
Ann. Funct. Anal.           (2024) 15:54 
https://doi.org/10.1007/s43034-024-00353-w

Tusi
Mathematical
Research
Group

ORIG INAL PAPER

Geometric properties for a class of deformed trace functions

Frank Hansen1

Received: 23 March 2024 / Accepted: 5 April 2024
© The Author(s) 2024

Abstract
We investigate the geometric properties for a class of trace functions expressed in terms
of the deformed logarithmic and exponential functions. We extend earlier results of
Epstein, Hiai, Carlen and Lieb.
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1 Preliminaries

Tsallis [10] generalised in 1988 the standard Boltzmann–Gibbs entropy to a non-
extensive quantity Sp(ρ) depending on a parameter p. In the quantum version, it is
given by

Sp(ρ) = 1 − Tr ρ p

p − 1
p �= 1,

where ρ is a density matrix. It has the property that Sp(ρ) → S(ρ) for p → 1, where
S(ρ) = −Tr ρ log ρ is the von Neumann entropy.

1.1 The deformed logarithm and exponential

The Tsallis entropy may be written in a similar form:

Sp(ρ) = −Tr ρ logp ρ,
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where the deformed logarithm logp defined for positive x is given by

logp x =
∫ x

1
t p−2 dt =

{
x p−1−1
p−1 p �= 1

log x p = 1.

The deformed logarithm is also denoted by the p-logarithm. The range of the p-
logarithm is given by the intervals

(−(p − 1)−1,∞)
for p > 1(−∞,−(p − 1)−1

)
for p < 1(−∞,∞)
for p = 1.

The inverse function expp (denoted by the p-exponential) is always positive and given
by

expp(x) =
⎧⎨
⎩

(x(p − 1) + 1)1/(p−1) for p > 1 and x > −(p − 1)−1

(x(p − 1) + 1)1/(p−1) for p < 1 and x < −(p − 1)−1

exp x for p = 1 and x ∈ R.

The p-logarithm and the p-exponential functions converge, respectively, to the
logarithmic and the exponential functions for p → 1. We note that

d

dx
logp(x) = x p−2 and

d

dx
expp(x) = expp(x)

2−p. (1.1)

We will also need the following lemma.

Lemma 1.1 Take arbitrary p ∈ R. Independent of x > 0, we have

logp x
q = q logα x,

whereα = 1+q(p−1).Furthermore, take arbitrary q �= 0 and setβ = 1+(p−1)/q.

For any x ∈ R in the domain of expp, we obtain that qx is in the domain of expβ and
that

(expp x)
q = expβ(qx).

Proof We substitute u = t1/q (thus t = uq) in

logp x
q =

∫ xq

1
t p−2 dt

and note that du = q−1t (1−q)/q dt . Therefore, dt = qt (q−1)/q du and thus

logp x
q =

∫ x

1
uq(p−2)quq−1 du = q

∫ x

1
uq(p−1)−1 du.
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Since q(p − 1) − 1 = q(p − 1) + 1 − 2 = α − 2, the first statement follows. The
definition of β implies q/(p − 1) = 1/(β − 1). There are now four cases, firstly
depending on p > 1 and p < 1, and subsequently on q > 0 or q < 0. In all four
cases, it follows that qx is in the domain of expβ . We finally obtain from the first
result in the lemma that

logβ(expp x)
q = q logp(expp x) = qx,

and therefore (expp x)
q = expβ(qx). ��

1.2 Convexity andmin–max theorems

An important tool in our investigation is taken from convex analysis. These techniques
are used in engineering, automatic control, signal processing, resource allocation, port-
folio theory, and numerous other fields. We, in particular, use that partial minimisation
of a convex function is convex [2, Section 3.2.5]. This technique was successfully
applied by Carlen and Lieb in the investigation of trace functions [3]. We provide the
proof for the convenience of the reader.

Lemma 1.2 Let f : X × Y → R be a function of two variables and set

g(y) = inf
x∈X f (x, y) and h(y) = sup

x∈X
f (x, y)

for x ∈ X .

(i) If f (x, y) is jointly convex, then g is convex.
(ii) If f (x, y) is convex in the second variable, then h is convex.
(iii) If f (x, y) is concave in the second variable, then g is concave.
(iv) If f (x, y) is jointly concave, then h is concave.

Proof Take ε > 0 and elements y1, y2 ∈ Y . Pick x1, x2 ∈ X such that

g(y1) ≥ f (x1, y1) + ε and g(y2) ≥ f (x2, y2) + ε.

Then,

g(λy1 + (1 − λ)y2) ≤ f (λx1 + (1 − λ)x2, λy1 + (1 − λ)y2)

≤ λ f (x1, y1) + (1 − λ) f (x2, y2) ≤ λg(y1) + (1 − λ)g(y2) − ε,

so g is convex. Pick to λy1 + (1 − λ)y2 ∈ Y and ε > 0 an element z ∈ X such that

h(λy1 + (1 − λ)y2) ≤ f (x, λy1 + (1 − λ)y2) + ε.

Then,
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h(λy1 + (1 − λ)y2) ≤ λ f (x, y1) + (1 − λ) f (x, y2) + ε

≤ λh(y1) + (1 − λ)h(y2) + ε,

so h is convex. The cases (iii) and (iv) follow by considering − f (x, y). ��

1.3 The Young tracial inequalities

The following inequalities are known as the tracial Young inequalities. We prefer to
prove them as below.

Proposition 1.3 Let A and B be positive definite matrices. Then

Tr ApB1−p ≤ pTr A + (1 − p)Tr B 0 ≤ p ≤ 1

and

Tr ApB1−p ≥ pTr A + (1 − p)Tr B p ≤ 0, p ≥ 1.

Proof Let first 0 ≤ p ≤ 1. We may write

Tr ApB1−p = Tr L p
AR

1−p
B I = SIf (A, B)

≤ Tr
(
pL A + (1 − p)RB

)
I = pTr A + (1 − p)Tr B,

where f (t) = t p for t > 0, and L A and RB are the left and right multiplication
operators. The first equality above in terms of the quasi-entropy SIf (A, B) follows
since L A and RB commute, and the first inequality in the proposition then follows
from the geometric–arithmetic mean inequality. Since Jensen’s inequality reverses for
the extensions of a chord (corresponding to the cases p ≤ 0 or p ≥ 1), the second
inequality of the proposition follows. ��

2 Variational expressions

We take the following variational representations from our paper [9, Lemma 2.1] with
a slightly simplified proof.

Proposition 2.1 For positive definite operators X and Y , we have

Tr Y =
{
maxX>0

{
Tr X − Tr X2−q

(
logq X − logq Y

)}
, q ≤ 2,

minX>0
{
Tr X − Tr X2−q

(
logq X − logq Y

)}
, q > 2.

Proof We learned in Proposition 1.3 that

Tr X pY 1−p ≤ pTr X + (1 − p)Tr Y , 0 ≤ p ≤ 1,

Tr X pY 1−p ≥ pTr X + (1 − p)Tr Y , p ≤ 0, p ≥ 1.
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By combining the first inequality for 0 ≤ p < 1 with the case p > 1 in the second,
we obtain

Tr Y ≥ Tr X − Tr X − Tr X pY 1−p

1 − p
, p ≥ 0, p �= 1,

while the case p ≤ 0 gives the inequality

Tr Y ≤ Tr X − Tr X − Tr X pY 1−p

1 − p
, p ≤ 0.

For X = Y , the above inequalities become equalities. Setting q = 2 − p, the first
range (p ≥ 0, p �= 1) is transformed to the range (q ≤ 2, q �= 1), while the second
range (p ≤ 0) is transformed to the range (q ≥ 2). Since p = 2−q and 1− p = q−1,
we obtain

Tr Y =
⎧⎨
⎩
maxX>0

{
Tr X − Tr X2−q

(
Xq−1−Yq−1

)
q−1

}
, q ∈ (−∞, 2], q �= 1,

minX>0

{
Tr X − Tr X2−q

(
Xq−1−Yq−1

)
q−1

}
, q ∈ [2,∞).

By using the definition of the deformed logarithm, we note that

Xq−1 − Yq−1

q − 1
= logq(X) − logq(Y ),

and by inserting this in the expressions above, we obtain the desired statements of the
proposition, except for q = 1. We may finally let q tend to one in the first inequality
and obtain the variational expression

Tr Y = max
X>0

{
Tr X − Tr X (log X − log Y )

}

by continuity. This completes the proof. ��
Note that the last statement in the above proof entails the inequality

S(X | Y ) ≥ Tr (X − Y )

for the relative quantum entropy S(X | Y ).

2.1 Further preliminaries

Lemma 2.2 Let H be an arbitrary matrix, take L ≥ 0, and choose exponents p and
s such that s > 0. We consider the trace function

ψL,H (A) = Tr
(
L + H∗ApH

)s
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defined in positive definite matrices. Then ψL,H (A) is convex (respectively concave)
for arbitrary H and L ≥ 0, if and only if it is convex (respectively concave) for
arbitrary H and L = 0.

Proof By considering block matrices

Ĥ =
(
L1/2 0
H 0

)
and Â =

(
I 0
0 A

)
,

we obtain

Ĥ∗ Â p Ĥ =
(
L + H∗ApH 0

0 0

)
.

Since s > 0, we obtain in addition

(
Ĥ∗ Â p Ĥ

)s =
((

L + H∗ApH
)s 0

0 0

)
,

since it is meaningful to set 0s = 0. Indeed, for ε > 0, we have

εs = exp
(
s log ε

)
,

and this quantity tends to zero as ε → 0. Therefore, ψL,H (A) = ψ0,Ĥ ( Â) and the
statement follows. ��

If s < 0, there exist examples in two by two matrices such that ψ0,H (A) is convex
while ψL,H (A) is not.

3 Themain trace function

Let H be an invertible contraction and A positive definite. Then,

H∗ logp(A)H >
−1

p − 1
H∗H ≥ −1

p − 1
for p > 1

and

H∗ logp(A)H <
−1

p − 1
H∗H ≤ −1

p − 1
for p < 1.

Therefore, H∗ logp(A)H belongs to the domain of the p-exponential. This is true
even if H is not invertible since expp(0) = 1. Therefore,

expp
(
L + H∗ logp(A)H

)



Geometric properties for a class of deformed… Page 7 of 13    54 

is well defined and positive for arbitrary contractions H and p �= 1, provided L ≥ 0
when p > 1, and L ≤ 0 when p < 1. In both cases, we may define the trace function

ϕL
p,q(A) = Tr

[
expp

(
L + H∗ logp(A)H

)q] (3.1)

for arbitrary exponents q. We furthermore obtain the expression

ϕL
p,q(A) = Tr

[
I + (p − 1)L + (p − 1)H∗ Ap−1 − I

p − 1
H

]q/(p−1)

= Tr
[
I − H∗H + (p − 1)L + H∗Ap−1H

]q/(p−1)
. (3.2)

Note that (p − 1)L ≥ 0 in both cases. By using Lemma 2.2, we obtain the following:

Corollary 3.1 Suppose q/(p−1) > 0. Then ϕL
p,q(A) is convex (respectively concave)

if and only if the trace function A → Tr
(
H∗ApH

)q/(p−1)
is convex (respectively

concave).

We shall finally explore yet another expression for the main trace function. Given
the expression in (3.1) and setting

β = 1 + p − 1

q
, (3.3)

we obtain

ϕL
p,q(A) = Tr expβ

(
qL + qH∗ logp(A)H

)
, (3.4)

where we used Lemma 1.1. By replacing q with β in Proposition 2.1 and setting

F(X , A) = Tr X − Tr X2−β
(
logβ X − logβ Y

)
, (3.5)

where Y = expβ

(
qL + qH∗ logp(A)H

)
, we obtain that

ϕL
p,q(A) =

{
supX>0 F(X , A) β ≤ 2,
infX>0 F(X , A) β > 2.

(3.6)

This is the main variational expression to be used. We next calculate

F(X , A) = Tr X − Tr X2−β
(
logβ X − logβ Y

)
= Tr X − Tr X2−β

(
logβ X − qL − qH∗ logp(A)H

)

= Tr X − Tr X2−β

(
Xβ−1 − I

β − 1
− qL − qH∗ Ap−1 − I

p − 1
H

)

= Tr X − 1

β − 1
Tr

(
X − X2−β − (p − 1)L − X2−βH∗(Ap−1 − I )H

)
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=
(
1 − 1

β − 1

)
Tr X + G(X , A),

where we used q/(p − 1) = 1/(β − 1) and set

G(X , A) = 1

β − 1
Tr

(
X2−β(I − H∗H + (p − 1)L) + X2−βH∗Ap−1H

)
. (3.7)

The first term in F(X , A) is linear, so we only have to consider convexity or concavity
of G(X , A). Note as before that (p − 1)L ≥ 0.

Lemma 3.2 Let H be a contraction and consider for arbitrary real q the trace function
ϕL
p,q(A) defined in (3.1). If q/(1−p) > 0 andϕL

p,q(A) is convex (respectively concave)

for arbitrary contractions H , then so is the trace function ϕ−L
2−p,q(A).

Proof We may without loss of generality assume that H is invertible. By using the
calculation in (3.2), we obtain

t−qϕL
p,q(t A) = Tr

(
t1−p(I − H∗H + (p − 1)L) + H∗Ap−1H

)q/(p−1) (3.8)

for t > 0, Thus, by letting t → 0 for p < 1 or letting t → ∞ for p > 1, we obtain
that the trace function

A → Tr
(
H∗Ap−1H

)q/(p−1)

is convex (respectively concave). It is no longer necessary to assume that H is a con-
traction, and since H∗Ap−1H is invertible, we can raise it to any non-zero exponent.
Therefore, by inversion we obtain that the trace function

A → Tr
(
H∗A1−pH

)q/(1−p)

is convex (respectively concave) for arbitrary H . In particular, if H is a contraction
we obtain by a small calculation the identity

ϕ−L
2−p,q(A) = Tr

(
I − H∗H + (p − 1)L + H∗A1−pH

)q/(1−p)
.

Since q/(1 − p) > 0, we obtain from Lemma 2.2 that also ϕ−L
2−p,q(A) is convex

(respectively concave). ��

3.1 The strategy of the proof

We shall determine parameter values p and q such that F(X , A) is either convex
(respectively concave) or just convex (respectively concave) in the second variable.
To do this, we use that the functions t → t p are operator concave, if and only if
0 ≤ p ≤ 1, and operator convex, if and only if −1 ≤ p ≤ 0 or 1 ≤ p ≤ 2. It may be
of interest to note that the same parameter conditions apply, if we only require matrix
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convexity or matrix concavity of order two, cf. [6, Proposition 3.1]. We also make use
of Lieb’s concavity theorem [8, Corollary 1.1] stating that the trace functions

(X , A) → Tr X pH∗Aq H (3.9)

are concave if p, q ≥ 0 and p+q ≤ 1.Ando’s theorem states [1, Corollary 6.3] that the
trace function in (3.9) for an arbitrary matrix H , is convex for either −1 ≤ p, q ≤ 0,
or for

−1 ≤ p ≤ 0 and 1 − p ≤ q ≤ 2,

where obviously p and q may be interchanged in the condition. Since H = I is a
possibility, we realise that concavity of ϕp,q(A) requires 0 ≤ q ≤ 1, while convexity
of ϕp,q(A) requires q ≤ 0 or q ≥ 1. Since we intend to eventually use operator
convexity/concavity of the function t → t p, we are restricted to the cases

−1 ≤ p − 1 ≤ 2 or equivalently 0 ≤ p ≤ 3.

Note that if β = 1, then p = 1.

Proposition 3.3 Let K be a positive definite n × n matrix, and let H be any n × n
matrix. We may define the operator map

ψ s
p(A) = (

K + H∗ApH
)s

in positive definite n × n matrices for exponents p and s. If −1 ≤ p ≤ 0 and
−1 ≤ s ≤ 0, then ψ s

p(A) is concave.

Proof We first consider the case −1 ≤ p ≤ 0 and s = −1. Since

ψ−1
p (A) = (

K + H∗ApH
)−1 = K−1/2(I + L∗ApL

)−1
K−1/2,

where L = HK−1/2, we may assume K = I . We may also without loss generality
assume that H is invertible. We then obtain

(
I + H∗ApH

)−1 = (H∗ApH)−1

(H∗ApH)−1 + I
= H−1A−p(H−1)∗

H−1A−p(H−1)∗ + I

by an elementary calculation. Since the map A → H−1A−p(H−1)∗ is concave and
the function t → t(1 + t)−1 is operator monotone and operator concave, we obtain
that A → (

I +H∗ApH
)−1 is concave. That is,ψ−1

p (A) is concave. Since the function
t → tα is both operator monotone and operator concave for 0 ≤ α ≤ 1, it follows
that ψ s

p(A) is concave for −1 ≤ s ≤ 0. ��
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4 Themain theorem

Theorem 4.1 The trace function ϕL
p,q(A) defined in (3.1) has the following geometric

properties depending on the matrix L and the parameters p and q. ϕL
p,q(A) is concave

in positive definite A for

0 ≤ p ≤ 1, L ≤ 0, 0 ≤ q ≤ 1. (4.1a)

1 ≤ p ≤ 2, L ≥ 0, 0 ≤ q ≤ 1. (4.1b)

ϕL
p,q(A) is convex in positive definite A for

0 ≤ p ≤ 1, L ≤ 0, q ≤ 0. (4.1c)

1 ≤ p ≤ 2, L ≥ 0, q ≤ 0. (4.1d)

2 ≤ p ≤ 3, L ≥ 0, q ≥ 1. (4.1e)

Proof We divide the proof following the statement’s five cases.

(a) Take 0 ≤ p < 1, L ≤ 0, and 1 − p ≤ q ≤ 1. Then

0 ≤ β = 1 + (p − 1)/q ≤ p < 1.

Since ϕp,q(A) = supX>0 F(X , A), we may derive that ϕp,q(A) is concave if
G(X , A) is jointly concave. Since 1 < 2 − β ≤ 2, the first term in G(X , A) is
concave (note that β < 1). Since −1 ≤ p− 1 ≤ 0 and 1− (p− 1) ≤ 2− β ≤ 2,
we realise by Ando’s convexity theorem that ϕp,q(A) is concave.
Next, take 0 ≤ p ≤ 1, L ≤ 0, and 0 ≤ q ≤ 1 − p. That is, −1 ≤ s ≤ 0,
where s = q/(p − 1) . It then follows from (3.2) combined with Corollary 3.3
that ϕp,q(A) is concave (even without the trace).

(b) Take 1 < p ≤ 2, L ≥ 0, and 0 < q ≤ p − 1. Then

β = 1 + p − 1

q
≥ 2,

and thus ϕL
p,q(A) = infX>0 F(X , A).Wemay thus derive that ϕL

p,q(A) is concave
if G(X , A) is concave in the second variable. This is so since 0 ≤ p − 1 ≤ 1.
Next, take 1 < p ≤ 2, L ≥ 0, and p − 1 ≤ q ≤ 1. Then,

1 < p ≤ β = 1 + p − 1

q
≤ 2,

and thusϕL
p,q(A) = supX>0 F(X , A).Wemay thus derive thatϕL

p,q(A) is concave
if G(X , A) is concave. Since β > 1 and 0 ≤ 2 − β ≤ 1, the first term in
G(X , A) is concave. The second term is concave by Lieb’s concavity theorem,
since 0 ≤ p − 1 ≤ 1 and 2− β + p − 1 ≤ 1. The last inequality is satisfied since
p ≤ β. These two cases taken together prove (b).
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(c) We first prove that (d) implies (c).
Take 1 < p < 2, L ≥ 0, and q < 0, and note that 0 ≤ 2− p < 1. Since ϕL

p,q(A)

is convex by (d) and q/(1 − p) > 0, we obtain by Lemma 3.2 that ϕ−L
2−p,q(A) is

convex. This is equivalent to saying that ϕL
p,q(A) is convex for 0 ≤ p ≤ 1, L ≤ 0,

and q < 0.
(d) By continuity, we may assume 1 < p ≤ 2, L ≥ 0, and q < 0. Therefore,

β = 1 + (p − 1)/q < 1 and thus ϕL
p,q(A) = supX>0 F(X , A). We obtain that

ϕL
p,q(A) is convex, if G(X , A) is convex in the second variable. This is so since

β < 1 and 0 ≤ p − 1 ≤ 1.
(e) Take 2 ≤ p ≤ 3, L ≥ 0, and 1 ≤ q ≤ p − 1. Then

2 ≤ β = 1 + (p − 1)/q ≤ p ≤ 3.

Since ϕL
p,q(A) = infX>0 F(X , A), we may derive that ϕL

p,q(A) is convex if
G(X , A) is convex. Since −1 ≤ 2 − β ≤ 0, this follows by Ando’s convexity
theorem if in addition

1 − (2 − β) ≤ p − 1 ≤ 2,

and this is satisfied since β ≤ p.
Take next 2 ≤ p ≤ 3, L ≥ 0, and q ≥ p − 1. Then

1 < β = 1 + (p − 1)/q ≤ 2.

Since ϕL
p,q(A) = supX>0 F(X , A), we may derive that ϕL

p,q(A) is convex if
G(X , A) is convex in the second variable. But this is so since β > 1 and 1 ≤
p − 1 ≤ 2. These two cases taken together prove (e).

��
The special case q = 1 was proved in [9, Corollary 2.3].

4.1 Comparison with the literature

The trace functions ϒp,q(A) were introduced and studied by Carlen and Lieb in
[3, Theorem 1.1] and later with a different definition (by setting s = q/p) in [4,
Proposition 5]. We adopt and slightly generalise the latter definition by setting

ϒK
p,s(A) = Tr

(
K + H∗ApH

)s
, (4.2)

where K ≥ 0, H is arbitrary, and A is positive definite. By replacing p with p − 1,
we obtain the following corollary to Theorem 4.1.

Corollary 4.2 The trace function ϒK
p,s(A) defined in (4.2) has the following geometric

properties depending on the parameters p and s. ϒK
p,q(A) is concave in positive
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definite A for

−1 ≤ p ≤ 0, p−1 ≤ s ≤ 0. (4.3a)

0 ≤ p ≤ 1, 0 ≤ s ≤ p−1. (4.3b)

ϒK
p,q(A) is convex in positive definite A for

−1 ≤ p ≤ 0, s ≥ 0. (4.3c)

0 ≤ p ≤ 1, s ≤ 0. (4.3d)

1 ≤ p ≤ 2, s ≥ p−1. (4.3e)

Proof To a given K ≥ 0, we set L = (p− 1)−1K . Then, L ≤ 0 for p < 1 and L ≥ 0
for p > 1. By replacing L with t p−1L in Eq. (3.8), we obtain

t−qϕt p−1L
p,q (t A) = Tr

(
t1−p(I − H∗H) + (p − 1)L + H∗Ap−1H

)q/(p−1)

and this expression tends to

Tr
(
K + H∗Ap−1H

)q/(p−1) = ϒK
p−1,s(A), s = q

p − 1

by letting t → 0 in the case p < 1, and letting t → ∞ in the case p > 1. With these
choices, we realise that ϒK

p−1,s(A) has the same geometric properties as ϕL
p,q(A).

We may now replace p with p + 1 and obtain that ϒK
p,s(A) has the same geometric

properties as ϕL
p+1,q(A), where s = q/p.

In particular, ϒK
p,s(A) is concave for −1 ≤ p ≤ 0 and 0 ≤ q ≤ 1, equivalent to

p−1 ≤ s ≤ 0. Furthermore,ϒK
p,s(A) is convex for−1 ≤ p ≤ 0 and q ≤ 0, equivalent

to s ≥ 0. Likewise, ϒK
p,s(A) is convex for 0 ≤ p ≤ 1 and q ≤ 0, equivalent to s ≤ 0.

Finally, ϒK
p,s(A) is convex for 1 ≤ p ≤ 2 and q ≥ 1, equivalent to s ≥ p−1. ��

In the case K = 0, we note that (4.3a) and (4.3b) are counterparts of each other by
replacing (p, s) with (−p,−s). This also applies to (4.3c) and (4.3d). These results
contain the statements in [4, Proposition 5], where the authors list the following
clarifications.

(1) Concavity: The case 0 ≤ p ≤ 1 and K = 0. The result for s = p−1 is due to
Epstein [5]. Carlen and Lieb proved the result for 1 ≤ s ≤ p−1, [3, Theorem 1.1].
The full result for 0 ≤ s ≤ p−1 is due to Hiai [7, Theorem 4.1 (1)].

(2) Convexity: The case −1 ≤ p ≤ 0, K = 0, and s > 0 is due to Hiai [7, Theorem
4.1 (2)].

(3) Convexity: The case 1 ≤ p ≤ 2, K=0, and s ≥ p−1 is due to Carlen and Lieb [3,
Theorem 1.1].

The dual case 0 ≤ p ≤ 1, K = 0, and s < 0 is also contained in Hiai [7, Theorem
4.1 (2)]. One may compare Corollary 4.2 to Figure 1.1 in Zhang [11], where a three
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variable extension 
p,q,s(A) of ϒ0
p,s(A) is discussed. The comparison is obtained by

setting q = 0 in the figure.
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