of

L� and L∗
� are satisfied by the choice of f and g in the corresponding domains.

Definition 2.6 The space

D′
L(�) := L(C∞

L∗(�), C)

of linear continuous functionals onC∞
L∗(�) is called the space of L-distributions.5 For

w ∈ D′
L(�) and ϕ ∈ C∞

L∗(�), we shall write

w(ϕ) = 〈w, ϕ〉.

Observe that, for any ψ ∈ C∞
L (�),

C∞
L∗(�) � ϕ �→

∫

�

ψ(x) ϕ(x) dx

is an L-distribution, which gives an embedding ψ ∈ C∞
L (�) ↪→ D′

L(�). We note
that the distributional notation formula (2.7) becomes

〈Lψ, ϕ〉 = 〈ψ, L∗ϕ〉. (2.8)

With the topology on C∞
L (�) defined by (2.5), the space

D′
L∗(�) := L(C∞

L (�), C)

of linear continuous functionals on C∞
L (�) is called the space of L∗-distributions.

Proposition 2.7 A linear functional w on C∞
L∗(�) belongs to D′

L(�) if and only if
there exists a constant c > 0 and a number k ∈ N0 with the property

|w(ϕ)| � c‖ϕ‖Ck
L∗ for all ϕ ∈ C∞

L∗(�).

The spaceD′
L(�)6 has many similarities with the usual spaces of distributions. For

example, suppose that for a linear continuous operator D : C∞
L (�) → C∞

L (�), its

5 We can understand the continuity here either in terms of the topology (2.6) or in terms of sequences, see
Proposition 2.7.
6 The convergence in the linear space D′

L (�) is the usual weak convergence with respect to the space

C∞
L∗ (�).
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adjoint D∗ preserves the adjoint boundary conditions (domain) of L∗
� and is continuous

on the space C∞
L∗(�), i.e. that the operator D∗ : C∞

L∗(�) → C∞
L∗(�) is continuous.

Then we can extend D to D′
L(�) by

〈Dw, ϕ〉 := 〈w, D∗ϕ〉 (w ∈ D′
L(�), ϕ ∈ C∞

L∗(�)).

This extends (2.8) from L to other operators.
The following principle of uniform boundedness is based on the Banach–Steinhaus

Theorem applied to the Fréchet space C∞
L∗(�).

Lemma 2.8 Let {w j } j∈N be a sequence in D′
L(�) with the property that for every

ϕ ∈ C∞
L∗(�), the sequence {w j (ϕ)} j∈N in C is bounded. Then there exist constants

c > 0 and k ∈ N0 such that

|w j (ϕ)| � c‖ϕ‖Ck
L∗ for all j ∈ N, ϕ ∈ C∞

L∗(�).

The lemma above leads to the following property of completeness of the space of
L-distributions.

Theorem 2.9 Let {w j } j∈N be a sequence in D′
L(�) with the property that for every

ϕ ∈ C∞
L∗(�), the sequence {w j (ϕ)} j∈N converges in C as j → ∞. Denote the limit

by w(ϕ).

(i) Then w : ϕ �→ w(ϕ) defines an L-distribution on �. Furthermore,

lim
j→∞ w j = w in D′

L(�).

(ii) If ϕ j → ϕ in ∈ C∞
L∗(�), then

lim
j→∞ w j (ϕ j ) = w(ϕ) in C.

Similarly to the previous case, we have analogues of Proposition 2.7 and Theo-
rem 2.9 for L∗-distributions.

2.2 L-Fourier transform, L-convolution, Plancherel formula, Sobolev spaces and
their Fourier images

Let us start by defining the L-Fourier transform introduced in [32], which is generated
by the boundary value problem L� and its main properties. Here, we record that:

(BC+) assume that, with L0 denoting L or L∗, if f j ∈ C∞
L0

(�)

satisfies f j → f in C∞
L0

(�), then f ∈ C∞
L0

(�).
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Let us denote by S(I) the space of rapidly decaying functions ϕ : I → C.7 In this
space, the continuous linear functionals are of the form

ϕ �→ 〈u, ϕ〉 :=
∑

ξ∈I
u(ξ)ϕ(ξ),

where the functions u : I → C grow at most polynomially at infinity, i.e. there exist
constants M < ∞ and Cu,M such that |u(ξ)| � Cu,M 〈ξ 〉M holds for all ξ ∈ I. Such
distributions u : I → C form the space of distributions which we denote by S ′(I).

We now define the L-Fourier transform on C∞
L (�).

Definition 2.10 We define the L-Fourier transform

(FL f )(ξ) = ( f �→ f̂ ) : C∞
L (�) → S(I)

by

f̂ (ξ) := (FL f )(ξ) =
∫

�

f (x)vξ (x)dx . (2.9)

Analogously, we define the L∗-Fourier transform

(FL∗ f )(ξ) = ( f �→ f̂∗) : C∞
L∗(�) → S(I)

by

f̂∗(ξ) := (FL∗ f )(ξ) =
∫

�

f (x)uξ (x)dx . (2.10)

The expressions (2.9) and (2.10) are well defined. Moreover, we have:

Proposition 2.11 The L-Fourier transform FL is a bijective homeomorphism from
C∞
L (�) to S(I). Its inverse

F−1
L : S(I) → C∞

L (�)

is given by

(F−1
L h)(x) =

∑

ξ∈I
h(ξ)uξ (x), h ∈ S(I),

so that the Fourier inversion formula becomes

f (x) =
∑

ξ∈I
f̂ (ξ)uξ (x) for all f ∈ C∞

L (�).

7 That is, ϕ ∈ S(I) if for any M < ∞ there exists a constant Cϕ,M such that |ϕ(ξ)| � Cϕ,M 〈ξ〉−M

holds for all ξ ∈ I. The topology on S(I) is given by the seminorms pk , where k ∈ N0 and pk (ϕ) :=
supξ∈I 〈ξ〉k |ϕ(ξ)|.
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Similarly, FL∗ : C∞
L∗(�) → S(I) is a bijective homeomorphism and its inverse

F−1
L∗ : S(I) → C∞

L∗(�)

is given by

(F−1
L∗ h)(x) :=

∑

ξ∈I
h(ξ)vξ (x), h ∈ S(I),

so that the conjugate Fourier inversion formula becomes

f (x) =
∑

ξ∈I
f̂∗(ξ)vξ (x) for all f ∈ C∞

L∗(�).

By dualising the inverse L-Fourier transform F−1
L : S(I) → C∞

L (�), the L-
Fourier transform extends uniquely to the mapping

FL : D′
L(�) → S ′(I)

by the formula

〈FLw, ϕ〉 := 〈w,F−1
L∗ ϕ〉, with w ∈ D′

L(�), ϕ ∈ S(I). (2.11)

It can be readily seen that if w ∈ D′
L(�), then ŵ ∈ S ′(I). The reason for taking

complex conjugates in (2.11) is that, if w ∈ C∞
L (�), we have the equality

〈ŵ, ϕ〉 =
∑

ξ∈I
ŵ(ξ)ϕ(ξ) =

∑

ξ∈I

(∫

�

w(x)vξ (x)dx

)
ϕ(ξ)

=
∫

�

w(x)

⎛

⎝
∑

ξ∈I
ϕ(ξ)vξ (x)

⎞

⎠dx =
∫

�

w(x)
(
F−1

L∗ ϕ
)
dx = 〈w,F−1

L∗ ϕ〉.

Analogously, we have the mapping

FL∗ : D′
L∗(�) → S ′(I),

defined by the formula

〈FL∗w, ϕ〉 := 〈w,F−1
L ϕ〉, with w ∈ D′

L∗(�), ϕ ∈ S(I).

It can be also seen that if w ∈ D′
L∗(�), then ŵ ∈ S ′(I). The following statement

follows from the work of Bari [10, Theorem 9]:
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Lemma 2.12 There exist constants K ,m, M > 0 such that for every f ∈ L2(�), we
have

m2‖ f ‖2L2 �
∑

ξ∈I
| f̂ (ξ)|2 � M2‖ f ‖2L2 �

∑

ξ∈I
| f̂∗(ξ)|2 � K 2‖ f ‖2L2 .

However, we note that the Plancherel identity can be also achieved in suitably
defined l2-spaces of Fourier coefficients, see Proposition 2.15.

Let us introduce a notion of the L-convolution, an analogue of the convolution
adapted to the boundary problem L�.

Definition 2.13 (L-Convolution) For f , g ∈ C∞
L (�) define their L-convolution by

( f �Lg)(x) :=
∑

ξ∈I
f̂ (ξ)ĝ(ξ)uξ (x). (2.12)

By Proposition 2.11, it is well defined and we have f �Lg ∈ C∞
L (�).8

Analogously to the L-convolution, we can introduce the L∗-convolution. Thus, for
f , g ∈ C∞

L∗(�), we define the L∗-convolution using the L∗-Fourier transform by

( f �̃Lg)(x) :=
∑

ξ∈I
f̂∗(ξ)ĝ∗(ξ)vξ (x).

Its properties are similar to those of the L-convolution, so we may formulate only the
latter.Wewould like tomention here that the L-convolution depends on the biorthonor-
mal system, and therefore the symbol classes, considered later in this section, will also
be depending on the chosen basis.

Proposition 2.14 For any f , g ∈ C∞
L (�), we have

f̂ �Lg = f̂ × ĝ, ξ ∈ I.

The convolution is commutative and associative. If g ∈ C∞
L (�), then for all f ∈

D′
L(�), we have

f �Lg ∈ C∞
L (�).

In addition, if � ⊂ R
n is bounded, and f , g ∈ L2(�), then f �Lg ∈ L1(�) with

‖ f �Lg‖L1 � C |�|1/2‖ f ‖L2‖g‖L2 ,

where |�| ∈ (0,∞] is the volume of �, with C independent of f , g,�.

8 Due to the rapid decay of L-Fourier coefficients of functions in C∞
L (�) compared to a fixed polynomial

growth of elements of S ′(I), the definition (2.12) still makes sense if f ∈ D′
L (�) and g ∈ C∞

L (�), with

f �L g ∈ C∞
L (�).
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Let us denote by l2L = l2(L) the linear space of complex-valued functions a on I
such that F−1

L a ∈ L2(�), i.e. if there exists f ∈ L2(�) such that FL f = a, then the
space of sequences l2L is a Hilbert space with the inner product

(a, b)l2L
:=
∑

ξ∈I
a(ξ) (FL∗ ◦ F−1

L b)(ξ) (2.13)

for arbitrary a, b ∈ l2L . The norm of l2L is then given by the formula

‖a‖l2L =
⎛

⎝
∑

ξ∈I
a(ξ) (FL∗ ◦ F−1

L a)(ξ)

⎞

⎠
1/2

, for all a ∈ l2L .

Analogously, we introduce the Hilbert space l2L∗ = l2(L∗) as the space of functions a
on I such that F−1

L∗ a ∈ L2(�), with the inner product

(a, b)l2L∗ :=
∑

ξ∈I
a(ξ) (FL ◦ F−1

L∗ b)(ξ) (2.14)

for arbitrary a, b ∈ l2L∗ . The norm of l2L∗ is given by the formula

‖a‖l2L∗ =
⎛

⎝
∑

ξ∈I
a(ξ) (FL ◦ F−1

L∗ a)(ξ)

⎞

⎠
1/2

for all a ∈ l2L∗ . The spaces of sequences l2L and l2L∗ are thus generated by biorthogo-
nal systems {uξ }ξ∈I and {vξ }ξ∈I . The reason for their definition in the above forms
becomes clear again in view of the following Plancherel identity:

Proposition 2.15 (Plancherel’s identity) If f , g ∈ L2(�), then f̂ , ĝ ∈ l2L , f̂∗, ĝ∗ ∈
l2L∗ , and the inner products (2.13), (2.14) take the form

( f̂ , ĝ)l2L
=
∑

ξ∈I
f̂ (ξ) ĝ∗(ξ), ( f̂∗, ĝ∗)l2L∗ =

∑

ξ∈I
f̂∗(ξ) ĝ(ξ).

In particular, we have

( f̂ , ĝ)l2L
= (ĝ∗, f̂∗)l2L∗ .

The Parseval identity takes the form:

( f , g)L2 = ( f̂ , ĝ)l2L
=
∑

ξ∈I
f̂ (ξ) ĝ∗(ξ).
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Furthermore, for any f ∈ L2(�), we have f̂ ∈ l2L , f̂∗ ∈ l2L∗ , and ‖ f ‖L2 = ‖ f̂ ‖l2L =
‖ f̂∗‖l2L∗ .

Now, we introduce Sobolev spaces generated by the operator L�:

Definition 2.16 (Sobolev spaces Hs
L(�)) For f ∈ D′

L(�) ∩ D′
L∗(�) and s ∈ R, we

say that

f ∈ Hs
L(�) if and only if 〈ξ 〉s f̂ (ξ) ∈ l2L .

We define the norm on Hs
L(�) by

‖ f ‖Hs
L (�) :=

⎛

⎝
∑

ξ∈I
〈ξ 〉2s f̂ (ξ) f̂∗(ξ)

⎞

⎠
1/2

. (2.15)

The Sobolev space Hs
L(�) is then the space of L-distributions f for which we have

‖ f ‖Hs
L (�) < ∞. Similarly, we can define the space Hs

L∗(�) by the condition

‖ f ‖Hs
L∗ (�) :=

⎛

⎝
∑

ξ∈I
〈ξ 〉2s f̂∗(ξ) f̂ (ξ)

⎞

⎠
1/2

< ∞. (2.16)

We note that the expressions in (2.15) and (2.16) are well defined, since the sum

∑

ξ∈I
〈ξ 〉2s f̂ (ξ) f̂∗(ξ) = (〈ξ 〉s f̂ (ξ), 〈ξ 〉s f̂ (ξ))l2L

� 0

is real and non-negative. Consequently, since we can write the sum in (2.16) as the
complex conjugate of that in (2.15), and with both being real, we see that the spaces
Hs
L(�) and Hs

L∗(�) coincide as sets. Moreover, we have

Proposition 2.17 For every s ∈ R, the Sobolev space Hs
L(�) is a Hilbert space with

the inner product

( f , g)Hs
L (�) :=

∑

ξ∈I
〈ξ 〉2s f̂ (ξ)ĝ∗(ξ).

Similarly, the Sobolev space Hs
L∗(�) is a Hilbert space with the inner product

( f , g)Hs
L∗ (�) :=

∑

ξ∈I
〈ξ 〉2s f̂∗(ξ)ĝ(ξ).

For every s ∈ R, the Sobolev spaces Hs
L(�), and Hs

L∗(�) are isometrically isomor-
phic.
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2.3 L-Schwartz kernel theorem

This subsection is devoted to discuss the Schwartz kernel theorem in the space of
distributions D′

L(�). In this analysis, we will need the following assumption which
may be also regarded as the definition of the number s0. So, from now on we will
make the following:

Assumption 2.18 Assume that the number s0 ∈ R is such that we have

∑

ξ∈I
〈ξ 〉−s0 < ∞.

Recalling the operator L◦ in (2.2), the assumption (2.18) is equivalent to assuming

that the operator (I + L◦L)−
s0
4m is Hilbert–Schmidt on L2(�).

Indeed, recalling the definition of 〈ξ 〉 in (2.1), namely that 〈ξ 〉 are the eigenvalues
of (I + L◦L)−

s0
2m , and that the operator (I + L◦L)−

s0
4m is Hilbert–Schmidt on L2(�)

is equivalent to the condition that

‖(I + L◦L)−
s0
4m ‖2HS ∼=

∑

ξ∈I
〈ξ 〉−s0 < ∞.

Remark 2.19 If L is elliptic, we may expect that we can take any s0 > n := dim(�),

but this depends on the boundary conditions in general. The order s0 will enter the
regularity properties of the Schwartz kernels.

We will use the notation:

C∞
L (� × �) := C∞

L (�) ⊗ C∞
L (�),

and for the corresponding dual space we write D′
L(� × �) := (

C∞
L (� × �)

)′
. By

following [32], to any continuous linear operator A : C∞
L (�) → D′

L(�), we can
associate a kernel K ∈ D′

L(� × �) such that

〈A f , g〉 =
∫

�

∫

�

K (x, y) f (x)g(y)dxdy,

and, using the notion of the L-convolution, also a convolution kernel kA(x) ∈ D′
L(�),

such that

A f (x) = (kA(x)�L f )(x),

provided that {uξ : ξ ∈ I} is a WZ-system in the sense of Definition 2.1. As usual,
KA is called the Schwartz kernel of A. Note that, by using the Fourier series formula
for f ∈ C∞

L (�),

f (y) =
∑

η∈I
f̂ (η)uη(y),
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we can also write

A f (x) =
∑

η∈I
f̂ (η)

∫

�

KA(x, y)uη(y)dy, (2.17)

and the L-distribution kA ∈ D′
L(� × �) is determined by the formula

kA(x, z) := kA(x)(z) :=
∑

η∈I
u−1

η (x)
∫

�

KA(x, y)uη(y)dy uη(z). (2.18)

Since for some C > 0 and N � 0, we have, by Definition 2.1,

inf
x∈�

|uη(x)| � C〈η〉−N ,

the series in (2.18) converges in the sense of L-distributions. Formula (2.18) means
that the Fourier transform of kA in the second variable satisfies

k̂A(x, η)uη(x) =
∫

�

KA(x, y)uη(y)dy.

Combining this and (2.17), we get

A f (x) =
∑

η∈I
f̂ (η)

∫

�

KA(x, y)uη(y)dy =
∑

η∈I
f̂ (η)̂kA(x, η)uη(x) = ( f �LkA(x))(x),

where in the last equality we used the notion of the L-convolution in Definition 2.13.

2.4 L-Quantisation and full symbols

In this subsection, we describe the L-quantisation induced by the boundary value
problem L�. From now on, we will assume that the system of functions {uξ : ξ ∈ I}
is a WZ-system in the sense of Definition 2.1. Later, we will make some remarks on
what happens when this assumption is not satisfied.

Definition 2.20 (L-Symbols of operators on �) The L-symbol of a linear continuous
operator

A : C∞
L (�) → D′

L(�)

at x ∈ � and ξ ∈ I is defined by

σA(x, ξ) := k̂A(x)(ξ) = FL(kA(x))(ξ).

Hence, we can also write

σA(x, ξ) =
∫

�

kA(x, y)vξ (y)dy = 〈kA(x), vξ 〉.
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By the L-Fourier inversion formula, the convolution kernel can be recovered from
the symbol:

kA(x, y) =
∑

ξ∈I
σA(x, ξ)uξ (y),

all in the sense of L-distributions. We now show that an operator A can be represented
by its symbol [32].

Theorem 2.21 (L-quantisation) Let A : C∞
L (�) → C∞

L (�) be a continuous linear
operator with L-symbol σA. Then,

A f (x) =
∑

ξ∈I
uξ (x)σA(x, ξ) f̂ (ξ)

for every f ∈ C∞
L (�) and x ∈ �. The L-symbol σA satisfies

σA(x, ξ) = uξ (x)
−1(Auξ )(x)

for all x ∈ � and ξ ∈ I.

Now, we collect several formulae for the symbol under the assumption that the
biorthogonal system uξ is a WZ-system9

Corollary 2.22 We have the following equivalent formulae for L-symbols:

(i) σA(x, ξ) =
∫

�

kA(x, y)vξ (y)dy;
(ii) σA(x, ξ) = u−1

ξ (x)(Auξ )(x);
(iii) σA(x, ξ) = u−1

ξ (x)
∫

�

KA(x, y)uξ (y)dy;

(iv) σA(x, ξ) = u−1
ξ (x)

∫

�

∫

�

F(x, y, z)kA(x, y)uξ (z)dydz.

Here and in the sequel, we write u−1
ξ (x) = uξ (x)−1. Formula (iii) also implies

(v) KA(x, y) =
∑

ξ∈I
uξ (x)σA(x, ξ)vξ (y).

9 In the case when {uξ : ξ ∈ I} is not a WZ-system, we can still understand the L-symbol σA of the
operator A as a function on � × I, for which the equality uξ : (x)σA(x, ξ) = ∫

� KA(x, y)uξ (y)dy holds
for all ξ in I and for x ∈ �. Of course, this implies certain restrictions on the zeros of the Schwartz kernel
KA. Such restrictions may be considered natural from the point of view of the scope of problems that can
be treated by our approach in the case when the eigenfunctions uξ (x) may vanish at some points x . We
refer to [33] for the calculus without the WZ-condition.
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Similarly, we can introduce an analogous notion of the L∗-quantisation.

Definition 2.23 (L∗-Symbols of operators on�)The L∗-symbol of a linear continuous
operator

A : C∞
L∗(�) → D′

L∗(�)

at x ∈ � and ξ ∈ I is defined by

τA(x, ξ) := FL∗ (̃kA(x))(ξ).

We can also write

τA(x, ξ) =
∫

�

k̃A(x, y)uξ (y)dy = 〈̃kA(x), uξ 〉.

By the L∗-Fourier inversion formula, the convolution kernel can be regained from
the symbol:

k̃A(x, y) =
∑

ξ∈I
τA(x, ξ)vξ (y)

in the sense of L∗-distributions. Analogously to the L-quantisation, we have:

Corollary 2.24 (L∗-quantisation) Let τA be the L∗-symbol of a continuous linear oper-
ator A : C∞

L∗(�) → C∞
L∗(�). Then,

A f (x) =
∑

ξ∈I
vξ (x)τA(x, ξ) f̂∗(ξ)

for every f ∈ C∞
L∗(�) and x ∈ �. For all x ∈ � and ξ ∈ I, we have

τA(x, ξ) = vξ (x)
−1(Avξ )(x).

We also have the following equivalent formulae for the L∗-symbol:

(i) τA(x, ξ) =
∫

�

k̃A(x, y)uξ (y)dy;

(ii) τA(x, ξ) = v−1
ξ (x)

∫

�

K̃ A(x, y)vξ (y)dy.

2.5 Difference operators and symbolic calculus

In this subsection, we discuss difference operators that will be instrumental in defining
symbol classes for the symbolic calculus of operators.

Let q j ∈ C∞(� × �), j = 1, . . . , l, be a given family of smooth functions. We
will call the collection of q j ’s L-strongly admissible if the following properties hold:
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• For every x ∈ �, the multiplication by q j (x, ·) is a continuous linear mapping on
C∞
L (�), for all j = 1, . . . , l;

• q j (x, x) = 0 for all j = 1, . . . , l;
• rank(∇yq1(x, y), . . . ,∇yql(x, y))|y=x = n;
• the diagonal in � × � is the only set when all of q j ’s vanish:

l⋂

j=1

{
(x, y) ∈ � × � : q j (x, y) = 0

} = {(x, x) : x ∈ �}.

Wenote that the first property above implies that for every x ∈ �, themultiplication
by q j (x, ·) is also well defined and extends to a continuous linear mapping onD′

L(�).

Also, the last property above contains the second one but we chose to still give it
explicitly for the clarity of the exposition.

The collection of q j s with the above properties generalises the notion of a strongly
admissible collection of functions for difference operators introduced in [37] in the
context of compact Lie groups. We will use the multi-index notation

qα(x, y) := qα1
1 (x, y) · · · qαl

l (x, y).

Analogously, the notion of an L∗-strongly admissible collection suitable for the con-
jugate problem is that of a family q̃ j ∈ C∞(� × �), j = 1, . . . , l, satisfying the
properties:

• For every x ∈ �, the multiplication by q̃ j (x, ·) is a continuous linear mapping on
C∞
L∗(�), for all j = 1, . . . , l;

• q̃ j (x, x) = 0 for all j = 1, . . . , l;
• rank(∇yq̃1(x, y), . . . ,∇yq̃l(x, y))|y=x = n;
• the diagonal in � × � is the only set when all of q̃ j s vanish:

l⋂

j=1

{
(x, y) ∈ � × � : q̃ j (x, y) = 0

} = {(x, x) : x ∈ �}.

We also write

q̃α(x, y) := q̃α1
1 (x, y) · · · q̃αl

l (x, y).

We now record the Taylor expansion formula with respect to a family of q j s, which
follows from expansions of functions g and qα(e, ·) by the common Taylor series [32]:

Proposition 2.25 Any smooth function g ∈ C∞(�) can be approximated by Taylor
polynomial-type expansions, i.e. for e ∈ �, we have
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g(x) =
∑

|α|<N

1

α!D
(α)
x g(x)|x=e q

α(e, x) +
∑

|α|=N

1

α!q
α(e, x)gN (x)

∼
∑

α�0

1

α!D
(α)
x g(x)|x=e q

α(e, x)

in a neighbourhood of e ∈ �, where gN ∈ C∞(�) and D(α)
x g(x)|x=e can be found

from the recurrent formulae: D(0,...,0)
x := I and for α ∈ N

l
0,

∂β
x g(x)|x=e =

∑

|α|�|β|

1

α!
[
∂β
x q

α(e, x)
] ∣∣∣

x=e
D(α)
x g(x)|x=e,

where β = (β1, . . . , βn) and ∂
β
x = ∂β1

∂x
β1
1

· · · ∂βn

∂xβn
n

.

Analogously, any function g ∈ C∞(�) can be approximated by Taylor polynomial-
type expansions corresponding to the adjoint problem, i.e. we have

g(x) =
∑

|α|<N

1

α! D̃
(α)
x g(x)|x=e q̃

α(e, x) +
∑

|α|=N

1

α! q̃
α(e, x)gN (x)

∼
∑

α�0

1

α! D̃
(α)
x g(x)|x=e q̃

α(e, x)

in a neighbourhood of e ∈ �, where gN ∈ C∞(�) and D̃(α)
x g(x)|x=e are found from

the recurrent formula: D̃(0,...,0) := I and for α ∈ N
l
0,

∂β
x g(x)|x=e =

∑

|α|�|β|

1

α!
[
∂kx q̃

α(e, x)
] ∣∣∣

x=e
D̃(α)
x g(x)|x=e,

where β = (β1, . . . , βn), and ∂β is defined as in Proposition 2.25.
It can be seen that operators D(α) and D̃(α) are differential operators of order |α|.

We now define difference operators acting on Fourier coefficients. Since the problem
in general may lack any invariance or symmetry structure, the introduced difference
operators will depend on a point x where they will be taken when applied to symbols.

Definition 2.26 For WZ-systems, we define difference operator 	α
q,(x) acting on

Fourier coefficients by any of the following equal expressions:

	α
q,(x) f̂ (ξ) = u−1

ξ (x)
∫

�

[ ∫

�

qα(x, y)F(x, y, z) f (z)dz
]
uξ (y)dy

= u−1
ξ (x)

∑

η∈I
FL

(
qα(x, ·)uξ (·)

)
(η) f̂ (η)uη(x)

= u−1
ξ (x)

([qα(x, ·)uξ (·)]�L f
)
(x).
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Analogously, we define the difference operator 	̃α
q,(x) acting on adjoint Fourier coef-

ficients by

	̃α
q̃,(x) f̂∗(ξ) := v−1

ξ (x)
∑

η∈I
FL∗

(
q̃α(x, ·)vξ (·)

)
(η) f̂∗(η)vη(x).

For simplicity, if there is no confusion, for a fixed collection of q j ’s, instead of
	q,(x) and 	̃q̃,(x), we will often simply write 	(x) and 	̃(x).

Remark 2.27 Applying difference operators to a symbol and using formulae from
Sect. 2.4, we obtain

	α
(x)a(x, ξ) = u−1

ξ (x)
∑

η∈I
FL

(
qα(x, ·)uξ (·)

)
(η)a(x, η)uη(x)

= u−1
ξ (x)

∑

η∈I
FL

(
qα(x, ·)uξ (·)

)
(η)

∫

�

K (x, y)uη(y)dy

= u−1
ξ (x)

∫

�

K (x, y)

⎡

⎣
∑

η∈I
FL

(
qα(x, ·)uξ (·)

)
(η)uη(y)

⎤

⎦ dy

= u−1
ξ (x)

∫

�

qα(x, y)K (x, y)uξ (y)dy. (2.19)

In view of the first property of the strongly admissible collections, for each x ∈ �, the
multiplication by qα(x, ·) is well defined on D′

L(�). Therefore, we can write (2.19)
also in the distributional form

	α
(x)a(x, ξ) = u−1

ξ (x) 〈qα(x, ·)K (x, ·), uξ 〉.

Plugging the expression (v) from Corollary 2.22 for the kernel in terms of the
symbol into (2.19), namely, using

K (x, y) =
∑

η∈I
uη(x)a(x, η)vη(y),

we record another useful form of (2.19) to be used later as

	α
(x)a(x, ξ) = u−1

ξ (x)
∫

�

qα(x, y)

⎡

⎣
∑

η∈I
uη(x)a(x, η)vη(y)

⎤

⎦ uξ (y)dy

= u−1
ξ (x)

∑

η∈I
uη(x)a(x, η)

[∫

�

qα(x, y)vη(y)uξ (y)dy

]
,
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with the usual distributional interpretation of all the steps. In the sequel, we will also
require the L∗-version of this formula, which we record now as

	̃α
(x)a(x, ξ) = v−1

ξ (x)
∑

η∈I
vη(x)a(x, η)

[∫

�

q̃α(x, y)uη(y)vξ (y)dy

]
.

Using such difference operators and derivatives D(α) from Proposition 2.25, we
can now define classes of symbols.

Definition 2.28 (Symbol class Smρ,δ(� × I)) Let m ∈ R and 0 � δ, ρ � 1. The L-

symbol class Smρ,δ(� × I) consists of those functions a(x, ξ) which are smooth in x
for all ξ ∈ I, and which satisfy

∣∣∣	α
(x)D

(β)
x a(x, ξ)

∣∣∣ � Caαβm 〈ξ 〉m−ρ|α|+δ|β| (2.20)

for all x ∈ �, for all α, β � 0, and for all ξ ∈ I. Here, the operators D(β)
x are defined

in Proposition 2.25. We will often denote them simply by D(β).

The class Sm1,0(�×I)will be often denoted bywriting simply Sm(�×I). In (2.20),

we assume that the inequality is satisfied for x ∈ � and it extends to the closure �.

Furthermore, we define

S∞
ρ,δ(� × I) :=

⋃

m∈R

Smρ,δ(� × I)

and

S−∞(� × I) :=
⋂

m∈R

Sm(� × I).

When we have two L-strongly admissible collections, expressing one in terms of the
other similarly to Proposition 2.25 and arguing similarly to [37], we can convince
ourselves that for ρ > δ the definition of the symbol class does not depend on the
choice of an L-strongly admissible collection.

Analogously, we define the L∗-symbol class S̃mρ,δ(� × I) as the space of those
functions a(x, ξ) which are smooth in x for all ξ ∈ I, and satisfy

∣∣∣	̃α
(x) D̃

(β)a(x, ξ)

∣∣∣ � Caαβm 〈ξ 〉m−ρ|α|+δ|β|

for all x ∈ �, for all α, β � 0, and for all ξ ∈ I. Similarly, we can define classes
S̃∞
ρ,δ(� × I) and S̃−∞(� × I).

If a ∈ Smρ,δ(� × I), it is convenient to denote by a(X , D) = OpL(a) the corre-
sponding L-pseudo-differential operator defined by

OpL(a) f (x) = a(X , D) f (x) :=
∑

ξ∈I
uξ (x) a(x, ξ) f̂ (ξ). (2.21)
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The set of operatorsOpL(a) of the form (2.21)with a ∈ Smρ,δ(�×I)will be denoted by

OpL(Smρ,δ(�×I)),or by�m
ρ,δ(�×I). If anoperator A satisfies A ∈ OpL(Smρ,δ(�×I)),

we denote its L-symbol by σA = σA(x, ξ), x ∈ �, ξ ∈ I.

Remark 2.29 (Topology on Smρ,δ(�×I) (S̃mρ,δ(�×I))). The set Smρ,δ(�×I) (S̃mρ,δ(�×
I)) of symbols has a natural topology. Let us consider the functions plαβ : Smρ,δ(� ×
I) → R ( p̃lαβ : S̃mρ,δ(� × I) → R) defined by

plαβ(σ ) := sup
[∣∣∣	α

(x)D
(β)σ (x, ξ)

∣∣∣〈ξ 〉−l+ρ|α|−δ|β| : (x, ξ) ∈ � × I
]

(
p̃lαβ(σ ) := sup

[∣∣∣	̃α
(x) D̃

(β)σ (x, ξ)

∣∣∣〈ξ 〉−l+ρ|α|−δ|β| : (x, ξ) ∈ � × I
])

.

Now, {plαβ} ({ p̃lαβ}) is a countable family of seminorms, and they define a Fréchet

topology on Smρ,δ(� × I) (S̃mρ,δ(� × Z)).

The next theorem is a prelude to asymptotic expansions, which are the main tools
in the symbolic analysis of L-pseudo-differential operators.

Theorem 2.30 (Asymptotic sums of symbols) Let (m j )
∞
j=0 ⊂ R be a sequence such

that m j > m j+1, and m j → −∞ as j → ∞, and σ j ∈ S
m j
ρ,δ(� × I) for all j ∈ I.

Then there exists an L-symbol σ ∈ Sm0
ρ,δ(� × I) such that for all N ∈ I,

σ
mN ,ρ,δ∼

N−1∑

j=0

σ j .

We will now look at the formulae in [32] for the symbol of the adjoint operator
and for the composition of pseudo-differential operators, which establish the pseudo-
differential calculus for boundary value problems from the non-harmonic point of
view.

Theorem 2.31 (Adjoint operators) Let 0 � δ < ρ � 1. Let A ∈ OpL(Smρ,δ(� × I)).

Assume that the conjugate symbol class S̃mρ,δ(�×I) is definedwith strongly admissible

functions q̃ j (x, y) := q j (x, y), which are L∗-strongly admissible. Then the adjoint of
A satisfies A∗ ∈ OpL∗(S̃mρ,δ(� × I)), with its L∗-symbol τA∗ ∈ S̃mρ,δ(� × I) having
the asymptotic expansion

τA∗(x, ξ) ∼
∑

α

1

α!	̃
α
x D

(α)
x σA(x, ξ).

We now formulate the composition formula given [32].
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Theorem 2.32 Let m1,m2 ∈ R and ρ > δ � 0. Let A, B : C∞
L (�) → C∞

L (�) be
continuous and linear, and assume that their L-symbols satisfy

|	α
(x)σA(x, ξ)| � Cα〈ξ 〉m1−ρ|α|,

|D(β)σB(x, ξ)| � Cβ〈ξ 〉m2+δ|β|,

for all α, β � 0, uniformly in x ∈ � and ξ ∈ I. Then,

σAB(x, ξ) ∼
∑

α�0

1

α! (	
α
(x)σA(x, ξ))D(α)σB(x, ξ),

where the asymptotic expansion means that for every N ∈ N, we have

|σAB(x, ξ) −
∑

|α|<N

1

α! (	
α
(x)σA(x, ξ))D(α)σB(x, ξ)| � CN 〈ξ 〉m1+m2−(ρ−δ)N .

2.6 Construction of parametrices

Now, we will present a technical result about the existence of parametrices for L-
elliptic operators in the global pseudo-differential calculus from [32]. We denote
S−∞(M × I) = ∩m∈RSmρ,δ(M × I) = ∩m∈RSm1,0(M × I).

Proposition 2.33 Let m ∈ R, and let 0 � δ < ρ � 1. Let a = a(x, ξ) ∈ Smρ,δ(M×I).

Assume also that a(x, ξ) is invertible for every (x, ξ) ∈ M × I and satisfies

sup
(x,ξ)∈M×I

|〈ξ 〉ma(x, ξ)−1| < ∞.

Then, there exists B ∈ S−m
ρ,δ (M × I), such that AB − I , BA − I ∈ S−∞(M × I).

Moreover, the symbol of B satisfies the following asymptotic expansion:

B̂(x, ξ) ∼
∞∑

N=0

B̂N (x, ξ), (x, ξ) ∈ M × I,

where B̂N (x, ξ) ∈ S−m−(ρ−δ)N
ρ,δ (M × I) obeys the inductive formula:

B̂N (x, ξ) = −a(x, ξ)−1

⎛

⎝
N−1∑

k=0

∑

|γ |=N−k

(	
γ

(x)a(x, ξ))(D(γ )
x B̂k(x, ξ))

⎞

⎠ , N � 1,

with B̂0(x, ξ) = a(x, ξ)−1.
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3 Parameter L-ellipticity

We start our contributions to the pseudo-differential calculus in the context of non-
harmonic analysis developed by the last two authors in [32], by developing the
functional calculus for Hörmander classes Op(Smρ,δ(M × I)). For this, we need a
more wide notion of ellipticity, which we introduce as follows.

Definition 3.1 Letm > 0, and let 0 � δ < ρ � 1. Letm > 0, and let 0 � δ < ρ � 1.
Let � be a sector in the complex plane C. Let a = a(x, ξ) ∈ Smρ,δ(M × I). Assume

also that Rλ(x, ξ)−1 := a(x, ξ) − λ �= 0 for every (x, ξ) ∈ M × I, and λ ∈ �. We
say that a is parameter L-elliptic with respect to �, if

sup
λ∈�

sup
(x,ξ)∈M×I

|(|λ| 1
m + 〈ξ 〉)m Rλ(x, ξ)| < ∞.

The following theorem classifies the resolvent Rλ(x, ξ) of a parameter L-elliptic
symbol a.

Theorem 3.2 Let m > 0, and let 0 � δ < ρ � 1. If a is parameter L-elliptic with
respect to �, the following estimate

sup
λ∈�

sup
(x,ξ)∈M×I

|(|λ| 1
m + 〈ξ 〉)m(k+1)〈ξ 〉ρ|α|−δ|β|∂kλD(β)

x 	α
(x)Rλ(x, ξ)| < ∞

holds true for all α, β ∈ N
n
0 and k ∈ N0.

Proof We will split the proof in the cases |λ| � 1, and |λ| > 1, where λ ∈ �. It
is possible, however, that one of these two cases could be trivial in the sense that
�1 := {λ ∈ � : |λ| � 1} or �c

1 := {λ ∈ � : |λ| > 1} could be an empty set. In
such a case, the proof is self-contained in the situation that we will consider where we
assume that �1 and �c

1 are not trivial sets. For |λ| � 1, observe that

|(|λ| 1
m + 〈ξ 〉)m(k+1)〈ξ 〉ρ|α|−δ|β|∂kλD(β)

x 	α
(x)Rλ(x, ξ)|

= |(|λ| 1
m + 〈ξ 〉)m(k+1)〈ξ 〉−m(k+1)〈ξ 〉m(k+1)+ρ|α|−δ|β|∂kλD(β)

x 	α
(x)Rλ(x, ξ)|

� |(|λ| 1
m + 〈ξ 〉)m(k+1)〈ξ 〉−m(k+1)|

× |〈ξ 〉m(k+1)+ρ|α|−δ|β|∂kλD(β)
x 	α

(x)Rλ(x, ξ)|.

We note that

|(|λ| 1
m + 〈ξ 〉)m(k+1)〈ξ 〉−m(k+1)|

= |(|λ| 1
m 〈ξ 〉−1 + 1)m(k+1)| = ||λ| 1

m 〈ξ 〉−1 + 1|m(k+1)

� sup
|λ|∈[0,1]

|(|λ| 1
m 〈ξ 〉−1 + 1)m(k+1)| = O(1).
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On the other hand, we can prove that

|〈ξ 〉m(k+1)+ρ|α|−δ|β|∂kλD(β)
x 	α

(x)Rλ(x, ξ)| = O(1).

For k = 1, ∂λRλ(x, ξ) = Rλ(x, ξ)2. This can be deduced from the Leibniz rule;
indeed,

0 = ∂λ(Rλ(x, ξ)(a(x, ξ) − λ)) = (∂λRλ(x, ξ))(a(x, ξ) − λ) + Rλ(x, ξ)(−1)

implies that

−∂λ(Rλ(x, ξ))(a(x, ξ) − λ) = −Rλ(x, ξ).

Because (a(x, ξ) − λ) = Rλ(x, ξ)−1, the identity for the first derivative of Rλ, ∂λRλ

follows. So, from the chain rule, we obtain that the term of higher-order expand-
ing the derivative ∂kλRλ is a multiple of Rk+1

λ . So, Rλ ∈ S−m
ρ,δ (M × I). The global

pseudo-differential calculus implies that Rk+1
λ ∈ S−m(k+1)

ρ,δ (M × I). This fact and the
compactness of �1 ⊂ C provide us the uniform estimate

sup
λ∈�1

sup
(x,ξ)∈M×I

|〈ξ 〉m(k+1)+ρ|α|−δ|β|∂kλD(β)
x 	α

(x)Rλ(x, ξ)| < ∞.

Now, we will analyse the situation for λ ∈ �c
1. We will use induction over k to prove

that

sup
λ∈�c

1

sup
(x,ξ)∈M×I

|(|λ| 1
m + 〈ξ 〉)m(k+1)〈ξ 〉ρ|α|−δ|β|∂kλD(β)

x 	α
(x)Rλ(x, ξ)| < ∞.

For k = 0, notice that

|(|λ| 1
m + 〈ξ 〉)m(k+1)〈ξ 〉ρ|α|−δ|β|∂kλD(β)

x 	α
(x)Rλ(x, ξ)|

= |(|λ| 1
m + 〈ξ 〉)m〈ξ 〉ρ|α|−δ|β|D(β)

x 	α
(x)(a(x, ξ) − λ)−1|,

and denoting θ = 1
|λ| , ω = λ

|λ| , we have

|(|λ| 1
m + 〈ξ 〉)m(k+1)〈ξ 〉ρ|α|−δ|β|∂kλD(β)

x 	α
(x)Rλ(x, ξ)|

= |(|λ| 1
m + 〈ξ 〉m)|λ|−1〈ξ 〉ρ|α|−δ|β|D(β)

x 	α
(x)(θ × a(x, ξ) − ω)−1|

= |(1 + |λ|− 1
m 〈ξ 〉)m〈ξ 〉ρ|α|−δ|β|D(β)

x 	α
(x)(θ × a(x, ξ) − ω)−1|

= |(1 + θ
1
m 〈ξ 〉)m〈ξ 〉ρ|α|−δ|β|D(β)

x 	α
(x)(θ × a(x, ξ) − ω)−1|

= |(1 + θ
1
m 〈ξ 〉)m〈ξ 〉−m〈ξ 〉m+ρ|α|−δ|β|D(β)

x 	α
(x)(θ × a(x, ξ) − ω)−1|

� |(1 + θ
1
m 〈ξ 〉)m〈ξ 〉−m ||〈ξ 〉m+ρ|α|−δ|β|D(β)

x 	α
(x)(θ × a(x, ξ) − ω)−1|.
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Observe that (1+θ
1
m 〈ξ 〉)m〈ξ 〉−m ∈ S0ρ,δ(M ×I), is uniformly bounded in θ ∈ [0, 1].

Similarly, observe that

sup
θ∈[0,1]

|〈ξ 〉m+ρ|α|−δ|β|D(β)
x 	α

(x)(θ × a(x, ξ) − ω)−1| < ∞.

Indeed, (θ × a(x, ξ) − ω)−1 ∈ S−m
ρ,δ (M × I), with θ ∈ [0, 1] and ω being an element

of the complex circle. The case k � 1 for λ ∈ �c
1 can be proved in an analogous way.��

Combining Proposition 2.33 and Theorem 3.2 we obtain the following corollaries.

Corollary 3.3 Let m > 0, and let 0 � δ < ρ � 1. Let a be a parameter L-elliptic
symbol with respect to �. Then there exists a parameter-dependent parametrix of
A − λI , with symbol a−#(x, ξ, λ) satisfying the estimates

sup
λ∈�

sup
(x,ξ)∈M×I

|(|λ| 1
m + 〈ξ 〉)m(k+1)〈ξ 〉ρ|α|−δ|β|∂kλD(β)

x 	α
(x)a

−#(x, ξ, λ)| < ∞,

for all α, β ∈ N
n
0 and k ∈ N0.

Corollary 3.4 Let m > 0, and let a ∈ Smρ,δ(M × I) where 0 � δ < ρ � 1. Let us

assume that � is a subset of the L2-resolvent set of A, Resolv(A) := C\Spec(A).

Then A − λI is invertible on D′
L(M) and the symbol of the resolvent operatorRλ :=

(A − λI )−1, R̂λ(x, ξ) belongs to S−m
ρ,δ (M × I).

4 Global functional calculus

In this section, we develop the global functional calculus for the classes Smρ,δ(M ×I).

The global pseudo-differential calculus will be applied to obtain a global Gårding
inequality.

4.1 Symbols defined by functions of pseudo-differential operators

Let a ∈ Smρ,δ(M ×I) be a parameter L-elliptic symbol of order m > 0 with respect to
the sector � ⊂ C. For A = Op(a), let us define the operator F(A) by the (Dunford–
Riesz) complex functional calculus

F(A) = − 1

2π i

∮

∂�ε

F(z)(A − z I )−1dz, (4.1)

where

(CI) �ε := � ∪ {z : |z| � ε}, ε > 0, and � = ∂�ε ⊂ Resolv(A) is a positively
oriented curve in the complex plane C.

(CII) F is a holomorphic function in C\�ε, and continuous on its closure.
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(CIII) We will assume decay of F along ∂�ε in order that the operator (4.1) will be
densely defined on C∞

L (M) in the strong sense of the topology on L2(M).

Now, we will compute the global symbols for operators defined by this complex
functional calculus. So, we will assume the WZ condition.

Lemma 4.1 Let a ∈ Smρ,δ(M × I) be a parameter L-elliptic symbol of order m > 0
with respect to the sector � ⊂ C. Let F(A) : C∞

L (M) → D′
L(M) be the operator

defined by the analytical functional calculus as in (4.1). Under the assumptions (CI),
(CII), and (CIII), the global symbol of F(A), σF(A)(x, ξ) is given by:

σF(A)(x, ξ) = − 1

2π i

∮

∂�ε

F(z)R̂z(x, ξ)dz,

whereRz = (A− z I )−1 denotes the resolvent of A, and R̂z(x, ξ) ∈ S−m
ρ,δ (M × I) its

symbol.

Proof From Corollary 3.4, we have that R̂z(x, ξ) ∈ S−m
ρ,δ (M × I). Now, observe that

σF(A)(x, ξ) = uξ (x)
−1F(A)uξ (x) = − 1

2π i

∮

∂�ε

F(z)uξ (x)
−1(A − z I )−1uξ (x)dz.

We finish the proof by observing that R̂z(x, ξ) = uξ (x)−1(A− z I )−1uξ (x), for every
z ∈ Resolv(A). ��

Assumption (CIII) will be clarified in the following theoremwherewe show that the
global pseudo-differential calculus is stable under the action of the complex functional
calculus.

Theorem 4.2 Let m > 0, and let 0 � δ < ρ � 1. Let a ∈ Smρ,δ(M × I) be a
parameter L-elliptic symbol with respect to �. Let us assume that F satisfies the
estimate |F(λ)| � C |λ|s uniformly in λ, for some s < 0. Then the symbol of F(A),

σF(A) ∈ Sms
ρ,δ(M × I) admits an asymptotic expansion of the form

σF(A)(x, ξ) ∼
∞∑

N=0

σBN (x, ξ), (x, ξ) ∈ M × I, (4.2)

where σBN (x, ξ) ∈ Sms−(ρ−δ)N
ρ,δ (M × I) and

σB0(x, ξ) = − 1

2π i

∮

∂�ε

F(z)(a(x, ξ) − z)−1dz ∈ Sms
ρ,δ(M × I).

Moreover,

σF(A)(x, ξ) ≡ − 1

2π i

∮

∂�ε

F(z)a−#(x, ξ, λ)dz mod S−∞(M × I),

where a−#(x, ξ, λ) is the symbol of the parametrix to A − λI , in Corollary 3.3.
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Proof First, we need to prove that the condition |F(λ)| � C |λ|s uniformly in λ, for
some s < 0, is enough to guarantee that

σB0(x, ξ) := − 1

2π i

∮

∂�ε

F(z)(a(x, ξ) − z)−1dz

is a well-defined global symbol. From Theorem 3.2, we deduce that (a(x, ξ) − z)−1

satisfies the estimate

|(|z| 1
m + 〈ξ 〉)m(k+1)〈ξ 〉ρ|α|−δ|β|∂kz D(β)

x 	α
(x)(a(x, ξ) − z)−1| < ∞.

Observe that

|(a(x, ξ) − z)−1|
= |(|z| 1

m + 〈ξ 〉)−m(|z| 1
m + 〈ξ 〉)m(a(x, ξ) − z)−1|

� (|z| 1
m + 〈ξ 〉)−m

� |z|−1,

and the condition s < 0 implies that

∣∣∣∣
1

2π i

∮

∂�ε

F(z)(a(x, ξ) − z)−1dz

∣∣∣∣ �
∮

∂�ε

|z|−1+s |dz| < ∞,

uniformly in (x, ξ) ∈ M × I. To check that σB0 ∈ Sms
ρ,δ(M × I), let us analyse the

cases −1 < s < 0 and s � −1 separately:
Case 1: Let us analyse first the situation of −1 < s < 0. We observe that

|〈ξ 〉−ms+ρ|α|−δ|β|D(β)
x 	α

(x)σB0(x, ξ)|
� C

2π

∮

∂�ε

|z|s |〈ξ 〉−ms+ρ|α|−δ|β|D(β)
x 	α

(x)(a(x, ξ) − z)−1||dz|.

Now, we will estimate the operator norm inside of the integral. Indeed, the identity

|〈ξ 〉−ms+ρ|α|−δ|β|D(β)
x 	α

(x)(a(x, ξ) − z)−1|
= |(|z| 1

m + 〈ξ 〉)−m(|z| 1
m + 〈ξ 〉)m〈ξ 〉−ms+ρ|α|−δ|β|D(β)

x 	α
(x)(a(x, ξ) − z)−1|

implies that

|〈ξ 〉−ms+ρ|α|−δ|β|D(β)
x 	α

(x)(a(x, ξ) − z)−1| � |(|z| 1
m + 〈ξ 〉)−m〈ξ 〉−ms |,

where we have used that

sup
z∈∂�ε

sup
(x,ξ)

|(|z| 1
m + 〈ξ 〉)m〈ξ 〉ρ|α|−δ|β|D(β)

x 	α
(x)(a(x, ξ) − z)−1| < ∞.
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Consequently, by using that s < 0, we deduce

C

2π

∮

∂�ε

|z|s |〈ξ 〉ms+ρ|α|−δ|β|D(β)
x 	α

(x)(a(x, ξ) − z)−1||dz|

� C

2π

∮

∂�ε

|z|s |(|z| 1
m + 〈ξ 〉)−m〈ξ 〉−ms ||dz|.

To study the convergence of the last contour integral, we only need to check the

convergence of
∫∞
1 rs(r

1
m + κ)−m

κ
−msdr , where κ > 1 is a parameter. The change

of variable r = κ
mt implies that

∫ ∞

1
rs(r

1
m + κ)−m

κ
−msdr =

∫ ∞

κ−m
κ
msts(κt

1
m + κ)−m

κ
−ms

κ
mdt

=
∫ ∞

κ−m
ts(t

1
m + 1)−mdt �

∫ 1

κ−m
tsdt +

∫ ∞

1
t−1+s < ∞.

Indeed, for t → ∞, t s(t
1
m + 1)−m � t−1+s, and we conclude the estimate because∫∞

1 t−1+s′dt < ∞, for all s′ < 0. On the other hand, the condition −1 < s < 0
implies that

∫ 1

κ−m
tsdt = 1

1 + s
− κ

−m(1+s)

1 + s
= O(1).

Case 2. In the case where s � −1, we can find an analytic function G̃(z) such that
it is a holomorphic function in C\�ε, and continuous on its closure and additionally
satisfying that F(λ) = G̃(λ)1+[−s].10 In this case, G̃(A), defined by the complex
functional calculus

G̃(A) = − 1

2π i

∮

∂�ε

G̃(z)(A − z I )−1dz,

has symbol belonging to S
sm

1+[−s]
ρ,δ (M × I), this in view of Case 1, because G̃ satisfies

the estimate |G̃(λ)| � C |λ| s
1+[−s] , with −1 < s

1+[−s] < 0. By observing that

σF(A)(x, ξ) = − 1

2π i

∮

∂�ε

F(z)R̂z(x, ξ)dz = − 1

2π i

∮

∂�ε

G̃(z)1+[−s]R̂z(x, ξ)dz

= σG̃(A)1+[−s](x, ξ),

and computing the symbol σG̃(A)1+[−s](x, ξ) by iterating 1+[−s]-times the asymptotic
formula for the composition in the global pseudo-differential calculus, we can see that
the term with higher order in such expansion is σG̃(A)

(x, ξ)1+[−s] ∈ Sms
ρ,δ(M × I).

Consequently, we have proved that σF(A)(x, ξ) ∈ Sms
ρ,δ(M × I). This completes the

10 [−s] denotes the integer part of −s.
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proof for the first part of the theorem. For the second part of the proof, let us denote
by a−#(x, ξ, λ) the symbol of the parametrix to A − λI , in Corollary 3.3. Let Pλ =
Op(a−#(·, ·, λ)).Because λ ∈ Resolv(A) for λ ∈ ∂�ε, (A−λ)−1−Pλ is a smoothing
operator. Consequently, from Lemma 4.1, we deduce that

σF(A)(x, ξ)

= − 1

2π i

∮

∂�ε

F(z)R̂z(x, ξ)dz

= − 1

2π i

∮

∂�ε

F(z)a−#(x, ξ, z)dz − 1

2π i

∮

∂�ε

F(z)(R̂z(x, ξ) − a−#(x, ξ, z))dz

≡ − 1

2π i

∮

∂�ε

F(z)a−#(x, ξ, z)dz mod S−∞(M × I).

The asymptotic expansion (4.2) came from the construction of the parametrix in the
global pseudo-differential calculus (see Proposition 2.33). ��

4.2 Gårding inequality

In this subsection, we prove the Gårding inequality for the global pseudo-differential
calculus. To do so, we need some preliminaries.

Proposition 4.3 Let 0 � δ < ρ � 1. Let a ∈ Smρ,δ(M × I) be an L-elliptic global
symbol where m � 0 and let us assume that a > 0. Then, a is parameter elliptic with
respect to R− := {z = x + i0 : x < 0} ⊂ C. Furthermore, for any number s ∈ C,

B̂(x, ξ) ≡ a(x, ξ)s := exp(s log(a(x, ξ))), (x, ξ) ∈ M × I

defines a symbol B̂(x, ξ) ∈ Sm×Re(s)
ρ,δ (M × I).

Proof From the estimates,

sup
(x,ξ)

|〈ξ 〉−ma(x, ξ)| < ∞, sup
(x,ξ)

|〈ξ 〉ma(x, ξ)−1| < ∞,

we deduce that

〈ξ 〉−m |a(x, ξ)| ⊂ [c,C],

where c,C > 0 are positive real numbers. Now, for every λ ∈ R−, we have

|(|λ| 1
m + 〈ξ 〉)m(a(x, ξ) − λ)−1|

� |(|λ| 1
m + 〈ξ 〉)m(〈ξ 〉m − λ)−1(〈ξ 〉m − λ)(a(x, ξ) − λ)−1|

� |(|λ| 1
m + 〈ξ 〉)m(〈ξ 〉m − λ)−1||(〈ξ 〉m − λ)(a(x, ξ) − λ)−1|

� |(|λ| 1
m + 〈ξ 〉)m(〈ξ 〉m − λ)−1|.
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By fixing again λ ∈ R−, we observe that from the compactness of [0, 1/2] we
deduce that

sup
0�|λ|�1/2

|(|λ| 1
m + 〈ξ 〉)m(〈ξ 〉m − λ)−1| � sup

0�|λ|�1/2
|〈ξ 〉m(〈ξ 〉m − λ)−1|

� sup
0�|λ|�1/2

|〈ξ 〉m(〈ξ 〉m − λ)−1|

� sup
0�|λ|�1/2

|(1 − λ〈ξ 〉−m)−1|

� 1.

On the other hand,

sup
|λ|�1/2

|(|λ| 1
m + 〈ξ 〉)m(〈ξ 〉m − λ)−1|

= sup
|λ|�1/2

|(|λ| 1
m 〈ξ 〉−1 + 1)m(1 − 〈ξ 〉−mλ)−1|

= sup
|λ|�1/2

|(〈ξ 〉−1 + |λ|− 1
m )m |λ|(1 − 〈ξ 〉−mλ)−1|

� sup
|λ|�1/2

|〈ξ 〉−m |λ|(−λ)−1〈ξ 〉m |

= 1.

So, we have proved that a is parameter elliptic with respect to R−. To prove that
B̂(x, ξ) ∈ Sm×Re(s)

ρ,δ (M × I), we observe that for Re(s) < 0, Theorem 4.2 can be
applied. If Re(s) � 0, then there exists k ∈ N such that Re(s) − k < 0. Con-
sequently, from the spectral calculus of matrices, we deduce that a(x, ξ)Re(s)−k ∈
Sm×(Re(s)−k)
ρ,δ (M × I). So, from the global pseudo-differential calculus, we conclude

that

a(x, ξ)s = a(x, ξ)s−ka(x, ξ)k ∈ Sm×Re(s)
ρ,δ (M × I).

Thus, the proof is complete. ��
Corollary 4.4 Let 0 � δ, ρ � 1. Let a ∈ Smρ,δ(M × I), be an L-elliptic sym-

bol where m � 0 and let us assume that a > 0. Then, B̂(x, ξ) ≡ a(x, ξ)
1
2 :=

exp( 12 log(a(x, ξ))) ∈ S
m
2

ρ,δ(M × I).

Now, we prove the following lower bound.

Theorem 4.5 (Gårding inequality) For 0 � δ < ρ � 1, let a(x, D) : C∞
L (M) →

D′
L(M) be an operator with symbol a ∈ Smρ,δ(M × I), m ∈ R. Let us assume that

A(x, ξ) := 1

2
(a(x, ξ) + a(x, ξ)), (x, ξ) ∈ M × I, a ∈ Smρ,δ(M × I)
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satisfies

|〈ξ 〉m A(x, ξ)−1| � C0.

Then, there exist C1,C2 > 0, such that the lower bound

Re(a(x, D)u, u) � C1‖u‖Hm
2 (M)

− C2‖u‖2L2(M)

holds true for every u ∈ C∞
L (M).

Proof In view of that,

A(x, ξ) := 1

2
(a(x, ξ) + a(x, ξ)), (x, ξ) ∈ M × I, a ∈ Smρ,δ(M × I)

satisfies

|〈ξ 〉m A(x, ξ)−1| � C0,

and we get

〈ξ 〉−m A(x, ξ) � 1/C0.

This implies that

A(x, ξ) � 1

C0
〈ξ 〉m,

and for C1 ∈ (0, 1
C0

) we have that

A(x, ξ) − C1〈ξ 〉m �
(

1

C0
− C1

)
〈ξ 〉m > 0.

If 0 � δ < ρ � 1, from Corollary 4.4, we have

q(x, ξ) := (A(x, ξ) − C1〈ξ 〉m)
1
2 ∈ S

m
2

ρ,δ(M × I).

From the symbolic calculus, we obtain

q(x, D)q(x, D)∗ = A(x, D) − C1Op(〈ξ 〉m) + r(x, D), r(x, ξ) ∈ Sm−(ρ−δ)
ρ,δ (M × I).
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Now, let us assume that u ∈ C∞
L (M). DenotingMs := (1+ L◦L)

s
2ord(L) = Op(〈ξ 〉s),

s ∈ R, we have

Re(a(x, D)u, u) = 1

2
((a(x, D) + Op(a∗))u, u) = (A(x, D)u, u)

= C1(Mmu, u) + (q(x, D)q(x, D)∗u, u) + (r(x, D)u, u)

= C1(Mmu, u) + (q(x, D)∗u, q(x, D)∗u) − (r(x, D)u, u)

� C1‖u‖Hm
2 (M)

− (r(x, D)u, u)

= C1‖u‖Hm
2 (M)

− (M−m−(ρ−δ)
2

r(x, D)u,Mm−(ρ−δ)
2

u).

Observe that

(M−m−(ρ−δ)
2

r(x, D)u,Mm−(ρ−δ)
2

u) � ‖M−m−(ρ−δ)
2

r(x, D)u‖L2(M)‖u‖
Hm−(ρ−δ)

2 (M)

= ‖r(x, D)u‖
H−m−(ρ−δ)

2 (M)
‖u‖

Hm−(ρ−δ)
2 (M)

� C1‖u‖
Hm−(ρ−δ)

2 (M)
‖u‖

Hm−(ρ−δ)
2 (M)

,

where in the last line we have used the Sobolev boundedness of r(x, D) from

Hm−(ρ−δ)
2 (M) intoH−m−(ρ−δ)

2 (M). Consequently, we deduce the lower bound

Re(a(x, D)u, u) � C1‖u‖Hm
2 (M)

− C‖u‖2
Hm−(ρ−δ)

2 (M)

.

If we assume for a moment that for every ε > 0, there exists Cε > 0, such that

‖u‖2
L2

m−(ρ−δ)
2

(M)
� ε‖u‖2Hm

2 (M)
+ Cε‖u‖2L2(M)

, (4.3)

for 0 < ε < C1 we have

Re(a(x, D)u, u) � (C1 − ε)‖u‖2Hm
2 (M)

− Cε‖u‖2L2(M)
.

So, with the exception of the proof of (4.3) in view of the analysis above, for the proof
of Theorem 4.5 we only need to prove (4.3). However, we will deduce it from the
following more general lemma. ��
Lemma 4.6 Let us assume that s � t � 0 or that s, t < 0. Then, for every ε > 0,
there exists Cε > 0 such that

‖u‖2
L2,L
t (M)

� ε‖u‖2
L2,L
s (M)

+ Cε‖u‖2L2(M)
(4.4)

holds true for every u ∈ C∞
L (M).
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Proof Let ε > 0. Then, there exists Cε > 0 such that

〈ξ 〉2t − ε〈ξ 〉2s � Cε,

uniformly in ξ ∈ I. Then, (4.4) follows from the Plancherel theorem. Indeed,

‖u‖2
L2,L
t (M)

=
∑

ξ∈I
〈ξ 〉2t |̂u(ξ)|2 �

∑

ξ∈I
(ε〈ξ 〉2s + Cε)|̂u(ξ)|2

= ε‖u‖2
L2,L
s (M)

+ Cε‖u‖2L2(M)
,

completing the proof. ��
Corollary 4.7 Let a(x, D) : C∞

L (M) → D′
L(M) be an operator with symbol a ∈

Smρ,δ(M × I), m ∈ R. Let us assume that

a(x, ξ) � 0, (x, ξ) ∈ M × I,

satisfies

|〈ξ 〉ma(x, ξ)−1| � C0.

Then, there exist C1,C2 > 0, such that the lower bound

Re(a(x, D)u, u) � C1‖u‖Hm
2 (M)

− C2‖u‖2L2(M)

holds true for every u ∈ C∞
L (M).

5 L2-estimates for pseudo-differential operators

In this section,we prove the following analogue of theCalderón–Vaillancourt theorem,
see [14, 15].

Theorem 5.1 Let a(x, D) : C∞
L (M) → D′

L(M) be a pseudo-differential operator
with symbol a ∈ S0ρ,δ(M × I) with 0 � δ < ρ � 1. Then a(x, D) extends to a

bounded operator on L2(M).

Proof Assume first that a(x, ξ) ∈ S−m0
ρ′,δ′ (M × I), where m0 > 0. The kernel of

a(x, D) = Op(a), Ka(x, y), belongs to L∞(M × M) for m0 large enough. Indeed,
by using

Ka(x, y) =
∑

ξ∈I
uξ (x)vξ (y)a(x, ξ),
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let us identify for which m0, a(x, D) is Hilbert–Schmidt. Since, a(x, D) is Hilbert–
Schmidt if and only if Ka ∈ L2(M × M). By simple calculations, we obtain

‖Ka(x, y)‖L2(M×M) �
∑

ξ∈I
sup
x∈M

|a(x, ξ)|‖uξ (x)vξ (y)‖L2(M×M)

�
∑

ξ∈I
〈ξ 〉−m0‖uξ‖L2(M)‖vξ‖L2(M)

=
∑

ξ∈I
〈ξ 〉−m0 .

Thus, for m0 � s0, a(x, D) is Hilbert–Schmidt on L2(M) and, consequently, a
bounded operator on L2(M).

Next by induction, we prove that a(x, D) is L2-bounded if p(x, ξ) ∈ S−m0,L
ρ′,δ′ (M ×

I), for m0 < m � −(ρ′ − δ′). To do so, for u ∈ C∞(M) we form

‖a(x, D)u‖2L2(M)
= (a(x, D)u, a(x, D)u)L2(M)

= (a∗(x, D)a(x, D)u, u)L2(M)

= (b(x, D)u, u)L2(M),

where b(x, D) = a∗(x, D)a(x, D) has a symbol in S2m,L
ρ′,δ′ (M×I), for 0 � δ′ < ρ′ �

1. From the induction hypothesis, the continuity of a(x, D) for all a ∈ S2m,L
ρ′,δ′ follows

successively for m � −m0
2 ,−m0

4 , . . . ,− m0
2�0

, . . . , �0 ∈ N, and hence for m � − m0
2�0

,

where m0
2�0

< ρ′ − δ′, after a finite number of steps.

Assume that a(x, ξ) ∈ S0,L
ρ′,δ′(M × I), and choose

M > 2 sup
(x,ξ)

|a(x, ξ)|2,

then c(x, ξ) = (M − a(x, ξ)a(x, ξ)∗)1/2 ∈ S0,L
ρ′,δ′(M × I). Now, we have

c(x, D)∗c(x, D) = M − a∗(x, D)a(x, D) + r(x, D),

where r ∈ S−(ρ′−δ′)
ρ′,δ′ (M × I). Hence, ‖a(x, D)‖B(L2) � M + ‖r(x, D)‖B(L2). ��

Remark 5.2 For the L p-Lq -boundedness of pseudo-differential operators in the setting
of non-harmonic analysis, we refer the reader to [17].

6 Global solvability for evolution problems

In this section, we apply the Gårding inequality to some problems of PDEs, the global
solvability of parabolic and hyperbolic type of problems associated with the non-
harmonic pseudo-differential calculus. More precisely, we study the existence and



Global functional calculus, lower/upper bounds… Page 43 of 47 50

uniqueness of the solution of the Cauchy problem:

(IVP) :
{

∂v
∂t = K (t, x, D)v + f ,

v(0) = u0,
(6.1)

where the initial data u0 ∈ L2(M), K (t) := K (t, x, D)with a symbol in Smρ,δ(M×I),

f ∈ L2([0, T ]×M) � L2([0, T ], L2(M)),m > 0, and a suitable positivity condition
is imposed on K .

We say that the problem (6.1) has a solution if there exists v ∈ D ′((0, T ) × M)

which satisfies the equation in (6.1) with the initial condition v(0) = u0 ∈ L2(M)

such that v ∈ C1([0, T ], L2(M))
⋂

C([0, T ],Hm,L(M)).

In what follows, we assume that11

Re(K (t)) := 1

2
(K (t) + K (t)∗), 0 � t � T ,

is L-elliptic. Under such assumption, we prove the existence and uniqueness of the
solution v ∈ C1([0, T ], L2(M))

⋂
C([0, T ],Hm,L(M)). We start with the following

energy estimate.

Theorem 6.1 Let K (t) = K (t, x, D), 0 � δ < ρ � 1, be a pseudo-differential
operator of order m > 0 with a symbol in Smρ,δ(M × I). Assume that Re(K (t)) is an
L-elliptic operator, for every t ∈ [0, T ] with T > 0. If

v ∈ C1([0, T ], L2(M))
⋂

C([0, T ],Hm,L(M))

is a solution of the problem (6.1), then there exist C,C ′(T ) > 0 such that

‖v(t)‖L2(M) � C‖u0‖2L2(M)
+ C ′(T )

∫ T

0
‖(∂t − K (τ ))v(τ )‖2L2(M)

dτ

holds for every 0 � t � T .

Moreover, we also have the estimate

‖v(t)‖L2(M) � C‖u0‖2L2(M)
+ C ′(T )

∫ T

0
‖(∂t − K (τ )∗)v(τ )‖2L2(M)

dτ.

Proof Let v ∈ C1([0, T ], L2(M)) ∩ C([0, T ],Hm,L(M)). Let us start by observing
that v ∈ C([0, T ],Hm

2 ,L(M)) because of the embedding Hm,L ↪→ Hm
2 ,L . This

fact will be useful later because we will use the Gårding inequality applied to the
operator Re(K (t)). So, v ∈ Dom(∂τ − K (τ )) for every 0 � τ � T . In view of the
embeddingHm,L ↪→ L2(M), we also have that v ∈ C([0, T ], L2(M)). Let us define

11 This means that A = K (t) is strongly L-elliptic.
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f (τ ) := Q(τ )v(τ ), Q(τ ) := (∂τ − K (τ )), for every 0 � τ � T . Observe that

d

dt
‖v(t)‖2L2(M)

= d

dt
(v(t), v(t))L2(M)

=
(
dv(t)

dt
, v(t)

)

L2(M)

+
(

v(t),
dv(t)

dt

)

L2(M)

= (K (t)v(t) + f (t), v(t))L2(M) + (v(t), K (t)v(t) + f (t))L2(M)

= (
(K (t) + K (t)∗)v(t), v(t)

)
L2(M)

+ 2Re( f (t), v(t))L2(M)

= Re(K (t)v(t), v(t))L2(M) + 2Re( f (t), v(t))L2(M).

Now, from the Gårding inequality,

Re(−K (t)v(t), v(t)) � C1‖v(t)‖Hm
2 ,L

(M)
− C2‖v(t)‖2L2(M)

,

and from the parallelogram law, we have

2Re( f (t), v(t))L2(M) � 2Re( f (t), v(t))L2(M) + ‖ f (t)‖2L2(M)
+ |v(t)|2L2(M)

= ‖ f (t) + v(t)‖2 � ‖ f (t) + v(t)‖2 + ‖ f (t) − v(t)‖2
= 2‖ f (t)‖2L2(M)

+ 2‖v(t)‖2L2(M)
.

Thus, we obtain

d

dt
‖v(t)‖2L2(M)

� 2
(
C2‖v(t)‖2L2(M)

− C1‖v(t)‖Hm
2 ,L

(M)

)
+ 2‖ f (t)‖2L2(M)

+ 2‖v(t)‖2L2(M)
.

So, we have proved that

d

dt
‖v(t)‖2L2(M)

� ‖ f (t)‖2L2(M)
+ ‖v(t)‖2L2(M)

.

By using Gronwall’s Lemma, we obtain the energy estimate

‖v(t)‖2L2(M)
� C‖u0‖2L2(M)

+ C ′(T )

∫ T

0
‖ f (τ )‖2L2(M)

dτ, (6.2)

for every 0 � t � T , and T > 0. To finish the proof, we can change the calculations
above with v(T − ·) instead of v(·), f (T − ·) instead of f (·) and Q∗ = −∂t − K (t)∗
(or equivalently, Q = ∂t − K (t)) instead of Q∗ = −∂t + K (t)∗ (or equivalently,
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Q = ∂t − K (t)) using that Re(K (T − t)∗) = Re(K (T − t)) to deduce that

‖v(T − t)‖2L2(M)

� C‖u0‖2L2(M)
+ C ′(T )

∫ T

0
‖(−∂t + K (T − t)∗)v(T − τ)‖2L2(M)

dτ

= C‖u0‖2L2(M)
+ C ′(T )

∫ T

0
‖(−∂t − K (t)∗)v(s)‖2L2(M)

ds.

So, we conclude the proof. ��
Theorem 6.2 Let K (t) = K (t, x, D) ∈ Smρ,δ(M × I), 0 � δ < ρ � 1, be a pseudo-
differential operator of order m > 0, and let us assume that Re(K (t)) is L-elliptic,
for every t ∈ [0, T ] with T > 0. Let f ∈ L2(M). Then there exists a unique solution
v ∈ C1([0, T ], L2(M))

⋂
C([0, T ],Hm,L(M)) of the problem (6.1). Moreover, v

satisfies the energy estimate

‖v(t)‖2L2(M)
�
(
C‖u0‖2L2(M)

+ C ′‖ f ‖2L2([0,T ],L2(M))

)
,

for every 0 � t � T .

Proof The energy estimate (6.2) and the classical Picard iteration theorem imply
the existence result. Now, to show the uniqueness of v, let us assume that u ∈
C1([0, T ], L2(M))

⋂
C([0, T ],Hm,L(M)) is also a solution of the problem

{
∂u
∂t = K (t, x, D)u + f , u ∈ D ′((0, T ) × M),

u(0) = u0.

Then, ω := v − u ∈ C1([0, T ], L2(M))
⋂

C([0, T ],Hm,L(M)) solves the problem

{
∂ω
∂t = K (t, x, D)ω, ω ∈ D ′((0, T ) × M),

ω(0) = 0.

From Theorem 6.1 it follows that ‖ω(t)‖L2(M) = 0, for all 0 � t � T . Hence, from
the continuity in t of the functions we have that v(t, x) = u(t, x) for all t ∈ [0, T ]
and a.e. x ∈ M . ��
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