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Abstract

We consider several general sequential conditions for convolvability of two Rou-
mieu ultradistributions on RY in the space D’ M} and prove that they are equivalent
to the convolvability of these ultradistributions in the sense of Pilipovi¢ and

. . .. —{M
Prangoski. The discussed conditions, based on two classes U™} and [U{ o} of
approximate units and corresponding sequential conditions of integrability of
Roumieu ultradistributions, are analogous to the known convolvability conditions in

the space D' of distributions and in the space D'™») of ultradistributions of Beurling
type. Moreover, the following property of the convolution and ultradifferential

operator P(D) of class {M,} is proved: if S, T € D'} (R?) are convolvable, then
P(D)(S*T) = (P(D)S)«T =S« (P(D)T).
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1 Introduction

Deep investigations of the convolution of two ultradistributions of Roumieu type
(that we call shorter Roumieu ultradistributions) in the non-quasianalytic case were
carried out via é-tensor product by Pilipovi¢ and Prangoski in [19] and, with
important improvements, by Dimovski et al. in [7]. The authors gave there general
functional definitions and proved fundamental results on convolvability and the
convolution of Roumieu ultradistributions in a way analogous to the known general
approaches of Chevalley and Schwartz in case of distributions. For other aspects of
the theory, see, e.g., [1, 2, 4, 6, 8, 20, 24]. See also the recent article [21] for results
concerning the quasianalytic case.

The aim of this paper is to discuss sequential conditions playing a similar role in
the study of the convolution of Roumieu ultradistributions to those used in the
sequential theories of the convolution of distributions (see [5, 9, 15, 23]) and
ultradistributions of Beurling type (see [1, 10, 11]). The conditions are based on two
types of R-approximate units (Definitions 4.2 and 4.3), being the counterparts of the
approximate units in the sense of Dierolf and Voigt (see [5]). The respective classes

UM} and U{M”} of R-approximate units are used in a sequential characterization of
integrable Roumieu ultradistributions (see [16]), analogous to that proved by
Pilipovi¢ in [18] in case of integrable ultradistributions of Beurling type. As a
consequence, we give in this paper several sequential definitions of the convolution
of Roumieu ultradistributions (Definition 7.2). We prove in Theorem 7.1, that all
our sequential definitions of the convolution of Roumieu ultradistributions are
equivalent to those given in [19] and [7].

An important application of the notion of $R-approximate units is presented in the
proof of Theorem 8.1, describing a non-trivial property of the convolution of
Roumieu ultradistributions and ultradifferential operators of the class {M,}.

It is worth to recall that Pilipovi¢ in [18] used a different class of approximate
units to prove the same property in case of the convolution of ultradistributions of
Beurling type. Our proof of Theorem 8.1 is based on similar ideas but discussions
concerning the class R play an essential role in our case.

2 Preliminaries

We consider complex-valued C*°-functions and Roumieu ultradistributions defined
on R? (or on an open subset of RY) using the standard multi-dimensional notation in
RY.

To mark the dimension of R?, which is essential in some situations, we denote
the considered spaces of test functions and the corresponding spaces of Roumieu
ultradistributions simply by adding the index d at the end of the respective symbol.
Moreover, if necessary, the constant function 1 on R will be denoted by 1, and the

value of T € D' on ¢ € DI by (T, ¢),.
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The spaces of test functions and Roumieu ultradistributions are defined by a
given sequence (Mp)pGNO of positive numbers. Usually some of the following

conditions are imposed on the sequence (M,):

(Ml) MngMpflMerlv D€ Na

(M2) Mp SAHquMpfqa D,q¢€ NOv q SP%
M2y M,<AH’M,_;, peN;
M.3) 3% M M <AgMML L g eN;

M3y > M, M, < oo,
for certain constants A > 0 and H > 0. We can and will assume that H > 1.

Clearly, conditions (M.2") and (M.3') are particular cases of conditions (M.2) and
(M.3), respectively.

For simplicity, we will assume in the whole paper that the sequence (M),) satisfies
the three conditions (M.1), (M.2) and (M.3), not discussing which of them can be
weakened or omitted in the formulations of presented theorems.

It follows, by induction, from (M.1) that M,, - M, < MoM, 1, for p,q € Ny (see
[16]). Under the assumption that M, = 1, which we adopt hereinafter for simplicity,
the last inequality admits the form:

M, -M;<M,,, p,q< Ny (2.1)

It will be convenient to extend the sequence (M) to (My) rend by means of the

PENg
formula:

My == My 11y, k= (k... ka) € N

Due to the extended notation, we immediately get the extended version of inequality
(2.1):

M My <My, j.keNg. (2.2)
The associated function of the sequence (M) is given by
M(p) = sup 1og+ﬁ7 p>0.
PENo M,

For an arbitrary k = (ky,...,ky) € Ng denote by D* the differential operator of the

form
1o\ /1 o\~
pDr=ph...pke .— (Z ) ... (22 .
1 d <i6x1> (i@xd)

An essential role in our considerations will be played by Komatsu’s lemma proved
in [14] (see Lemma 3.4 and Proposition 3.5) in which numerical sequences
monotonously increasing to infinity are involved. The class of such sequences
(rp)peNO (with ry = 1) was denoted by R in [19] and [7] and we preserve this
notation in our paper.
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For every (1,) € R we call (R,) the product sequence corresponding to (r,) if its
elements are of the form R, := Hf:o r; for p € Ny (i.e., Ry = 1).

Let us recall Komatsu’s lemma in the following equivalent form which
emphasizes the symmetry of two assertions:

Lemma 2.1 Let (ax),cy, be a sequence of nonnegative numbers.

(D) The following two conditions are equivalent:

a
(A1) Fnso suph—i<oo,
keNg

Ak
(B1)  Y(n)em sup Re <o0;
keNo Ik
(II) the following two conditions are equivalent:

(Az) Vh >0 sup (hkak) <00,
keNp

(B2)  Fryem kSUP (Reay) < oo,

eNp

where (Ry) is the product sequence corresponding to the sequence (ry) € R.

Remark 2.1 The above lemma can be easily extended to the d-dimensional version
concerning sequences (ay) kend of nonnegative numbers.

It is worth noticing that Lemma 2.1 delivers two simple characterizations (dual to
each other): 1° of slowly increasing sequences (i.e., satisfying (A;)), 2° of rapidly
decreasing sequences (i.e., satisfying (A,)) of nonnegative numbers. They are
expressed through respective properties of sequences, described by product
sequences corresponding to sequences of the class ‘R.

In what follows we will also apply the following simple lemma (see [16]):

Lemma 2.2 For every (r,) € R, the following inequality holds:
R - Ry < Ry k,l € Ng, (2.3)
where (R,,) is the product sequence corresponding to (r,).
It will be convenient to use for 2 > 0 and (7,) € R the following notation:
Mr,) = (%), where 7o=1 and 7, =4 for p e N. (2.4)

Clearly, if (r,) € R, then A(r,) € R for 4> 1. Moreover, A(r,) € R for 0<i<1 in
case (r,) € Rand r; > 27",

3 Ultradifferentiable functions

For a given complex-valued function ¢ on R? and a compact set K in R? denote

& Birkhauser
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ol = sup lp(x)[;  llollx := sup [p(x)[.
xeR? xek

For a given sequence (M,), a regular compact set K in R? and h > 0, the symbol

S%{’L}, will mean the locally convex space (l.c.s.) of all C*-functions ¢ on R? such

that

Dk
CIK,h((P) ‘= sup H (/)”K

<00, 3.1
keNg hi M G

with the topology defined by the semi-norm gk, given above, while the symbol
D%{ 5 will mean the Banach space of all C*°-functions ¢ satisfying (3.1) and having
supports contained in K, with the topology of the norm gg in (3.1).

For a fixed sequence (M,,), we consider the following locally convex spaces of

ultradifferentiable functions on R%:

MF [— 3 MI’ . Ml’ o— 1 Mf’ .
D;(,d}'_ lim D;(,h,i{v Djz = lim chd}y (3.2)
h—oo KCCR?
My _ s : {M,}
& "= lim - lim &y, (3.3)

KccR! h—oo

where the symbol K CC R? means that compact sets K grow up to R?.
Moreover, for a given (M,,), we define

M} {M,}
Dty = h_m, Dy"has

h—00

where D?f” ,id is the Banach space of all C*-functions ¢ on R such that

10l i= sup{ (HM0) D0l k€ N b<oc, (3.4)

with the norm || - ||, defined above.

For a given regular compact set K C R? and given sequences (M,) and (r,) € R,
g\@) , the Banach space of all C*-functions ¢ on R? having

supports contained in K such that

we denote by D

1Dl
Qllg () = SUp ——— <0 3.5
| ”K’m kend Ry M (3.5)

with the norm |[| - [[ ., defined above.

The following result is essentially due to Komatsu [14] (see also [4, 16]), since it
is a consequence of his Lemma 2.1 recalled above.

Proposition 3.1 We have the equality

W Birkhiuser
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) _ "

lim DY)
lim
(rp)eR

D{

where the space Dgﬁ’}is defined in (3.2).

For given (M,) and (r,) € R, we denote by D{m”(}, .4 the Banach space of all C**-

functions ¢ on R? such that

ol = sup 120l (3.6)
(1p) ~ keNd RiyM; ’ .

with the norm || - [|, , defined in (3.6).
For a given sequence (M,), the following projective description of the space
D{M”} follows from the results proved in [3, 7, 21]:

D) = lim D
(e

*,(rp):d?

where the equality holds in the sense of l.c.s.
We denote by B{M"} the completion of D{M”} i ix j

In [16], the following assertion concerning the product of functions in D{,c”j is

proved:

Proposition 3.2 If ¢,,0, € D%”j, then @, - @, € D}ﬁfﬂj Moreover, for every
(r,) € R such that ry > 2 the inequality holds:

@1 - @2l < lleillyz - lo2lls 20 (3.7)
where (1,)/2 is meant in the sense of (2.4).

Remark 3.1 The assertion of Proposition 3.2 is true for functions ¢, ¢, from the

space DiM”} and semi-norms (3.5).

Remark 3.2 We may assume, if necessary, that the considered sequence (r,) € R

satisfies for any given constant ¢ > 0 the inequality 7, > ¢ for all p € N. In fact, we

have [|¢l|,,<oc if and only if ||(p||(~) <oo for all ¢ € D({IM”} with the sequence
4 p

(7,) € R defined by 7y = 1 and 7, := 1, for all p € N, where py € N is an index
such that 5, > ¢ for p > po.

4 Roumieu ultradistributions

Definition 4.1 We denote the strong dual of the space DflM”} by D C{IM”} and call it
the space of Roumieu ultradistributions.

& Birkhauser
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The strong dual of the space B({,M”} , denoted by D’f@}, is called the space of

Roumieu integrable ultradistributions.

Remark 4.1 The space DM} s dense in B™} and the respective inclusion

. . . M, . .
mapping is continuous. Consequently, the space D’il "} of Roumieu integrable

M,

ultradistributions is a subspace of the space DM} of Roumieu ultradistributions.

Definition 4.2 By an R-approximate unit, we mean a sequence (IT,) of

ultradifferentiable functions 11, € D{ My} converging to 1 in EiM”} such that the
following property holds for every sequence (r,) € R:

Sup [| Tl ,,) = sup sup (RyMi)~ 1D, < oo, (4.1)
neN neN ng

where (R),) is the product sequence corresponding to (r,).

Definition 4.3 By a special R-approximate unit, we mean an R-approximate unit
(11,,) such that for every compact set K C R, there exists an index ng € N such that
,(x) = 1 for all n>ng and x € K.

My}

We denote the class of all R-approximate units on R? by [U{ and the class of

all special R-approximate units on R? by [U{M”}

Remark 4.2 By the Denjoy—Carleman theorem, the defined above spaces of

. . . —{M, .
ultradifferentiable functions as well as the classes [UL{iM”} and (U({i oot approximate
units contain sufficiently many members.

5 Integrability of Roumieu ultradistributions

We formulate below a characterization of integrable Roumieu ultradistributions, in
the form of five equivalent conditions, which is an analog of the theorem of Dierolf
and Voigt concerning integrable distributions (see [5]) and of the theorem of
Pilipovi¢ concerning ultradistributions of Beurling type (see [18]). The proof of the
theorem 1is given in [16].

Theorem 5.1 Let VD {M”}. The following conditions are equivalent:

A ve D’gwd}, i.e., V is continuous on D{ M) in the topology induced by BL{,M”},

which means that there are a sequence (r,) € R and a constant C > 0 such
that the inequality

V.ol <Cliell, (5.1)

holds for all ¢ € DI

W Birkhiuser



26 Page 8 of 20 S. Mincheva-Kaminska

(B) there is a sequence (r,) € R with the property that for every & > 0, there
exists a regular compact set K C RY such that the inequality

v, o) <elloll,,)

holds for ¢ € D;{,M”} with supp ¢ NK = {);
©) for every (1,) € U_J({IM”} the sequence ((V,11,)) is Cauchy;
D) for every (TI,) € @‘EM"} the sequence ((V,11,)) is Cauchy;
(E) there are a sequence (r,) € R, a constant C > 0 and a regular compact

K C R such that inequality (5.1) holds for ¢ € D(EM”} with supp ¢ N K = ).

Moreover, if V satisfies any of the conditions (A)—(E), then
lim (V,11,) = lim (V,T0,) = (V, 1)

for arbitrary (11,) € U;{,M”} and ({n) € @[{jM”}.

6 Convolution of Roumieu ultradistributions

Pilipovi¢ and Prangoski made in [19] a deep study of the convolution of Roumieu
ultradistributions. The study was based on the investigation of the € tensor product
of the respective spaces of test functions. Let us recall some results proved and
observations made in [19].

The authors use the results on the ¢ tensor product from [14] to prove that

M} pMY o MY & i)
By e Byt = By ®, By,
in the sense of an isomorphism. They consider, analogously to ideas applied in [17]

. . . . M,
to the convolution of measures, the following semi-norms in the space Dix”j:

g(x)Do(x u,
dg.(r,) (@) == sup sup %, RS Di»c’,i-
keNd xeR? k| Mk
Denote by f)gj’d the l.c.s. ng” d} equipped with the topology defined by the family
{4e.r): & €Co, (r,) € R} of semi-norms and the strong dual of @iﬁf’j by

~ / ~
(Diﬁjpj )b. Relations between the strong dual of Difpj and the space D'L{IIKIP} of

integrable Roumieu ultradistributions were studied in [19]. The results obtained in
[19] were then improved in [21], where the equality

= (M1 1M,
(:Dmd)b: DMt (6.1)

was proved in the sense of l.c.s. (see [21, Prop. 5.3 and Prop. 5.4]).

& Birkhauser
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The obtained results allowed the authors to give in [19] the following definitions
of convolvability and the convolution of two Roumieu ultradistributions, analogous
to the Schwartz definition of the convolution of distributions (see [22]):

Definition 6.1 Let S, T € D;{M”}. If the following condition is satisfied:
(S) Vy = (S®T)¢" c DM for all ¢ € DM,

where ¢® is the function of the class £\%"! defined by

¢*(x,y) = p(x+y), xy€R, (6.2)

we say that the Roumieu ultradistributions S, T are convolvable in the sense of (S).

If S, T are convolvable, then the convolution S * T of S and T in Dg,{M”} is defined
by

(S5T, @)y = (Vi laa)rgs @ € DI, (6.3)

=~ M,
where V,, is meant, according to (6.1), as an element of the space D L{” "22 and the

{
constant function 1,4 is meant as an element of the space D L“Clz}d

For each a > 0 consider the subset A,:= {(x,y) € R* : |x+ y|<a} of R* and
the following subspace of Béd”}.

B (80) = {o € B supp ¢ C a4} (6.4)
Denote by ZS’{A ZId} the inductive limit of the spaces defined in (6.4):

B{Aﬂ/g’d} = lim B{M”}( DNg).

a—0oQo

The following result on equivalence of convolvability conditions for Roumieu
ultradistributions was proved in [19]:

Theorem 6.1 Let S,TED;{M”}. The following conditions are equivalent to
condition (S) of convolvability for S and T:

(©0) soTeBM)

(c1) S(T x @) € D{ ”} forall ¢ € D{M”}

and
DI % B 3 (0, )= (S(T % ), 7) € C

is a continuous bilinear mapping for every compact subset K of R%;

W Birkhiuser
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(c3) (S* )T € D{M”} forall ¢ € D{M"} nd
Dgg’}xBLEM”}B( 71)— <(S>i<(p) >€C

is a continuous bilinear mapping for every compact subset K of R?;
(c3) (S* @) (T ) € L, for all ¢, € DEM”}.

Dimovski et al. modified conditions (¢}) and (¢,) and obtained in [7] and [21]
results (under the conditions (M.1), (M.2) and (M.3) imposed on (M,)), which can
be described in the form of the following theorem (see Theorem 8.2 in [7] and
Remark 5.9. in [21]):

Theorem 6.2 Let S, T € D’y/l”} . Each of the following two conditions is equivalent
to condition (S) of convolvability for S and T:

(c1) S(T* @) € D{ ”}for all ¢ € D{M”}

(c2) (S* )T € D{ ”} Sforall ¢ € D{M"}.

Moreover, if any of the conditions (S), (c1), (¢2) holds, then

(KT, @)g = (S(T * @), 1a)g = (S * @)T, La)y (6.5)

M,
for all ¢ € DM
In the next section, we are going to formulate several sequential conditions of
convolvability of Roumieu ultradistributions, which are equivalent to conditions

(S), (c1) and (cz).

7 Sequential convolutions of Roumieu ultradistributions

The notion of R-approximate unit makes it possible to consider several sequential
definitions of the convolution of Roumieu ultradistributions based on corresponding
sequential conditions of convolvability. The conditions require that respective
numerical sequences, corresponding to a given pair of Roumieu ultradistributions
via certain approximate units, are Cauchy sequence (Cauchy s. in short) for all
approximate units from a given class. The first definition of this kind was given for
the convolution of distributions by Vladimirov in [23] and its equivalent versions
were discussed in [5] and [9]. Their counterparts for ultradistributions of Beurling
type were discussed in [10] (see also [1]).

We will prove in Theorem 7.1 that all the sequential definitions are equivalent to
the definition of the general convolution of Roumieu ultradistributions in the sense
of Pilipovi¢ and Prangoski [19]. Our proof of Theorem 7.1 will be based on the
integrability result stated in the previous section.

& Birkhauser
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Definition 7.1 Let S,T € D’;{,M”}. We say that S, T are convolvable in the sense of
(V), (m), (11y), (I12), respectively, if the corresponding condition below holds for

every ¢ € D‘{,M”}:
(V) ((S®T, m,¢"),,) is a Cauchy s. for all (11,) € uitht,
(m) (((m,S) ® (M2T), *),,) is a Cauchy s. for all (1)), (1) € [U{ 2F
(m) ((S)®T,¢"),,) is a Cauchy s. for all (I1,) € [U{M"}
(1,) (<S®(HnT),go )2¢) is a Cauchy s. for all (1,) € uiMt

respectively.

Definition7.2 If S, T € ’D;{M”} are convolvable in the sense of (V), (I1), (1;), (IT2),

respectively, then the convolution of S and T in D;{M”}

defined by the corresponding formula below:

in the respective sense is

(5T, ), = im(S®T, 0%, 9D, () e Ul

(YT, ¢}y 1= lim (M) (T),0%)5, @ € DY, (), () e U™

(SXT, g}y = lim ((,8) ® T, ¢%)0, @ €D, (m,) € U

(S¥T,9), = lim (S@ (1), 9%)y, @D, () € LS,
respectively.

Remark 7.1 Condition (S) of convolvability in Definition 6.1 guarantees, by the
considerations of Pilipovi¢ and Prangoski from Sect. 4 in [19], that the convolution
S*T in the sense of (6.3) exists in D;{M"}. It follows from Theorem 7.1, formulated

below, that the convolvability conditions (V), (11), (II;) and (II;) guarantee that the

corresponding sequential convolutions, defined in Definition 6, exist in D{ M}

In addition to the sequential conditions of convolvability in Dd{ "}, given in
Definition 7.1, one may consider also the conditions (V), (1I), (I;), (TI) being the
modifications of the above ones, which consist in replacing the classes U_ng”} and
[U{ M} of R- approximate units by the classes [U{ "} and UEM” oot special
approximate units, respectively. The modified condltions lead to additional

sequential definitions of the convolution in D{ M} which are counterparts of the
known sequential definitions of the convolution of distributions (see [5, 9, 23]). It
follows from Theorem 5.1 that they are equivalent to all the conditions listed in
Definition 7.1.

Remark 7.2 The convolution of Roumieu ultradistributions in D;{M”} investigated
in [19] and [7] and its sequential versions discussed in this paper is a general notion.

W Birkhiuser
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It embraces various particular cases, e.g., expressed in terms of supports of given
Roumieu ultradistributions.

Remark 7.3 Each of the sequential definitions of the convolution of S and 7, given
in Definition 7.2 under the corresponding conditions, do not depend on the choice of

an approximate unit from the class UM} (U_ng”} or U_JL{ZM”}, respectively), because

() e UM for je{1,2} = (m,)e U}
where Ty, := 11! and T, := 12 for n € N.

Theorem 7.1 Let S, T € D:,{M”}. All the conditions formulated in Definition 7.1 are
equivalent to the condition (S) of convolvability of ultradistributions. If one of these

conditions is satisfied, then all corresponding convolutions of Roumieu ultradis-

My}

tributions S and T exist in D/d{ and the following equalities hold true:

SET = SWT = ST = S«T = S¥T.

Proof We will prove the equivalence of convolvability conditions given in
Definitions 7.1 and 6.1 and in Theorem 6.2 according to the following scheme of
implications:
(m) — ()
/ N\
() s — v — M
N\ /
(M) — (G)

Assume first condition (11) for a fixed ¢ € DL{IM” ) Due to Remark 7.3, there exists
an o € C such that

lim ((11}8) @ (M27), ¢*),; = (7.1)

n—oo

for all (ni!), (m2) € [U;{IM” ). Hence, the double limit

lim <(H}S)®(HJ<2T)» @)y = (7.2)

i,j—00

also exists for all (I1}), (1‘[,2) € ﬂJC{lM”}. Indeed, if (7.2) were not true, then there

would exist an ¢ > 0 and increasing sequences (i,,) and (j,) of positive integers such
that

& Birkhauser
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<(H}"S)®(H]%XT), P°) —a| > ¢,

for all neN, but this would contradicts condition (I1), because

(), (1) € UM} On the other hand, we have
Jim (8@ (I,7), )4 = (M,5) © T, 9%y, (73)

for every fixed n € N, because anT — T in D;{M"} as m — oo and

supp [((1,8)@ (1, 7)) - 0°] C supp [((m,8)2T) - ¢°]

for all n,m € N, while the support of [(IT}S)®T] - ¢* is compact for every n € N.
Clearly, (7.2) and (7.3) imply

lim ((1,S) ® T, ¢*),, = o (7.4)

n—oQ

Consequently, condition (I1;) is satisfied. Moreover, equalities (7.1) and (7.4) yield
the equality

(KT, )y = (S¥T, p), (7.5)

for all ¢ € DfiM"}. Thus, we have proved that (IT) implies (IT;) and equality (7.5)
holds under condition (IT).
Assume now condition (IT;) and fix arbitrarily ¢ € D‘{IM”} and (I1,) € U_J(EM”}. The

equality
(M,S)®T, (pA>2d = ((Mm,S) * T, (/7>d = <S(T * ), Hn>d7 neN,

and condition (I1)) imply that the sequence ((S(T * ¢),11,),) is Cauchy, so S(T x
@) is integrable for all ¢ € D‘{IM”}, by Theorem 5.1. The same equality yields

,,ILIEO«H”S) ® T7 (/)A>2d = <S(T * (p)a 1d>d
for all (,) € U and ¢ € DI e,
(S¥T, )y = (S(T * 9), 1a), (7.6)

for all ¢ € DiM”} . Consequently, we have shown the implication (IT;) = (c¢;) and
that (7.6) is true under the assumption of condition (I1;).

From the above, by symmetry, we conclude the implications (IT) = (II,) and
(M) = (cz) as well as the equalities

(SXT, ), = (S¥T, 0y, @ € DM (1.7)

and
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(S¥T, ), = (S* )T, 1a),, ¢ € DY, (7.8)

which are true under conditions (1) and (I1,), respectively.
By Theorem 6.2, we have (¢;) < (c2) < (S) and the equalities in (6.5) hold
true, if any of the three conditions is satisfied. Hence, by (7.6) and (7.8), we have

<SllT7 q)>d = <S * T7 1d>a [ONS Dc{jMp}v (79)

under the assumption of condition (c;) for j € {1,2}.
Notice that also conditions (S) and (V) are equivalent and each of these condi-
tions implies

(S¥T, @), = (SXT, ), (7.10)

for ¢ € DIEM” h Equality (7.10) is an immediate consequence of Theorem 5.1
applied for V := (S®T) ¢* with ¢ € DiM”} and for (11,) € [Uéy”}.
Finally, assume condition (V) and fix arbitrarily (11}),(n2) e [Ut{iM"} . Then

(I,) € [UidM”} and I,¢" € DédM”} forne N and ¢ € D({ZM”}, where 1, := 1! ® n?
for n € N. Applying a simple property of the tensor product in the spaces D;I;M”} and

D:I{M”} as well as topological isomorphisms described in Theorems 2.1 and 2.3 in
[13], we get the equality:

(MS)@(IT), ¢ )y = (SOT, T,0" )y

for all ¢ € D;{,M”} and n € N. Due to this equality, (V) implies condition (IT) and
thus

(SXT, @), = (SXT, ), (7.11)

for ¢ € DfiM”}. Consequently, the last implication (V) = (1) in the scheme and
equality (7.11), under the assumption of condition (V), are proved.

This completes the proof that all conditions in Definition 7.1 are equivalent and,
moreover, equalities (7.5)—(7.11) show that all the convolutions defined in Defini-
tion 7.2 are equal to the convolution ST defined in (6.3), whenever any of the
considered convolvability conditions is satisfied. O

Remark 7.4 1In addition, one may consider the sequential conditions (V), (1I), (II;),

(TIz) of convolvability of S,T € D;{M”} and the corresponding convolutions S:k]T,

SQT, SET , S¥T of S and T, replacing the classes [U%I”} and U;{,M”} of R-

approximate units by the classes Ung”} and UL{IM”} of special R-approximate units.

The equivalence of conditions (S), (V), (TI), (TI;) and (TI) of convolvability
follows in the same manner as the equivalence of conditions (S), (V), (11), (11;) and
(M) proved in Theorem 7.1 above. The equality of the corresponding convolutions
is an easy consequence of this result.
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Remark 7.5 1t is easy to see that the convolution of Roumieu ultradistributions is

commutative, i.e., SxT = TxS for §,T € D/d{M”}.

8 Ultradifferential property of the convolution

Let us consider an ultradifferential operator P(D) defined by Komatsu in [12] as
follows:

Definition 8.1 An operator of the form

P(D) = Z Cka, ceC (8 1)
keNg '

is called an wultradifferential operator of class {M,} if for every L > 0 there is a
constant Cy, such that

L 4
<C = keNd
lex| < A 0

Clearly, the condition in Definition 8.1 can be equivalently expressed as follows

Viso sup(L_kMk|ck|) < Q.
k

Then according to Lemma 2.1, part (IT), there is a sequence (u,) € R such that
supk(U‘k|Mk|ckD <00, where U, = Hpgk”p- In other words, an ultradifferential
operator of the form (8.1) is of class {M,,} if there are C > 0 and (u,) € R such that

lex] < ke Ng. (8.2)

C
UM ’
Due to Komatsu [12], if (M,) satisfies condition (M.2), then P(D) defines the

{M,
d{ ’}. Moreover,

My}

respective continuous mappings DfiM”} — Dflﬂ/[”} and D;{M"} —D

the series P(D)S = Z cxD'S converges absolutely in DId{M"} forevery S € D;{
keNd

In Theorem 8.1 below we prove an important and non-trivial property of the

convolution of Roumieu ultradistributions. In the proof, we will need the following
very useful result from [19]:

Lemma 8.1 For every sequence (s,) € R, there exists a sequence (r,) € R such
that 1, <s, for p € N and

R,y <2"*R,R, forall p,q€ Nj. (8.3)

W Birkhiuser



26 Page 16 of 20 S. Mincheva-Kaminska

Theorem 8.1 Let S, T € ’D;{M”} be convolvable and let P(D) be an ultradifferential

operator of class {M,}. Then P(D)S and T as well as S and P(D)T are convolvable
and, moreover,

P(D)(S + T) = (P(D)S) « T = S = (P(D)T). (8.4)

Proof Assume that S, T € D;{M”} are convolvable. By the definitions of P(D) and
S*T and by Theorem 5.1, we have

(P(D)(S+T),p) =(S* T,P(=D)g) = ((S® T)(P(~Dx)9)", 124)

= lim (S ® T, 11,[P(~D)p*]) (8.5)

for all (11,) € UédM”} and ¢ € D'

It suffices to prove that the ultradistributions P(D)S and T are convolvable in

My}

D;{M”} and that the first equality of (8.4) holds. The remaining part of the assertion
follows then directly from Remark 7.5. To prove the convolvability of P(D)S and 7,
we have to show that the sequence ((P(D)S ® T,11,¢")),x 18 convergent.

We have

(PD)SRT, M%) = c,(DISRT, Myp") = Y _co(S® T, =D} (T,0"))
xeNg ueNg
=(S®T, P(—Dy)(T,0"))
(8.6)
for all n € N, by (8.1) and the absolute convergence of the respective series.

Comparing the last terms in (8.5) and (8.6), we see that the declared assertion will
be proved if we show the equalities

P(=D,)(11,¢") = M,P(—Dy) "> + v, (8.7)
on R*? for all n € N, where v, are certain functions in D[{,M”} such that
lim (S® T,v,) = 0. (8.8)

Applying (8.1) and Leibniz’ rule and then changing the order of summation, we get,
for all n € N, the equalities

P(=D,)(m,9") = Z (—l)mca Z (?) (Dim,) (D* )"

aeNg i<o

A 1 (B+i
=y o S 0 (P ewtor
ieNg BeENG

= M,P(—D,)¢p" + v,
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on R* with the functions v, defined for x,y € R? by

naEy) =3 Dl (xy) Y (1) (ﬁ ! i) epaDlo(x+y).  (39)

ieN peNG

where A := N¢ \ {(0,...,0)}. This means that equations (8.7) hold for v, defined
in (8.9) and for all n € N. Clearly, (v,) depends on the initial sequence (I1,,).

It suffices to show (8.8). Choose 0 € D({IM”} such that 6(x) = 1 for x € supp ¢. By
(8.9), we have
(SRT,v,) = ((S®RT)0",v,), neN.

{

The sequence (((S® T)0°,T0,)), , is convergent for every (TI,) € Uzgll”}, by the

assumption that S and T are convolvable in D;{M”}. To prove (8.8) it is enough to

show that also (I, + v,,) € UédM” ! Since (), (1,) € @;y”}, for each compact set

K in R* there exists an ng € N such that D'TI,(x,y) = 0 and Ti,(x,y) = 1 for
(x,y) € K,i € N and n > nj. Consequently, in view of (8.9),

M, (x,y) + va(x,y) =1 for (x,y) €K, n> ng.
Therefore it remains to prove, for every (z,) € R, that
sup [vall ) <00, (8.10)

since (1) € U2 and (8.10) implies

sup [[TL, + vyl ) <o0.

neN
Fix an arbitrary (z,) € R. The coefficients of the ultradifferential operator P(D)
satisfy (8.2) for some (u,) € R. Putting s := min{z%,u} for k € N, we have

(s,) € R. By Lemma 8.1, there exists a sequence (r,) € R such that r <g and
inequality (8.3) holds. In addition we assume, according to Remark 3.2, that

n > 16H* for peN, (8.11)

where H > % is a constant from condition (M.2).

Let a € Ng be arbitrarily fixed. For fixed n € N and (5,) € R chosen above,
according to the representation (8.9), we have
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[[1D3vll o, ( ) [ <ﬁ+ >
< - 10
RMM Z Z R|1+t J|Ma j Z l |C/;+l|

ieN j<uo +  pend (8 12)
D0 o Risi-iRipit Mosi-iMp
RipjiMp+; Ryy M,

Applying properties (2.3) and (8.3) (twice) of the sequence (#,) and property (2.1)
and condition (M.2) (twice) of the sequence (M), we get

Riri—jRip4 2Ry

< | < letilplB+i (8.13)
Riy R iR Riy Ry
and
Mari-Mpj AHPHIM, < A2pglHi Bl (8.14)
M MgM; — M, M; -
Moreover, we have
C Rz R);
lepal < nd U (8.15)

- a <
Uip Ujig MpM; Up Uy

by (8.2), properties (2.1) of (M,) and (2.3) of (u,) € R and because n <u for
k € N. The inequalities in (8.13), (8.14) and (8.15) hold for arbitrary o, §,i,j € Ng
such that j <o and will be used later together with the following known estimate:

(ﬁ + i) < oWl (8.16)

1

for a certain B > 0 and all f,i € N{.
It follows from (8.12), due to (8.13)—(8.16), that

|| x ”H 2 ( ) o+ ”D“Jﬂ;jnnn
—— X JA°C 2H —%
RiyM,, ZZ RiyyijiMoyi—j

<
o Btj s (8-17)
-3 ol o) 1D % o
pend RigjiMpj

According to assumption (8. ll) consider the sequences (7,) and (7,) of the class R
defined by 7, := 1, /8H and 7, := 1,/ 16H?, respectively, for p € N. Clearly,

|or+i—ji| ||Doz+i—j1—[ ||oo < HH |
n

22\a+i<i\(21.1) R Mo,
oti—j|Hoti—j

()

and
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gri
2215+ (21_1)2\[3+j| M

<llollz
RipijiMpj ()

for all «, B,i,j € Ng, Jj < a. We deduce from (8.17) and the above estimates that

1Dl _ A%C = (1Y
TM;C < 7”1'[“(?,,) |(/’||(¥p) : Z(E) Z (E) <oo.

ieN peNg
for arbitrary o € N¢ and n € N. Hence
sup an||<rp> = Sup sup T B8 <00
neN neN gend Jor| Vot

and, since 7, <1, for p € N,
sup vl < sup [[Vall ) <00,

i.e., (8.10) is proved, as required. The assertion of Theorem 8.1 is proved. [J

Theorem 8.1 has also been shown in the quasianalytic case in the article [21].
The proof there is given via a completely different method (cf. [21, Cor. 5.10]).
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