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Abstract
Let D denote the unit disc in C. We define the generalized Cesàro operator as follows:

Cω( f )(z) =
∫ 1

0
f (t z)

(
1

z

∫ z

0
Bω
t (u) du

)
ω(t)dt,

where {Bω
ζ }ζ∈D are the reproducing kernels of the Bergman space A2

ω induced by a
radial weight ω in the unit disc D. We study the action of the operator Cω on weighted
Hardy spaces of analytic functions Hγ , γ > 0 and on general weighted Bergman
spaces A2

μ.
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1 Introduction

LetH(D) denote the space of analytic functions in the unit discD = {z ∈ C : |z| < 1}.
For γ > 0, let Hγ denote the Hilbert space of analytic functions in D such that its
reproducing kernels are given by

Kω(z) = 1

(1 − zω̄)γ
=

∞∑
n=0

γ (n)(ω̄z)n, z, ω ∈ D.

It is clear that the sequence γ (n) is given by γ (0) = 1, γ (1) = γ and γ (n) = Γ (n+γ )
Γ (γ )n! ,

n ∈ N. Actually, this family of spaces are well known: for γ = 1 the space Hγ is the
Hardy space H1 = H2 and γ (n) = 1 for all n ∈ N. For γ > 1, Hγ consists of the
standard weighted Bergman space A2

γ−2 and for γ < 1, it is the weighted Dirichlet

space Hγ = D2
γ .

Observe that for γ = 0, the corresponding space would be the classical Dirichlet
space D2, so it is not included in the definition of the spaces Hγ .

In other words, the Hilbert spaceHγ consists of all the analytic functions such that

‖ f ‖2Hγ
= | f (0)|2 +

∫
D

| f ′(z)|2(1 − |z|)γ d A(z) < ∞,

where d A(z) = dx dy
π

is the normalized area measure on D. Moreover, a simple obser-
vation yields an equivalent norm in terms of the coefficients of an analytic function
f . If f (z) = ∑∞

k=0 f̂ (k)zk ,

‖ f ‖2Hγ
�

∞∑
n=0

| f̂ (n)|2(n + 1)1−γ .

Further, we can consider more general weighted Bergman spaces than the ones
defined byHγ with γ > 1. For a nonnegative function ω ∈ L1

[0,1), the extension to D,

defined by ω(z) = ω(|z|) for all z ∈ D, is called a radial weight. Let A2
ω denote the

weighted Bergman space of f ∈ H(D) such that ‖ f ‖2
A2

ω
= ∫

D
| f (z)|2ω(z) d A(z) <

∞. Throughout this paper, we assume ω̂(z) = ∫ 1
|z| ω(s) ds > 0 for all z ∈ D, for

otherwise A2
ω = H(D).

For any radial weight, the convergence in A2
ω implies the uniform convergence in

compact subsets, so the point evaluations Lz are bounded linear functionals in A2
ω

and by the Riesz Representation Theorem, there exist Bergman reproducing kernels
Bω
z ∈ A2

ω such that

Lz( f ) = f (z) = 〈 f , Bω
z 〉A2

ω
=

∫
D

f (ζ )Bω
z (ζ )ω(ζ )d A(ζ ), f ∈ A2

ω.
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For a complex sequence {ak}∞k=0, the classic Cesàro operator is defined as follows:

C({ak}) =
{

1

n + 1

n∑
k=0

ak

}∞

n=0

.

It is well known that the Cesàro operator is bounded on l p, 1 < p < ∞. This result
was mostly showed by Hardy, whose main aim was to provide a simpler proof of the
Hilbert inequality in [11, 12] and Landau [14], whose contribution was obtaining the
sharp constant in the inequality, that is, the norm of the operator, among other authors.

Further, it can be considered as an operator between analytic functions by identi-
fying each analytic function with its Taylor coefficients as follows: for f ∈ H(D),
f (z) = ∑∞

k=0 f̂ (k)zk ,

C( f )(z) =
∞∑
n=0

(
1

n + 1

n∑
k=0

f̂ (k)

)
zn, z ∈ D.

Observe that it defines an analytic function, and a simple calculation gives the
following integral representation:

C( f )(z) =
∫ 1

0
f (t z)

1

1 − t z
dt, z ∈ D. (1.1)

This operator is bounded on H p, 0 < p < ∞. This result has been showed by
several authors and on different ways such as Hardy [13], Siskakis [23, 25], Miao [16],
Stempak [27] and Andersen [3], among others.

The boundedness of the Cesàro operator on Bergman spaces was studied in [3] and
[24] where it is shown that the Cesàro operator is bounded from Ap

α into itself if p > 0
and α > −1.

Regarding Dirichlet spaces, Galanopoulos [7] proved that it is bounded on the
weighted Dirichlet spaces D2

α if 0 < α < 1.
Due to the historical magnitude of this classical operator and the authors that have

been working on it, different generalizations have been raised during the last decades
[5, 8, 9, 27]. Bearing in mind the formula (1.1), we are interested in replacing the
kernel 1

1−t z of the integral representation with a more general kernel. In that sense,
we are going to focus on the following generalization of the kernel induced by radial
weights, which was previously introduced in works regarding the Hilbert operator [15,
22].

For a radial weight ω, we consider the generalized Cesàro operator

Cω( f )(z) =
∫ 1

0
f (t z)

(
1

z

∫ z

0
Bω
t (ζ )dζ

)
ω(t)dt, (1.2)

where {Bω
z }z∈D ⊂ A2

ω are the Bergman reproducing kernels of A2
ω. Notice that this

operator is well defined for any analytic function and the choice ω = 1 gives (1.1).
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One of the first and main obstacles that we find when dealing with the operator
(1.2) is that Bergman reproducing kernels have not an explicit formula in general (this
is not the case for standard weights να(z) = (1 − |z|)α , α > −1, since Bergman
reproducing kernels induced by να have nice properties and they can be written as
Bνα
z (ζ ) = (1 − zζ )−(2+α)). Consequently, we are forced to use that for any radial

weight ω they can be written as Bω
z (ζ ) = ∑

en(z)en(ζ ) for each orthonormal basis
{en} of A2

ω, and therefore, using the normalized monomials as basis, we can obtain
the following representation in terms of the odd moments of the weight, denoted by
ω2n+1:

Bω
z (ζ ) =

∞∑
n=0

(zζ )n

2ω2n+1
, z, ζ ∈ D. (1.3)

In general, from now on, we will write ωx = ∫ 1
0 r xω(r) dr for all x ≥ 0. In addition,

we can write the norm of A2
ω in terms of the Taylor coefficients of an analytic function

as follows:

‖ f ‖2A2
ω

=
∞∑
n=0

2ω2n+1| f̂ (n)|2.

The primary purpose of this paper is to describe the radial weights ω so that Cω

is bounded on Hγ , for γ > 0 and on general weighted Bergman spaces. It is worth
mentioning that just as Galanopoulos [7] pointed out that C is not bounded in the
Dirichlet space D2, this fact is true not only for ω = 1 but also for any radial weight.
Indeed, using the formula (1.3), for any radial weight ω,

Cω(1)(z) =
∞∑
n=0

ωn

2(n + 1)ω2n+1
zn,

so, since the moments of a radial weight form a decreasing sequence, we have

‖Cω(1)‖2
D2 � ∑∞

n=0
ω2
n

4(n+1)ω2
2n+1

≥ ∑∞
n=0

1
4(n+1) which implies that Cω(1) does

not belong to D2.
Before stating the main result of the paper, we need to introduce some notation and

definitions. A radial weight ω belongs to the class D̂ if there exists C = C(ω) > 1
such that ω̂(r) ≤ Cω̂( 1+r

2 ) for all 0 ≤ r < 1. This condition implies a restriction
on the decay of the weight, for example, if ω ∈ D̂, ω cannot decrease exponentially.
However, every increasing weight belongs to D̂, and weights of D̂ admit an oscillatory
behavior. The study of the intrinsic nature of this class of weights entails a considerable
difficulty, which has led to a deep research for years, collected in works such as [18,
20, 21].

A radial weight ω ∈ Ď if there exist K = K (ω) > 1 and C = C(ω) > 1 such that
ω̂(r) ≥ Cω̂

(
1 − 1−r

K

)
for all 0 ≤ r < 1. We write the classD = D̂∩ Ď. Observe that

standard weights vα = (1 − |z|)α , α > −1 belong to the class D, which means that
Hγ = A2

γ−2, γ > 1 are particular cases of weighted Bergman spaces A2
μ, μ ∈ D.
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Moreover, a radial weight ω ∈ M if there exist constants C = C(ω) > 1 and
K = K (ω) > 1 such that ωx ≥ CωKx for all x ≥ 1. Peláez and Rättyä showed
that the classes Ď andM are closely related. They recently proved that Ď ⊂ M [20,
Proof of Theorem 3] but Ď � M [20, Proposition 14]. However, [20, Theorem 3]
shows that D = D̂ ∩ Ď = D̂ ∩ M. The theory of these classes of weights has been
basically developed by these authors in the work [20], and they have shown that these
classes of weights arise on a natural way in significant questions of the operator theory
and the weighted Bergman spaces. For instance, D describes the radial weights such
that the following Littlewood–Paley formula holds

‖ f ‖p
Ap

ω
�

∫
D

| f (n)(z)|p(1 − |z|)npω(z) d A(z) +
n−1∑
j=0

| f ( j)(0)|p, f ∈ H(D)

for any 0 < p < ∞, n ∈ N; or the radial weights such that Pω( f )(z) =∫
D
f (ζ )Bω

z (ζ ) ω(ζ )d A(ζ ) is bounded and onto from L∞ to the Bloch space, among
other important results.

Theorem 1 Let ω be a radial weight, γ > 0. Then Cω : Hγ → Hγ is bounded if and
only if ω ∈ D.

The underlying nature of the spaces Hγ that we are considering and as far as we
know, the almost unique formula for the Bergman reproducing kernels (1.3) lead us
to address the problem by working on coefficients, so an appropriate expression for
Cω in terms of coefficients plays a key role in this work. Let f ∈ H(D), f (z) =∑∞

k=0 f̂ (k)zk , by (1.3) and a change of variable,

Cω( f )(z) =
∞∑
n=0

1

2(n + 1)ω2n+1

( ∞∑
k=0

f̂ (k)ωn+k z
n+k

)

=
∞∑
n=0

(
n∑

k=0

f̂ (k)

2(n − k + 1)ω2(n−k)+1

)
ωnz

n .

(1.4)

The proof of the Theorem 1 for γ = 1 draws strongly on accurate estimates of the
moments ω2(n−k)+1 and ωn and on the Carleson measures theory.

For 0 < γ < 1, the Carleson measures description was solved in [26], but the inno-
cent looking condition that characterize such measures is not easy to work with, so we
are forced to appeal to Littlewood–Paley formulas for non radial weights, specifically
whose ν on D which belongs to one of the Bekollé classes Bp(α) for some p > 1 and
α > −1.

The proof of the case γ > 1 is slightly simpler since it is not necessary to use the
Carleson measures tool. Going further, we are able to characterize the boundedness of
the Cesàro-type operator Cω in more general weighted Bergman spaces A2

μ, μ ∈ D.

Theorem 2 Let μ and ω be radial weights, μ ∈ D. Then Cω : A2
μ → A2

μ is bounded
if and only if ω ∈ D.
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Finally, we are able to show in Theorem 5 that there does not exist radial weight
ω such that Cω : Hγ → Hγ , γ > 0, is compact neither radial weight such that
Cω : A2

μ → A2
μ, μ ∈ D, is compact.

The letter C = C(·) will denote an absolute constant whose value depends on
the parameters indicated in the parenthesis, and may change from one occurrence to
another. We will use the notation a � b if there exists a constant C = C(·) > 0 such
that a ≤ Cb, and a � b is understood in an analogous manner. In particular, if a � b
and a � b, then we write a � b and say that a and b are comparable.

2 Previous results

2.1 Previous results of radial weights

Before tackling with the proof of Theorems 1 and 2, we gather the following two
lemmas with some descriptions of the classes of weights D̂ and M in terms of the
moments or integral tails of the weights, which are useful for our purposes. The next
one concerning the doubling properties of the weights in the class D̂ can be found in
[18, Lemma 2.1].

Lemma A Letω bea radialweight onD. Then, the following statements are equivalent:

(i) ω ∈ D̂;
(ii) There exist C = C(ω) ≥ 1 and α0 = α0(ω) > 0 such that

ω̂(r) ≤ C

(
1 − r

1 − t

)α

ω̂(t), 0 ≤ r ≤ t < 1;

for all α ≥ α0.
(iii)

∫ 1

0
sxω(s)ds � ω̂

(
1 − 1

x

)
, x ∈ [1,∞);

(iv) There exist C = C(ω) > 0 and α = α(ω) > 0 such that

ωx ≤ C
( y

x

)α

ωy, 0 < x ≤ y < ∞;

(v) sup
n∈N

ωn
ω2n

< ∞.

The following lemma gives useful descriptions of the class M. The results and
their proofs can be found in [20, (2.16) and (2.17)]. To set notation, we will denote
ω[β](z) = (1 − |z|)βω(z).

Lemma B Let ω be a radial weight. The following statements are equivalent:

(i) ω ∈ M;
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(ii) There exist C = C(ω) > 0 and β0 = β0(ω) > 0 such that

ωx ≥ C
( y

x

)β

ωy, 1 ≤ x ≤ y < ∞

for all 0 < β ≤ β0;
(iii) For some (equivalently for each) β > 0, there exists C = C(ω, β) > 0 such

that

ωx ≤ Cxβ(ω[β])x , 1 ≤ x < ∞.

2.2 Littlewood–Paley formula for general weights

Now, we are interested in the general weights ν that satisfy the following equivalence,
called Littlewood–Paley formula:

∫
D

| f (z)|pν(z)d A(z) � | f (0)|p +
∫
D

| f ′(z)|p(1 − |z|2)pν(z)d A(z). (2.1)

These kind of estimations are useful not only to obtain equivalent norms in terms of
derivatives but also due to their relation with bounded Bergman projections, and this
is one of the reasons why it is a prominent topic in the operator theory on spaces of
analytic functions [1, 2, 4, 19, 20]. We are interested in the one proved in [1] en route
to a description of the spectra of integration operators on weighted Bergman spaces,
where Aleman and Constantin showed that (2.1) holds for every weight ν on D which
belongs to one of the Bekollé classes Bp(α) for some p > 1 and α > −1. In fact, they
proved not only the belonging to one of the Bekollé classes is sufficient condition in
order that (2.1) holds, but also it is necessary for sufficiently regular weights ν on D.

Before stating the results, and to be self-contained, we will recall the definitions
of the Bekollé class Bp(α) and also a closed related class B∗

1 (η). On the one hand, a
weight ν on D belong to the Bekollé class Bp(α), p > 1 and α > −1 if

(∫
S(θ,h)

νd Aα

) (∫
S(θ,h)

ν
− p′

p d Aα

) p
p′

� (Aα(S(θ, h)))p

for any Carleson square S(θ, h) = {z = reiα : 1 − h < r < 1, |θ − α| < h/2},
θ ∈ [0, 2π ], h ∈ (0, 1), where Aα denote the measure given by d Aα = (α + 1)(1 −
|z|2)αd A and 1/p + 1/p′ = 1. On the other hand, a weight ν on D belongs to the
class B�

1(η), η > −1 if

∫
D

ν(z)

|1 − az|η+2 (1 − |z|2)η d A(z) � ν(a)

for almost every a ∈ D.
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Theorem C [1, Theorem 3.2] Let ν be a strictly positive weight ν ∈ C1(D) which
satisfies that (1 − |z|2)|∇ν(z)| ≤ kνν(z) for some constant kν > 0 and all z ∈ D.
Then the following are equivalent:

(i) The estimate (2.1) holds for all p > 0;
(ii) The estimate (2.1) holds for some p > 0;
(iii) ν

(1−|z|)α belongs to Bp(α) for some p > 1 and α > −1;
(iv) ν

(1−|z|)η belongs to B�
1(η) for some η > −1.

3 Proof of themain results

Proof of Theorem 1 Since the Bergman case will be deal with in a more general way
in Theorem 2, it is enough to prove the result for 0 < γ ≤ 1.

Let us consider the following suitable formula for the generalized Cesàro operator
(1.4), which is mainly followed by (1.3):

Cω( f )(z) =
∞∑
n=0

(
n∑

k=0

f̂ (k)

2(n − k + 1)ω2(n−k)+1

)
ωnz

n, z ∈ D.

Before we get into the proof, note that if we find a constant C > 0 satisfying
‖Cω( f )‖2Hγ

≤ C‖ f ‖2Hγ
for any function f ∈ H(D) with f̂ (n) ≥ 0, n ∈ N ∪ {0}, we

are done.
Assume ω ∈ D. By Lemma A(iv),

‖Cω( f )‖2Hγ
�

∞∑
n=0

ω2
n(n + 1)1−γ

(
n∑

k=0

f̂ (k)

2(n − k + 1)ω2(n−k)+1

)2

�
∞∑
n=0

ω2
n(n + 1)1−γ

(
n∑

k=0

f̂ (k)

2(n − k + 1)ωn−k+1

)2

and by Lemma B (ii), there exists 0 < β < 1 such that (n − k + 1)βωn−k+1 �
(n + 1)βωn+1 for all k ≤ n, so

‖Cω( f )‖2Hγ
�

∞∑
n=0

1

(n + 1)2β+γ−1

(
n∑

k=0

f̂ (k)

(n − k + 1)1−β

)2

. (3.1)

Now, it is well known that g(z) = 1
(1−z)β

= ∑∞
n=0 αnzn ∈ H(D), whose Taylor

coefficients are given by αn = Γ (n+β)
Γ (n+1)Γ (β)

, and folklore estimations for ratios of

gamma functions yields αn � 1
(n+1)1−β . In addition, a simple observation yields

f (z)

(1 − z)β
=

∞∑
n=0

(
n∑

k=0

f̂ (k)αn−k

)
zn, z ∈ D.
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From now on, we will deal with the following two cases separately:
Case γ = 1: Bearing in mind that ‖zn‖2

A2
2β−1

� 1
(n+1)2β

, n ∈ N and (3.1), we

deduce

‖Cω( f )‖2H2 �
∞∑
n=0

‖zn‖2
A2
2β−1

(
n∑

k=0

f̂ (k)αn−k

)2

�
∥∥∥∥ f (z)

(1 − z)β

∥∥∥∥
2

A2
2β−1

� ‖ f ‖2H2 ,

where the last inequality holds if and only if dν(z) = (1−|z|2)2β−1

|1−z|2β d A(z) is a Carleson
measure (see [6, Theorem 9.3]).

A direct computation using the Cauchy–Schwarz inequality shows that

sup
a∈D

∫
D

1 − |a|2
|1 − āz|2 dν(z)

� sup
a∈D

(1 − |a|2)
∫ 1

0
(1 − r2)2β−1

(∫ 2π

0

1

|1 − āreiθ |2|1 − reiθ |2β dθ

)
dr

� sup
a∈D

∫ 1

0

(1 − |a|2)
(1 − |a|r) 3

2 (1 − r)
1
2

< ∞,

so by [10, Lemma 6.1], ν is a Carleson measure and this finishes the proof of this case.
Case 0 < γ < 1: For this range of gamma values, the space Hγ consists of the
Dirichlet space Hγ = D2

γ . Observe that ‖zn‖2
D2
2β+γ

� 1
(n+1)2β+γ−1 , so from (3.1)

follows:

‖Cω( f )‖2Hγ
�

∞∑
n=0

‖zn‖2
D2
2β+γ

(
n∑

k=0

f̂ (k)αn−k

)2

�
∥∥∥∥ f (z)

(1 − z)β

∥∥∥∥
2

D2
2β+γ

� I + I I

where

I =
∫
D

| f ′(z)|2
|1 − z|2β (1 − |z|2)γ+2βd A(z)

and

I I =
∫
D

| f (z)|2
|1 − z|2β+2 (1 − |z|2)γ+2βd A(z).

It is clear that I � ‖ f ‖2
D2

γ
. Therefore, the proof of the sufficiency for 0 < γ < 1 boils

down to prove the inequality

∫
D

| f (z)|2
|1 − z|2β+2 (1 − |z|2)γ+2βd A(z) � ‖ f ‖2D2

γ
,

which is followed from Littlewood–Paley formula (2.1).



   56 Page 10 of 17 A. Mas et al.

In order to simplify notation, let us denote by ν(z) = (1−|z|2)γ+2β

|1−z|2β+2 . It is not difficult

to show that ν ∈ C1(D) and it satisfies the regularity condition (1 − |z|2)|∇ν(z)| ≤
kνν(z). In addition, the weight ν

(1−|z|)2γ+2β belongs to the class B�
1(2γ + 2β).

Indeed, let bn = 1 − 1
n , by Fatou’s Lemma and [17, Lemma 2.5],

∫
D

(1 − |z|2)γ+2β

|1 − az|2γ+2β+2|1 − z|2β+2 d A(z)

≤ lim inf
n→∞

∫
D

(1 − |z|2)γ+2β

|1 − az|2γ+2β+2|1 − bnz|2β+2 d A(z)

� lim inf
n→∞

1

(1 − |a|2)γ |1 − bna|2+2β

= 1

(1 − |a|2)γ |1 − a|2+2β

= ν(a)

(1 − |a|2)2γ+2β .

This is ν
(1−|z|)2γ+2β ∈ B�

1(2γ + 2β), so by Theorem C the proof of the sufficiency is
finished.

Conversely, assumeCω : Hγ → Hγ is bounded. First, we proceed to show ω ∈ D̂.

We consider the following family of test functions fN (z) =
N∑

n=0
(n+1)

γ−1
2 zn , N ∈ N.

Then, ‖ fN‖2Hγ
� (N + 1) and

‖Cω( fN )‖2Hγ
�

∞∑
n=0

(n + 1)1−γ ω2
n

(
n∑

k=0

f̂N (k)

2(n − k + 1)ω2(n−k)+1

)2

≥
8N∑

n=7N

(n + 1)1−γ ω2
n

(
N∑

k=0

(k + 1)
γ−1
2

2(n − k + 1)ω2(n−k)+1

)2

�
ω2
8N

ω2
12N

1

(N + 1)2

8N∑
n=7N

(n + 1)1−γ

(
N∑

k=0

(k + 1)
γ−1
2

)2

,

for all N ∈ N, hence,

‖Cω( fN )‖2Hγ
�

ω2
8N

ω2
12N

(N + 1)γ+1

(N + 1)2

8N∑
n=7N

(n + 1)1−γ ≥ ω2
8N

ω2
12N

(N + 1), N ∈ N.

Since Cω : Hγ → Hγ is bounded, ω8N � ω12N , N ∈ N and this implies ω ∈ D̂ by
Lemma A(v).

Now, to finish the proof, we will prove ω ∈ M, which together with ω ∈ D̂
gives ω ∈ D by [20, Theorem 3]. We want to point out that from now on, the letter
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C = C(γ, ω) > 0 will denote a constant whose value depends on γ > 0 and ω, but
does not depend on M or N , and may change from one occurrence to another.

Consider the family of test functions fN ,M (z) = ∑MN
n=0 z

n, N , M ∈ N. On the one
hand, observe that ‖ fN ,M‖2Hγ

≤ C
∑MN

n=0(n + 1)1−γ , and on the other hand,

‖Cω( fM,N )‖2Hγ
≥ C

MN∑
n=0

(n + 1)1−γ ω2
n

(
n∑

k=0

1

(n − k + 1)ω2(n−k)+1

)2

≥ Cω2
MN

MN∑
n=0

(n + 1)1−γ

(
n∑

k=0

1

(k + 1)ωk

)2

, M, N ∈ N,

hence, by hypothesis,

ω2
MN

⎛
⎜⎜⎜⎝

1
MN∑
n=0

(n + 1)1−γ

MN∑
n=0

(n + 1)1−γ

(
n∑

k=0

1

(k + 1)ωk

)2

⎞
⎟⎟⎟⎠ ≤ C, M, N ∈ N.

Therefore, using Jensen inequality,

ωMN

⎛
⎜⎜⎜⎝

1
MN∑
n=0

(n + 1)1−γ

MN∑
n=0

(n + 1)1−γ

(
n∑

k=0

1

(k + 1)ωk

)
⎞
⎟⎟⎟⎠ ≤ C, M, N ∈ N,

so,

MN∑
k=N

1

(k + 1)

MN∑
n=k

(n + 1)1−γ ≤ C
ωN

ωMN

MN∑
n=0

(n + 1)1−γ , M, N ∈ N.

It remains to prove that there exists a sufficiently large M ∈ N and C ′ > 1 such
that

1

C

1(
MN∑
n=0

(n + 1)1−γ

)
(

MN∑
k=N

1

(k + 1)

MN∑
n=k

(n + 1)1−γ

)
> C ′ for all N ∈ N.
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Indeed, for M, N ∈ N

1
MN∑
n=0

(n + 1)1−γ

(
MN∑
k=N

1

(k + 1)

MN∑
n=k

(n + 1)1−γ

)

�
(

MN∑
k=N

1

(k + 1)
− 1

(MN )2−γ

MN∑
k=N

(k + 1)1−γ

)

and due to 1
(MN )2−γ

MN∑
k=N

(k + 1)1−γ is uniformly bounded for all M, N ∈ N, there

exist C1 = C1(γ ) > 0 and C2 = C2(γ ) > 0 such that

1
MN∑
n=0

(n + 1)1−γ

(
MN∑
k=N

1

(k + 1)

MN∑
n=k

(n + 1)1−γ

)
> C1 logM − C2, M, N ∈ N.

Then, take a sufficiently large M ∈ N satisfying logM > 2C+C2
C1

so that there exists
C ′ = C ′(ω, γ ) > 1 and M = M(ω, γ ) > 1 such that ωN ≥ C ′ωMN for all N ∈ N.
This is ω ∈ M. ��

Proof of Theorem 2 Assume ω ∈ D and note that it is enough proving that there exists
a constant C > 0 such that ‖Cω( f )‖2

A2
μ

≤ C‖ f ‖2
A2

μ
for any function f ∈ H(D) such

that f̂ (n) ≥ 0, n ∈ N ∪ {0}.
By following the proof of (3.1), we obtain there exists 0 < β < 1 such that

‖Cω( f )‖2A2
μ

�
∞∑
n=0

μ2n+1

(n + 1)2β

(
n∑

k=0

f̂ (k)

(n − k + 1)1−β

)2

,

and by Lemma B(iii),

‖Cω( f )‖2A2
μ

�
∞∑
n=0

(μ[2β])2n+1

(
n∑

k=0

f̂ (k)αn−k

)2

�
∥∥∥∥ f (z)

(1 − z)β

∥∥∥∥
2

A2
μ[2β]

� ‖ f ‖2A2
μ
,

where we recall that αn , n ∈ N, denote the Taylor coefficients of the function g(z) =
1

(1−z)β
.

Reciprocally, let μ ∈ D̂ and assume Cω : A2
μ → A2

μ is bounded. First, we
will show ω ∈ D̂. Now, we consider the following family of functions fN (z) =
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∑N
n=0(μ2n+1)

− 1
2 zn , N ∈ N. Then, ‖ fN‖2

A2
μ

� (N + 1) and on the other hand

‖Cω( fN )‖2A2
μ

≥
5N∑

n=4N

μ2n+1ω
2
n

⎛
⎝ N∑

k=0

μ
− 1

2
2k+1

2(n − k + 1)ω2(n−k)+1

⎞
⎠

2

�
ω2
5N

ω2
6N

1

(N + 1)2

5N∑
n=4N

μ2n+1

(
N∑

k=0

μ
− 1

2
2k+1

)2

,

for all N ∈ N, so Lemma A(iv) yields there exists α = α(μ) > 0 such that

‖Cω( fN )‖2A2
μ

�
ω2
5N

ω2
6N

1

(N + 1)

μ10N+1

μ2N+1

(
N∑

k=0

(
2k + 1

2N + 1

) α
2
)2

� (N + 1)
ω2
5N

ω2
6N

.

The boundedness of Cω yields ω5N � ω6N , for all N ∈ N and this implies ω ∈ D̂
by Lemma A (v).

We proceed to prove ω ∈ M. Consider the family of functions fN ,M (z) =∑MN
n=0(μ2n+1)

− 1
2 zn, N , M ∈ N. As before we obtain ‖ fN ,M‖2

A2
μ

� (MN + 1) and

by Lemma A(iv), there exists α > 2 such that

‖Cω( fN ,M )‖2A2
μ

� ω2
MN

MN∑
n=0

μ2n+1

(
n∑

k=0

(μn−k+1)
− 1

2

(k + 1)ωk+1

)2

� ω2
MN

MN∑
n=0

1

(2n + 1)α

(
n∑

k=0

(n − k + 1)
α
2

(k + 1)ωk+1

)2

,

for all M, N ∈ N. Now, by Jensen inequality and the boundedness of the operator Cω,
it follows

(
1

MN + 1

MN∑
n=0

1

(2n + 1)
α
2

n∑
k=0

(n − k + 1)
α
2

(k + 1)ωk+1

)2

� 1

ω2
MN

, M, N ∈ N.

As a consequence,

ωMN

ωN

MN∑
k=N

1

k + 1

MN∑
n=k

(n − k + 1)
α
2

(n + 1)
α
2

≤ C(MN + 1).

To complete the proof, we will show that there exists M ∈ N large enough such that

1

C

1

MN + 1

MN∑
k=N

1

k + 1

MN∑
n=k

(n − k + 1)
α
2

(n + 1)
α
2

> 2.
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Since α ≥ 2, (n− k + 1)
α
2 ≥ (n+ 1)

α
2 (1− k+1

n+1 )
α
2 ≥ (n+ 1)

α
2 − α

2 (k + 1)(n+ 1)
α
2 −1

for all n ≥ k, so

1

MN + 1

MN∑
k=N

1

k + 1

MN∑
n=k

(n − k + 1)
α
2

(n + 1)
α
2

≥ 1

MN + 1

(
MN∑
k=N

MN − k + 1

k + 1
− α

2

MN∑
k=N

MN∑
n=k

1

n + 1

)
�

MN∑
k=N

1

k + 1
− 1

and there exist C1,C2 > 0 such that

1

MN + 1

MN∑
k=N

1

k + 1

MN∑
n=k

(n − k + 1)
α
2

(n + 1)
α
2

≥ C1 logM − C2

Therefore, for a fixed M ∈ N such that logM > 2C+C2
C1

, there exists C ′ > 1 such that
ωN ≥ C ′ωMN for all N ∈ N. Then, ω ∈ M and the proof is finished. ��

4 Compactness

Once we have described the radial weights such thatCω : Hγ → Hγ andCω : A2
μ →

A2
μ, μ ∈ D is bounded, it is natural to think about the compactness of this operator.

Lemma 3 Let ω be a radial weight and { fk}∞k=0 ⊂ H(D) such that fk → 0 uniformly
on compact subsets of D. Then, Cω( fk) → 0 uniformly on compact subsets of D.

Proof Let be M ⊂ D a compact subset and Kω
t (z) = 1

z

∫ z
0 Bω

t (u) du. If z ∈ M ,

|Cω( fk)(z)| ≤
∫ 1

0
| fk(t z)||Kω

t (z)|ω(t) dt .

By following the proof of [15, Lemma 20], we obtain that there exists a ρ0 ∈ (0, 1)
such that M ⊂ D(0, ρ0) and

sup
z∈M

t∈[0,1)
|Kω

t (z)| ≤ C(ω, ρ0) < ∞.

Let ε > 0. By hypothesis, there exists a k0 ∈ N such that for every k ≥ k0
and t z ∈ D(0, ρ0), | fk(t z)| < ε. Putting all together, we have that |Cω( fk)(z)| ≤
ε · C(ω, ρ0) · ω0, so Cω( fk) → 0 uniformly on M . ��

Bearing in mind the previous lemma and by following a classic argument (see for
example [15, Theorem 21]), we claim the following characterization of the compact-
ness holds.
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Theorem 4 Let ω and μ be radial weights, γ > 0, μ ∈ D, and X ∈ {Hγ , A2
μ}. Then,

the following assertions are equivalent:

(i) Cω : X → X is compact;
(ii) For every sequence { fk}∞k=0 ⊂ X such that supk∈N ‖ fk‖X < ∞ and fk → 0

uniformly on compact subsets of D, lim
k→∞ ‖Cω( fk)‖X = 0.

Once we have the previous result, we are able to show that there does not exist
radial weight ω such that Cω : Hγ → Hγ , γ > 0 is compact neither Cω : A2

μ → A2
μ,

μ ∈ D, is compact.

Theorem 5 Let ω and μ be radial weights, γ > 0, μ ∈ D, and X ∈ {Hγ , A2
μ}. Then,

Cω : X → X is not compact.

Proof Case X = Hγ . For each a ∈ (0, 1), we set

fa(z) =
∞∑
n=0

(1 − a2)
1
2

an

(n + 1)
1−γ
2

zn .

Consequently, it is obvious that

‖ fa‖2Hγ
�

∞∑
n=0

| f̂a(n)|2(n + 1)1−γ =
∞∑
n=0

(1 − a2)a2n = 1, a ∈ (0, 1).

Furthermore, it is clear that fa → 0 as a → 1− uniformly on compact subsets of D.
In addition, we have

‖Cω( fa)‖2Hγ
�

∞∑
n=0

ω2
n

(
n∑

k=0

f̂a(k)

2(n − k + 1)ω2(n−k)+1

)2

(n + 1)1−γ

� (1 − a2)
∞∑
n=0

ω2
n

(
n∑

k=0

ak (k + 1)
γ−1
2

(n − k + 1)ω2(n−k)+1

)2

(n + 1)1−γ

≥ (1 − a2)
∞∑
n=0

ω2
na

2n

(n + 1)1+γ

(
n∑

k=0

(k + 1)
γ−1
2

ω2(n−k)+1

)2

� (1 − a2)
∞∑
n=0

ω2
2na

4n

(n + 1)1+γ

(
n∑

k=0

(k + 1)
γ−1
2

ω2(2n−k)+1

)2

≥ (1 − a2)
∞∑
n=0

a4n

(n + 1)1+γ

(
n∑

k=0

(k + 1)
γ−1
2

)2

� 1,

so using Theorem 4, we deduce that Cω : Hγ → Hγ is not a compact operator.
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Case X = A2
μ. For each a ∈ (0, 1), we consider

fa(z) =
∞∑
n=0

(1 − a2)
1
2 μ

− 1
2

2n+1a
nzn .

As a result ‖ fa‖2A2
μ

� 1, a ∈ (0, 1) and it is clear that fa → 0 as a → 1− uniformly

on compact subsets of D. By following the argument of the previous case, it is not
difficult to show

‖Cω( fa)‖2A2
μ

� (1 − a2)
∞∑
n=0

a4n

(n + 1)2

(
n∑

k=0

μ
− 1

2
2k+1

)2

μ2n+1, a ∈ (0, 1),

so Lemma A(iv) yields that there exists α = α(μ) > 0 such that

‖Cω( fa)‖2A2
μ

� (1 − a2)
∞∑
n=0

a4n

(n + 1)2

(
n∑

k=0

(
2k + 1

2n + 1

) α
2
)2

� 1.

Therefore, using Theorem 4 again, we deduce thatCω : A2
μ → A2

μ is not a compact
operator. ��
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