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Abstract

We study projective and injective tensor products of Banach L%-modules over a o -finite
measure space. En route, we extend to Banach L% modules several technical tools of
independent interest, such as quotient operators, summable families, and Schauder
bases.
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1 Introduction

As of now, the language of normed modules introduced by Gigli in [11] has become an
indispensable tool in analysis on metric measure spaces, especially on those verifying
synthetic lower Ricci curvature bounds (the so-called RCD spaces). Normed modules
allow to define several spaces of measurable tensor fields, whose investigation has
remarkable analytic and geometric consequences. In this respect, three constructions
are particularly important: duals, pullbacks, and (in the case of Hilbert modules) tensor
products. For example, the dual of the pullback is important for constructing the
differential of a map of bounded deformation or the velocity of a test plan (cf. with the
introduction of [13]), while the tensor product of Hilbert modules is a fundamental
tool when studying the second order differential calculus on RCD spaces (see [11,
Section 3]). However, since many spaces of interest are ‘non-Riemannian’, it would
be interesting to study tensor products of non-Hilbert normed modules, as well as to
understand their relation with duals and pullbacks: this is the main goal of this paper.
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We assume the reader is familiar with (projective and injective) tensor products of
Banach spaces, for which we refer e.g. to the authoritative monograph [21].

Let us briefly describe the content of the paper. Fix a o-finite measure space X =
(X, X, m),ie. Xis aset, X is a o-algebra on X, and m: ¥ — [0, 400] is a o-finite
(countably-additive) measure. We consider the class of Banach LO(X)-modules, i.e.
modules over the commutative ring L (X) that are endowed with a complete pointwise
norm operator (cf. with Definition 2.4). Even though we are mostly interested in
their applications to metric measure geometry, we consider Banach L°-modules over
general measure spaces. Our choice is due to the fact that Banach L°-modules play
an important role also in other research areas, see for example [15], as well as [14]
and the references therein. The only results where we need to require an additional
assumption on the base measure space (verified in the case of metric measure spaces)
are Theorems 4.13 and 5.13. Given two Banach L°(X)-modules .# and ./, we first
provide a useful criterion to detect the null tensors of the algebraic tensor product
M ® A see Lemma 3.19. Its proof is quite subtle, one reason being the fact that
the algebraic dual of a module might not separate the points (differently from duals
of vector spaces); cf. with Remark 3.20. Having Lemma 3.19 at our disposal, we can:

e Define and study the projective tensor product M ® .V, see Sect. 4.
e Define and study the injective tensor product # &®¢. N , see Sect. 5.

Motivated by the analysis on metric spaces, our attention is focussed on the following
results:

e The dual of .#&,./ can be identified with the space B(.#, .#") of bounded
LO(X)-bilinear maps from .# x .4 to L?(X) (see Theorem 4.11), while the dual
of .# &,/ is a quotient of the dual of the space Cpb (Df”/;* X ]Df;*; LO(X)) (see
Definition 3.16 and Theorem 5.12).

e The operation of taking pullbacks of Banach L°(X)-modules commutes both with
projective tensor products (Theorem 4.13) and with injective tensor products (The-
orem 5.13).

While some of the concepts and results we presented above are natural extensions of
their version for Banach spaces, other ones are non-trivial generalisations (see e.g. the
two different notions of a continuous module-valued map in Sect. 3.4) or have no coun-
terpart in the Banach space setting (as in the case of pullback modules). We conclude
the introduction by mentioning that a significant portion of the paper is devoted to the
development of several technical tools (new in the setting of Banach LO9(X)-modules),
which are needed in Sects. 4 and 5, and can be useful in the future research concern-
ing normed modules: we study quotient operators (Sect.3.1), summable families in
Banach L%(X)-modules (Sect.3.2), and local Schauder bases (Sect.3.3).

2 Preliminaries

Given an arbitrary set I # &, we denote by Z?(I) its power set (i.e. the set of its
subsets) and

P¢(I):={F € 2(I) | F is finite}.
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Given any couple of indexes i, j € I, we define §;; € {0, 1} as §;;:=1if i = j and
8;j:=0ifi # j.Moreover,if X is a set, then the characteristic function 1 : X — {0, 1}
of asubset £ C X is

15 ()= 1 foreveryx € E,
EW=10 for every x € X\E.
For any map ¢: X — Y between two sets X and Y, we denote by ¢[X] C Y the

image of ¢.

2.1 Tensor products of modules

In this section, we recall the basics of the theory of tensor products of modules, which
is originally due to [5]. See also [7] and the references indicated therein. Our standing
convention is that all rings are assumed to have a multiplicative identity.

Theorem 2.1 (Tensor products of modules) Let R be a commutative ring. Let M and
N be modules over R. Then there exists a unique couple (M @ N, ®), where M @ N
is an R-module and @ : M x N — M ® N is an R-bilinear map, such that the
following universal property holds: given any R-module Q and any R-bilinear map
b: M x N — Q, there exists a unique R-linear map b: M®N — Q, called the
R-linearisation of b, for which the diagram

MXNL>Q

®~L/,;

M®N

commutes. The couple (M ® N, ®) is unique up to a unique isomorphism: given
any (T, ®) with the same properties, there exists a unique isomorphism of R-modules
®: M ®N — T such that

MxN -2 M®N

commutes. We say that (M ® N, ®), or just M @ N, is the tensor product of M and
N.

Those elements of M @ N of the form v @ w are called elementary tensors. Any
a € M®N isasum of elementary tensors: ¢ = Z?:l v;@w; forsome vy, ..., v, e M
and wy, ..., w, € N.

Let us recall the following criterion, which allows us to detect when a given element
Y vi®w € M®Nisnull: Y, v; ® w; = 0if and only if
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n .
Z b(v;. w;) = 0 whenever @ isan R-module and @)
i=1

b: M x N — Qisan R-bilinear map.

Differently from the case of tensor products of vector spaces, in (2.1) one has to
consider R-bilinear maps b with values into an arbitrary R-module Q (taking Q = R
is not sufficient). Indeed, it can happen that no non-null bilinear mapb: M x N — R
exists even if M, N are non-trivial; see [18].

Lemma 2.2 (Tensor products of R-linear maps) Let R be a commutative ring. Let
T:M — Mand S: N — N be R-linear maps between R-modules. Then there
exists a unique R-linearmap T ® S: M Q N — M & N such that TRSHvRw) =
T () ® S(w) for everyv € M and w € N.

Each commutative ring R is an R-module. Moreover, each R-module M is canoni-
cally isomorphic (as an R-module) to R@ M viathe R-linearmap M > v — 1rg®v €
R ® M. In particular, R ® R = R.

2.2 The space L(X)

Let X = (X, X, m) be a o-finite measure space. We denote by LO(X) the space of all
real-valued measurable functions from X to R, quotiented up to m-a.e. identity. The
equivalence class in L°(X) of a given measurable function f: X — R will be denoted
by [ f1m. The space L°(X) is a vector space and a commutative ring if endowed with
the natural pointwise operations. Moreover, fixed a probability measure m on (X, X)
with m <« m <« m, we have that

dLo(X)(f,g):/ |f —glAldi forevery f,g € LX)

is a complete distance, and L°(X) becomes a topological vector space and a topological
ring if endowed with djo(x,. The distance d;o.x) depends on the chosen auxiliary
measure m, but its induced topology does not. We also have that a given sequence
(fr)neN < LX) converges to a limit function f € LO(X) with respect to d LO(X) if
and only if there exists a subsequence (n;);eny € N such that f(x) = lim; f;, (x) for
m-a.e. x € X. Finally, L°(X) is a Riesz space if endowed with the natural partial order
defined in the following way: given f, g € L%(X), we declare that f < g if and only
if f(x) < g(x) for m-a.e. x € X. The positive cone of LO(X) is then denoted by

L) T:={f e L°X) | £ = 0}.

We also point out that L°(X) is Dedekind complete, i.c. every subset {f;}ic; of
L%(X) that is order-bounded (which means that there exists g€ LO(X)™ such that
|fil < g for every i € I) has both a supremum \/;; f; € L°(X) and an infimum
Nier fi € LO(X). Let us recall that the supremum Ve fi is the unique element of
LY(X) having the following properties:
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o fji = Vie fiforevery jel.
e If a function g € LO(X) satisfies fj <gforevery j € I, then\/,.; fi < g.

The infimum is given by A;; fii= — \/;c;(— fi). Furthermore, L°(X) has both the
countable sup property and the countable inf property, i.e. for any order-bounded
set {fi}ier € L°X) one can find C C I countable with Viec fi = Ve fi and
Niec f: = Nies fi- More generally, the space LY, (X) of measurable functions from
X to [—o0, +00], quotiented up to m-a.e. identity, is a Dedekind complete Riesz space
with the countable sup/inf properties. Notice that every setin LY (X) is order-bounded
and that L°(X) is a solid Riesz subspace of Lgxt X).

Given any measurable set £ € ¥ with m(E) > 0, we will use the following
shorthand notation:

X=X, Z, m[g),

where m|g stands for the restriction of m to E, i.e. we set m|g(F):=m(E N F) for
every F € X.

Remark 2.3 LetX = (X, X, m) beo-finiteand { f;}ier < Lgxt(X).Fixarepresentative
fi of fi foranyi € I.Suppose there exists a measurable function g: X — [—00, +00]
such that sup; ., fi(x) < g(x) forall x € X; we do not require that x — sup;; fi(x)
is measurable. Then \/l. e1 Ji < [8]m. Indeed, we can find a countable set C C I such
that \/;cc fi = Vieq fi- Assupicc fi(x) < g(x) forevery x € X and \/; ¢ fi =
[ supiec fi]m, we deduce that \/;.; fi < [&]lm-

We also point out that the metric space (LX), d Lo(x)) is separable if and only if
the measure space (X, ¥, m) is separable, which means that we can find a sequence
(En)nen C X such that

ingm(E,,AE) =0 forevery E € X such that m(E) < +o0.
ne

We refer e.g. to [12, Section 1.1.2] for a more detailed discussion on LX) spaces.
See also [1, 4].

2.3 Banach spaces
We briefly recall some definitions and results concerning Banach spaces.

Given an index set I # & and an exponent p € [1, oo], we denote by £, (1) the
vector space

tp(D:={a = (a;)ies € R" | lalle, ) < +oo},

where for any a = (a;)ie; € R’ we define the quantity ||Cl||gp(1) € [0, +o0] as

(Zie] |ai|p)1/[7 if p < oo,

llalle, 2={ .
(D sup; ¢ lail if p = o0,
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where Y, lai|P:= SUPFe (1) Y ier la@il?. Tt holds that (€,(1), || - lle, ) is a
Banach space.

An (unconditional) Schauder basis of a Banach space B is a family of vectors
{vi}ies € B such that for any v € B there is a unique (;);ic; S R! for which
{Aivi}ie;s € B is summable and

v = Zkivi.

iel

We recall that this means that for any & > 0 there exists F; € &7 (I) such that

v _Z)\.ivi

ieF

<e¢e forevery F e Z¢(I) with F; C F.
B

We point out that, letting Span(S) denote the closure of the linear span of aset S C B,
we have

vi ¢ Span{v; | j € I\{i}} foreveryiel. (2.2)
We also recall that the canonical elements (e;);c; € £1(I), which are given by
€;:=(8ij)jer € £1(1), (2.3)

form an (unconditional) Schauder basis of £1 (/). See e.g. [9] for an account of Schauder
bases.

A separable Banach space B is said to be a universal separable Banach space
if every separable Banach space can be embedded linearly and isometrically in B.
The Banach—Mazur theorem states that universal separable Banach spaces exist; for
instance, the space C([0, 1]) endowed with the supremum norm has this property. See
e.g. [3] for a proof of this result.

2.4 Banach L°-modules

The notion of normed/Banach L°(X)-module we are going to recall was introduced in
[11], but the axiomatisation we will present is taken from [10] (with a slight difference
in the terminology, since here we distinguish between non-complete normed modules
and Banach modules). Unless otherwise specified, the discussion is essentially taken
from [2, 10, 11].

Definition 2.4 (Banach L°-module) Let X be a o -finite measure space, .# a module
over L(X). Then we say that .# is a normed L°(X)-module if it is endowed with a
map | - |: .4 — LX), which is said to be a pointwise norm on .7, verifying the
following properties:
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[v| =0 forevery v € .#, with equality if and only if v = 0,
v+ w| < |v| + |w| foreveryv,w € .#,
I f vl =|f]lv] foreveryfeLO(X)andve///.

Moreover, we say that .# is a Banach L°(X)-module when the following distance
is complete:

d.z (v, w):=dpox),(lv —w|,0) forevery v, w € .Z.

In the case where X, = ({0}, &o) is the one-point probability space, the normed
L9(X,)-modules (resp. the Banach L9(X,)-modules) can be identified with the
normed spaces (resp. the Banach spaces), with the only caveat that the distance d_;
associated with a normed L°(X,)-module .# is not induced by the norm | - ||, of
. However, one has that d_; (v, 0) = ||v|| 4z A 1 forevery v € ..

Next, we recall/introduce a number of definitions related to normed and Banach
LO(X)-modules. Let X = (X, =, m) be a o-finite measure space. Let .# and A"
be normed LO(X)-modules. Given any measurable set £ € X, we can consider the
‘localisation’ of . on E, i.e. the space

e///|EI=]lE~e//={v€z//’]lx\E-UZO}Z{]lE%J‘UE//}.

We can regard ./ |g either as a normed L°(X|z)-module or as a normed L°(X)-
submodule of .#Z. We say that some elements vy, ..., v, € .# are independent on
E provided the mapping

L'KI)" 3 (fioe s f) > Y fivi € Mg

i=1

is injective, while a vector subspace V C ./ is said to generate ./ on E if it holds
that /| = cl 4 (1 - 9(V)), where we denote

n
4(S):= {Z 1g, -vie A |neN, (E)}_, C T parttitionof X, (v;))7_; S S

i=1

for every subset S € .#. The module . is said to be finitely-generated if there
exists a finite-dimensional vector subspace V C .# that generates .# (on X). A local
basis for .# on E is a collection of elements vy, ..., v, € .# that are independent
on E and have the property that their linear span generates .# on E. In this case,
LOXIE) 3 (fis..os fo) Y fi -vi € A|E is bijective. Since two local
bases on E must have the same cardinality, one can unambiguously say that .# has
local dimension n on E. Local bases do exist, whence it follows that .#Z admits a
(m-a.e. essentially unique) dimensional decomposition (D), cNujco}, Which means
that (Dy)neNuioo} € X is a partition of X with the following property: .# has local
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dimension n on D, foralln € N, and .# | is not finitely-generated if E € ¥ satisfies
E C Dy and m(E) > 0.

The support of ./Z is the ‘biggest’ subset S(.#) of X where some element of .Z
is not null, i.e.

S(.#) € ¥ is m-a.e. characterised by 1g( z):= \/ L0
vel

The space L°(X) itself is a Banach L°(X)-module with S(L(X)) = X. The unit
sphere of .Z is

S//[:z{v e .#\{0} ’ [v](x) € {0, 1} for m-a.e. x € X}
The signum map sgn: .#Z — S _; U {0} on .# is defined as

{v>0)

1
sgn(v):= N veS yU{0} foreveryv e .Z.

Notice that v = |v| - sgn(v) for every v € .#. Moreover, we define the unit disc of
M as

]D)//f:z{v e M ‘ |[v|(x) < 1 form-a.e. x € X}

Amap T: .# — . is said to be a homomorphism of normed L°(X)-modules
provided it is L°(X)-linear and continuous, or equivalently if it is linear and there
exists g € LO(X)* such that

T (v)| < glv| foreveryv e .Z. 2.4

We denote by HOM(.#; .#") the space of all homomorphisms of normed LO(X)-
modules from .# to .4 It is a normed L°(X)-module if endowed with the natural
pointwise operations and the following pointwise norm:

Tl="\/ %‘T(v)' = A\ {g € L) | g satisfies 2.4)}
vel

for every T € HOM(.#; A). If A" is complete, then HOM(.#; .#") is a Banach
L%(X)-module. By an isomorphism of normed L°(X)-modules we mean a bijective
homomorphism of normed L°(X)-modules 7': .# — .4 that preserves the pointwise
norm, i.e. |T(v)| = |v| holds for every v € .#. Whenever an isomorphism between
M and A exists, we write .# = .4 . The kernel ker(7') of any T € HOM(AZ; .A"),
which is given by ker(T):={v € .# : T(v) = 0}, is a closed normed L°(X)-
submodule of .7 .
The dual of a normed L°(X)-module .7 is defined as

M =Hom(; L°(X)).
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If .# is a Banach L°(X)-module and ¥ is a Banach L%(X)-submodule of .#, then
we have that the quotient module . /¥ is a Banach L°(X)-module if endowed with
the pointwise norm

lw+ ¥ |:= /\ lw+v| foreveryw+ ¥ € . #/V.
veyV

Any normed L%(X)-module . has a unique completion (M, 1), 1.e. 4 is a Banach
LO(X)-module and t: .# — A is a pointwise norm preserving homomorphism of
normed LO(X) modules such that ([.#] is dense in .# . Uniqueness is in this sense:
given any (A7) having the same properties as (A, 1), there is a unique isomorphism
of Banach LO(X)-modules ¢: .# — .4 withi = ¢ o .

Definition 2.5 (Categories of Banach L°(X)-modules) Let X be a o-finite measure
space. Then:

(i) We denote by BanModyx the category whose objects are the Banach LO(X)-
modules, and the morphisms between Banach L9(X)-modules .# and .4 are
given by HoM(.#; .A").

(i) We denote by BanModslg the category whose objects are the Banach LO(X)-
modules, and the morphisms between Banach L°(X)-modules .# and .4 are
given by Dyom.z:.4)-

Notice that BanMOd%g is a lluf subcategory of BanMody, i.e. a subcategory con-
taining all the objects of BanModx. It is proved in [19, Theorem 3.13] that BanMod%
is abicomplete category (i.e. it admits all small limits and colimits), while it is observed
in [19, Remark 3.1] that BanModx admits all finite limits and colimits.

Theorem 2.6 (Hahn-Banach) Let X be a o-finite measure space and M a normed
LO(X)-module. Then for any given v € . there exists an element w, € S_y+ U {0}
such that w,(v) = |v|.

Theorem 2.6 appeared in [11] and was obtained as a consequence of the classical
Hahn-Banach theorem. For a more direct proof tailored to normed modules, we refer
to [17, Theorem 3.30].

A norming subset of .Z* isaset 7 C D _+ satisfying |v| = \/ .o (v) for every
v € ./ . The Hahn—Banach theorem ensures that the unit disc D_+ itself is a norming
subset of .Z*.

Definition 2.7 (Weak* topology) Let X be a o -finite measure space and let .# be a
Banach L%(X)-module. Then we define the weak* topology on . * as the coarsest
topology induced by the family

{6, : v e A},

where 8, : .#* — L%(X) is given by 8, (w):=w (v) for every w € .4*.

Remark 2.8 Similarly, one could define a weak topology on .#. Moreover, the weak
and weak* topologies on Banach L’-modules verify properties that generalise the
corresponding ones for Banach spaces. However, in this paper we will not investigate
further in this direction.
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2.4.1 Examples of Banach L°-modules

We recall two key examples of Banach L%(X)-modules.

Definition 2.9 (The space LO(X: B))Let X = (X, =, m) be a o -finite measure space,
B a Banach space. Then we denote by L°(X; B) the space of all measurable maps
from X to B taking values into a separable subset of B (which depends on the map
itself), quotiented up to m-a.e. equality.

The L°-Lebesgue—Bochner space L°(X; B) is a Banach L°(X)-module if endowed
with

[v|(x):=|lv(x)||p forevery v € LO(X; B) and m-a.e. x € X.

Given a vector v € B, we denote by v € L(X; B) the vector field that is a.e. equal to
v, i.e. we set

v(x):=veB form-ae. x € X. 2.5)

We also recall the following definition of module-valued space of generalised
sequences:

Definition 2.10 (The space £, (I, .#)) Let I be anon-empty index setand p € [1, 00).
Let X be a o-finite measure space and .# a Banach L°(X)-module. Given any v =
(vi)ies € AT, we set

= \/ (Dviv’)w.

FeZPr(I) \ieF

Notice that |v], € L (X)" for every v € .#. Then we define the space €, (I, .#)
as

Cp, My={v e v, e L°CX)T}.

The space (¢,(I,.#), | - |p) is a Banach L?(X)-module, as it follows from [19,
Proposition 3.10] (notice indeed that £, (1, .#) is a particular example of £,-sum in
the sense of [19, Definition 3.9]).

2.4.2 Fiberwise representation of a Banach L°-module

One can easily check that the space of measurable sections of a measurable Banach
bundle is a Banach L°(X)-module, a particular example being given by the L-
Lebesgue—Bochner space L°(X; B), which corresponds to the constant bundle B. On
the other hand, it is much more difficult to show the converse, i.e. that any Banach
L°(X)-module can be represented as the space of sections of some measurable Banach
bundle. Results in this direction have been obtained in [8, 16]. We will use one such

W Birkhauser



Projective and injective tensor products... Page 110of55 11

result (i.e. Theorem 2.11 below) to prove Lemma 2.12, which in turn will be essential
in order to obtain Lemma 3.19, and accordingly to introduce projective and injective
tensor products of Banach L-modules.

Given a o -finite measure space X = (X, X, m), a separable Banach space B, and
measurable maps vy, ..., v,: X — B, we say that the multivalued map X 3 x —
E(x) C B, which we define as

E(x):=span{vi(x),...,v,(x)} € B foreveryx € X,

is a measurable Banach bundle on X. Notice that each E(x) is a closed vector
subspace of B. The space I', (E) of all m-measurable sections of E is then defined as
the set of all measurable maps v: X — B satisfying v(x) € E(x) for m-a.e. x € X,
quotiented up to m-a.e. equality. It turns out that I'y, (E) is a Banach L°(X)-module if
endowed with the natural pointwise operations.

Theorem 2.11 (Fiberwise representation of Banach L°-modules) Let X be a o-finite
measure space and .# a Banach L°(X)-module. Let B be a universal separable
Banach space. Suppose that 4 has local dimension n € N on a set E € X. Then
there exist measurable maps vy, . .., v, : X = Bsuch that # g = T'w(E), where we
set E(x):=span{vy (x), ..., v,(x)} for every x € X.

Theorem 2.11 was first proved in [16], but we preferred to present its reformulation
from [8].

Lemma 2.12 Let X be a o-finite measure space and let .# be a finitely-generated
Banach L°(X)-module. Let T: .# — L°(X) be an L°(X)-linear operator. Then it
holds that T € /.

Proof Let Dy, ..., Dj be the dimensional decomposition of .#Z . Fixanyn =1, ..., n.
Thanks to Theorem 2.11, we can find measurable vector fields vy, ..., v,: X — B,
where B is any given universal separable Banach space, such that vy (x), ..., v,(x) € B
are linearly independent for every x € D, and 'y, (E) is isomorphic to .# | p, , where
we set E(x):=span{v;(x), ..., v,(x)} for every x € X. Foranyi = 1,...,n, we
choose a measurable representative ¢;: X — R of the function T (v;) € LO(X),
where we are identifying .#|p, with ', (E). Given any point x € D,, the unique
linear operator from E(x) to R sending each v; (x) to ¢; (x) is continuous, thus

‘ Y1 qi9i(x)
| 220 qivio) |

gn(x):=sup (1, .-, qn) € Q"\{0} ¢ < +o0.

Notice that g, is measurable by construction. Moreover, any v € .# | p, can be written
(in a unique way) as v = » ;_, f; - v; for some fi,..., f, € L9(X), so that we can
estimate

IT()|(x) = = gn(X)[v|(x)

B

< &)

Y i)

i=1

> fi)gi(x)

i=1
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for m-a.e. x € D,,. Therefore, letting g:= ZZ=1 1p,gn € LO(X), we conclude that
|T (v)| < glv| forevery v € . O

2.4.3 Pullback modules

LetX = (X, Zx, mx), Y = (Y, Xy, my) be o-finite measure spaces. Letp: X — Y
be a measurable map such that pgmx < my. Notice that the map ¢ induces via pre-
composition a ring homomorphism L%(Y) 5 f - f o € LO(X) that is also a Riesz
homomorphism.

This is an instance of a more general phenomenon: given any Banach L (Y)-module
M , there is a unique couple (¢*.#, ¢*), where ¢*.# is a Banach L°(X)-module,
©*: M — @* M is linear, and

lp*v| = |v|ogp foreveryv € .#,
@*[.#] generates ¢*.# on X.

We say that ¢*.# is the pullback module of ./ under ¢. Uniqueness is in the sense
of the following universal property: given any couple (.4, T') having the same prop-
erties as (¢*. 4, ¢*), there exists a unique isomorphism of Banach LO(X)-modules
¢: o M — N withT = ¢ o ¢*.

The pullback of the dual ¢*./* is isomorphic to a Banach L°(X)-submodule of
the dual of the pullback (¢*.#)*, but in general the two spaces do not coincide.
More precisely, the unique homomorphism of Banach L°(X)-modules l,,: ¢*.#* —
(p* A)* satisfying

lp (¢ w)(¢*v) = w(v)op foreveryw € A" andv € .# (2.6)

preserves the pointwise norm, but in general is not surjective. However, the following
fact holds:

Theorem 2.13 (Sequential weak* density of ¢*.Z™* in (p*.#)*) Let X, Y be sep-
arable, o-finite measure spaces. Let ¢: X — Y be a measurable map such that
psmyx < my. Let A4 be a Banach L°(Y)-module. Let © € (¢* .#)* be given. Then
there exists a sequence (0y),en S @* A ™ such that 1,(0,) — © with respect to the
weak™ topology of (¢*.#)* introduced in Definition 2.7.

Theorem 2.13 was proved in [13, Theorem B.1]. It is unclear whether the separa-
bility assumption on X and Y, which is due only to the proof strategy of [13, Theorem
B.1], can be dropped.

2.4.4 Bounded L%-bilinear operators

In Sects. 4 and 5 we will need to use the space B(.Z, A4):

Definition 2.14 (The space B(#, .V ; 2)) Let X be a o-finite measure space. Let
M, N, 2 be normed L(X)-modules. Then we denote by B(.Z, .#"; 2) the space
of all those L°(X)-bilinear operators b: .# x .4 — 2 that are also continuous. We
also set B(.#, N ):=B(4, ¥ ; LO9(X)).
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One can readily check that a bilinear map b: .# x A — 2 is L%(X)-bilinear
and continuous (i.e. it belongs to B(.Z, 4"; 2)) if and only if there exists a function
g € LX) such that

|b(v, w)| < glv||lw| forevery (v,w) € A x N . 2.7

Moreover, B(.Z, A; 2) is a normed L°(X)-module if endowed with the pointwise
operations and

1 b(v, .
|b|:= \/ {|v||w|>0}| (v, w)| _ /\ {g c LO(X)+ | g satisfies 27)}
(v,wyeM x N [vllw

for every b € B(A#, V; 2). If 2 is complete, then B(.Z, 4"; 2) is a Banach
L9(X)-module.

If #,.V, 2 are normed L°(X)-modules, then each b € B(.#, .4 ; 2) can be
uniquely extended to be B(///_ L N Q_), where 4, N, 2 are the completions of
M, N, D, respectively, and |b| = |b].

3 Auxiliary results on Banach L°-modules

3.1 Quotient operators between Banach L°-modules

We begin with the key definition:

Definition 3.1 (Quotient operator) Let X be a o-finite measure space. Let .# and
A be normed L%(X)-modules. Then we say that a homomorphism 7': .# — A of
normed L°(X)-modules is a quotient operator provided it is surjective and it satisfies

lw| = /\ |v] forevery w € A,
veT~(w)

Notice that each quotient operator T': .# — .4 verifies |T| < 1. More precisely,
it holds that

If A, ¥ are two Banach L°(X)-modules and T: .# — .4 is a homomorphism of
Banach L°(X)-modules, then T is a quotient operator if and only if the unique map
T: A [ker(T) — A satisfying

M —L sy
|

M [ker(T)

) Birkhauser
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is an isomorphism of Banach LO(X)-modules, with 77 : .# — .# /ker(T) the canon-
ical projection.

Remark3.2 1f T: .# — ./ is a quotient operator between normed L°(X)-modules,
then its unique linear continuous extension 7: .# — .4 to the completions is a
quotient operator.

The glueing property of .# ensures that if T: .# — .4 is a quotient operator
and w € ¥ is given, then for every ¢ > 0 we can find an element v € .# such that
T(v) =wand |v| < |w|+ e.

Lemma 3.3 Let X be a o -finite measure space and let # be a Banach L°(X)-module.
Given any Banach L°(X)-submodule V' of .4, we define the annihilator v+ of ¥ in
M as

“//J‘:={a) € M* | w(v) =0 foreveryv eV}
Then ¥+ is a Banach L°(X)-submodule of .#*. Moreover, it holds that
VA= ANs o
an isomorphism of Banach L°(X)-modules being given by the map
M)V S0+ Y > wly e V.

Proof It is straightforward to check that ¥ is a Banach L?(X)-submodule of .#*.
Consider the homomorphism of Banach L%(X)-modules T: .#* — ¥* given by
T (w):=w|y for all w € .#*. Observe that |T| < 1. Moreover, the Hahn—Banach
theorem ensures that for any n € 7™ we can find w € .Z™* such that T (w) = n and
|w| = |n|. This shows that T is a quotient operator. Since ker(7') = L, we conclude
that the operator .Z*/¥+ 3 w + ¥+ — w|y € ¥* is an isomorphism of Banach
L9(X)-modules. Therefore, the proof of the statement is complete. O

We conclude with a sufficient condition for a given homomorphism to be a quotient
operator:

Lemma 3.4 Let X be a o -finite measure space. Let M, N be Banach L°(X)-modules.
Let W be a dense vector subspace of N . Let T: M — N be a homomorphism
of Banach L°(X)-modules with |T| < 1 satisfying the following property: given
any w € AN and ¢ > 0, there exists v € M such that d 4 (T (v), w) < & and
dLo(X)(|v|, lw|) < e. Then T is a quotient operator.

Proof Letw € .4 and k € N be given. Set u’é::O € . and find recursively ut € .7
forn € Nsuch thatd_y (T (), w — Y120 T b)) < 275"~ and d o, (I,
S0 TWh)|) < 27%==1. Now define vk:= Y"7_, u¥ forevery n € N. Then we have

w—
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that ZneN d{//(l),’;_i_l , Uﬁ) < 400, since

d///(vﬁ-i-lv U:];)

k
< dpog (|Mn+1|’

3
< 2k+n+2"

n—1
)+dm<TWbﬂv—§:TWb>

i=0

w— > T (uf)
i=0

It follows that (vﬁ)neN C . is Cauchy, thus it makes sense to define vk e A as

vk:=1im, v¥. Since

1
dJV(T(vfl), w) =d_y (T(u],‘,), w— Z T(uf)) < TS — 0 asn — oo,

i<n

the continuity of the map 7' ensures that 7' (v€) = w. Moreover, we can estimate

o0
k k
EAEDIN
n=1

o0 o0
< |w|+ Z k| — ‘w — ZT(uf) ’ + Z Tk ) — (w - Z T(uf))'.
n=1 i<n n=2 i<n—1
=k
Given that djox)(rx, 0) < 27K and |w| = |T(@W)| < |vk|, we can extract a subse-

quence (kj)jen € N such that [vki| — |w| in the m-a.e. sense. This implies that
lw| = /\UET*I(w) |v|, as desired. O

3.2 Summability in Banach L°-modules

First, we introduce a notion of summable family in a normed L°-module. Recall that
a family {v;};<; in a normed space B is said to be summable, with sum v € B, if for
every ¢ > 0 there exists F € &7(I) such that ||V — Y icrug Vi ”IB < ¢ for every
G e Z(I\F). We propose the following generalisation of this notion to normed
L°-modules:

Definition 3.5 (Summable family in a normed L°-module) Let X be a o -finite measure
space and .# a normed L°(X)-module. Then we say that a family {v;};c; C A is
summable in .Z if

AN

FeZr(I) GePy(I\F)

v — E Vi

ieFUG

=0 forsomev e .Z. (3.2)
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The element v € .# is unique, is called the sum of {v;};c; in .#, and is denoted by
Ziel Vi

In a Banach space B, the Cauchy summability criterion states that a family
{Vilier € B is summable if and only if for every ¢ > 0 there exists F € Z¢([)
such that || Y, Vi ”B < eforevery G € &¢(I\F). This summability criterion can
be generalised to Banach L°-modules:

Proposition 3.6 (Cauchy summability criterion) Let X be a o -finite measure space. Let
M be a Banach L°(X)-module. Then it holds that a family {v;}ic; < . is summable
if and only if

=0. (3.3)

AV X

FeP;(I) GePy(I\F) i€G

Inthis case, J:={i el :v; # 0} is at most countable. Moreover, given any increasing
sequence (F,)nen of finite subsets of J satisfying J =, e Fn» we have that

v —> v; asn — oo. (3.4)
IIEDD

ieF, iel

Proof Suppose {v;};c; is summable and set vi=);_; v; € .# for brevity. We have
that

>

ieG

< + if Fe Z¢(I)and G € Zs(I\F),

U—E Vi

ieF

v — E v;

ieFUG

whichyields \/ e 5,1\ ) | Yicg il <2 Veez,a\r) [v—>"icFug vi| and accord-
ingly

=0.

ANV

FeZr(I) GePy(I\F)

>

ieG

2 AV

FeZr(I) GePy(I\F)

v — E Vi

ieFUG

Conversely, suppose (3.3) holds. Then we can find an increasing sequence (Fi)ken
of finite subsets of J such that yy:= \/Ge[@f(l\ﬁk) | > e vil 0 holds m-a.e.
Notice that J = ;o Fy.. Up to a non-relabelled subsequence, we can also assume
that dyogg, (Yx A 1,0) < k™! for every k € N. Define Ji:={i € I : d 4(v;,0) >
k‘l} for every k € N. Given that |v;| < ¥y for everyi € [ \I:"k, we deduce that
d_z (v, 0) < dpos)(Wk A 1,0) < k™!, sothati ¢ Ji. This shows that Ji € Fy, thus
in particular Jy is finite. Since J = UkeN Jir, we deduce that J is at most countable.
Moreover,

W Birkhauser
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implies that (3,7, Vi),cy is @ Cauchy sequence in .#. Denoting by v € ./ its
limit, we claim that {v;};c; is summable and v = Zie ; Vi. First, letting ¢k:=|v —
Zieﬁk v,-| e L9X)t, we have that ¢r — 0in LO(X) as k — oo, thus in particular

Nken @k = 0. Therefore, we deduce that

AV =T u=A VoY

FG@/'([) GEW}'(/\F) ieFUG keN GG@/'([\F]\») iGFkUG
< Ao+ /\v=0.
keN keN

which shows that {v;};¢; is summable with sum v, as we claimed. Finally, given an
increasing sequence (F,),en of finite subsets of J with J = |, oy Fu» We can extract

a subsequence (nx)enN such that Fk C F,, forevery k € N, so that |v — Ziank vi’ <
¢k + Yy for every k € N, whence it follows that Zie Fy Vi — vask — o0o. Given

that the limit v does not depend on the specific choice of the sequence (F};);eN, We
can conclude that (3.4) is verified. The proof is complete. O

Furthermore, given any family {f;}ic; < LO(X)t, we define

dofi= ) D fie LL 0T

iel FeZPs(I) ieF

This is consistent with Definition 3.5, since \/pcp, () Lier fi € LU if
and only if {fi}ie;r C L9(X) is summable. In this case, its sum coincides with

V rez, 1) Lier Ji- Moreover,

1/p
lvlp = (Z|vi|p> forevery v = (v;)ies € £p U, A)

iel

holds whenever .# is a Banach L°(X)-module and p € [1, o). Let us also observe
that
v = Z((Sijv,-)jel for every v = (v;)ies € 011, A). 3.5)

iel

Indeed, using the summability of {|v;|};es in L9(X) and Proposition 3.6 we obtain
that

AN

FeZs(I) GePf(I\F) 1

AN Voo mi=o.

FeP (1) GeP(I\F) HeP(I\(FUG)) icH

v— Y Gijvi)jer

ieFUG
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whence the claimed identity (3.5) follows.

Remark 3.7 Let {v;};c; be a summable family in a given Banach L(X)-module ..
Then it holds that

2

iel

<Y luil. (3.6)

iel

Indeed, thanks to Proposition 3.6 we can find a sequence (F),en S Py (I) for
which | > p vi =D s vi| = Ointhe m-a.e.senseasn — oo, sothat | Y ,; vi| =

lim,, | Yicr, vi| < lim, Yicr, Vil < Xie; il Also,

{vitie;r € A is summable forevery v = (v;)ic; € 11, A).

Indeed, arguing as in the proof of (3.5) we deduce that (3.3) is verified, so that {v;};cs
is summable by Proposition 3.6. Notice also that ] Yier vl-] < |v|1 holds by (3.6).

Lemma 3.8 Let X be a o -finite measure space. Let ¢ . M — N be a homomorphism
of Banach L°(X)-modules #, N . Let {v;}ic; < . be summable. Then {¢(v;)}ie; €
N is summable and

¢ (Z w) = o). 3.7
iel iel

Proof Set v:=7}",;_; v; for brevity. If F € Z¢(I) and G € Z¢(I\F), then

ieFUG

By taking first the supremum over G and then the infimum over F, we thus obtain
(3.7). O

iel

= v — E Vil .

ieFUG

) — > p) < lol

ieFUG

3.3 Local Schauder bases

We propose a notion of (unconditional) Schauder basis in a Banach L°-module. The
term ‘unconditional’ will be often omitted, as no other kind of basis is considered.

Definition 3.9 (Local Schauder basis) Let X = (X, £, m) be a o -finite measure space
and ./ a Banach LO(X)-module. Let E € X satisfy m(E) > 0. Then we say that a
family {v;};e; € .# is an (unconditional) local Schauder basis of .# on E provided
for any given v € . | there exists a unique (f;)ies € LO(X|£)! such that the family
{fi - vi}ies is summable in ./ and

v:Zf,-'v,-.

iel
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In the case where E = X, we say that {v;};e7 is an (unconditional) local Schauder
basis of .Z .

Lemma 3.10 Ler X be a o-finite measure space, B a Banach space with a Schauder
basis {V;}ie1. Then it holds that the family {v;};c defined as in (2.5) is a local Schauder
basis of LO(X; B).

Proof Let v € LO(X; B) be given. Fix a measurable representative : X — B of v.
Since {vi}ies is a Schauder basis of B, for any point x € X we can find a unique
(fi(x))ier € R! such that

o) =Y fivi. (3.8)
iel

Thanks to (2.2) and the classical Hahn—Banach theorem, for any index i € I we can
find w; € B’ (where B’ stands for the topological dual of B) with w; (v;) = 0 for every
j € I\{i} and w; (v;) = 1. Hence, Lemma 3.8 gives

w;(V(x)) = w; ij(x)vj = ij(x)a),-(vj) = fi(x) for every x € X,
jel jel

whence it follows that f;: X — R is measurable. Define f;:=[f;]m € L°(X) for
every i € I. Since

o) — Y fikov

ieFUG

=0 foreveryx € X
B

inf sup
FeZi() GePs(I\F)

by (3.8), taking into account also Remark 2.3 (as well as its natural variants) we deduce
that

=0.

AV

FeZs(I) GeZPy(I\F)

v— Z Jiv

ieFUG

This proves that { f; - v;};cs is summable in LO9(X;B) and v = Y ics fi - v;. Finally,
let us check that (f;)ic; € LO(X)! is the unique family with this property. Suppose
(8)ier € LOX)! satisfies the identity Y ;.; g - v; = v in L°(X; B). By virtue of
Proposition 3.6, the set J::{i el : gi # O} is at most countable. Fix a measurable
representative g; : X — Rof g; foreveryi € J. Since the family of all couples (F, G)
with F e Z¢(J) and G € &¢(J\F) is at most countable, we can findaset N € X
such that m(N) = 0 and

=0 foreveryx € X\N.
B

inf sup
FeZ1(J) GeP;(J\F)

B — Y &

ieFUG
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It follows that g;(x) = f;(x) for everyi € J and x € X\N, as well as fi(x) = 0 for
every i € I\J and x € X\ N. Hence, we conclude that (g;)ic; = (fi)ier, so that the
statement is achieved. O

3.3.1 Applications to spaces of generalised sequences and to L°-Lebesgue-Bochner
spaces

Fix an arbitrary index set I # <. Given any p € [1,00) and any index i € I, we
define

pi((aj)jel)::a; for every (a;)jer € £p(1).

The resulting map p;: £,(I) — R is a 1-Lipschitz linear operator. Hence, it makes
sense to define

a(-)i:=pioa € LO(X) foreveryi € I anda € LO(X; Lp(I))

whenever X is a o -finite measure space. Moreover, recall that any element a € £, (/)
is associated with the a.e. constant vector field a € L(X; ¢ »(1)), which is given by
a(x):=a for m-a.e. x € X.

Lemma 3.11 Let X be a o-finite measure space and 1 # & an index set. Let a €
LOCX; £1(1)) be given. Let (e;)ier be as in (2.3). Then the family {a(-); - € }ier is
summable in LO(X; £, (I)) and

a=7) a()i-e;. (3.9)

iel

In particular, the family {|a(~),~ | }ie[ is summable in L°(X) and it holds that

lal =" laC)il. (3.10)

iel

Proof Fix a measurable representative a: X — £1(I) of a. As {e;};cs is a Schauder
basis of £ (1),

ionf sup a(x) — Z a(x); e =0 foreveryx € X.
FeZs(I) GeZ;(I\F) ieFUG e
Using that a(x); = (p; o a)(x) and taking into account Remark 2.3, we can thus

conclude that

AV

FeZs(I) GeZPy(I\F)

a— Y a()i-g

ieFUG

:O,
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which gives the first claim (3.9). Finally, (3.10) follows from (3.9) together with the
fact that

lal = Y la()il

ieFUG

<

= > ali-g

ieFUG

a— Y a()i-g

ieFUG

la —

forevery F € &r(I) and G € &;(I\F). All in all, the proof of the statement is
achieved. O

Finally, the Banach LO9(X)-modules L(X; £1(I)) and £; (I, L°(X)) can be canon-
ically identified:

Corollary 3.12 Let X be a o -finite measure space and I # & an index family. Let us
define

p(a)=(a()i),.; € LU, L°X)) foreverya € L°CK: €4(I)).  (3.11)

Then the operator ¢: LO(X; €1(1)) — €1(I, L°(X)) is an isomorphism of Banach
LO(X)-modules.

Proof The fact that ¢ is a homomorphism of Banach L°(X)-modules satisfying
|p(a)|1 = |a| for every a € LO(X; ¢,(I)) follows from Lemma 3.11. Therefore, it
remains to check only that ¢ is surjective. To this aim, fix f = (f;)ies € £1(1, L°(X)).
We know that J ::{i el : fi # 0} is at most countable. Take a measurable repre-
sentative f;: X — R of f; for every i € I, with f; = 0 for every i € I\J. Since
Yoierlfil =2 ies 1 fil € L9(X), we can also assume (up to modifying the functions
fi fori € J on anull set) that {|f,~(x)|}ie[ C R is summable for every x € X. Then
the mapping X > x +— Ez(x)::(f_i (x))l.el € £1(1) is well-defined, is measurable,
and takes values into a separable subset of £{(/) (namely, the closure of the vector
subspace generated by {e;};c). Letting a € LOCX; £1(1)) be the equivalence class of
a: X — £1(I), we have that ¢ (a) = f by construction. This proves the surjectivity
of ¢, thus accordingly the statement is achieved. O

3.4 Some notions of continuous module-valued maps

When dealing with injective tensor products of Banach spaces, a special role is played
by the Banach space C(K), where K is a compact, Hausdorff topological space; cf.
with the first paragraph of Sect. 5.2. It seems that in the more general setting of Banach
L°-modules there is no ‘canonical” counterpart of C(K ). Rather, we will propose two
generalisations of C(K) in Definitions 3.13 and 3.16, respectively.

Let (€2, ®) be a uniform space (see [6]). Given an entourage I € ® and any p € €,
we define

Upl={qg e | (p.q) eU}.
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Recall that the uniform structure @ induces a topology ¢ on €2, which is defined as
follows:

1o:={U CQ|VpeU3IUed: Up]l U}

We then regard every uniform space (€2, @) as a topological space, endowed with 7¢.

Definition 3.13 (Uniform order-continuity) Let (2, ®) be a uniform space, X a o-
finite measure space, and .# a Banach L°(X)-module. Then we say thatamapv: 2 —
A is order-bounded if

wl:=\/ lu(p)| € LOCOT, (3.12)
pe

or equivalently if the family {|v(p)|} pegq is an order-bounded subset of LO(X). More-
over, we say that v: Q — ./ is uniformly order-continuous provided

/\ Var(v; UU) =0, where we define Var(v; U):= \/ lv(p) — v(g)l.
Ued (p.q)el

We denote by UCqq(S2; #) the space of all order-bounded, uniformly order-
continuous maps.

Given any v, w € UCqq(2; .#) and f € L°(X), we define v+ w: Q — . and
fv:Q—> A as

v+ w)(p):=v(p) + w(p) forevery p € Q,
(f -v)(p):=f - -v(p) forevery p € Q,

respectively. It can be readily checked that v + w, f - v € UCyq(R2; ), that
(UCora(Q; ), +, -) is a module over L%(X), and that the map

| |: UCora (25 ) — LO(X)T

defined in (3.12) is a pointwise norm on UCyq(€2; ). All in all, the couple
(UCord(Q; M), | - |) is a normed LO(X)-module. Moreover:

Lemma 3.14 Let (2, ®) be a uniform space. Let X be a o -finite measure space and
M a Banach L°(X)-module. Let | - |: UCoq(2; .#) — LX) be defined as in
(3.12). Then (UCord(Q; M, |- |) is a Banach L°(X)-module.

Proof 1t only remains to check that UCyq(€2; .#) is complete. To this aim, let
(Wn)neN € UCqq(2; #) be a given Cauchy sequence. Up to a non-relabelled subse-
quence, we can assume that d;ox)(|vn — vp+11,0) < 27" for every n € N. For any
p € 2 we can estimate

1
dk///(vn(l’)s Vnt1(p)) < dLO(X)(|Un —Up41/,0) < 2—n
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It follows that (v,(p))peny < 4 is a Cauchy sequence, so that the limit
v(p):=1lim, v,(p) € A exists. To prove that v: 2 — .# is order-bounded, notice
that ||v,| — [vat1l| < [vn — vag1| implies dyoc) (v, [vag1]) < 277, so that the
sequence (|, )neNn S LO(X)is Cauchy. Define g:=lim, |v,| € L%(X). Given p € <,
we can extract a subsequence (n;);en such that |v,, (p)| = |v(p)| and |v,, | — g m-
a.e.asi — oo. Hence,

lw(p)|(x) = lim |v,, (p)|(x) < lim |v,, |(x) = g(x) form-ae. x € X,
11— 00 11— 00

which implies |[v| = \/ peQ lv(p)| < g. We pass to the verification of the uniform
order-continuity of v. For any n € N we can find a sequence of entourages (U/");eny €
® with /\;cy Var(v,; U") = 0. With no loss of generality, we can also require that
Ui”H C U] for every i € N, whence it follows that d LO(X) (Var(vn; u, O) — 0 as
i — o00. Define h,,:= Z}fo:n vk — vk+1| A 1 for every n € N. Then

00 00 00
- - 1
/hn dm = Z/ vk — Vkg1| A 1Tdm = ZdLO(X)(lvk —vk+11,0) < Z 2_k
k=n k=n k=n
1
= on—1

by monotone convergence theorem, thus ,, € L' () and |4, | L) < 27"+ Notice
that

[v(p) —v(@I A1 = |v(p) —va(P)I AT+ v (p) —va (@I AT+ |vn(g) —v(g)| A
< 2hy + va(p) —va(g@)I A1

for every p,q € Q2 and n € N. Fixing i € N and passing to the supremum over all

(p,q) € U, we deduce that Var(v; U;") A1 < 2h, + Var(v,; U") A 1. Integrating
with respect to m, we thus get

dyogg (Var(u; U, 0) < 2/|nll 1y + droce (Var(ua: U], 0)

< o + dpocx (Var(u,; UM, 0).

Given any k € N, we first choose n; € N such that 272 < 1/(2k), then we choose
ir € N such that dLO(X) (Var(vnk;uk), O) < 1/(2k), where we set Z/lkzzl/{';lkk. Hence,
dLo(X)(Var(v; Uy), 0) < 1/k for every k € N, so that lim; Var(v; Uy)(x) = 0 for
m-a.e. x € X. In particular, we conclude that

/\ Var(u;th) < /\ Var(v; ) < lim Var(v; U) =0,
Ued keN k=00

which shows that v: Q2 — .# is uniformly order-continuous. All in all, v belongs to
UCora (25 A).
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In order to conclude, it remains to check lim,, dyc, 4 (@:.#) (s, v) — 0.Fix p € Q.
Take a subsequence (1) jen with |vnj (p) —vn(p)| = v(p) — vy (p)| in the m-a.e.
sense. Then

lv(p) —vn(p)I Al = li;nIvnj(p) —vn(P)I AT <limv,; —va| AT < Dy
J

holds m-a.e., whence it follows that |v — v,| A 1 < h,,. Therefore, we can conclude
that lim,, duc,q(@:.2) (v, va) < limy [|hy]l 1) = O, as desired. O

Remark 3.15 Given any point p € €, let us consider the evaluation functional
S‘P///: UCowd(2; A) — A , which we define as

8};//(v):=v(p) for every v € UCqq(2; ).

Observe that 8‘;” € HoM(UCora(Q2; 4 ); A ) and |5;/[ | < 1. In particular, we have

0
that 5,,::61% X) satisfies

8, € UCora(R: LO(X))* and 18, < 1.

Furthermore, {§, : p € R} is a norming subset of UCoq(£2; L9(X))*. Indeed, thanks
to (3.12) we have that | f| = \/pesz [f(p)| = \/pesz [8,(f)] holds for every f e
UCora (22: LO(X)).

Definition 3.16 (Pointwise bounded continuous maps) Let (€2, T) be a topological
space. Let X be a o-finite measure space and .# a Banach L°(X)-module. Then we
define Cpy(K2; .#) as

Cpb(2; 4 ):={v: @ — # | v is continuous and order-bounded}.

We say that Cp,,(2; .#) is the space of pointwise bounded continuous maps from
Qto .

The space Cpp(2; .#) is a Banach L°(X)-module if endowed with the pointwise
norm in (3.12). This claim can be proved by repeating almost verbatim the arguments
for Lemma 3.14, the main difference being in the verification of the completeness,
where one can use the following remark:

Remark 3.17 Take a sequence (Vy)neNn < Cpp(€2; .#) and an order-bounded map
v: Q — ./ such that

Sp:=supd_y(vy(p),v(p)) - 0 asn — oo.
pPER

Then it holds that v € Cyp(£2; .#). Indeed, given any p € Q and ¢ > 0, we can
fix ng € N such that §,, < &/4 and choose a neighbourhood U of p such that
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d_y (Vne(q), vuy(p)) < €/2 forevery g € U. Then

d.z(w(g), v(p)) = d.z (@), Vny(q)) + Az (Vg (@), Vug (P)) + Az (Vny (P), V(D))

€
<28n0+§ <e€

for every ¢ € U, which implies that v is continuous at each point p € €2, as we
claimed.

We also point out that if (€2, ®) is a uniform space, then we have that
UCord(Q; .#) is a Banach L°(X)-submodule of Cop(2; A). (3.13)

Indeed, if v € UCqq(R2; &), p € 2, and ¢ > 0 are given, then we can find an
entourage U € @ such that d,ox, (Var(v; U, O) < ¢. Hence, for every point ¢ in the
open set U[ p] we have that

d.z (@), v(p) = dpogx) (Iv(g) — v(P)I, 0) < dyox(Var(v; U), 0) <e.

Remark 3.18 If (K, ®) is compact and B is Banach (so that B is a Banach
L9(X,)-module, where X, is the one-point probability space), then UCqyq(K; B) =
Cpb(K; B) = C(K; B). Indeed, since the topology of B as a Banach space and the one
as a Banach L%(X,)-module coincide, we have that Cpp(K; B) € C(K; B). Moreover,
if v € C(K; B) and k € N are given, then (by compactness of K) we can findn € N,
Plo....pn € K,and U, ..., U, € ® suchthat K = | J]_, U;[pi] and

lv(p) —v(pi)ls < foreveryi = 1,...,nand p € Ui[p;].

==

Then \/peK lv(p)llz < max {Ilv(pi)lluag +1:i=1,..., n} < +00, so that v is an
order-bounded map. Moreover, we have that

Eaall I\

/\ Var@:th(0) < /\ Var(v; U)(0) <

Ued i=1
Since k € N is arbitrary, we deduce that v is uniformly order-continuous and v €

UCod(K; B). Allin all, we proved Cpp(K; B) € C(K; B) € UCyq(K; B). Recalling
also (3.13), the claim follows.

3.5 Algebraic tensor products of normed L°-modules

In order to define tensor products of Banach Lo—modules, the following criterion to
detect null tensors will play a fundamental role:
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Lemma 3.19 (Null tensors in normed L°-modules) Let X be a o -finite measure space.
Let M, N be normed L°(X)-modules. Fixany o € .M @ N, say that a = Yliui®
w;. Then it holds that « = 0 if and only if

Zw(vi)n(w,-) =0 foreveryw € . #* andn € N*. (3.14)
i=1

Proof First, assume that « = 0. For any o € .#* and n € 4*, the map-
ping by y: M x N — LO(X), which we define as by (v, w):=w()n(w) for
every (v, w) € M X N, is L9(X)-bilinear. Therefore, we deduce from (2.1) that
Yo w@in(w) = Y1 by y(vi, w;) = 0, which proves that (3.14) holds.
Conversely, assume (3.14) holds. Fix an arbitrary LO(X)-bilinear map b: A X
N — Q, for some L°(X)-module Q. Denote by ¥ (resp. by #) the L°(X)-

submodule of .Z (resp. of /") that is generated by vy, ..., v, (resp. by wy, ..., wy).
Given that the modules 7 and % are finitely-generated, they are Banach LO(X)-
modules. Now let Dg/ e, D;l/ and Dg’y e, Dg/ be the dimensional decomposi-

tions of ¥ and #/, respectively. To prove that Y _"_, b(v;, w;) = 0 amounts to showing
that ]le,q . Z?:l b(vi,w;) =0holdsforallm =1,...,mandg =1, ..., g, where

Dm,q::DZ N DqW. To this aim, fix a local basis xi,...,x, of ¥ on D, , and a
local basis yi, ..., y; of # on Dy, 4. Given any v € ¥|p,, ,, we can find (uniquely)
functions @i (v), ..., @, (v) € LO(X)|Dm’q so that v = Z’}L] ®;(v) - x;j. Moreover,

each mapping @;: ¥Ip,, , — LO9(X) is L9(X)-linear, thus it is also continuous thanks
to Lemma 2.12. An application of the Hahn—-Banach theorem for normed L°-modules
ensures the existence of some wq,...,w,; € #* such that wj'“//lpm,q = w;j for
every j = 1,...,m. Similarly, we can find elements 7y, ...,n, € 4™ such that
w =Y {_ m(w) - y for every w € #|p,,,. Therefore, the L°(X)-bilinearity of b
yields

m.q

n n

1p,,, Zb(vi» w;) = Zb(lD,,,,q v, 1p,,, - w;)

= Z Z (Z wj(Ui)le(wi)> - b(xj, Ve (3.14) 0.

i=1

This implies Y ;_, b(vi, w;) = 0, whence it follows that = Y 7_, v; ® w; = 0 by
@.1). 0

Remark 3.20 We stress that Lemma 3.19 shows that, in the case of normed L°(X)-
modules, a null tensor can be detected by checking only against (a class of) L°(X)-
bilinear maps taking values into the ring L?(X). It is not clear whether this happens
for arbitrary L°(X)-modules that are not equipped with a pointwise norm; cf. with the
discussion after (2.1). In other words, the proof of Lemma 3.19 is heavily relying on
the fact that we are considering normed L%(X)-modules.
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Corollary 3.21 Let X be a o-finite measure space. Let 4 and N be normed L°(X)-
modules. Fix any tensora =y 7_, v; @ w; € # Q N . Then the following conditions
are equivalent:

(i) a =0.
(i) Y7 (i) - w; =0 forevery w € M*.
(i) Y'_; n(w;) - v; =0 foreveryn € N*.

Proof We prove only the equivalence between i) and ii); the proof of the equivalence
between i) and iii) is very similar. Assuming ii), we deduce that Z?:l w)n(w;) =
n(Yi; o) - wi) = 0 for every o € .#* and n € A%, so that « = 0 by
Lemma 3.19. Conversely, if @ = 0, then the same computation as above shows that
n( i @) w;i) = 0foreveryw € .#*andn € A *,sothat Y 1| w(v;)-w; =0
for every w € .#* by the Hahn—Banach theorem, which gives ii). O

4 Projective tensor products of Banach L°-modules
4.1 Definition and main properties

We begin by introducing the projective pointwise norm:

Theorem 4.1 Let X be a o -finite measure space. Let M and A be Banach L°(X)-
modules. Define |a|; € L°(X)T as

n
neN, Wi S M, (W), SN, a=) v ®w

i=1

|a|n:=/\[i|vi||wi|

i=1

A.1)

foreverya € M @ N . Then |- |y: M QN — LOX)T is a pointwise norm on
M Q N . Moreover,

lv® w|; = |vllw| foreveryv e . # andw € N . 4.2)

Proof To prove that | - |; is a pointwise norm on .Z ® .4 amounts to showing that:

i) fa € 4 Q@ N satisfies |a|; = 0, then o = 0.
i) o+ Blx < |a|x + |Blx foreveryo, 8 € A4 Q N .
iii) |f-aly = |fllal; forevery f € LX) ando € # ® N .

Let us first check the validity of i). Assume ||, = 0. Let w € .#* and n € A4 be
given. Then we define 6,, , € LO(X) as Ow,n:= Z?:l w(;)n(w;) forany vy, ..., v, €
M and wy, ..., w, € A satisfying @ = Y _, v; ® w;; thanks to Lemma 3.19, the
function 6, ; is independent of the chosen representation Z:lz 1 Vi ® w; of a. Now
fix ¢ > 0. Then there exists a partition (Ex)ren S X of X and v’l‘, Lk e,

ng

k k Nk ok on ik nk o kypak
Wi, .., Wy, € A suchthate = ) % vi@wand 1g, ) %, [vf||w;| < e forevery
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k € N. Therefore, can estimate

ng nk
ol = 1E, D 0@Hnwd)| <D 15 Y lo@)lnw))]
keN i=1 keN i=1
Nk
<lollnl YD vfllwf| < elolinl.

keNi=1

Thanks to the arbitrariness of ¢ > 0, we deduce that 6, , = 0, so that « = 0 by
Lemma 3.19.

In order to prove ii), let us write @ = >} v; ® w; and = } 7| ¥; ® W;. Then
we have that

n m
e+ Bl < > Jvillwil + Y 151141,
i=1 j=1

where we used the fact that & + 8 = 31 v; ® w; + } 7| ¥; ® W;. By passing
to the infimum over all the possible representations of « and S, we conclude that
lo + Blr < ||z + 1Blx-

We now pass to the verification of iii). If ¢ = Z:’: 1 Vi ® w;, then we have that
fra=3"7(f - v) ®w;. It follows that

f ol < DO 1F - villwil = 1Y il lwil.

i=1 i=1

By passing to the infimum over all the representations of «, we obtain that | f - |, <
| fllee] . Moreover, the same estimates yield

Lir20
< |f|%|f caly = Lipgo) f - ale < |f - alr.
T

All in all, we have shown that | f - a|; = | f||¢|x-

Finally, let us check that (4.2) holds. The inequality [v ® w|, < |v||w] is trivially
verified. For the converse inequality, choose elements w € .Z* and n € .4 such
that |w|, |n] < 1, @(v) = |v|, and n(w) = |w|. Given that the L°(X)-linearisation T
of # x N > (@, W) — o@®n) e LOX) satisfies

]]_ .
| fllaly = |f|‘%~<foa)

IT@)] <Y 1T @w)l =Y lo@)lnw)l <D |vllwil

i=1 i=1 i=1

foreverya = Y ! v @ w; € # @ A, it follows that |T ()| < || for every
a € A ® A . In particular, we have that

llw| = le@nw)| =T w)| < v wl.
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All in all, we have shown that |v ® w|, = |v||w|, thus accordingly (4.2) is proved. O

Definition 4.2 (Projective tensor product) Let X be a o -finite measure space. Let .#,
A be Banach L°(X)-modules. Then we denote by .# ®, .4 the normed L°(X)-
module (#Z ®.4, || ), Wwhere the pointwise norm |- |; is defined as in (4.1). Moreover,
the projective tensor product of ./, ./ is the Banach L°(X)-module .# &, ./ that
is defined as the L°(X)-completion of .# ®, A .

Let us now consider the projective tensor product of homomorphisms of Banach
L9(X)-modules:

Proposition 4.3 (Projective tensor products of homomorphisms) Let X be a o -finite
measure space. Let T: M — Mand S: N — N be homomorphisms of Banach
Lo (X)-modules. Then there exists a unique homomorphism of Banach LO(X)-modules
TQyS: Mg N — MRy N with

TR Hv@w)=Tw) Q S(w) foreveryv e # andw € N .

Moreover, it holds that |T ®, S| = |T]|S|.

Proof By virtue of Lemma 2.2, there exists a unique LO(X)-linear operator T ®
S: M N — M QA such that (T @ S)(v ® w) = T(v) ® S(w) for every
ww)e M x N fa=)] viQw; € 4 Q.N,then

D T i) ® S(w)

i=1

(T ® S)()], =

n n
< AT @IS < TISIY villwil.
i=1 i=1

e

By passing to the infimum over all possible representations of «, we obtain that |(T ®
S)(a) |n < |T||S||et|r . It follows that the operator T ® S can be uniquely extended to
a homomorphism of Banach L9(X)-modules

T ®pS: MRy N — MRy N

satisfying |T ® S| < |T'||S|. Finally, we have that

iTisi=\/ \ Iroiswi=\/ \/ [T esw),
veS_y weS y veES ;y weS y
=V V [@e:Hvew| <iTe.s\/ \ heouwls
veS y weS y veS y weS y
=TSl \/ \/ Illwl <T@ SI.
UES‘/// wES,A/
Consequently, the identity |7 ®, S| = |T||S] is proved. m|
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One can easily check that L%(X)&, L(X) = LO(X)®, L°(X) = L°(X) as Banach
L°(X)-modules via the isomorphism

L'X) @ LOX) 3 ) fi®gi> Y figi € L'X).

i=1 i=1
In particular, up to this identification, we have that
© Q€ (MBN), |©Qrn|=|w|nl foreveryw e .#*andne N*.

Lemma4.4 LetXbea o -finite measure space. Let M, //Z, N, N be Banach LO(X)-
modules. Let T: M — M and S: N — N be quotient operators. Then T ®x
S: MRz N — MR N is a quotient operator.

Proof By Remark 3.2, it suffices to prove that T ® S: A4 Q@ N — M Qn N is
a quotient operator. Given any f = Y 7, 0; @ W; € A4 Q@ N, we can exploit the
surjectivity of T and S to find (v;)7_; € .# and (w;)}_; € -4 such that v; = T (v;)
and w; = S(w;) foralli = 1,...,n, whence it follows that 8 = Z?:l Tw) ®
Swij) =T Q S)(Zl'.':l v ® w,-). This shows that T ® S is a surjective operator.
Moreover, for any tensor 8 € M R A we can estimate

Bl== /\ 1T®)H@=<ITIIS|  /\ el

ae(T®S)~1(B) ae(T®S)~1(B)

3.1
< A lalx

ae(T®S)~1(B)

In order to prove the converse inequality, fix ¢ € (0, 1). We can thus find a partition
(Ex)ken € X of X and, for any k£ € N, a number n; € N and elements (f)f‘)?il C A,

@H, A such that
N nk
B=>Y f@uf, 1g Y |50 < 15 (Blx +e).
i=1 i=1

Moreover, we can find (v¥)/* | € . and (w5)!*, € 4, with T(v}) = ¥ and
S(wk) = w¥ for every i = 1,...,m, such that [vf| < (1 + &)|5F] and |wf| <

1+ e)|1bfC |. Therefore, we have that

nk
L5, < Tg Y I0fllwfl < (1 + )15 (Blx + &)

- i=1

< 1gBlx + 1E,BIBlx +4)e.

ng
Z vf‘ ® wf
i=1
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Since (T ® S)(1g, - Y 1%, v¥ ® wk) = 1, - B forevery k € N, we deduce that

< 1Blx + GlBlx +4)e.

e

ng
> et

i=1

N el <) 1

ae(T®S)~1(B) keN

By the arbitrariness of ¢, we can conclude that A\ ,c(rgs)-1(g) [@lx < |Blx- |

Lemma 4.5 Let X be a o -finite measure space. Let M, N be Banach L°(X)-modules.
LetG C # and H C N be generating subsets. Then it holds that the set {v@w | UNS
G, w € H} generates My N

Proof As the linear span of the elementary tensors is dense in .# &, ./, it suffices
to check that any given v ® w with v € . and w € .4 can be approximated by
elements of the L°(X)-module generated by

[bew|veG, weH}

Since G and H generate .# and ./, respectively, we can find (v,),en C # and
(Wp)neny € A that are LO(X)-linear combinations of elements of G and H, respec-
tively, such that |v, — v| — 0 and |w,, — w| — 0 in the m-a.e. sense. Then

WRW—v, @Wplyr WO W -1, @W|z + Uy @ W — Uy @ Wylx
“4.2)
=" v = vllw| + [vpllw — wu| — 0

in the m-a.e. sense. In particular, v, ® w, — v ® w in .Z &z . The statement
follows. O

Generalising the fact that €1 (1 Y&, B = £1(1, B) holds for every Banach space B,
we have the following:

Theorem 4.6 Let X be a o-finite measure space, .# a Banach L°(X)-module,
and 1 # O an index family. Then the unique linear continuous operator
i L9 61 (D)®r M — £1(I, M) satisfying

ila®v) = (a(-)i . v)ie] foreverya € LO(X; i) andv e M 4.3)

is an isomorphism of Banach L°(X)-modules.

Proof First, notice that LO(X; £1(1)) x .4 > (a,v) — (a()i - v),_, € Lill,.4)
is well-defined and L°(X)-bilinear, thus we can consider its L°(X)-linearisation
i L0 (D) @ M — 01T, .4, ie.

n n
() = Zai(')i “Vj for every o = Zaj v € LO(X; L) A .
j=1 el i=1
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Observe that i is the unique linear operator from LO(X; ¢1(I)) @ .4 to £1(I, . #)
satisfying (4.3).

On the one hand, given any tensor o« = Z?:] aj®v; € LOX: 61(1) @ A we
can estimate

lih =Y 1> a;jOi-vi[ <D lajOillvil = (Da,»(-m) )1

iel |j=1 iel j=1 j=1 \iel

n
CLO S 14wy,
j=1

By passing to the infimum over all representations of o, we deduce that |i(«) |1 < |o|.
On the other hand, if « is written as Z?:] aj ® vj, then we claim that the elements
w;i= 27:1 a;j(-); -vj € A satisty the following property: the family {e; ® w;};e; is
summable in LO(X; £,(1))&x.# and

Zgi Qw; = a. 4.4

iel
In order to prove it, let us first notice that

n

eRw =¢Q® Za./(-); v | = Zaj(')i (8 ®vj) = Z (aj()i-&) ®vj.
Jj=1 j=1 j=l1
4.5)

Since LO(X; €1(I)) > s > s ® v € LOCK; 61 (D)®x A is a homomorphism of
Banach L°(X)-modules,

aZ aj®vj‘39)Z<Zaj<>z-_>®v,-

iel

n
(3ﬁ7)z Z a,()z'_,- j (45)2 ; Q w;.

iel \j=1 iel

This proves the validity of the claim (4.4). By taking Remark 3.7 into account, we
conclude that

Ze ® w;

iel

= lia@)]1-

ol =

=Yg @wile Y lediwil = lwil = |wiier],

T iel iel iel
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All in all, we have shown that |i(«)|; = |x|; for every o € LOX; 61(D) ® .
Therefore, the map i can be uniquely extended to a homomorphism of Banach L°(X)-
modules from LO(X; €1 (1))®x.# to £1(I, .4, which we still denote with the symbol
i. Notice that the extension i preserves the pointwise norm.

To conclude, it remains to check that i: LO(X; €1(I))®x 4 — £1(I, A) is sur-
jective. Let v = (v;)ies € €1(I, ) be fixed. Thanks to Proposition 3.6, it follows
from the estimates

AV

FeZy(I) GeZPy(I\F)

Zgi & v;

ieG

= ANV wl=o0

FeZs(I) GePy(I\F) ieCG

that {e; ® v;}ies is summable in LO(X; €1(1))®7.# . Letting a:= Y ;_; & ® v;, we
have that

3.5 4.3 . 3.7).
v ) E Gijvi)jer = E (&;()j - vi)jer ) E i(e; ® vi) (=)1<§ €; ®Ui)
iel iel iel iel

= i(a),

whence it follows that i is surjective. Consequently, the proof of the statement is
complete. O

Remark 4.7 Under the assumptions of Theorem 4.6, for any i € I we define the
operator ¢; as

i M — LOC 0,(1) &y

V> €, Q.
Combining Theorem 4.6 with [19, Theorem 3.12], we obtain that
(LOC 61 (D) @ A i }icr)

is the coproduct of {.#;}ic;, where #;:=.# for every i € I, in the category
BanModég.

Lemma 4.8 Let X be a o-finite measure space. Let .4 be a Banach L°(X)-module.
Define

o(f):= Y fo-ved forevery f=(foes, €Sz LX) 46)

UES‘///

Then ¢: €1(S.z, L°(X)) — . is a quotient operator. In particular, it holds that
M =4Sy LX) [ker (@),
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Proof First of all, by using Proposition 3.6 we obtain that

A Vool hes A \

FeZPrSpn) GePy(S 4 \F) lveCG FeZrS.n) GeP¢(S 4 \F)

=0

> b

veG

and thus that (f, - V)yes , is summable in .. Since

Y foevl= Y 1A= 1

UGSL/// UESJ/

we have that ¢ is a well-defined linear operator satisfying |@(f)| < |f| for every
f € Sy, LY(X)), thus in particular it is a homomorphism of Banach LO(X)-
modules. Moreover, if w € . is given, then

Y= (f"ves, €. 4, LOX)),

v =10 otherwise

fll.). { |U)| lfU :Sgn(U)),

satisfies (f*) = |w| - sgn(w) = w and |p(f*)] = |w| = |f™|;- Hence, ¢ is a
quotient operator, thus it induces an isomorphism of Banach L°(X)-modules between
21(S_y, LO(X)) /ker(¢) and . . o

We conclude this section with a useful representation formula for the projective
pointwise norm:

Theorem 4.9 (Characterisation of the projective pointwise norm) Let X be a o -finite
measure space. Let M, N be Banach L°(X)-modules. Then for every o € M &y N
it holds that

ot =/\{Z|vn||wn|

neN

(Un ® wy)nen € £41(N, %®nf/‘/)v a = Zvn @ wy
neN

4.7)

Proof For brevity, we denote by ¢ («) the right-hand side of (4.7). On the one hand, if
(Un ® WpInen € O (N, A Rz A ) and o =Y, . Un ® Wy, then

Zvn®wn

neN

3.6)
=< Z|Un||wn|’

T neN

laly =

whence it follows that ||, < g(c) for every a € .# &, ./ . On the other hand, let us
denote by

@ 0. p, L°X) — A,
¢: LOC 1(S.0)) — (S, LOX)),
it L9 1S ) ®n et — £1(Sypy N)
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the operators given by Lemma 4.8, Corollary 3.12, and Theorem 4.6, respectively.
Recall that ¢ is a quotient operator, while ¢ and i are isomorphisms of Banach L°(X)-
modules. In particular, ¢:=¢ o ¢: LOX; ¢, (S.x)) — A is a quotient operator, so
that accordingly

Vi=(¢ @y id_y) 0oi ' 0S gy, N) = M&y N s aquotient operator

by Lemma 4.4. Hence, for any « € .#®,.# and ¢ > 0 we can find an element
w = (Wyves, € L1 yz,A) suchthat ¥ (w) = o and |w|| < |a|; + €. Since

Vo Y wewk=s \/ D lwlel’®

FeZP¢ (S ) veF FeZP¢(S ) veF

we see that (v ® wy)ves , € £1(S,z, MRy N). By unwrapping the various defini-
tions, we obtain

3.5 3.7
a=v(ves, ) = VY Guwdues, | =D ¥ (Guuwoues, )
veS veS y
(4 t.3)
= > Y€ wues ) > (@@ id y)(e, ®wy)
UES/// veS A
3. 11)
= Y ¢(sE) ®w, > o(Guulx)ues,, ) ® wy
UESM%/ UESJ/
4.6
D Z Z(Swu ® wy = Zv@wv.
veS y, \ueS y veS z

It follows that there exists (v,)nen € S_y such that, letting w,:=w,,, foreveryn € N,
we have (v, @Wp)nen € LN, ARz N ), a = ZneN v @wy, and ZneN [vn||wy| =
|lw|1 < ||y + &. Therefore, we proved that g(«) < |a|; + &. By letting ¢ N\ 0, we
conclude that |x|; = g (). ]

4.2 Relation with duals and pullbacks

In order to provide a characterisation of the dual of the projective tensor product in
Theorem 4.11, we need to apply the following universal property:

Theorem 4.10 (Universal property of the projective tensor product) Let X be a o-
finite measure space. Let M, .V, 2 be Banach LO(X)-modules. Then for any b €
B(A, N ; D) there exists a unique b, € HOM(A# &N ; 2) for which the following
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diagram commutes:

Mx N Ly 9
o A

MRy N

Also, B(# , N ; D) 5 b > by € HOM(M &, N ; 2) is an isomorphism of Banach
LO(X)-modules.

Proof Let b € B(A, /V; 2) be fixed. Denote by b: M Q@ N — 2 the LOX)-
linearisation of b given by Lemma 2.2. Forany o = ) 7, v; @ w; € 4 @ N, we
can estimate

|b(er)| < Z |b(v; ® wi)| = Z |b(vi, wi)l < |b| Z i |[wi .

i=1 i=1

By taking the infimum over all representations of o, we get |b(a)| < |b|||z, whence
it follows that b € HOM(AZ ®y A; 2) and |b| < |b|. Letting by be the unique
element of HOM(.Z ®, A ; 2) extending b, we have |b;| = |b| < |b|. On the other
hand, we have that

1b(v, w)| = bz (v @ W)| < bx|lv ® Wir = |brllv]|w| Y(v,w) € .# x N,

which implies that |b| < |bx|. All in all, we have shown that |b;| = |b|. Moreover,
the resulting map B(#, 4; 2) 2 b by € HOM(A ®7./ ; 2) is a homomor-
phism of Banach L%(X)-modules. In order to conclude, it remains to check that such
map is surjective. To this aim, let 7 € HOM(.#Z®7./; 2) be fixed. Now define
bl it x N — 2 as bl (v, w):=T (v ® w) for every (v, w) € .# x A . Then
b" € B(#,./; 2) by construction and l;; = T by the uniqueness part of the
statement. Therefore, the proof is complete. O

Choosing 2:=L°(X) in Theorem 4.10, we obtain the following characterisation
of M &z N

Theorem 4.11 (Dual of .# &, .4") Let X be a o -finite measure space. Let . and N
be Banach L°(X)-modules. Then it holds that

(M Rz N ZB(AM, N,
an isomorphism of Banach L°(X)-modules being given by the map
B, N)3bt> by € (M&rN)*.

Asaconsequence of Theorem 4.11, we obtain a useful ‘dual representation formula’
for | - |:
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Corollary 4.12 Let X be a o-finite measure space. Let .4, ¥ be Banach L°(X)-
modules. Then

ot = \/ {ba(@) | b e B, N), bl <1} foreverya € &N . (4.8)

Proof The statement follows from Theorem 4.11 and the Hahn—-Banach theorem for
normed L°-modules. 0

We conclude the section by proving that ‘pullbacks and projective tensor products
commute’:

Theorem 4.13 (Pullbacks vs. projective tensor products) Let X, Y be separable, o -
finite measure spaces. Let ¢ : X — Y be a measurable map such that gpmyx < my.
Let # and N be Banach LY(Y)-modules. Then it holds that

O (M Bz N) Z (9 MR (9* N),

the pullback map ¢*: M &z N — (9* M)S (9*N) being the unique homomor-
phism such that

e*(v @ w) = (p*v) ® (p*w) foreveryv € M and w € N .
Proof First, we define themap 7: A4 ® N — (¢* M) Q7 (9*N) as

n n n

T (Z v ® w,-) = Z((p*vi) ® (p*w;) VZvi QWi € M Qr N .

i=1 i=1 i=1

In order to prove that the map 7 is well-posed, it is sufficient to show that
n n
Wy S (W) S Y v ®@wi =0 = Y (9*v)® (¢*w;) =0.
i=1 i=1
4.9)

Letly: ¢* A — (¢*A4)* be the isometric embedding defined in (2.6). Corollary
3.21 yields

D (@ M@ wi) - (9*v) = Y _((w;) 0 @) - (9*v;) = ¢* (Z n(w;) - Ui) =0
i=1

i=1 i=1

forevery n € .#7*, whence it follows that Y 7, 1,(8)(¢*w;)- (¢*v;) = Oforevery 6 €
9 (¢*[4*]). Using Theorem 2.13 and the density of 4 (¢*[.4*]) in ¢*.4"*, we obtain
Yol O(p*w;)-(p*v;) = Oforevery © € (p*.A4)*,sothat) ;_; (¢*v;)®(p*w;) =0
by Corollary 3.21. This proves (4.9).
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Observe that T is linear by construction. Moreover, for any « € .# @ ./ we can
estimate

IT@lx < /\ {Zw*vinw*wn
i=1

= /\{(Dvinwn)ow
i=1

= |a|z o @.

n
W)i_, S A, ()i, SN, a= Zvi ® wi}
i=1

Wi, S A, ()i, SN, a= Zvi ® wi}

i=1

Now let us pass to the verification of the converse inequality. Givenany b € B(.Z, .4"),
we define

n m n m
b? ZﬂE,- %, ZﬂFJ- T w; 5=ZZ LgnF; b(vi,wj) o € LX)
i=1 j=1 i=1 j=1

forevery > i, 1g, - 9*vi € 9 (p*[.#]) and ZT:I Lr; -¢*w; € 9 (p*[4]). Notice
that

n m n m
ZZ LgnF; b(vi, wj) op| = ZZ LgnF;1b(vi, wj)| o

i=1 j=1 i=1 j=1I

<I|blog

n
> 1k etu
i=1

m
ZILF/ -go*wj .
j=1

Therefore, b¥: G (p*[ A1) x G(p*[.#]) = L°(X) can be uniquely extended to an
LY (X)-bilinear operator b¢ € B(p*.#, p*.4) satisfying |b¥| < |b| o ¢. Thanks to
Corollary 4.12, we deduce that

@l 09 = \/ {br(@) 0@ | b eB(A, ), |b] <1}

n
= \/{ b? (™ v, 9™ w;) ‘ beB(A#,N), bl < 1}
i=1
< \/{B:«(T(@) | B eBp*4,0* ), |Bl < 1} = |T(@)lx
for every tensor @ = Z?:] v, @ wi € A Ry A . All in all, we have shown that

[T (@) = |a|y o ¢ for every @« € A ®; A . It follows that T can be uniquely
extended to a linear operator

@*: '%@m/’/ - (‘p*'//)@n(ﬁp*ﬂ)

satisfying |¢p*a|, = |a|; o ¢ for every @ € .#&,./ . Finally, it remains to check
that p*[.# &, ./ ] generates (¢*. 4 )Ry (p*.A). Given any v € .4 and w € A, we
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have (¢p*v) ® (¢*w) = ¢* (v ® w). This shows that
S:={(¢*v) ® (¢*w) |ve A, we N} C o [MSN].
Given that ¢*[.#] and ¢*[.4"] generate ¢*.# and ¢*.4", respectively, we know from

Lemma 4.5 that S generates the space (¢*.#) R (¢*A"), thus a fortiori *[.# Rz N1
generates (¢* )@ (p* N). H

4.3 Other consequences of the universal property

Let us now discuss other consequences of Theorem 4.10 and Corollary 4.12. Our first
goal is to rewrite (4.8) in a different fashion.

Proposition 4.14 Let X be a o-finite measure space. Let M, .V be Banach L°(X)-
modules. Then the map sending b to v — b(v, -) is an isomorphism of Banach L°(X)-
modules from B( , N) to HOM(A ; N *). In particular, it holds that

B(A, V) = HOM(A; N7).
Proof One can readily check that the map
b (M >5v—b,-)eNT)

is a homomorphism of Banach L%(X)-modules between the spaces B(.#, .#") and
HoM(.#; A*). For any b € B(.#, /"), we have that

>0 b (v, )| L0y Lijw|>03 10 (v, w)|
) = \/ — = V V oile] = |bl.
ve ve M we N

Finally, we check that ¢ is surjective. Forany T € HOM(.#'; .#*), we define bl x
N — LO(X) as bT (v, w):=T (v)(w) for every v € .# and w € 4. Then b7 €
B(A, V) and p(bT) =T. O

Similarly, we have that B(.#, /") = HOM(A"; .#*), an isomorphism of Banach
L% (X)-modules being given by the operator

B(A, N)>b> (N 3w b(,w) € 4*) € HOM(N 3 ™).

Corollary 4.15 Let X be a o-finite measure space. Let .4, ¥ be Banach L°(X)-
modules. Then it holds that

for every T € HOM(A ; N*)

0
(T (W) (wn)) oy € 1(N, L7(X)) and (v, @ wy)yen € L1 (N, M@y M.
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Moreover; for every a € M &y N we have that

(vn @ wp)n € L1 (N, '///®nf/1/)y
ZneN v ®@wy =0, T € DHOM(A%/;JV*) '

e =\/ {\ > T @)

neN
Proof Let us fix any sequence (v, ® wypen € L1(N, #&7.4). We denote
=), NUn @ Wy € M QN . Then

> T a)(wy)

neF

<ITIY (onllwal =171 Joa ® walx

neF neF

forevery T € HoM(#Z; A#*) and F € &¢(N). By passing to the supremum over all
F € &Z¢(N), we thus obtain that

(T @) @), x|y < 11 @n ® winen|, € LOCO, (4.10)

which ensures that (7' (v,)(wy)), . € £1(N, L%(X)). Now, let us introduce the short-
hand notation

(Ve ®wy), € £1(N, %®n/1/)’
YopenUn ® wy, = o, T €
]DHOM((///;JV*)

Q@):=\/

> T (a)(wy)

neN

forevery o € A &4 . On the one hand, whenever (v, ® wy), and T are competi-
tors for Q(a), we have that | Y, .y T (V) (wy)| < X, [vnllwy| by (4.10), so that
Q(a) < |a|r by Theorem 4.9. On the other hand, take any b € B(.#, .#") such that
|b| < 1. Proposition 4.14 tells that the element T, € HOM(.Z'; .#"*), which we define
as Tp(v):=b(v, -) for all v € ., satisfies |T,| < 1. Hence, Lemma 3.8 yields

511(0‘) = Zgn (v ®@ wy) = Z Ty (vp) (wp).

neN neN

It follows that

e =\ b= \/ D T)ws) < 0@

beDp s .1 beDp .z .4y neN
thanks to Corollary 4.12. Consequently, the statement is finally achieved. O
The following symmetric statement is verified as well:
(Swn)(vn)), € (1(N, LO(X))
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for every (v, ® wy)n € £L1(N, A&y N ) and S € HOM(A; .4 *), and we have

(W, @wy), € £1(N, %é)nf/’/),
DopenUn ® wy, = o, § €
DHOM(JV LM

el =\/

> S(wn) (vy)

neN

These claims can be proved by arguing exactly as we did in the proof of Corollary
4.15.

Next, we use Corollary 4.12 to characterise the ‘tensor diagonal’ in the space
LOCX; £2(1)) &5 LOCX; €2(1)):

Proposition 4.16 Let X be a o-finite measure space. Then the Banach L°(X)-
submodule of L°(X; €2(1)® LO(X; €2(1)) that is generated by e, ®e; :iel}is
isomorphic to LOX: £1(I)).

Proof Let ./ be the Banach L°(X)-submodule of L(X; €2(1))®, LO(X; £2(I)) that
is generated by {e; ® e; : i € I}. Observe that .# can be described as .# =

ClL0(:02 (1))@ L0 5 (1)) (M), Where
M= {Zﬁ (& ®e) ‘ Fe 2, filier S LX)
ieF

Given any F € P¢(I) and f = {filier C LO(X), let us define the operator
bl LOCX; 0o(1)) x LOCX; £2(1)) — LO(X) as

bl (g, h):=) " sgn(fi)g()i h(); forevery g, h € LO(X; &2(1)).
ieF

The map b/ is L°(X)-bilinear by construction. Also, for any g, & € LO(X; ¢>(I)) we
can estimate

1/2 12
b7 (g, M) <Y 1gOillh()il < (Z |g<')i|2) (Z |h<~>,~|2) < lglihl,
ieF ieF ieF

which yields b/ € B(LO(X; €2(1)), LO(X; €2(1))) and |b/| < 1. Now define the map
VM — €(1, LX) as

14 (Zfz - (g ®§i)> = Z(Sijfi)jel VF € c@f([): {filier € LO(X)~

ieF ieF
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By virtue of Corollary 4.12, for any F € &Z¢(I) and f = {fi}ier C LO(X) we can
estimate

> Gijfjer

ieF

(Xduf), | =2 1A= fisen(si
1 ieF

ieF ieF

=Y iy _sen(fN& =) fi ) sen(fe;();

ieF jeF ieFF  jeF
=) fible.e) =) fible®e)

ieF ieF

=b] (Zfi'(gi(@gi)) <

ieF

1

Zﬁ"(gi@%)

ieF

T

This shows that the operator  is well-defined (thus also L°(X)-linear by construction)
and that it satisfies |/ («)|1 < || forall @ € M. Conversely, forany & = Y ;5 f; -
(e; ® e;) € M we have

lale <Y Ifille @il = Y 1fillel* =D 1fil = [¥ (@)l

ieF ieF ieF

All in all, we have shown that Y preserves the pointwise norm, thus it can be uniquely
extended to a homomorphism 1Z € HOM(//Z; 211, LO(X))) that satisfies |1/_f(oc)|1 =
la|; forall @ € .. Letting ¢: LOCX; £1(1)) — £1(I, L%(X)) be the isomorphism
given by Corollary 3.12, we deduce that

¢:=¢ "' oy € Hom(4; LOCX; €1(1)))

satisfies |@(a)| = ||, for every @ € .. Finally, we verify that ¢ is surjective. Fix
any a € LO(X; £1(I)). Thanks to Lemma 3.11, we can find an increasing sequence
(Fonen € Z¢(I) with a,:= Zian a(-); -e — aasn — oo. Since

oY ai-gee)| =) ¢_1<(8ija(‘)i)jel) = a()i-¢ =a,

i€k, ieFy, ieF,

we deduce that (a,),en € @[M], whence it follows that a € ¢[.#]. The proof is
complete. O

Finally, we discuss a categorical consequence of Theorem 4.11. First, we
need to introduce the two functors .#Z®;—: BanModx — BanModx and
HoM(#; —): BanModx — BanModx, where .7 is a Banach L°(X)-module. The
functors .# &, — and HOM(.#; —) are given as follows:

(i) For any object .#” of BanModx, we define (.7 Q=) (AN ):=M &y N . For any
morphism 7 : A — f/~V in BanMody, we define the morphism (A Rr—)T):
MR N —> MR N as (MR¥—)(T)=id y Q5 T.
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(i1) For any object 2 of BanModyx, we set
HoM( A ; —)(2):=HoM(. 4 ; 2).
For any morphism 7: 2 — 2 in BanMody, we define the morphism
HoM(.#; —)(T): HoM(4; 2) — HoM(. 4 ; D)

as HoM(#; —)(T)(S):=T o S for every S € HOM(AZ; 2).

We can now pass to the ensuing result, which states that .# ®, — is the left adjoint of

HoMm(; —):

Proposition 4.17 Let X be a o-finite measure space and let .4 be a Banach L°(X)-
module. Then

(M &z —) - HOM(A ; —).
Proof Our goal is to find a natural isomorphism
&: HOM(AZ &, —; —) — HOM(—; HOM(; —)),

which means that (.# &y —, HOM(.#; —), ®) is a hom-set adjunction. To this aim,
fix two Banach L(X)-modules .#" and 2. We define

® o HOM(A &7 N ; 2) — HOM(A; HOM(A; 2))
as follows:

Oy (T (W)(W):=T(v@w) YT € HOM(A Q7 N ; D), (w,v) € N x M.
One canreadily check that ® - ¢ is amorphism and |[® 4 9| < 1. On the other hand,
let L be a given element of HoOM(A4; HOM(.#; 2)). Define bL: . # x N — 2 as
b (v, w):=L(w)(v) for every (v, w) € .# x 4. Since ~bL € B(A#, V; 2) and
|bL| < |L|, we know from Theorem 4.11 that the element bf; € HoM( A &7 N ; 2)
satisfies [bL| < |L|. Since

I;Jl;(v Q w) = bk (v, w) = L(w)(v) forevery (v, w) € 4 x N,

we deduce that ® g o(bL) = L and |® 4 o(b%)| = |L| > |bL|. Allin all, we have
shown that ® 4 ¢ is an isomorphism. Let us finally check the naturality of ®. Given

any two morphisms 7: .4 — .4 and S: 2 — 2 in BanMody, we consider the
morphisms

HOM(A ®:T; S): HOM(M & N 3 2) — HOM(M Q5 N ; D),
HoM(T; HoM(#; S)): HoM(A ; HOM(#; 2)) — HoM(A : HoM(4; D)),
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which are given by HOM(.Z &, T; S)(¢):=S o ¢ o (id_y ®,; T) for every ¢ €
HOM(A &z N ; 2) and HOM(T; HoM(A#; $))(Y)(w):=S o (Y o T)(w) for every
¥ € HoM(A; HoM(# ; 2)) and w € 4. Unwrapping the various definitions, one
can see that the following diagram is commutative:

A @ / 0)
HOM(A @ N ; 2) -3 Hom(N; HOM(A; 2))
HOM(.# &, T S)l lHOM(T;HOM(//; )

HOM(.A/ @ N ; 2) -— HOM(A'; HOM(A; 2))
NG
whence it follows that ® is a natural isomorphism. Consequently, the proofis complete.
O

The previous result implies that the functor .# &, — is cocontinuous, i.e. it pre-
serves colimits. Notice however that we are considering .# &, — as an endofunctor
on BanMody, which is only finitely cocomplete, and not on the cocomplete category
BanModég.

5 Injective tensor products of Banach L°-modules

5.1 Definition and main properties

We begin by introducing the injective pointwise norm:

Theorem 5.1 Let X be a o-finite measure space. Let M, A be Banach L°(X)-
modules. Define

|a|g::\/!

foreverya € M @ N.Then |- |o: M @ N — LOX) is a pointwise norm on
M Q@ N . Moreover,

D w@)n(w)
i=1

n
' dDview =a 0eDynebyt (5.1)
i=1

lv® w|, = |v||w| foreveryv € # and w € N . 5.2)
Proof One can readily check that | - |, verifies the pointwise norm axioms; the fact

that || = O implies @ = 0 is a consequence of Lemma 3.19. To prove (5.2), notice
first that Lemma 3.19 yields

= lo@)nw)| < |@llv]Inl|w] < [v]w]

> w@)nw)
i=1

whenever ZLI v; ® w; is a representation of the tensor v ® w and for all (w, 1) €
D 4+ x D_y+. Hence, we obtain that |[v ® w|, < |v||w|. Conversely, an application
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of the Hahn—Banach theorem gives two elements w, € S_y+ U {0} and n,, € S_y» U
{0} such that w,(v) = |v| and ny(w) = |w]|. Therefore, we have that |v||w| =
wy (V)N (W) < |v ® w|e. All in all, (5.2) is proved. O

Remark 5.2 Observe that |¢|. < |a|; for every @ € .# ® .4 . Indeed, if we write
o= "_,v ®w;,then forany w € D 4+ and n € D_y+ we have that

> w@)n(w;)
i=1

n n
<Y lo@)lInw)] <Y fvillwil,
i=1 i=1

whence the claim follows.

Definition 5.3 (Injective tensor product) Let X be a o-finite measure space. Let .#
and ./ be Banach L%(X)-modules. Then we denote by .# ®; .4 the normed L°(X)-
module (Z ®.4, |-|¢), where the pointwise norm |- | is defined as in (5.1). Moreover,
the injective tensor product of .7 and .4 is the Banach L°(X)-module .# &,/
defined as the L°(X)-completion of .Z ®, A .

The space .# &,./ is a Banach L°(X)-submodule of B(.Z*, A4 *):

Proposition 5.4 Let X be a o -finite measure space. Let # and A be Banach L°(X)-
modules. Given any tensor « = Y i vi ® w; € M ® N, we define the map
By: M* x N* — LX) as

By(w, )= Za)(vi)n(wi) foreveryw € M* andn € N*. (5.3)

i=1
Then By, is well-defined and belongs to B(*, NV *). Moreover, the resulting operator
M Qe N Dar> By € B, NF)

can be uniquely extended to an isomorphism of Banach L°(X)-modules from the injec-

tive tensor product # &y N to the closure of {By : o € M Q N} in B(A*, N7).

Proof The well-posedness of (5.3) follows from Lemma 3.19, while the rest is straight-
forward. o

The following result provides other two representations of the injective tensor prod-
uct A Qe N:

Proposition 5.5 Let X be a o -finite measure space. Let # and N be Banach L°(X)-
modules. Given any tensor « = Y | v @ w; € M ® N, we define the maps
Ly: H* — N and Ry: N* — M as

Lo(@):=Y) o) wi, Rem):=) n(w) v Yoe.l* ne ™

i=1 i=1
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respectively. Then L, € HOM(.Z™*; ') and Ry, € HOM(N*; . #). Moreover, the
resulting maps

M Q¢ N S0+ L, € HoM(A*; N),
M Q¢ N 30— Ry € HOM(AN*; )

can be uniquely extended to pointwise norm preserving homomorphisms defined on

MBe N .

Proof We consider only L, the proof for R, being analogous. The well-posedness
of the map L, follows from Corollary 3.21. It is then easy to check that L, €
HoMm(.Z*; A") holds for every « € .# ® .4 and that the mapping A4 ®; .4 >
o — Lo € HOM(.Z*; .4 is a homomorphism of normed L°(X)-modules. Also, we
have that

Lel =\ La@)l= \/ \/ [n(La())]

a)E]D)'%/ * wED'% * nED‘A/ *
n
VoV Do ewinw)| =l
weD 4« neD_y x li=1

foreverya = Z;’:l v; Qw; € M Q.- by the Hahn—Banach theorem. The statement
follows. o

Corollary 5.6 Let X be a o-finite measure space. Let #, . be Banach L°(X)-
modules. Let Tand S be norming subsets of #* and N ¥, respectively. Then it holds
that

lale = \/

weT

n
Va:Zvi@)wie///@gJV.
i=1

> nw) - v

i=1

-V

nes

> o) w

i=1

Proof Given that [Ly| = \/ c7|Lo(@)| and |Ry| = \/neS|Ra ()|, the statement
follows from Proposition 5.5. O

Let us now consider the injective tensor product of homomorphisms of Banach
L%(X)-modules:

Proposition 5.7 (Injective tensor products of homomorphisms) Let X be a o-finite
measure space. Let T: M — M and S: N — N be homomorphisms of Banach
LO(X)-modules. Then there exists a unique homomorphism of Banach LO(X)-modules
TQR:S: MN — MR N with

TR SHv@w)=TwW) Q S(w) foreveryv e . # andw € N .

Moreover, it holds that |T ®. S| = |T||S|.
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Proof Let T @ S: .# ® N — .4 @ A be as in Lemma 2.2. Given any element
a=>" v Qw; €4 Q.N,wehave that

}:MTMDMMwDHwGD%MneDM4

|U®$WL=V{
i=1
ﬂNﬂV{ZMw
i=1

weD g, ne ]D)L/;/*}

=1T|ISllale,
where we used the fact that ||TT||>0 (woT)eD y+and ‘Sbm (o 8S)eD yx. It

follows that the map T @ S: # @ N — M Q@ N can be unlquely extended to a
homomorphism of Banach L%(X)-modules 7 ®; S: A QN — M N satisfying
|T ®¢ S| < |T]|S|. Finally, the validity of the converse inequality |T ®. S| > |T||S]|
can be proved arguing as in Proposition 4.3. O

One can easily check that LO(X)&, L%(X) = LX) ®, L%(X) = L°(X) as Banach
L% (X)-modules via the isomorphism

LX) @ L°X) 2 )Y fi®gi> Y figi € LX)

i=1 i=1
In particular, up to this identification, we have that

©O®cn € (MBN), |o®n| = |w||n| foreveryw e .#*andn e N™*.

Lemma 5.8 Let X be a o -finite measure space. Let M, N be Banach L°(X)-modules.
Let G C # and H C N be generating subsets. Then it holds that the set {v Q@w | UNS
G, w € H) generates M Qy N .

Proof The statement follows from Lemma 4.5 and Remark 5.2. O

5.2 Relation with order-continuous maps

As we already mentioned in the first paragraph of Sect.3.4, the Banach space C(K)
(where K is acompact, Hausdorff topological space) has a special relevance in connec-
tion with injective tensor products. For instance, it holds that C(K )®:B = C(K; B)
for every Banach space B, whence it follows that any quotient operator f: B; —
B, between Banach spaces induces a quotient operator id ®, f: C(K QB —
C(K)®¢B,. The goal of the present section is to extend these results to the setting
of Banach L°(X)-modules, taking as K a compact, Hausdorff uniform space, and
replacing C(K) with UCyq(K; LO(X)).
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Theorem 5.9 Let (K, ®) be a compact, Hausdorff uniform space. Let X be a o-
finite measure space and A a Banach L°(X)-module. Then the unique linear and
continuous operator

j: UCord (K LO(X))®£/// — UCow(K; M)

satisfying i(f @ v)(-) = f(-) - v for every f € UCon(K; L°(X)) and v € A is an

isomorphism.

Proof Notice that | f(-) - v| = | f(-)||v| and Var(f(-) - v; ) = |v|Var(f; U) for every
f € UCora(K; LO(X)), v € .4, and U € ®, which implies that

f()-veUCoq(K; A).

Therefore, it makes sense to define j: UCoq(K; LO(X)) ®¢ # — UCora(K; #) in
the following way:

j (Z fi ® v,») =Y fi) v VY fi® v € UCou(K; LO(X) @ A .
i=1

i=1 i=1

To prove that the definition of j is well-posed amounts to showing that

(fD)i=i o < .
UCora(K; L7 (X)), ' o
WL, c = 2 fi0u=0 (5.4)

MY [ ®v =0 =1

Assuming ) 7, fi ® v; =0, we have that >/, fi(p) -v; = >/ 8,(fi) -vi =0
for every p € K by Remark 3.15 and Corollary 3.21, thus showing that (5.4) holds.
Moreover, if @ = >/ f; ® v; is an element of UCqq(K; L%(X)) ®, ., then by
Corollary 5.6 and Remark 3.15 we can compute

i@l=\/ D fitp)-ui|=\/

peK li=1 peK

D 8p(fi) - v

i=1

= |ale.

Since j is also linear by construction, it can be uniquely extended to a homomorphism
of Banach L°(X)-modules

j: UCord (K LO(X))®£% — UCo(K; M)

that preserves the pointwise norm.

In order to conclude, it remains to check that the isometric embedding map j is also
surjective. Let v € UCqq(K; .#) be given. Then we can find a sequence (Uy,),en
® with Var(v;U4,) — 0 in L%(X). Fix any n € N. Given that {{,[p]}pek is an

N ¢ such that

open cover of the compact set K, there exist k, € N and (p}');", C
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K = U | Unlp!']. Now, take a continuous partition of unity (n'); kn " | subordinated to
Unlp! ])l" | (see e.g. [20]), i.e. n}: K — [0, 1] is continuous, supported in Uy, [p}'],

and Zl 1! = 1 on K. With no loss of generality, we can also assume that for any
i=1,...,k, there exists ¢/ € Uy,[p]'] such that n (g') = 1; this fact will be used in
Remark 5. 10. Let us define

kn

=Y (1} ()1x) ® v(p}) € UCou(K; LO(X)) @ .M
i=1

Observe that for any given point p € K we can estimate
kn
i) (p) — vip)| = Z ' () (v(p) —v(P)| < D0t (p)|v(p}) — v(p)]
i=1 i=1
< Var(v; U,).
By passing to the supremum over all p € K, we get |j(«,,) —v| < Var(v; U,), whence
it follows that j(a,) — v in UCqq(K; .#'). This shows that j is surjective, as desired.

O

Remark 5.10 We isolate a useful byproduct of the proof of Theorem 5.9. For any
n € N, we denote

:(m,l_C(K [0, 1])’{n,—1}7é@v1—1 n,Zm:l},

where C(K; [0, 1]) stands for the set of continuous functions from K to [0, 1]. Then
we have that

7= {Z(m(-)ﬂx) ® vi

neN Ui=1

M)i—y € Fn, ()i, S ///}
is dense in UCyq (K ; LO(X))®¢.#, or equivalently

U {Z ni () vi
i=1

neN

(ni)?zl € Fn, (Ui);?zl - %}
is dense in UCyq (K ; .#). Moreover, it holds that
n n
lale = \/ [vi| foreverya =Y :()1x) ®v; € 2. (5.5)

i=1
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To prove it, take (cﬁ)l’.’:1 C K such that n;(g;) = 1 foreveryi = 1, ..., n. Therefore,
we can estimate

lale = i@l = \/

peK

> ni(p)vi

i=1

<V Zn,<p>|vz| < \/ il

peK i=1

n

\/ li@) (@] < letle,

which shows the validity of (5.5).

Proposition 5.11 Let (K, ®) be a compact, Hausdorff uniform space. Let X be a o -
finite measure space and let .M, N be Banach L°(X)-modules. Let T : # — N be
a quotient operator. Then the map

id ®¢ T: UCora(K; LO(X))®¢ M — UCora(K; LO(X)) &N

is a quotient operator.

Proof First, notice that |id ®, T| = |T| < 1. Our goal is to apply Lemma 3.4. To
this aim, we shorten UC:=UCqq(K; L%(X)), and we fix B € UC&®,.A and ¢ >
0. By Remark 5.10, we can find n € N, (n;)}_, € %, and (w;)!_, S .4 such

that ﬁ._ lel i () 1x) ® w; satisfies dUC®SW(ﬁ, B) < €/2. Since T is a quotient
operator, for any i = 1,...,n we can find v; € .# such that T(v;) = w; and
[vi| < |w;| + 8, where we have chosen some § > 0 for which dox(61x,0) < /2.

Now define a:=3Y""_;(7;(-)1x) ® v; € UC&®;.#. Since (id ®; T)(a) = B, we
have dUC®€/((id ®¢ T)(@), B) < e. Moreover, recalling (5.5) we see that |¢|, =
Viep il <8+ Vi) lwil = [Ble +8 < |ale + 8, which yields d o x, (|ele, |Ble) <
dpox)(81x, 0) +dpo)(IBles |Ble) < e. Therefore, we can apply Lemma 3.4, which
gives that id ®, T: UC®,.# — UC®,.4 is a quotient operator. ]

5.3 Relation with duals and pullbacks
First of all, we provide a characterisation of the dual of .Z®..# . By Df"** we will

mean the unit disc of .Z™ endowed with the restriction of the weak™* topology. More-
over, the space Df/;* X ]Dg;* will be tacitly equipped with the product topology.

Theorem 5.12 (Dual of .#®..4) Let X be a o-finite measure space. Let ./ and
N be Banach L°(X)-modules. Then there exists a unique homomorphism of Banach
LO(X)-modules

VM@ N — Cop(DYy. x DY; LX)
such that

tv@w)(w,n) =w@nw) Y, w,w,n) € M XN XD 4 xD yx.
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Moreover, the homomorphism « preserves the pointwise norm. In particular, it holds
that

(M BN )* = Cpp(D"0 x DYz LYK /(M e )
Proof First of all, let us define t: A @, N — Cpb(Df"** X D%*; L9(X)) as
n
He) (@, )=y w)n(w;)
i=I

foreverya =Y 1 vi @w; € # ®; . and (w,n) € D_y+ x D_y+. It can be easily
checked that ¢ is well-posed and LO(X)-linear. Moreover, (3.12) and (5.1) yield

= |ale

> w@)nw)

i=1

1(e)] = Vo .| = \V

(w,meD g+ xD 4 = (w,meD_y *xD 4 =

forevery @ = Y ' v @ w; € A ®, ./, thus ¢ can be uniquely extended to a
pointwise norm preserving homomorphism

UM N — Cop(DYy. x DY LOX)).
For the last claim, see Lemma 3.3. O

We stress that in Theorem 5.12 we consider the space Cpp, differently from Sect. 5.2.
It seems that in Theorem 5.12 the space Cpp, cannot be replaced by the smaller space
UC,rq. Furthermore, we point out that the description of (.#Z®..#)* provided by
Theorem 5.12 is rather implicit if compared with the corresponding one for Banach
spaces (see [21, Proposition 3.14]). Indeed, itis not clear whether the space Cpp (Df‘j/;* X
]D)f;*; LO(X))* can be described as a space of measures.

We conclude this section by proving that ‘pullbacks and injective tensor products
commute’:

Theorem 5.13 (Pullbacks vs. injective tensor products) Let X = (X, Xx, mx), Y =

(Y, Xy, my) be separable, o -finite measure spaces. Let ¢ : X — Y be a measurable

map with gmyx < my. Let 4, N be Banach L°(Y)-modules. Then it holds that
P MR N) Z (MR (9" N),

the pullback map ¢*: M &N — (9 M)R:(@*N) being the unique homomor-
phism such that

e*(v R w) = (p*v) ® (¢*w) foreveryv e # andw € N .
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Proof Letus define T: A4 Q. N — (p* M) ®c (9*N) as

Zv,@w, Z(go v;) ® (p*w;) for every Zv,@w,e///&;

i=1 i=1

The well-posedness of T can be proved exactly as in Theorem 4.13, while its linearity
is clear. Moreover, forany o = ) ', v; @ w; € A4 ®, A we have

|Mw¢=\/“§)awww%i
Vi

=T (2)le-

weD g, nGDJV*}

(,0 V; 2 e D(‘P*///)*’ ® e D(Qﬁ*:/‘/)*}

Conversely, if £ = Z;’;l lg; -¢*wjand 6 = Zi:l 1F, - ¢*ny are given elements of
9 (p*[D_y+]) and 4 (@*[D_y+]), respectively, then

ZHMWWMWW

i=1

A%

—ZZHE NFy

j=1k=1

ij(vz)ﬂk(wz
< |ale o @.

Using Theorem 2.13, as well as the density of 4 (¢*[D_g+]) and ¥ (¢*[D_4+]) in
Dy+ s+ and Dy« s+, respectively, we get | Yo E(¢*vi)®((p*wi)| < la|g o ¢ for
all E € Dy+ g+ and © € Dyx_y+. It follows that |T ()]s < |a|e o ¢ holds for
every o € M ®, ., thus accordingly T can be uniquely extended to a linear map
O MR N — (O MR (9* N ) satistying |p*a|, = |a|sop foralla € A RN
Finally, the fact that ¢*[.# ®../4] generates (¢*.#)®.(¢*.4#") can be proved as in
Theorem 4.13, using Lemma 5.8 in place of Lemma 4.5. The proof is then complete.

O

5.4 Pointwise crossnorms

Let us now introduce a class of ‘tensor product pointwise norms’:

Definition 5.14 (Reasonable pointwise crossnorm) Let X be a o -finite measure space.
Let .# and .4 be Banach L°(X)-modules. Then a pointwise norm |- | on .# ® .4 is
said to be a reasonable pointwise crossnorm provided the following properties are
verified:

1) v w|, < |v||lw|foreveryv € # andw € A

(i) o®n € (A @ AN)f and |0 @ n|e+ < |w||n| for every € A4* and n € N¥,
where we denote by ((#Z ® 4%, | - |¢+) the dual of the normed LO9(X)-module
(// ® JV7 | : |c)
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The projective pointwise norm and the injective pointwise norm are examples of
reasonable pointwise crossnorms. In fact, they are the ‘greatest’ and the ‘least’ cross-
norms, respectively:

Theorem 5.15 (Characterisation of reasonable pointwise crossnorms) Let X be a o -
finite measure space. Let .4 and .V be Banach L°(X)-modules. Let | - | be a given
pointwise norm on M ® N . Then | - |; is a reasonable pointwise crossnorm if and

only if

lale < |ale < |aly foreverya € H# @ N . (5.6)

Proof Suppose | - |- is a reasonable pointwise crossnorm. Given any element o =
Y vi ®w € 4 QN we can estimate

n n
e < D i @ wile < Y lvillwil,
i=1

i=1

thus by taking the infimum over all representations of @ we get |«|. < |«|;. Moreover,
we have that

leele = \/{I(a)® m@)] | (@, n) €D g x Dy}
<V {1e@! |6 e D yor;:} = el

Conversely, if (5.6) is verified, then |v ® w|, < |v ® w|; = |v||w]| holds for every
(v, w) € A x N .Moreover,

(@ @ M(@)| < |0 ®nlelale < |wlnllelc  forevery (w,n) € A* x N,

thusw®n € (A ®A)f and |w@n|+ < |w||n|. Hence, | - |, is a reasonable pointwise
Crossnorm. O

Let X be a o -finite measure space and .#, .4 Banach L%(X)-modules. Let |-]cbea
reasonable pointwise crossnormon .#Z @ .4 . Let G € .# and H C ./ be generating
subsets. Then it follows from the second inequality in (5.6) and Lemma 4.5 that the
set{v@w | v € G, w € H} generates the Banach L9(X)-module obtained by taking
the completion of (#Z @ A, | - |¢).

Proposition 5.16 Let X be a o -finite measure space. Let .4 and N be Banach L°(X)-
modules. Let | - | be a reasonable pointwise crossnorm on M ® N . Then it holds
that

v @wle = vllwl, @7l = ol Y, w, 0,0 € M x N XM x N
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Proof First, (5.6) and (5.2) yield |[v @ w|, > |v ® w|, = |v||w]|. Proposition 4.3 and
(5.6) yield
lw@nles = \/{ll@en@||ae.t &N, || <1}

> \/{l@®z @) |« €D yg,.r} = ol =l

Therefore, the proof of the statement is complete. O

We conclude the paper with another important example of reasonable pointwise
crossnorm. A Banach L%(X)-module . is a Hilbert L°(X)-module if (-,) €
B(s7, ), where we define

et wl = P = fwl?
2

(v, w): € LO(X) for every v, w € .

The Riesz representation theorem for Hilbert L(X)-modules states that the space .77
is canonically isomorphic to its dual .72 via the operator

Hs3v (v, e I
Now let . and .#" be Hilbert L°(X)-modules. Then we define the Hilbert-Schmidt
pointwise norm on 7 ® ¢ as
172

n

lrlms:= | Y (vi,vj)wi wy) | € LOOT (5.7)
i,j=1

foreverya = > 1, v; @ w; € # ® . Following [11, Section 1.5], we define the
tensor product of Hilbert modules J# ®us % as the completion of the normed
LO(X)-module (' ® %, | - lus). It holds that .7 ®us % is a Hilbert L°(X)-module.
Also,

| - |lus 1is areasonable pointwise crossnorm on S Q 7 .

Indeed, the identity |[v®@w|gs = |v||w]forall (v, w) € € x % isadirectconsequence
of (5.7), thus Definition 5.14 i) holds. Definition 5.14 ii) then follows as well, by the
Riesz representation theorem for Hilbert L°(X)-modules. In particular, Theorem 5.15
ensures that

lale < |algs < |a|y foreveryua € 7 Q@ 7.
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