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Abstract
We consider several general sequential conditions for convolvability of two Rou-

mieu ultradistributions on Rd in the space D0fMpg and prove that they are equivalent

to the convolvability of these ultradistributions in the sense of Pilipović and

Prangoski. The discussed conditions, based on two classes UfMpg and U
fMpg

of

approximate units and corresponding sequential conditions of integrability of

Roumieu ultradistributions, are analogous to the known convolvability conditions in

the space D0 of distributions and in the space D0ðMpÞ of ultradistributions of Beurling

type. Moreover, the following property of the convolution and ultradifferential

operator P(D) of class fMpg is proved: if S; T 2 D0fMpgðRdÞ are convolvable, then

PðDÞðS � TÞ ¼ ðPðDÞSÞ � T ¼ S � ðPðDÞTÞ:
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1 Introduction

Deep investigations of the convolution of two ultradistributions of Roumieu type

(that we call shorter Roumieu ultradistributions) in the non-quasianalytic case were

carried out via e-tensor product by Pilipović and Prangoski in [19] and, with

important improvements, by Dimovski et al. in [7]. The authors gave there general

functional definitions and proved fundamental results on convolvability and the

convolution of Roumieu ultradistributions in a way analogous to the known general

approaches of Chevalley and Schwartz in case of distributions. For other aspects of

the theory, see, e.g., [1, 2, 4, 6, 8, 20, 24]. See also the recent article [21] for results

concerning the quasianalytic case.

The aim of this paper is to discuss sequential conditions playing a similar role in

the study of the convolution of Roumieu ultradistributions to those used in the

sequential theories of the convolution of distributions (see [5, 9, 15, 23]) and

ultradistributions of Beurling type (see [1, 10, 11]). The conditions are based on two

types of R-approximate units (Definitions 4.2 and 4.3), being the counterparts of the

approximate units in the sense of Dierolf and Voigt (see [5]). The respective classes

UfMpg and U
fMpg

of R-approximate units are used in a sequential characterization of

integrable Roumieu ultradistributions (see [16]), analogous to that proved by

Pilipović in [18] in case of integrable ultradistributions of Beurling type. As a

consequence, we give in this paper several sequential definitions of the convolution

of Roumieu ultradistributions (Definition 7.2). We prove in Theorem 7.1, that all

our sequential definitions of the convolution of Roumieu ultradistributions are

equivalent to those given in [19] and [7].

An important application of the notion of R-approximate units is presented in the

proof of Theorem 8.1, describing a non-trivial property of the convolution of

Roumieu ultradistributions and ultradifferential operators of the class fMpg.
It is worth to recall that Pilipović in [18] used a different class of approximate

units to prove the same property in case of the convolution of ultradistributions of

Beurling type. Our proof of Theorem 8.1 is based on similar ideas but discussions

concerning the class R play an essential role in our case.

2 Preliminaries

We consider complex-valued C1-functions and Roumieu ultradistributions defined

on Rd (or on an open subset of Rd) using the standard multi-dimensional notation in

Rd.

To mark the dimension of Rd, which is essential in some situations, we denote

the considered spaces of test functions and the corresponding spaces of Roumieu

ultradistributions simply by adding the index d at the end of the respective symbol.

Moreover, if necessary, the constant function 1 on Rd will be denoted by 1d and the

value of T 2 D0fMpg
d on u 2 DfMpg

d by hT ;uid.
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The spaces of test functions and Roumieu ultradistributions are defined by a

given sequence ðMpÞp2N0
of positive numbers. Usually some of the following

conditions are imposed on the sequence ðMpÞ:

(M:1) M2
p �Mp�1Mpþ1; p 2 N;

(M:2) Mp�AHpMqMp�q; p; q 2 N0; q� p;
(M:20) Mp�AHpMp�1; p 2 N;

(M:3)
P1

p¼qþ1 Mp�1M
�1
p �AqMqM

�1
qþ1; q 2 N;

(M:30)
P1

p¼1 Mp�1M
�1
p \1;

for certain constants A[ 0 and H[ 0. We can and will assume that H� 1.

Clearly, conditions (M.20) and (M.30) are particular cases of conditions (M.2) and

(M.3), respectively.

For simplicity, we will assume in the whole paper that the sequence ðMpÞ satisfies

the three conditions (M.1), (M.2) and (M.3), not discussing which of them can be

weakened or omitted in the formulations of presented theorems.

It follows, by induction, from (M.1) that Mp �Mq�M0Mpþq for p; q 2 N0 (see

[16]). Under the assumption that M0 ¼ 1, which we adopt hereinafter for simplicity,

the last inequality admits the form:

Mp �Mq�Mpþq; p; q 2 N0: ð2:1Þ

It will be convenient to extend the sequence ðMpÞp2N0
to (MkÞk2Nd

0
by means of the

formula:

Mk :¼ Mk1þ...þkd ; k ¼ ðk1; . . .; kdÞ 2 Nd
0:

Due to the extended notation, we immediately get the extended version of inequality

(2.1):

Mj �Mk �Mjþk; j; k 2 Nd
0: ð2:2Þ

The associated function of the sequence ðMpÞ is given by

MðqÞ ¼ sup
p2N0

logþ
qp

Mp
; q[ 0:

For an arbitrary k ¼ ðk1; . . .; kdÞ 2 Nd
0 denote by Dk the differential operator of the

form

Dk ¼ Dk1

1 � � �D
kd
d :¼ 1

i

o

ox1

� �k1

� � � 1

i

o

oxd

� �kd

:

An essential role in our considerations will be played by Komatsu’s lemma proved

in [14] (see Lemma 3.4 and Proposition 3.5) in which numerical sequences

monotonously increasing to infinity are involved. The class of such sequences

ðrpÞp2N0
(with r0 ¼ 1) was denoted by R in [19] and [7] and we preserve this

notation in our paper.
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For every ðrpÞ 2 R we call ðRpÞ the product sequence corresponding to ðrpÞ if its

elements are of the form Rp :¼
Qp

i¼0 ri for p 2 N0 (i.e., R0 ¼ 1).

Let us recall Komatsu’s lemma in the following equivalent form which

emphasizes the symmetry of two assertions:

Lemma 2.1 Let ðakÞk2N0
be a sequence of nonnegative numbers.

(I) The following two conditions are equivalent:

ðA1Þ 9h[ 0 sup
k2N0

ak
hk

\1;

ðB1Þ 8ðrkÞ2R sup
k2N0

ak
Rk

\1;

(II) the following two conditions are equivalent:

ðA2Þ 8h[ 0 sup
k2N0

ðhkakÞ\1;

ðB2Þ 9ðrkÞ2R sup
k2N0

ðRkakÞ\1;

where ðRkÞ is the product sequence corresponding to the sequence ðrkÞ 2 R:

Remark 2.1 The above lemma can be easily extended to the d-dimensional version

concerning sequences ðakÞk2Nd
0

of nonnegative numbers.

It is worth noticing that Lemma 2.1 delivers two simple characterizations (dual to

each other): 1� of slowly increasing sequences (i.e., satisfying ðA1Þ), 2� of rapidly
decreasing sequences (i.e., satisfying ðA2Þ) of nonnegative numbers. They are

expressed through respective properties of sequences, described by product

sequences corresponding to sequences of the class R.

In what follows we will also apply the following simple lemma (see [16]):

Lemma 2.2 For every ðrpÞ 2 R, the following inequality holds:

Rjkj � Rjlj �Rjkþlj; k; l 2 Nd
0; ð2:3Þ

where ðRpÞ is the product sequence corresponding to ðrpÞ.

It will be convenient to use for k[ 0 and ðrpÞ 2 R the following notation:

kðrpÞ ¼ ðrpÞ; where r0 ¼ 1 and rp ¼ krp for p 2 N: ð2:4Þ

Clearly, if ðrpÞ 2 R, then kðrpÞ 2 R for k� 1. Moreover, kðrpÞ 2 R for 0\k\1 in

case ðrpÞ 2 R and r1 [ k�1.

3 Ultradifferentiable functions

For a given complex-valued function u on Rd and a compact set K in Rd denote
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kuk1 :¼ sup
x2Rd

juðxÞj; kukK :¼ sup
x2K
juðxÞj:

For a given sequence ðMpÞ, a regular compact set K in Rd and h[ 0, the symbol

EfMpg
K;h;d will mean the locally convex space (l.c.s.) of all C1-functions u on Rd such

that

qK;hðuÞ :¼ sup
k2Nd

0

kDkukK
hjkjMk

\1; ð3:1Þ

with the topology defined by the semi-norm qK;h given above, while the symbol

DfMpg
K;h;d will mean the Banach space of all C1-functions u satisfying (3.1) and having

supports contained in K, with the topology of the norm qK;h in (3.1).

For a fixed sequence ðMpÞ, we consider the following locally convex spaces of

ultradifferentiable functions on Rd:

DfMpg
K;d :¼ lim�!

h!1

DfMpg
K;h;d ; DfMpg

d :¼ lim�!
K��Rd

DfMpg
K;d ; ð3:2Þ

EfMpg
d :¼ lim �

K��Rd

lim�!
h!1

EfMpg
K;h;d ; ð3:3Þ

where the symbol K �� Rd means that compact sets K grow up to Rd:
Moreover, for a given ðMpÞ, we define

DfMpg
L1;d :¼ lim�!

h!1

DfMpg
L1;h;d;

where DfMpg
L1;h;d is the Banach space of all C1-functions u on Rd such that

kuk1;h :¼ sup ðhkMkÞ�1kDkuk1 : k 2 Nd
0

n o
\1; ð3:4Þ

with the norm k � k1;h defined above.

For a given regular compact set K � Rd and given sequences ðMpÞ and ðrpÞ 2 R,

we denote by DfMpg
K;ðrpÞ;d the Banach space of all C1-functions u on Rd having

supports contained in K such that

kukK;ðrpÞ :¼ sup
k2Nd

0

kDkukK
RjkjMk

\1 ð3:5Þ

with the norm k � kK;ðrpÞ defined above.

The following result is essentially due to Komatsu [14] (see also [4, 16]), since it

is a consequence of his Lemma 2.1 recalled above.

Proposition 3.1 We have the equality
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DfMpg
K;d ¼ lim �

ðrpÞ2R

DfMpg
K;ðrpÞ;d ;

where the space DfMpg
K;d is defined in (3.2).

For given ðMpÞ and ðrpÞ 2 R, we denote by DfMpg
L1;ðrpÞ;d the Banach space of all C1-

functions u on Rd such that

kukðrpÞ :¼ sup
k2Nd

0

kDkuk1
RjkjMk

\1; ð3:6Þ

with the norm k � kðrpÞ defined in (3.6).

For a given sequence ðMpÞ, the following projective description of the space

DfMpg
L1;d follows from the results proved in [3, 7, 21]:

DfMpg
L1;d ¼ lim �

ðrpÞ2R

DfMpg
L1;ðrpÞ;d;

where the equality holds in the sense of l.c.s.

We denote by _BfMpg
d the completion of DfMpg

d in DfMpg
L1;d .

In [16], the following assertion concerning the product of functions in DfMpg
L1;d is

proved:

Proposition 3.2 If u1;u2 2 D
fMpg
L1;d , then u1 � u2 2 D

fMpg
L1;d . Moreover, for every

ðrpÞ 2 R such that r1 [ 2 the inequality holds:

ku1 � u2kðrpÞ � ku1kðrpÞ=2 � ku2kðrpÞ=2; ð3:7Þ

where ðrpÞ=2 is meant in the sense of (2.4).

Remark 3.1 The assertion of Proposition 3.2 is true for functions u1;u2 from the

space DfMpg
d and semi-norms (3.5).

Remark 3.2 We may assume, if necessary, that the considered sequence ðrpÞ 2 R

satisfies for any given constant c[ 0 the inequality rp [ c for all p 2 N. In fact, we

have kukðrpÞ\1 if and only if kukðerpÞ\1 for all u 2 DfMpg
d with the sequence

ðerpÞ 2 R defined by er0 ¼ 1 and erp :¼ rpþp0
for all p 2 N, where p0 2 N is an index

such that rp [ c for p[ p0.

4 Roumieu ultradistributions

Definition 4.1 We denote the strong dual of the space DfMpg
d by D0fMpg

d and call it

the space of Roumieu ultradistributions.
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The strong dual of the space _BfMpg
d , denoted by D0fMpg

L1;d
, is called the space of

Roumieu integrable ultradistributions.

Remark 4.1 The space DfMpg is dense in _BfMpg and the respective inclusion

mapping is continuous. Consequently, the space D0fMpg
L1 of Roumieu integrable

ultradistributions is a subspace of the space D0fMpg of Roumieu ultradistributions.

Definition 4.2 By an R-approximate unit, we mean a sequence (Pn) of

ultradifferentiable functions Pn 2 DfMpg
d converging to 1 in EfMpg

d such that the

following property holds for every sequence ðrpÞ 2 R:

sup
n2N
kPnkðrpÞ ¼ sup

n2N
sup
k2Nd

0

ðRjkjMkÞ�1kDkPnk1\1; ð4:1Þ

where ðRpÞ is the product sequence corresponding to ðrpÞ.

Definition 4.3 By a special R-approximate unit, we mean an R-approximate unit

ðPnÞ such that for every compact set K � Rd, there exists an index n0 2 N such that

PnðxÞ ¼ 1 for all n� n0 and x 2 K.

We denote the class of all R-approximate units on Rd by U
fMpg
d and the class of

all special R-approximate units on Rd by U
fMpg
d .

Remark 4.2 By the Denjoy–Carleman theorem, the defined above spaces of

ultradifferentiable functions as well as the classes U
fMpg
d and U

fMpg
d of approximate

units contain sufficiently many members.

5 Integrability of Roumieu ultradistributions

We formulate below a characterization of integrable Roumieu ultradistributions, in

the form of five equivalent conditions, which is an analog of the theorem of Dierolf

and Voigt concerning integrable distributions (see [5]) and of the theorem of

Pilipović concerning ultradistributions of Beurling type (see [18]). The proof of the

theorem is given in [16].

Theorem 5.1 Let V 2 D0fMpg
d . The following conditions are equivalent:

(A) V 2 D0fMpg
L1;d

, i.e., V is continuous on DfMpg
d in the topology induced by _BfMpg

d ,

which means that there are a sequence ðrpÞ 2 R and a constant C[ 0 such

that the inequality

jhV;uij �CkukðrpÞ ð5:1Þ

holds for all u 2 DfMpg
d ;
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(B) there is a sequence ðrpÞ 2 R with the property that for every e[ 0, there

exists a regular compact set K � Rd such that the inequality

jhV ;uij � ekukðrpÞ

holds for u 2 DfMpg
d with supp u \ K ¼ ;;

(C) for every Pnð Þ 2 U
fMpg
d the sequence hV;Pnið Þ is Cauchy;

(D) for every Pnð Þ 2 U
fMpg
d the sequence hV;Pnið Þ is Cauchy;

(E) there are a sequence ðrpÞ 2 R, a constant C[ 0 and a regular compact

K � Rd such that inequality (5.1) holds for u 2 DfMpg
d with supp u \ K ¼ ;.

Moreover, if V satisfies any of the conditions (A)–(E), then

lim
n!1
hV ;Pni ¼ lim

n!1
hV ;Pni ¼ hV ; 1i

for arbitrary ðPnÞ 2 U
fMpg
d and ðfPnÞ 2 U

fMpg
d .

6 Convolution of Roumieu ultradistributions

Pilipović and Prangoski made in [19] a deep study of the convolution of Roumieu

ultradistributions. The study was based on the investigation of the � tensor product

of the respective spaces of test functions. Let us recall some results proved and

observations made in [19].

The authors use the results on the e tensor product from [14] to prove that

_BfMpg
d1

e _BfMpg
d2

ffi _BfMpg
d1

b
e
_BfMpg
d2

in the sense of an isomorphism. They consider, analogously to ideas applied in [17]

to the convolution of measures, the following semi-norms in the space DfMpg
L1;d :

qg;ðrpÞðuÞ :¼ sup
k2Nd

0

sup
x2Rd

j gðxÞDkuðxÞ j
RjkjMk

; u 2 D fMpg
L1;d :

Denote by
eeDfMpg

L1;d the l.c.s. DfMpg
L1;d equipped with the topology defined by the family

fqg;ðrpÞ : g 2 C0; ðrpÞ 2 Rg of semi-norms and the strong dual of
eeDfMpg

L1;d by

eeDfMpg
L1;d

� �0

b
. Relations between the strong dual of

eeDfMpg
L1;d and the space D0fMpg

L1;d
of

integrable Roumieu ultradistributions were studied in [19]. The results obtained in

[19] were then improved in [21], where the equality

eeDfMpg
L1;d

� �0

b
¼ D0fMpg

L1;d
; ð6:1Þ

was proved in the sense of l.c.s. (see [21, Prop. 5.3 and Prop. 5.4]).
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The obtained results allowed the authors to give in [19] the following definitions

of convolvability and the convolution of two Roumieu ultradistributions, analogous

to the Schwartz definition of the convolution of distributions (see [22]):

Definition 6.1 Let S; T 2 D0fMpg
d . If the following condition is satisfied:

ðSÞ Vu :¼ ðS
 TÞuM 2 D0fMpg
L1;2d

for all u 2 DfMpg
d ;

where uM is the function of the class EfMpg
2d defined by

uMðx; yÞ :¼ uðxþ yÞ; x; y 2 Rd; ð6:2Þ

we say that the Roumieu ultradistributions S, T are convolvable in the sense of ðSÞ.
If S, T are convolvable, then the convolution S � T of S and T in D0fMpg

d is defined

by

hS�T;uid :¼ hVu; 12di2d; u 2 DfMpg
d ; ð6:3Þ

where Vu is meant, according to (6.1), as an element of the space
eeD0fMpg

L1;2d and the

constant function 12d is meant as an element of the space
eeDfMpg

L1;2d.

For each a[ 0 consider the subset Ma :¼ fðx; yÞ 2 R2d : jxþ yj � ag of R2d and

the following subspace of _BfMpg
2d :

_BfMpg
2d ðMaÞ :¼ fu 2 _BfMpg

2d : supp u � Mag: ð6:4Þ

Denote by _BfMpg
M;2d the inductive limit of the spaces defined in (6.4):

_BfMpg
M;2d :¼ lim�!

a!1

_BfMpg
2d ðMaÞ:

The following result on equivalence of convolvability conditions for Roumieu

ultradistributions was proved in [19]:

Theorem 6.1 Let S; T 2 D0fMpg
d . The following conditions are equivalent to

condition ðSÞ of convolvability for S and T:

ðc0Þ S
 T 2 _B0fMpg
M;2d ;

ðc01Þ Sð �T � uÞ 2 D0fMpg
L1;d

for all u 2 DfMpg
d and

DfMpg
K;d � _BfMpg

d 3 ðu; vÞ7! Sð �T � uÞ; v
� �

2 C

is a continuous bilinear mapping for every compact subset K of Rd;
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ðc02Þ ð �S � uÞT 2 D0fMpg
L1;d

for all u 2 DfMpg
d and

DfMpg
K;d � _BfMpg

d 3ðu; vÞ7! ð �S � uÞT ; v
� �

2 C

is a continuous bilinear mapping for every compact subset K of Rd;

ðc3Þ ð �S � uÞðT � wÞ 2 L1
d for all u;w 2 DfMpg

d .

Dimovski et al. modified conditions (c01) and (c02) and obtained in [7] and [21]

results (under the conditions (M.1), (M.2) and (M.3) imposed on ðMpÞ), which can

be described in the form of the following theorem (see Theorem 8.2 in [7] and

Remark 5.9. in [21]):

Theorem 6.2 Let S; T 2 D0fMpg
d . Each of the following two conditions is equivalent

to condition ðSÞ of convolvability for S and T:

ðc1Þ Sð �T � uÞ 2 D0fMpg
L1;d

for all u 2 DfMpg
d ;

ðc2Þ ð �S � uÞT 2 D0fMpg
L1;d

for all u 2 DfMpg
d .

Moreover, if any of the conditions ðSÞ, ðc1Þ, ðc2Þ holds, then

hS�T;uid ¼ hdSð �T � uÞ; 1did ¼ hð �S � uÞT ; 1did ð6:5Þ

for all u 2 DfMpg
d .

In the next section, we are going to formulate several sequential conditions of

convolvability of Roumieu ultradistributions, which are equivalent to conditions

ðSÞ, ðc1Þ and ðc2Þ.

7 Sequential convolutions of Roumieu ultradistributions

The notion of R-approximate unit makes it possible to consider several sequential

definitions of the convolution of Roumieu ultradistributions based on corresponding

sequential conditions of convolvability. The conditions require that respective

numerical sequences, corresponding to a given pair of Roumieu ultradistributions

via certain approximate units, are Cauchy sequence (Cauchy s. in short) for all

approximate units from a given class. The first definition of this kind was given for

the convolution of distributions by Vladimirov in [23] and its equivalent versions

were discussed in [5] and [9]. Their counterparts for ultradistributions of Beurling

type were discussed in [10] (see also [1]).

We will prove in Theorem 7.1 that all the sequential definitions are equivalent to

the definition of the general convolution of Roumieu ultradistributions in the sense

of Pilipović and Prangoski [19]. Our proof of Theorem 7.1 will be based on the

integrability result stated in the previous section.
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Definition 7.1 Let S; T 2 D0fMpg
d . We say that S, T are convolvable in the sense of

ðVÞ, ðPÞ, ðP1Þ, ðP2Þ, respectively, if the corresponding condition below holds for

every u 2 DfMpg
d :

ðVÞ hS
 T ; Pn u
Mi2d

� 	
is a Cauchy s. for all ðPnÞ 2 U

fMpg
2d ;

ðPÞ hðP1
nSÞ 
 ðP2

nTÞ;uMi2d
� 	

is a Cauchy s. for all ðP1
nÞ; ðP2

nÞ 2 U
fMpg
d ;

ðP1Þ hðPnSÞ 
 T;uMi2d
� 	

is a Cauchy s. for all ðPnÞ 2 U
fMpg
d ;

ðP2Þ hS
 ðPnTÞ;uMi2d
� 	

is a Cauchy s. for all ðPnÞ 2 U
fMpg
d ;

respectively.

Definition 7.2 If S; T 2 D0fMpg
d are convolvable in the sense of ðVÞ, ðPÞ, ðP1Þ, ðP2Þ,

respectively, then the convolution of S and T in D0fMpg
d in the respective sense is

defined by the corresponding formula below:

hS�VT;uid :¼ lim
n!1
hS
 T ;Pn u

Mi2d; u 2 DfMpg
d ; ðPnÞ 2 U

fMpg
2d ;

hS�PT;uid :¼ lim
n!1
hðP1

nSÞ
ðP2
nTÞ;uMi2d; u 2 DfMpg

d ; ðP1
nÞ; ðP2

nÞ2U
fMpg
d ;

hS�P1
T ;uid :¼ lim

n!1
hðPnSÞ 
 T;uMi2d; u 2 DfMpg

d ; ðPnÞ 2 U
fMpg
d ;

hS�P2
T ;uid :¼ lim

n!1
hS
 ðPnTÞ;uMi2d; u 2 DfMpg

d ; ðPnÞ 2 U
fMpg
d ;

respectively.

Remark 7.1 Condition (S) of convolvability in Definition 6.1 guarantees, by the

considerations of Pilipović and Prangoski from Sect. 4 in [19], that the convolution

S�T in the sense of (6.3) exists in D0fMpg
d . It follows from Theorem 7.1, formulated

below, that the convolvability conditions ðVÞ, ðPÞ, ðP1Þ and ðP2Þ guarantee that the

corresponding sequential convolutions, defined in Definition 6, exist in D0fMpg
d .

In addition to the sequential conditions of convolvability in D0fMpg
d , given in

Definition 7.1, one may consider also the conditions ðVÞ, ðPÞ, ðP1Þ, ðP2Þ being the

modifications of the above ones, which consist in replacing the classes U
fMpg
2d and

U
fMpg
d of R-approximate units by the classes U

fMpg
2d and U

fMpg
d of special

approximate units, respectively. The modified conditions lead to additional

sequential definitions of the convolution in D0fMpg
d which are counterparts of the

known sequential definitions of the convolution of distributions (see [5, 9, 23]). It

follows from Theorem 5.1 that they are equivalent to all the conditions listed in

Definition 7.1.

Remark 7.2 The convolution of Roumieu ultradistributions in D0fMpg
d investigated

in [19] and [7] and its sequential versions discussed in this paper is a general notion.
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It embraces various particular cases, e.g., expressed in terms of supports of given

Roumieu ultradistributions.

Remark 7.3 Each of the sequential definitions of the convolution of S and T, given

in Definition 7.2 under the corresponding conditions, do not depend on the choice of

an approximate unit from the class UfMpg (U
fMpg
2d or U

fMpg
d , respectively), because

ðPj
nÞ 2 UfMpg for j 2 f1; 2g ¼) ðPnÞ 2 UfMpg;

where P2n�1 :¼ P1
n and P2n :¼ P2

n for n 2 N.

Theorem 7.1 Let S; T 2 D0fMpg
d . All the conditions formulated in Definition 7.1 are

equivalent to the condition ðSÞ of convolvability of ultradistributions. If one of these
conditions is satisfied, then all corresponding convolutions of Roumieu ultradis-

tributions S and T exist in D0fMpg
d and the following equalities hold true:

S�PT ¼ S�P1
T ¼ S�P2

T ¼ S�T ¼ S�VT:

Proof We will prove the equivalence of convolvability conditions given in

Definitions 7.1 and 6.1 and in Theorem 6.2 according to the following scheme of

implications:

ðP1Þ �! ðC1Þ
% &

ðPÞ ðSÞ �! ðVÞ �! ðPÞ
& %
ðP2Þ �! ðC2Þ

Assume first condition ðPÞ for a fixed u 2 DfMpg
d . Due to Remark 7.3, there exists

an a 2 C such that

lim
n!1
hðP1

nSÞ
ðP2
nTÞ;uMi2d ¼ a ð7:1Þ

for all ðP1
nÞ; ðP2

nÞ 2 U
fMpg
d . Hence, the double limit

lim
i;j!1
hðP1

i SÞ
ðP2
j TÞ;uMi2d ¼ a ð7:2Þ

also exists for all ðP1
i Þ; ðP2

j Þ 2 U
fMpg
d . Indeed, if (7.2) were not true, then there

would exist an e[ 0 and increasing sequences ðinÞ and ðjnÞ of positive integers such

that
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hðP1
in
SÞ
ðP2

jn
TÞ;uMi � a













[ e;

for all n 2 N, but this would contradicts condition ðPÞ, because

ðP1
in
Þ; ðP2

jn
Þ 2 U

fMpg
d . On the other hand, we have

lim
m!1
hðP1

nSÞ
ðP2
mTÞ;uMi2d ¼ hðP1

nSÞ 
 T ;uMi2d ð7:3Þ

for every fixed n 2 N, because P2
mT ! T in D0fMpg

d as m!1 and

supp ðP1
nSÞ
ðP2

mTÞ
� 	

� uM
� �

� supp ðP1
nSÞ
T

� 	
� uM

� �

for all n;m 2 N, while the support of ðP1
nSÞ
T

� �
� uM is compact for every n 2 N.

Clearly, (7.2) and (7.3) imply

lim
n!1
hðP1

nSÞ 
 T ;uMi2d ¼ a: ð7:4Þ

Consequently, condition ðP1Þ is satisfied. Moreover, equalities (7.1) and (7.4) yield

the equality

hS�PT ;uid ¼ hS�
P1
T;uid ð7:5Þ

for all u 2 DfMpg
d . Thus, we have proved that ðPÞ implies ðP1Þ and equality (7.5)

holds under condition ðPÞ.
Assume now condition ðP1Þ and fix arbitrarily u 2 DfMpg

d and ðPnÞ 2 U
fMpg
d . The

equality

hðPnSÞ 
 T;uMi2d ¼ hðPnSÞ � T ;uid ¼ hSð �T � uÞ;Pnid; n 2 N;

and condition ðP1Þ imply that the sequence hSð �T � uÞ;Pnid
� 	

is Cauchy, so Sð �T �
uÞ is integrable for all u 2 DfMpg

d , by Theorem 5.1. The same equality yields

lim
n!1
hðPnSÞ 
 T;uMi2d ¼ hSð �T � uÞ; 1did

for all ðPnÞ 2 U
fMpg
d and u 2 DfMpg

d , i.e.,

hS�P1
T ;uid ¼ hSð �T � uÞ; 1did ð7:6Þ

for all u 2 DfMpg
d . Consequently, we have shown the implication ðP1Þ ) ðc1Þ and

that (7.6) is true under the assumption of condition ðP1Þ.
From the above, by symmetry, we conclude the implications ðPÞ ) ðP2Þ and

ðP2Þ ) ðc2Þ as well as the equalities

hS�PT ;uid ¼ hS�
P2
T ;uid; u 2 DfMpg

d
ð7:7Þ

and
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hS�P2
T ;uid ¼ hð �S � uÞT; 1did; u 2 DfMpg

d ; ð7:8Þ

which are true under conditions ðPÞ and ðP2Þ, respectively.

By Theorem 6.2, we have ðc1Þ , ðc2Þ , ðSÞ and the equalities in (6.5) hold

true, if any of the three conditions is satisfied. Hence, by (7.6) and (7.8), we have

hS�
Pj

T ;uid ¼ hS � T; 1di; u 2 DfMpg
d ; ð7:9Þ

under the assumption of condition (cj) for j 2 f1; 2g.
Notice that also conditions (S) and (V) are equivalent and each of these condi-

tions implies

hS�T ;uid ¼ hS�
V
T ;uid ð7:10Þ

for u 2 DfMpg
d . Equality (7.10) is an immediate consequence of Theorem 5.1

applied for V :¼ ðS
 TÞuM with u 2 DfMpg
d and for ðPnÞ 2 U

fMpg
2d .

Finally, assume condition (V) and fix arbitrarily ðP1
nÞ; ðP2

nÞ 2 U
fMpg
d . Then

ðPnÞ 2 U
fMpg
2d and PnuM 2 DfMpg

2d for n 2 N and u 2 DfMpg
d , where Pn :¼ P1

n 
 P2
n

for n 2 N. Applying a simple property of the tensor product in the spaces DfMpg
d and

D0fMpg
d as well as topological isomorphisms described in Theorems 2.1 and 2.3 in

[13], we get the equality:

hðP1
nSÞ
ðP2

nTÞ;uMi2d ¼ hS
T;Pnu
Mi2d

for all u 2 DfMpg
d and n 2 N. Due to this equality, (V) implies condition (P) and

thus

hS�VT;uid ¼ hS�
P
T ;uid ð7:11Þ

for u 2 DfMpg
d . Consequently, the last implication ðVÞ ) ðPÞ in the scheme and

equality (7.11), under the assumption of condition (V), are proved.

This completes the proof that all conditions in Definition 7.1 are equivalent and,

moreover, equalities (7.5)–(7.11) show that all the convolutions defined in Defini-

tion 7.2 are equal to the convolution S�T defined in (6.3), whenever any of the

considered convolvability conditions is satisfied. h

Remark 7.4 In addition, one may consider the sequential conditions ðVÞ, ðPÞ, ðP1Þ,

ðP2Þ of convolvability of S; T 2 D0fMpg
d and the corresponding convolutions S�VT ,

S�PT , S�P1
T , S�P2

T of S and T, replacing the classes U
fMpg
2d and U

fMpg
d of R-

approximate units by the classes U
fMpg
2d and U

fMpg
d of special R-approximate units.

The equivalence of conditions ðSÞ, ðVÞ, ðPÞ, ðP1Þ and ðP2Þ of convolvability

follows in the same manner as the equivalence of conditions ðSÞ, ðVÞ, ðPÞ, ðP1Þ and

ðP2Þ proved in Theorem 7.1 above. The equality of the corresponding convolutions

is an easy consequence of this result.
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Remark 7.5 It is easy to see that the convolution of Roumieu ultradistributions is

commutative, i.e., S�T ¼ T�S for S; T 2 D0fMpg
d .

8 Ultradifferential property of the convolution

Let us consider an ultradifferential operator P(D) defined by Komatsu in [12] as

follows:

Definition 8.1 An operator of the form

PðDÞ ¼
X

k2Nd
0

ckD
k; ck 2 C ð8:1Þ

is called an ultradifferential operator of class fMpg if for every L[ 0 there is a

constant CL such that

jckj �CL
Lk

Mk
; k 2 Nd

0:

Clearly, the condition in Definition 8.1 can be equivalently expressed as follows

8L[ 0 sup
k

L�kMkjckj
� 	

\1:

Then according to Lemma 2.1, part (II), there is a sequence ðupÞ 2 R such that

supk UjkjMkjckj
� 	

\1, where Uk ¼
Q

p� k up. In other words, an ultradifferential

operator of the form (8.1) is of class fMpg if there are C[ 0 and ðupÞ 2 R such that

jckj �
C

UjkjMk
; k 2 Nd

0: ð8:2Þ

Due to Komatsu [12], if ðMpÞ satisfies condition (M.2), then P(D) defines the

respective continuous mappings DfMpg
d ! DfMpg

d and D0fMpg
d ! D0fMpg

d . Moreover,

the series PðDÞS ¼
X

k2Nd
0

ckD
kS converges absolutely in D0fMpg

d for every S 2 D0fMpg
d .

In Theorem 8.1 below we prove an important and non-trivial property of the

convolution of Roumieu ultradistributions. In the proof, we will need the following

very useful result from [19]:

Lemma 8.1 For every sequence ðspÞ 2 R, there exists a sequence ðrpÞ 2 R such

that rp� sp for p 2 N and

Rpþq� 2pþqRpRq for all p; q 2 N0: ð8:3Þ
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Theorem 8.1 Let S; T 2 D0fMpg
d be convolvable and let P(D) be an ultradifferential

operator of class fMpg. Then P(D)S and T as well as S and P(D)T are convolvable
and, moreover,

PðDÞðS � TÞ ¼ ðPðDÞSÞ � T ¼ S � ðPðDÞTÞ: ð8:4Þ

Proof Assume that S; T 2 D0fMpg
d are convolvable. By the definitions of P(D) and

S�T and by Theorem 5.1, we have

hPðDÞðS � TÞ;ui ¼hS � T;Pð�DÞui ¼ hðS
 TÞðPð�DxÞuÞM; 12di
¼ lim

n!1
hS
 T;Pn Pð�DxÞuM½ i ð8:5Þ

for all ðPnÞ 2 U
fMpg
2d and u 2 DfMpg

d .

It suffices to prove that the ultradistributions P(D)S and T are convolvable in

D0fMpg
d and that the first equality of (8.4) holds. The remaining part of the assertion

follows then directly from Remark 7.5. To prove the convolvability of P(D)S and T,

we have to show that the sequence hPðDÞS
 T ;PnuMið Þn2N is convergent.

We have

hPðDÞS
 T ;Pnu
Mi ¼

X

a2Nd
0

cahDa
xS
 T;Pnu

Mi ¼
X

a2Nd
0

cahS
 T ;�Da
x Pnu

Mð Þi

¼hS
 T ;Pð�DxÞ Pnu
Mð Þi

ð8:6Þ

for all n 2 N, by (8.1) and the absolute convergence of the respective series.

Comparing the last terms in (8.5) and (8.6), we see that the declared assertion will

be proved if we show the equalities

Pð�DxÞ Pnu
Mð Þ ¼ PnPð�DxÞuM þ mn ð8:7Þ

on R2d for all n 2 N, where mn are certain functions in DfMpg
d such that

lim
n!1
hS
 T ; mni ¼ 0: ð8:8Þ

Applying (8.1) and Leibniz’ rule and then changing the order of summation, we get,

for all n 2 N, the equalities

Pð�DxÞ Pnu
Mð Þ ¼

X

a2Nd
0

ð�1Þjajca
X

i� a

a
i

� �
ðDi

xPnÞ ðDa�iuÞM

¼
X

i2Nd
0

Di
xPn

X

b2Nd
0

ð�1Þjbþij bþ i

i

� �

cbþiðDbuÞM

¼ PnPð�DxÞuM þ mn
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on R2d with the functions mn defined for x; y 2 Rd by

mnðx; yÞ :¼
X

i2N
Di

xPnðx; yÞ
X

b2Nd
0

ð�1Þjbþij bþ i

i

� �

cbþiD
b
xuðxþ yÞ; ð8:9Þ

where N :¼ Nd
0 n fð0; . . .; 0Þg. This means that equations (8.7) hold for mn defined

in (8.9) and for all n 2 N. Clearly, ðmnÞ depends on the initial sequence ðPnÞ.
It suffices to show (8.8). Choose h 2 DfMpg

d such that hðxÞ ¼ 1 for x 2 supp u. By

(8.9), we have

hS
 T; mni ¼ hðS
 TÞhM; mni; n 2 N:

The sequence hðS
 TÞhM;Pni
� 	

n2N is convergent for every ðPnÞ 2 U
fMpg
2d , by the

assumption that S and T are convolvable in D0fMpg
d . To prove (8.8) it is enough to

show that also ðPn þ mnÞ 2 U
fMpg
2d . Since ðPnÞ; ðPnÞ 2 U

fMpg
2d , for each compact set

K in R2d there exists an n0 2 N such that DiPnðx; yÞ ¼ 0 and Pnðx; yÞ ¼ 1 for

ðx; yÞ 2 K; i 2 N and n[ n0. Consequently, in view of (8.9),

Pnðx; yÞ þ mnðx; yÞ ¼ 1 for ðx; yÞ 2 K; n[ n0:

Therefore it remains to prove, for every ðtpÞ 2 R, that

sup
n2N
kmnkðtpÞ\1; ð8:10Þ

since ðPnÞ 2 U
fMpg
2d and (8.10) implies

sup
n2N
kPn þ mnkðtpÞ\1:

Fix an arbitrary ðtpÞ 2 R. The coefficients of the ultradifferential operator P(D)

satisfy (8.2) for some ðupÞ 2 R. Putting sk :¼ minftk; ukg for k 2 N, we have

ðspÞ 2 R. By Lemma 8.1, there exists a sequence ðrpÞ 2 R such that rk� sk and

inequality (8.3) holds. In addition we assume, according to Remark 3.2, that

rp [ 16H2 for p 2 N; ð8:11Þ

where H[ 1
4

is a constant from condition (M.2).

Let a 2 Nd
0 be arbitrarily fixed. For fixed n 2 N and ðrpÞ 2 R chosen above,

according to the representation (8.9), we have
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Da
xmn






1

RjajMa
�

X

i2N

X

j� a

a
j

� �
kDaþi�j

x Pnk1
Rjaþi�jjMaþi�j

X

b2Nd
0

bþ i

i

� �

jcbþij

� kD
bþj
x uMk1

RjbþjjMbþj
�
Rjaþi�jjRjbþjj

Rjaj
�Maþi�jMbþj

Ma
:

ð8:12Þ

Applying properties (2.3) and (8.3) (twice) of the sequence ðrpÞ and property (2.1)

and condition (M.2) (twice) of the sequence ðMpÞ, we get

Rjaþi�jjRjbþjj
RjajRjbjRjij

�
2jbþjjRjaþij
RjajRjij

� 2jaþij2jbþjj ð8:13Þ

and

Maþi�jMbþj
MaMbMi

� AHjbjþjjjMaþi
MaMi

�A2HjaþijHjbþjj: ð8:14Þ

Moreover, we have

jcbþij �
C

UjbjUjijMbMi
and

RjbjRjij
UjbjUjij

� 1; ð8:15Þ

by (8.2), properties (2.1) of ðMpÞ and (2.3) of ðupÞ 2 R and because rk� uk for

k 2 N. The inequalities in (8.13), (8.14) and (8.15) hold for arbitrary a; b; i; j 2 Nd
0

such that j� a and will be used later together with the following known estimate:

bþ i

i

� �

� 2jbþij; ð8:16Þ

for a certain B[ 0 and all b; i 2 Nd
0.

It follows from (8.12), due to (8.13)–(8.16), that

Da
xmn






1

RjajMa
�A2C

X

i2N

X

j� a

a
j

� �

ð2HÞjaþij kD
aþi�j
x Pnk1

Rjaþi�jjMaþi�j

�
X

b2Nd
0

2jbþijð2HÞjbþjj kD
bþj
x uMk1

RjbþjjMbþj
:

ð8:17Þ

According to assumption (8.11), consider the sequences ðrpÞ and ðrpÞ of the class R

defined by rp :¼ rp=8H and rp :¼ rp=16H2, respectively, for p 2 N. Clearly,

22jaþi�jjð2HÞjaþi�jj kD
aþi�j
x Pnk1

Rjaþi�jjMaþi�j
�kPnkðrpÞ

and
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22jbþjjð2HÞ2jbþjj kD
bþj
x uMk1

RjbþjjMbþj
�kukðrpÞ

for all a; b; i; j 2 Nd
0, j� a. We deduce from (8.17) and the above estimates that

Da
xmn






1

RjajMa
� A2C

2a
kPkðrpÞkukðrpÞ �

X

i2N

1

2

� �iX

b2Nd
0

1

4H

� �b

\1:

for arbitrary a 2 Nd
0 and n 2 N. Hence

sup
n2N
kmnkðrpÞ ¼ sup

n2N
sup
a2Nd

0

Da
xmn






1

RjajMa
\1

and, since rp� tp for p 2 N,

sup
n2N
kmnkðtpÞ � sup

n2N
kmnkðrpÞ\1;

i.e., (8.10) is proved, as required. The assertion of Theorem 8.1 is proved. h

Theorem 8.1 has also been shown in the quasianalytic case in the article [21].

The proof there is given via a completely different method (cf. [21, Cor. 5.10]).
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6. Dimovski, P., Pilipović, S., Vindas, J.: New distribution spaces associated to translation-invariant

Banach spaces. Monatsh. Math. 177, 495–515 (2015)
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9. Kamiński, A.: Convolution, product and Fourier transform of distributions. Stud. Math. 74, 83–86

(1982)
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