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Abstract
The aim of this work is to develop a functional calculus for simple maximal symmetric
operators. The proposed approach is based on the properties of self-adjoint extensions
of Phillips symmetric operators. The obtained results are applied to the description of
non-cyclic vectors of backward shift operators.
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1 Introduction

Let S be a symmetric operator acting in a Hilbert space H and let U be a family of
unitary operators in H such that the inclusion U ∈ U implies U∗ ∈ U. The operator S
is called U-invariant if S commutes with all U ∈ U. Does there exist at least one U-
invariant self-adjoint extension of S? The answer is affirmative if S is a semibounded
operator and the Friedrichs extension of S gives the required example.

In the general case of non-semibounded operators, Phillips constructed a symmetric
operator S and a family U of unitary operators commuting with S such that S has no
U-invariant self-adjoint extensions [14, p. 382]. It was discovered by Kochubei [7]
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that the characteristic function of the symmetric operator1 constructed in the Phillips
work is a constant in the upper half-plane C+. This observation was used in [9] for
the general definition of Phillips symmetric operators. Namely, we say that a closed
densely defined symmetric operator with equal defect numbers is a Phillips symmetric
operator (PSO) if its characteristic function is an operator-constant on C+.

Self-adjoint and, more generally, proper extensions of PSO possess a lot of curious
properties [3, 7, 9, 10]. Part of them is used for the development of the functional
calculus of simple maximal symmetric operators2 in the present paper.

The functional calculus for simple maximal symmetric operators was announced
by Plesner in two short papers [15, 16] without proofs. To the best of our knowledge,
these papers have not been translated.

In the present paper, we propose an approach to the functional calculus that is based
on the properties of self-adjoint extensions of PSO (Theorems 2.2, 2.4) and it gives
rise to the all-around development of Plesner’s ideas. Such kind of functional calculus
turns out to be useful in the Lax–Phillips scattering theory [5, 6].

Let B be a simple maximal symmetric operator in H. In Sect. 3 we define an
operatorψ(B) for each Lebesgue measurable functionψ and investigate its properties
(Proposition 3.2, Theorem 3.3). The results are simplified if ψ ∈ H∞. In this case,
Plesner’s functional calculus is reduced to functional calculus for the special class
of self-adjoint operators (Theorem 3.4, Corollaries 3.5, 3.6). Further, we discuss a
relationship of our results with functional calculus for unilateral shifts which is a
special case of functional calculus for completely nonunitary contractions [18, Chapter
III].

Special attention is paid to the case of inner functions ψ (Proposition 3.7, Corol-
lary 3.8). An application of the functional calculus to the description of non-cyclic
vectors of the backward shift operator is considered (Propositions 3.10, 3.11).

Throughout the paper D(A), R(A), ker A, ρ(A), and σ(A) denote the domain,
the range, the null-space, the resolvent set, and the spectrum of a linear operator A,

respectively, while A|D stands for the restriction of A to the set D. The continuous
spectrum σc(A) of a linear operator A consists of λ ∈ σ(A) for which there exists a
non-compact sequence { fn} such that ‖ fn‖ = 1 and limn→∞ ‖(A − λI ) fn‖ = 0.

A subspaceK of aHilbert spaceH is said to be an invariant subspace of the operator
A in H if for f ∈ D(A) ∩ K we have A f ∈ K. A subspace K of H is said to be a
reducing subspace for A if PKD(A) ⊂ D(A), where PK is a orthogonal projection
onto K and the subspaces K and K⊥ = H 
 K are invariant for A.

The symbols H p(D) and H p(C+) are used for the Hardy spaces in D = {λ ∈
C : |λ| < 1} and C+ = {z ∈ C : Im z > 0}, respectively. The Sobolev space is
denoted as W p

2 (I ) (I ∈ {R,R+ = [0,∞)}, p ∈ {1, 2}). The notations H p(D, N )

and H p(C+, N ), and W p
2 (I , N ) are used for the Hardy and Sobolev spaces of vector

functions with values in an auxiliary Hilbert space N .The symbol< n >means linear
span of an element n ∈ N , while

∨
α Xα means the closure of the linear span of the

sets (vectors) Xα.

1 The concept of characteristic functions of a symmetric operatorwas introduced byLivs̆ic [11] and, further,
substantially developed by Shtraus [17] and Kochubei [8].
2 See the corresponding definitions in Sect. 2.1
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2 Phillips symmetric operators

2.1 Simplemaximal symmetric operator

Let B be a densely defined symmetric operator in a Hilbert spaceHwith inner product
(·, ·) linear in the first argument. The defect numbers of B in C+ and C− are defined
as

m+(B) = dim ker(B∗ − i I ) and m−(B) = dim ker(B∗ + i I ), (2.1)

respectively, where B∗ is the adjoint of B.

A closed symmetric operator B is called maximal symmetric if one of its defect
numbers is equal to zero. If B is a maximal symmetric operator, then C− ⊂ ρ(B) for
m+(B) = 0 and C+ ⊂ ρ(B) for m−(B) = 0.

A closed symmetric operator B is simple if there is no subspace that reduces it and
on which it induces a self-adjoint operator.

One of the simplest examples of a simple maximal symmetric operator is the first
derivative operator considered in L2(R+, N )

B = i
d

dx
, D(B) = {u ∈ W 1

2 (R+, N ) : u(0) = 0}. (2.2)

In this case, m+(B) = 0 and m−(B) = dim N . Each simple maximal symmetric
operator B with m+(B) = 0 is unitarily equivalent to the operator B defined by
(2.2), where m−(B) = dim N [2, § 104]. Namely, there exists a unitary operator
�+ : H → L2(R+, N ) such that

B = �−1+ B�+, D(B) = �−1+ D(B). (2.3)

Similarly, if B ′ is a simple maximal symmetric operator with m−(B) = 0 acting in a
Hilbert spaceH′ then there exists a unitary operator�− : H′ → L2(R−, N ) such that

B ′ = �−1− B′�−, D(B ′) = �−1− D(B′), (2.4)

where

B′ = i
d

dx
, D(B′) = {u ∈ W 1

2 (R−, N ) : u(0) = 0}, dim N = m+(B ′).

2.2 Phillips symmetric operators

The original definition of PSO deals with the concept of the characteristic function.
For our considerations, it is convenient to use an equivalent definition established in
[9].

Definition 2.1 A symmetric operator S in a Hilbert space Ĥwith equal defect numbers
m = m−(S) = m+(S) is called a Phillips symmetric operator (PSO) if Ĥ can be
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decomposed into the orthogonal sum Ĥ = H ⊕ H′ ⊕ H′′ of reducing subspaces of S
and such that

S = B ⊕ B ′ ⊕ B ′′,

where B = S|H and B ′ = S|H′ are simple maximal symmetric operators in H and H′,
respectively with non-zero defect numbers m−(B) = m+(B ′) = m and B ′′ = S|H′′
is a self-adjoint operator in H′′.

It follows from the definition above and the relations (2.3), (2.4) that every simple
PSO S is unitarily equivalent to the symmetric momentum operator with one-point
interaction

S = i
d

dx
, D(S) = {u ∈ W 1

2 (R, N ) : u(0) = 0} (2.5)

acting in the Hilbert space L2(R, N ), where dim N = m.

The following two theorems are principal for our presentation.

Theorem 2.2 [3, 9] Self-adjoint extensions of a PSO S are unitarily equivalent to each
other. If S is a simple PSO, then its self-adjoint extensions are unitarily equivalent to
the self-adjoint momentum operator in L2(R, N )

A = i
d

dx
, D(A) = W 1

2 (R, N ). (2.6)

Definition 2.3 [2, § 111] Let B be a maximal symmetric operator in H. A self-adjoint
extension A of B that acts in a wider Hilbert space Ĥ ⊃ H is called minimal if it has
no reducing subspaces of Ĥ 
 H except trivial one.

Theorem 2.4 Assume that an operator A acting in a Hilbert space Ĥ is a minimal
self-adjoint extension of a simple maximal symmetric operator B acting in a subspace
H ⊂ Ĥ. Then A is unitarily equivalent to the multiplication operator

(M f )(δ) = δ f (δ), D(M) = { f ∈L2(R, N ) : δ f (δ) ∈ L2(R, N )} (2.7)

by independent variable in the space L2(R, N ), where dim N coincides with the
nonzero defect number of B.

Proof Denote H′ = Ĥ 
 H and consider the operator

B ′ = A|D(B′), D(B ′) = (A − i I )−1H′. (2.8)

Assume thatm+(B) = 0 and verify that the operator B ′ defined by (2.8) turns out to
be simple maximal symmetric inH′ andm−(B ′) = 0. Indeed, assume that u ∈ D(B ′)
and g ∈ H. In view of (2.8), there exists h ∈ H′ such that u = (A − i I )−1h. On the
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other hand,R(B+ i I ) = H sincem+(B) = 0 and, hence, there exists v ∈ D(B) such
that g = (B + i I )v. Therefore,

(u, g) = ((A − i I )−1h, (B + i I )v) = (h, v) = 0

that means that D(B ′) ⊂ H′. Moreover,

B ′u = A(A − i I )−1h = h + i(A − i I )−1h = h + iu. (2.9)

That gives B ′u ∈ H′. Therefore, B ′ is a symmetric operator inH′.
In view of (2.9), (B ′ − i I )u = h, where h is an arbitrary vector from H′. Hence,

R(B ′ − i I ) = H′ and B ′ is a maximal symmetric operator in H′ with m−(B ′) = 0.
The operator B ′ is simple because A is minimal in the sense of Definition 2.3.

Consider a simple symmetric operator

S = B ⊕ B ′, D(S) = D(B) ⊕ D(B ′) (2.10)

in the Hilbert space Ĥ = H ⊕ H′. Its defect numbers are m−(S) = m−(B) and
m+(S) = m+(B ′) by the construction. Taking into account that A is a self-adjoint
extension of S in Ĥ we arrive at the conclusion that m−(B) = m+(B ′). In view of
Definition 2.1, S is a simple PSO. By means Theorem 2.2, A is unitarily equivalent to
the momentum operatorA in L2(R, N ),where dim N = m−(B). Taking into account
that the operatorsA andM are unitarily equivalent we complete the proof for the case
m+(B) = 0.

If m−(B) = 0, then one should put D(B ′) = (A+ i I )−1H′ in (2.8) and, repeating
the argumentation above, to show that B ′ is a simple maximal symmetric operator in
H′ with m+(B ′) = 0. ��

The self-adjoint momentum operator A acting in L2(R, N ) and defined by (2.6)
is an example of a minimal self-adjoint extension of a simple maximal symmetric
operator B defined by (2.2). Applying the Fourier transformation3

F f (δ) = 1√
2π

∫ ∞

−∞
eiδx f (x)dx (2.11)

we obtain FA = MF i.e.,A is unitarily equivalent to the multiplication operatorM
defined by (2.7).

3 The Fourier transformation is considered as the unitary mapping of L2(R, N ) itself. The integral has the

usual meaning of L2-limits of the partial transformations (2π)
− 1

2
∫ a
−a e

±iδx f (x)dx, a → ∞.
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3 Functional calculus of a simple maximal symmetric operator

3.1 Definition ofÃ(B)

Let B be a symmetric operator in a Hilbert space H. A family of bounded operators
{Eδ} (δ ∈ R) in H is called a spectral function of B if the following conditions hold
[2, p. 396]:

1. Eδ2 − Eδ1 is nonnegative for δ2 > δ1;
2. Eδ+0 = Eδ;
3. limδ→−∞ Eδ f = 0, limδ→∞ Eδ f = f , f ∈ H;
4. (B f , g) = ∫ ∞

−∞ δd(Eδ f , g), f ∈ D(B), g ∈ H;
5. ‖B f ‖2 = ∫ ∞

−∞ δ2d(Eδ f , f ), f ∈ D(B).

According to Naimark’s results [2, Section 9], each symmetric operator possesses
at least one spectral function and every spectral function {Eδ} of a symmetric operator
B has the form

Eδ f = PE A
δ f , f ∈ H, (3.1)

where {E A
δ } is a spectral function of a self-adjoint extension A of B,which is obtained

by emerging from the space H into a space Ĥ ⊃ H and P is the orthogonal projection
operator in Ĥ onto H.

It is important that a spectral function of a maximal symmetric operator is deter-
mined uniquely4 [2, p. 402]). For this reason, similarly to the self-adjoint case, one
can try to define operators

ψ(B) =
∫ ∞

−∞
ψ(δ)dEδ (3.2)

for some class of functions ψ. To do that we consider an operator of multiplication
by a Lebesgue measurable function ψ in the space L2(R, N ). It can be presented
as a function ψ(M) of the multiplication operator M by an independent variable in
L2(R, N ), i.e.,

ψ(M) =
∫ ∞

−∞
ψ(δ)dEM

δ ,

D(ψ(M)) = { f ∈ L2(R, N ) :
∫ ∞

−∞
|ψ(δ)|2d(EM

δ f , f ) =
∫ ∞

−∞
|ψ(δ) f (δ)|2dδ < ∞},

where the operators EM
δ of the spectral function of M act as the multiplication by

characteristic function χ(−∞,δ] of the intervals (−∞, δ].
4 The difference with the self-adjoint case consists in the fact that Eδ are not orthogonal projections and
the relation Er Es = Emin{r ,s} does not hold.
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Let an operator A in Ĥ be a minimal self-adjoint extension of a simple maximal
symmetric operator B acting in H ⊂ Ĥ. In view of Theorem 2.4, A is unitarily
equivalent toM, i.e., there exists a unitary mapping G : Ĥ → L2(R, N ) such that

GA = MG and GEA
δ = EM

δ G.

This means that the operator

ψ(A) =
∫ ∞

−∞
ψ(δ)dE A

δ , D(ψ(A)) = G−1D(ψ(M))

is well defined and

ψ(M)G =
∫ ∞

−∞
ψ(δ)dEM

δ G =
∫ ∞

−∞
ψ(δ)dGEA

δ = G
∫ ∞

−∞
ψ(δ)dE A

δ = Gψ(A).

(3.3)

By virtue of (3.1) and (3.2),

(ψ(A) f , g) =
∫ ∞

−∞
ψ(δ)d(E A

δ f , g) =
∫ ∞

−∞
ψ(δ)d(Eδ f , g) = (ψ(B) f , g)

(3.4)

where f ∈ D(ψ(A)) ∩ H and g ∈ H. Therefore, for a simple maximal symmetric
operator B, the operator ψ(B) in (3.2) can be defined as follows

ψ(B) f = Pψ(A) f , f ∈ D(ψ(B)) = D(ψ(A)) ∩ H, (3.5)

where A is a minimal self-adjoint extension of B in Ĥ, P is an orthoprojector in Ĥ
onto H, and ψ is a Lebesgue measurable function.

The operator ψ(B) in (3.5) does not depend on the choice of minimal self-adjoint
extension A since the operators Eδ = PE A

δ in (3.4) do not depend on the choice of5

A.

Remark 3.1 The condition of the simplicity of a maximal symmetric operator in (3.5)
is important. If there exists a reducing subspace H0 ⊂ H of B, then its minimal
self-adjoint extension A involves a self-adjoint part B0 = B|H0 acting in H0. In this
case, one cannot guarantee the existence of ψ(A) for arbitrary Lebesgue measurable
function.

The next statement makes more precise the domain of ψ(B).

Proposition 3.2 Let B be a simple maximal symmetric operator in H and let ψ ∈
L p(R), p ≥ 2. Then, for every μ ∈ C\R,

ker(B∗ − μI ) ⊂ D(ψ(B)). (3.6)

5 Since the spectral function {Eδ} of a maximal symmetric operator is determined uniquely.
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Proof Without loss of generality, one may assume m+(B) = 0. Then (see (2.1)) the
subspace ker(B∗ − μI ) is non-trivial for μ ∈ C−.

Let A be a minimal self-adjoint extension of B. Due to the proof of Theorem 2.4,
A is a self-adjoint extension of a simple PSO S (see (2.10)) in the space Ĥ = H⊕H′.
By virtue of (2.3) and (2.4), the operator

� = �+ ⊕ �− (3.7)

is a unitary mapping of Ĥ onto L2(R, N ) (dim N = m−(B)) such that a simple PSO
S and the symmetric momentum operator S (see (2.5)) are related as follows:

�S = S�.

Thismeans that self-adjoint extensions of S in Ĥ are unitarily equivalent to self-adjoint
extension of S in L2(R, N ). Since the operator ψ(B) in (3.5) does not depend on the
choice of self-adjoint extensions A of S, one can choose it in such a manner that

�A = A�,

where A is the momentum operator in L2(R, N ) (see (2.6)). Applying the Fourier
transformation (2.11) to the last relation and taking into account that FA = MF,

where M is defined by (2.7), we obtain GA = MG, where G = F� is a unitary
mapping of Ĥ onto L2(R, N ). By virtue of (3.3)

ψ(A) = G−1ψ(M)G = �−1F−1ψ(M)F�. (3.8)

Relations (3.5) and (3.8) mean that (3.6) is equivalent to the inclusion

F� ker(B∗ − μI ) ⊂ D(ψ(M)) ∩ F�H. (3.9)

It follows from (2.2), (2.3), and (3.7) that

� ker(B∗ − μI ) = ker(B∗ − μI ) = {γ = e−iμxn : n ∈ N , x ∈ R+}. (3.10)

Since

Fγ = F

{
e−iμxn, x ≥ 0
0, x < 0

= i√
2π

1

δ − μ
n ∈ F�H, (3.11)

the inclusion (3.9) holds if 1
δ−μ

n ∈ D(ψ(M)). The last relation is equivalent to

∫ ∞

∞
|ψ(δ)|2

(δ − Re μ)2 + (Im μ)2
dδ < ∞. (3.12)

It is easy to see that (3.12) holds when ψ ∈ L p(R) and p ≥ 2. ��
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3.2 Spectral properties ofÃ(B)

The formula (3.5) defines ψ(B) as the projection of ψ(A). The functional calculus of
self-adjoint operators states that the spectrum of ψ(A) is determined by the range of
the function ψ considered on the spectrum of A. In our case, the operator A is a self-
adjoint extension of a simple PSO (2.10). For this reason, its spectrum coincides with
R (it follows from Theorem 2.4). Hence, one may expect that the spectrum of ψ(B)

will be determined by the range ofψ. To prove the corresponding result (Theorem 3.3)
we start with the auxiliary notations and results from [13].

Let φ ∈ L∞(T), where T = {λ ∈ C |λ| = 1}. The operator

Tφ f = P+φ f , f ∈ H2(D),

where P+ is an orthogonal projection operator in L2(T) onto the subspace H2(D) is
called a Toeplitz operator with the symbol φ. The operator Tφ is bounded in H2(D).

The essential range of a symbol φ is defined as follows:

Range(φ) =
{

λ ∈ C ess inf
ξ∈T |φ(ξ) − λ| = 0

}

.

A Toeplitz operator in H2(C+) with the symbol ψ ∈ L∞(R) has the form

Tψ f = P+ψ f , f ∈ H2(C+),

where P+ is an orthogonal projection operator in L2(R) onto the subspace H2(C+).

The essential range of ψ is:

Range(ψ) =
{

λ ∈ C ess inf
δ∈R |ψ(δ) − λ| = 0

}

.

If the symbols φ ∈ L∞(T) and ψ ∈ L∞(R) of the Toeplitz operators Tφ and Tψ

satisfy the relation

ψ(δ) = φ

(
δ − i

δ + i

)

, a.e. δ ∈ R (3.13)

then Tφ and Tψ are unitarily equivalent [13, p. 261].

Theorem 3.3 Let B be a simple maximal symmetric operator inH and let the operator
ψ(B) be defined by (3.5), where ψ ∈ L∞(R). Then ψ(B) is a bounded operator in
H and the following relations hold:

1. the spectral radius of ψ(B) coincides with ‖ψ‖∞;
2. the continuous spectrum σc(ψ(B)) of ψ(B)) involves Range(ψ), while the

spectrum σ(ψ(B)) is a subset of the closed linear span of Range(ψ);
3. if ψ(B) is invertible, then ess infδ∈R |ψ(δ)| > 0;
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4. if ψ is real valued, then ψ(B) is a self-adjoint operator and

σ(ψ(B)) =
[

ess inf
δ∈Rψ(δ), ess sup

δ∈R
ψ(δ)

]

;

5. if ψ is a non-constant real valued function, then σp(ψ(B)) = ∅.

Proof If ψ ∈ L∞(R), then ψ(A) has to be a bounded operator in Ĥ. In view of (3.5),
ψ(B) is also a bounded operator acting in H ⊂ Ĥ.

In the first place, we consider a simple maximal symmetric operator B with
m+(B) = 0. Repeating the proof of Proposition 3.2 we choose a minimal self-adjoint
extension A of B for which the relation (3.8) holds. Using now the elementary mod-
ification of the Paley–Wiener theorem [13, p. 146] for the spaces L2(R+, N ) and
H2(C+, N ):

FL2(R+, N ) = H2(C+, N ) (3.14)

and relations (2.3) and (3.7) we arrive at the conclusion that G = F� maps unitarily
the subspace H of Ĥ onto the subspace H2(C+, N ) of L2(R, N ) and the orthogonal
projection operator P in Ĥ onto H has the form P = G−1P+G, where P+ is an
orthogonal projection in L2(R, N ) onto H2(C+, N ). Summing up, the formula (3.5)
can be rewritten as follows:

ψ(B) f = Pψ(A) f = G−1P+GG−1ψ(M)G f = G−1P+ψ(M)G f , f ∈ H,

(3.15)

where ψ(M) is the operator of multiplication by ψ in L2(R, N ). Therefore, the
operatorψ(B) is unitarily equivalent to the operator P+ψ(M) acting in H2(C+, N ).

Let us consider anorthonormal basis {n j } j∈J of N ,where the index setJ is countable
(or finite) and its cardinality coincides with dim N = m−(B). Then one can present
H2(C+, N ) as the orthogonal sum of the Hardy spaces

H2(C+, N ) =
⊕

j∈J
H2(C+, 〈n j 〉),

where H2(C+, 〈n〉) denotes a Hardy subspace of functions with values from 〈n〉. By
the construction, each subspace H2(C+, 〈n j 〉) reduces the operator P+ψ(M) and its
restriction onto H2(C+, 〈n j 〉) is unitarily equivalent to the Toeplitz operator Tψ in
H2(C+). Therefore, the operator P+ψ(M) in H2(C+, N ) is unitarily equivalent to
the orthogonal sum of operators

Tψ ⊕ Tψ ⊕ · · · ⊕ Tψ
︸ ︷︷ ︸

dim N terms
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acting in the space H2(C+) ⊕ H2(C+) ⊕ · · · ⊕ H2(C+). As a consequence, ψ(B) is
unitarily equivalent to the orthogonal sum of Toeplitz operators Tφ acting in H2(D)

Tφ ⊕ Tφ ⊕ · · · ⊕ Tφ,
︸ ︷︷ ︸

dim N terms

where functions ψ and φ satisfy (3.13). Now, taking into account the above consid-
eration, we can justify statements of the theorem using the corresponding results for
Tφ given in [13]. Precisely, in view of [13, Corollary 4.1.7, p. 246], the spectral
radius of ψ(B) coincides with the norm of φ in L∞(T). Using (3.13) we com-
plete the proof of statement 1. Further, [13, Theorem 4.2.4, p. 247] and the fact that
Range(φ) = Range(ψ) justifies statement 2. Similarly, [13, Corollary 4.2.6, p. 248]
and the relation

ess inf
ξ∈T |φ(ξ)| = ess inf

δ∈R |ψ(δ)|, ξ = δ − i

δ + i

establishes statement 3.
Ifψ is real-valued, then the function φ in (3.13) is also real-valued. By virtue of [13,

Corollary 4.2.5, p. 248], the operator Tφ is self-adjoint in H2(D). This means that Tψ

is self-adjoint in H2(C+) and hence, ψ(B) is a self-adjoint operator in H that proves
the first part of statement 4. Its second part follows from [13, Theorem 4.2.7, p. 248].
Now, taking into account that statement 5. is a consequence of [13, Lemma 4.2.9,
p. 249] we complete the proof for the case of a simple maximal symmetric operator
B with m+(B) = 0.

The case where m−(B) = 0 is reduced to the previous one if we consider a simple
maximal symmetric operator −B. ��

3.3 The class H∞

3.3.1 Functional calculus

Actually, (3.5) allows one to define ψ(B) for an arbitrary Lebesgue measurable func-
tion ψ. This formula can be essentially simplified if ψ ∈ H∞. The next result was
proved in [5]. For the reader’s convenience, the principal stages of the proof are
presented.

Theorem 3.4 Let B be a simple maximal symmetric operator with m+(B) = 0 acting
in a Hilbert space H and let A be a minimal self-adjoint extension of B in Ĥ ⊃ H.

Then

ψ(B) f = ψ(A) f , f ∈ H

for every ψ ∈ H∞(C+).

Proof If ψ ∈ H∞(C+) then H2(C+, N ) is an invariant subspace for the operator
of multiplication ψ(M) acting in L2(R, N ). Recalling that G = F� maps H onto
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H2(C+, N ) (see the proof ofTheorem3.3) one conclude thatH is an invariant subspace
for the operator G−1ψ(M)G in Ĥ. Now, one can rewrite (3.15) as follows:

ψ(B) f = Pψ(A) f = PG−1ψ(M)G f = G−1ψ(M)G f = ψ(A) f , f ∈ H

that completes the proof. ��
Corollary 3.5 Let B be a simple maximal symmetric operator with m+(B) = 0 and
let ψ ∈ H∞(C+). Then the following statements are true:
1. Bψ(B)u = ψ(B)Bu, u ∈ D(B);
2. if |ψ(δ)| = 1 a.e., then ψ(B) is an isometric operator in H;
3. if ψ(δ) = 1

δ+i , then ψ(B) = (B + i I )−1;
4. if ψi ∈ H∞(C+), then ψ1(B)ψ2(B) = ψ2(B)ψ1(B).

Proof Follows from Theorem 3.4 and functional calculus of self-adjoint operators. ��
Corollary 3.6 Let B be a simple maximal symmetric operator with m+(B) = 0 and
let ψ ∈ H∞(C+). Then, for all f ∈ ker(B∗ − μI ) where μ ∈ C−, the following
relation is true

ψ(B)∗ f = ψ(μ) f .

Proof It follows from (3.7), (3.8) and Theorem 3.4 that

�+ψ(B) f = �ψ(A) f = F−1ψ(M)F� f = ψ(B)�+ f , f ∈ H, (3.16)

whereB is defined by (2.2) andψ(B) = F−1ψ(M)F . Therefore,ψ(B) andψ(B) are
unitarily equivalent and, without loss of generality, one can consider the case, where
H = L2(R+, N ) and B = B.

By virtue of Corollary 3.5, for arbitrary f ∈ ker(B∗ − μI ) and u ∈ D(B),

((B − μI )u, ψ(B)∗ f ) = (ψ(B)(B − μI )u, f ) = ((B − μI )ψ(B)u, f )

= (ψ(B)u, (B∗ − μI ) f ) = 0.

This means that ψ(B)∗ f is orthogonal toR(B − μI ) and hence, ψ(B)∗ f belongs to
ker(B∗ − μI ). Recalling now (3.10), we arrive at the conclusion that

ψ(B)∗ f = ψ(B)∗e−iμxn = e−iμxn′, n, n′ ∈ N , x ∈ R+, (3.17)

where n′ ∈ N is determined uniquely by the vector f = e−iμxn. Relation (3.17)
and the fact that the subspace L2(R+, 〈n〉) is a reducing subspace for the operator
ψ(B) = F−1ψ(M)F acting in L2(R+, N ) lead to the conclusion that

ψ(B)∗ f ∈ L2(R+, 〈n〉) ∩ ker(B∗ − μI ).
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Hence, the vector n′ in (3.17) has the form n′ = cn, where a constant c ∈ C should
be specified. To do that, one first calculates

(ψ(B)∗ f , f ) = c(n, n)N

∫ ∞

0
e−i(μ−μ)xdx = −c‖n‖2N

2Im μ
, (3.18)

where (·, ·)N means a scalar product in N .

On the other hand, (ψ(B)∗ f , f ) = ( f , ψ(B) f ) = (F f , ψF f ),where (see (3.11))

(F f , ψF f ) = ‖n‖2N
2π

∫ ∞

−∞
ψ(δ)

(Re μ − δ)2 + (Im μ)2
dδ. (3.19)

After the comparison of relations (3.18) and (3.19) we get

−c‖n‖2N
2Im μ

= ‖n‖2N
2π

∫ ∞

−∞
ψ(δ)

(Re μ − δ)2 + (Im μ)2
dδ.

The application of the Poisson formula [13, p. 147]

ψ(z) = ψ(Re z + i Im z) = 1

π

∫ ∞

−∞
Im z

(Re z − δ)2 + (Im z)2
ψ(δ) dδ, z ∈ C+,

leads to the equality

c = 1

π

∫ ∞

−∞
−(Im μ)ψ(δ)

(Re μ − δ)2 + (Im μ)2
dδ = ψ(μ)

that completes the proof. ��

3.3.2 Relationship with unilateral shifts

Let B be a simple maximal symmetric operator in H. Without loss of generality, we
assume that m+(B) = 0. In this case there exists a bounded operator (B + i I )−1 and
the Cayley transform of B:

T = (B − i I )(B + i I )−1 (3.20)

turns out to be a unilateral shift in H. In other words, T is an isometric operator on H
and there exists a subspace L = ker T ∗ = ker(B∗ + i I ) ⊂ H, which is wandering for
T i.e.,

T nL ⊥ L, n = 1, 2, 3, . . . ,
∞⊕

n=0

T nL = H.

The dimension of the wandering subspace is called a multiplicity of the unilateral shift
T and, by virtue of (2.1), it is equal to m−(B).
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The inverse statement is also true: each unilateral shift T with multiplicitym deter-
mines a simple maximal symmetric operator B with m+(B) = 0 and m−(B) = m by
the formula

B = i(I + T )(I − T )−1. (3.21)

The above-mentioned one-to-one correspondence between B and T can be easily
deduced from [18, Chapter III, §9].

A unilateral shift is an example of a completely nonunitary contraction. For such
operators, the functional calculus is well-developed [18]. This gives rise to an idea to
define the operator ψ(B) with the use of the Cayley transform T of B.

Let A be a minimal self-adjoint extension of B acting in Ĥ. Its Cayley transform

W = (A − i I )(A + i I )−1

is a unitary operator in Ĥ and, according to [18, p. 117],

φ(T ) = Pφ(W ), φ ∈ H∞(D),

where P is the orthogonal projection operator in Ĥ on H.

The spectral function {E A
δ } of A and the spectral function {EW

θ } of W are closely
related [1, § 79]:

E A
δ = EW

θ , where δ = i
1 + eiθ

1 − eiθ
= i

e−iθ/2 + eiθ/2

e−iθ/2 − eiθ/2 = − cot
θ

2
, θ ∈ [0, 2π ].

Moreover, by virtue of [4, p. 138]

φ(W ) =
∫ 2π

0
φ(eiθ )dEW

θ =
∫ ∞

−∞
φ

(
δ − i

δ + i

)

dE A
δ = ψ(A), (3.22)

where ψ(δ) = φ(δ−i
δ+i ) belongs to H∞(C+).

Using (3.5) and (3.22) we arrive at the conclusion that

φ(T ) f = Pφ(W ) f = Pψ(A) f = ψ(B) f , f ∈ H, (3.23)

where ψ(δ) = φ(δ−i
δ+i )∈H∞(C+). The obtained relationship allows one to reduce the

investigation of ψ(B) to the investigation of φ(T ).

3.3.3 The case of inner functions

Proposition 3.7 Let B be a simple maximal symmetric operator inHwith m+(B) = 0
and let ψ ∈ H∞(C+) be a non-constant inner function. Then ψ(B) is a unilateral
shift with the wandering subspace L = kerψ(B)∗.
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Proof In view of (3.23), it is sufficient to prove that φ(T ) is a unilateral shift inHwith
the wandering subspace L = ker φ(T )∗.

Due to the relation ψ(δ) = φ(δ−i
δ+i ), the function φ belongs to H∞(D) and it is a

non-constant inner function. Therefore, |φ(λ)| < 1 for λ ∈ D [12, p. 49]. Taking into
account that the unitary shift T is an example of completely nonunitary contraction
and using [18, Chapter III, Theorem 2.1 (e)] we arrive at the conclusion that φ(T ) is
also a completely nonunitary contraction in H. Simultaneously, φ(T ) is an isometric
operator (it follows from (3.23) and Corollary 3.5). In view of theWold decomposition
[18, Chapter I, Theorem 1.1], φ(T ) turns out to be a unilateral shift with the wandering
subspace L = H 
 φ(T )H = ker φ(T )∗. ��
Corollary 3.8 If assumptions of Proposition 3.7 hold, then ψ(B) and B are strongly
commuting operators, i.e., ψ(B)B = Bψ(B).

Proof The inclusion ψ(B)B ⊆ Bψ(B) follows from Corollary 3.5.
Assume now that f ∈ D(Bψ(B)) and consider the operator

C = Y ∗BY , D(C) = D(B) + 〈 f 〉,

where Y = ψ(B) is a unilateral shift in H.

Elementary analysis with the use of Corollary 3.5 and the relation Y ∗Y = I gives
rise to the following conclusions:

(a) Cu = Y ∗BYu = Y ∗Y Bu = Bu, u ∈ D(B);
(b) (Cu, v) = (u,Cv), u, v ∈ D(B);
(c) (C f , f ) = (BY f ,Y f ) = (Y f , BY f ) = ( f ,C f );
(d) (Cu, f ) = (BYu,Y f ) = (Yu, BY f ) = (u,C f );
(e) (C f , u) = (BY f ,Yu) = (Y f , BYu) = ( f ,Cu).

It follows from (a)–(e) that C is a symmetric extension of the maximal symmetric
operator B in H. This means that f ∈ D(B) and the inverse inclusion Bψ(B) ⊆
ψ(B)B is proved. ��
Remark 3.9 Results of Sects. 3.3.1–3.3.3 hold true for a simple maximal symmetric
operator B with m−(B) = 0. In this case, one should consider functions ψ from
H∞(C−) and choose μ ∈ C+ in Corollary 3.6.

3.3.4 Non-cyclic vectors

Let T be a unilateral shift in H. It’s adjoint operator T ∗ is called a backward shift
operator. A vector f ∈ H is called non-cyclic for the backward shift operator T ∗ if

E f =
∞∨

n=0

T ∗n f

is a proper subspace of H.

A non-cyclic vector f is called simple if dim E f = 1. Denote by MT ∗ and Ms
T ∗

the sets of non-cyclic vectors and simple non-cyclic vectors, respectively. It is clear
that Ms

T ∗ ⊂ MT ∗ .
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Proposition 3.10 The setMs
T ∗ is complete in H and

Ms
T ∗ =

⋃

μ∈C−
ker(B∗ − μI ), (3.24)

where a simple maximal symmetric operator B is defined by (3.21).

Proof The unilateral shift T defined by (3.20) coincideswithψ(B),where the function
ψ(δ) = δ−i

δ+i belongs to H∞(C+) and a simple maximal symmetric operator B is
defined by (3.21). By Corollary 3.6, for all f ∈ ker(B∗ − μI ),

T ∗ f = ψ(B)∗ f = ψ(μ) f = μ + i

μ − i
f , μ ∈ C−.

Therefore, E f = 〈 f 〉 andMs
T ∗ ⊇ ⋃

μ∈C− ker(B∗ −μI ). The last relation means that
the set Ms

T ∗ is complete in H because
∨

μ∈C− ker(B∗ − μI ) = H.

Assume now that f ∈ Ms
T ∗ . Then there exists α f ∈ C such that T ∗ f = α f f .

Here, |α f | < 1 since T ∗ is a backward shift operator.
Since T is a unilateral shift, each f ∈ H admits the presentation

f =
∞∑

n=0

T nln, ln ∈ L, (3.25)

whereL = ker T ∗ = ker(B∗ + i I ) is the wandering subspace of T .Comparing (3.25)
with the relation T ∗ f = α f f , we arrive at the conclusion that ln = αn

f l0 and (3.25)
takes the form

f =
∞∑

n=0

(α f T )nl0 = (I − α f T )−1l0.

Since |α f | < 1 there exists μ ∈ C− such that α f = μ+i
μ−i . Then, recalling (3.20):

f = (I − α f T )−1l0 =
(

I − μ + i

μ − i
T

)−1

= 1 + iμ

2
(B + i I )(B − μI )−1l0,

where l0 ∈ ker(B∗ + i I ). We note that (B + i I )(B − μI )−1 maps ker(B∗ + i I ) onto
ker(B∗ − μI ). Hence, f ∈ ker(B∗ − μI ) and Ms

T ∗ ⊆ ⋃
μ∈C− ker(B∗ − μI ) that

proves (3.24). ��
It follows from (3.24) that the sum f + g of vectors f , g ∈ Ms

T ∗ remains inMs
T ∗

if and only if they are linearly dependent.

Proposition 3.11 Let T ∗ be a backward shift operator in H with multiplicity 1. Then
MT ∗ is a linear manifold in H and

MT ∗ =
⋃

ψ

kerψ(B)∗, (3.26)
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where ψ ∈ H∞(C+) runs the set of inner functions and a simple maximal symmetric
operator B is defined by (3.21).

Proof In view of Corollary 3.5, T nψ(B) = ψ(B)T n, n ∈ N ∪ {0}. Hence,

T ∗nψ(B)∗ = ψ(B)∗T ∗n .

If f ∈ kerψ(B)∗, then 0 = T ∗nψ(B)∗ f = ψ(B)∗T ∗n f . Therefore, E f ⊂
kerψ(B)∗ and f ∈ MT ∗ . The inclusion

⋃
kerψ(B)∗ ⊆ MT ∗ is proved.

To prove an inverse inclusion we note that the operatorψ(B) is unitarily equivalent
toψ(B) (see (3.16)) and, without loss of generality, one can consider the case, where:

H = L2(R+, N ), B = B, T = (B − i I )(B + i I )−1.

Since the multiplicity of T is 1, the space N can be chosen as C. In this case,
L2(R+,C) = L2(R+) and for f ∈ MT ∗ , the subspace

L2(R+) 
 E f = L2(R+) 

∞∨

n=0

T ∗n f

turns out to be an invariant subspace for T in L2(R+). Applying the Fourier transfor-
mation (2.11) to the relation above and using (3.14) we conclude that the subspace
F[L2(R+) 
 E f ] of H2(C+) is invariant for the operator of multiplication by δ−i

δ+i in
H2(C+). By virtue of Beurling’s theorem [12, p. 49] there exists an inner function
ψ ∈ H∞(C+) such that

F[L2(R+) 
 E f ] = ψ(δ) H2(C+).

Therefore,

L2(R+) 
 E f = F−1ψ(δ)FL2(R+) = F−1ψ(M)FL2(R+) = ψ(B)L2(R+),

where M is defined by (2.7). The obtained relation means that f is orthogonal to
ψ(B)L2(R+). Therefore, f ∈ kerψ(B)∗ and

⋃
kerψ(B)∗ ⊇ MT ∗ . The relation

(3.26) is proved.
The set MT ∗ = ⋃

kerψ(B)∗ is a linear manifold in H because f j ∈ kerψ j (B)∗
yields that f1 + f2 ∈ kerψ3(B)∗, where ψ3 = ψ2ψ1. The proof is completed. ��
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