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Abstract
In this paper, complete characterizations of left (or right) symmetric points for strong
Birkhoff orthogonality in B(H,K) and K (H,K) are given, whereH,K are complex
Hilbert spaces and B(H,K) (K (H,K)) is the space of all bounded linear (compact)
operators fromH into K.
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1 Introduction

This paper is concerned with a strengthened version of Birkhoff orthogonality in
Hilbert C∗-modules B(H,K) and K (H,K), whereH,K are complex Hilbert spaces
and B(H,K) (K (H,K)) is the space of all bounded linear (compact) operators from
H into K. A Hilbert C∗-module M over a C∗-algebra A is the norm completion of
an inner product A-module which is a complex vector space endowed with the norm
‖x‖ = ‖〈x, x〉‖1/2 given by an A-valued inner product 〈·, ·〉 which is compatible with
a right A-module structure M × A � (x, a) �→ xa ∈ M, where 〈·, ·〉 satisfies the
following properties:
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(i) 〈x, αy + βz〉 = α〈x, y〉 + β〈x, z〉 for each x, y, z ∈ M and each α, β ∈ C.
(ii) 〈x, ya〉 = 〈x, y〉a for each x, y ∈ M and each a ∈ A.
(iii) 〈x, y〉 = 〈y, x〉∗ for each x, y ∈ M.
(iv) 〈x, x〉 ≥ 0 for each x ∈ M; and 〈x, x〉 = 0 if and only if x = 0.

The spaces B(H,K) and K (H,K) areHilbertC∗-modules over, respectively, B(H)

and K (H), under the right module structure B(H,K) × B(H) � (S, T ) �→ ST ∈
B(H,K) and inner product defined by 〈S, T 〉 = S∗T for each S, T ∈ B(H,K) (or
S, T ∈ K (H,K)).

The main object of this paper is Birkhoff orthogonality which was first introduced
by Birkhoff [8] and given many important properties by James [14,15].

Definition 1 Let X be a Banach space over the scalar field K. Then x ∈ X is said to
be Birkhoff orthogonal to y ∈ X , denoted by x ⊥B y, if ‖x + λy‖ ≥ ‖x‖ for each
λ ∈ K.

This is viewed as a generalization of the usual orthogonality relation in Hilbert spaces
defined by using inner products since they are equivalent to each other in Hilbert
spaces; and is known as one of the most important generalized orthogonality relations
in Banach spaces because of its geometric meaning which is closely related to the
best approximation in norms and support hyperplanes of unit balls. Indeed, if x is a
unit vector of a Banach space X and y ∈ X , then x ⊥B y means that the straight line
{x + λy : λ ∈ K} is tangent to the unit ball of X at x .

From the definition, Birkhoff orthogonality is obviously homogeneous; that is, if
x ⊥B y then αx ⊥B β y for each scalars α, β. However, the relation ⊥B is not
symmetric in general. Indeed, James [15] proved that if x ⊥B y implies y ⊥B x in
a Banach space X with dim X ≥ 3, then X is a Hilbert space. See also the book of
Amir [2] for related topics. The survey by Alonso–Martini–Wu [1] provides a good
exposition of basic and important results on Birkhoff orthogonality.

Although Birkhoff orthogonality is rarely symmetric in the global sense, it can have
some interesting properties for local symmetry. The following definitions (originally
for Birkhoff orthogonality) were given by Sain [25] and Sain–Ghosh–Paul [26].

Definition 2 Let X be aBanach space, and let⊥ be a generalized orthogonality relation
in X .

(L) x ∈ X is said to be left symmetric for ⊥ in X if y ∈ X and x ⊥ y imply that
y ⊥ x .

(R) x ∈ X is said to be right symmetric for ⊥ in X if y ∈ X and y ⊥ x imply that
x ⊥ y.

In terms of the preceding definition, Turnšek [29,30] showed that the set of all right
symmetric points for⊥B in B(H) coincides with that of scalar multiples of isometries
or coisometries onH, while there is no nonzero left symmetric point for ⊥B in B(H),
where H is a complex Hilbert space. Since then, many results on local symmetry of
Birkhoff orthogonality have been published, especially, in the fields of Banach (or
Hilbert) space operators; see [11,13,21,26] for results on spaces of bounded linear
operators between Banach spaces, and [3,7,12,22–25,27,28] for important techniques
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about Birkhoff orthogonality in such spaces. See also [18–20] for developments in the
setting of operator algebras. Similar investigations have been carried out for approxi-
mate symmetry of Birkhoff orthogonality in [10].

The aim of this paper is to advance the study of local symmetry for a strengthened
version of Birkhoff orthogonality. The following definition was given by Arambašić
and Rajić [4].

Definition 3 Let M be a Hilbert C∗-module over a C∗-algebra A, and let x, y ∈ M.
Then x is said to be A-strongly Birkhoff orthogonal to y, denoted by x ⊥A y, if
x ⊥B ya for each a ∈ A.

Basics for this generalized orthogonality relation are found in [4–6]. In particular,
we have 〈x, y〉 = 0 ⇒ x ⊥A y ⇒ x ⊥B y in Hilbert C∗-modules over A; see
[4, page 112]. For local symmetry of strong Birkhoff orthogonality, in the setting of
von Neumann algebras R (a very special case of Hilbert C∗-modules), it is known
that an element A ∈ R is left symmetric for ⊥R in R if and only if |A| is a scalar
multiple of a minimal projection in R; while A is right symmetric for ⊥R in R if
and only if it is right invertible inR; see [18]. However, we have not known complete
characterizations of left (or right) symmetric points for strong Birkhoff orthogonality
in general Hilbert C∗-modules.

In this paper, taking a step forward, we present complete characterizations of left (or
right) symmetric points for strong Birkhoff orthogonality in B(H,K) and K (H,K),
which may provide some hints for the general case. It is shown that an element S
in B(H,K) (K (H,K)) is left symmetric for ⊥B(H) (⊥K (H)) in B(H,K) (K (H,K))
if and only S is rank one (Theorem 2). For the right symmetry, it turns out that
S ∈ B(H,K) is right symmetric for ⊥B(H) in B(H,K) if and only if

(I) S is right invertible in the cases that H is infinite dimensional or dimH ≥ dimK
(Theorem 3);

(II) S is a scalar multiple of an isometry in the case that H is finite dimensional and
dimH < dimK (Theorem 4);

while S ∈ K (H,K) is right symmetric for ⊥K (H) in K (H,K) if and only if S has the
dense range (Theorem 5).

2 Preliminaries

Throughout this paper, the term “Hilbert space” always means a nontrivial complex
Hilbert space. IfH is a Hilbert space, its inner product is denoted by 〈·, ·〉. An element
x ∈ H is orthogonal to y ∈ H, denoted by x ⊥ y, if 〈x, y〉 = 0 holds. If A is a subset
of H, then [A] denotes the closed linear span of A.

For basics aboutHilbert space operators, the readers are referred to, for example, the
books of Blackadar [9] andKadison and Ringrose [16,17]. LetH,K be Hilbert spaces.
Then the symbols B(H,K) and K (H,K) stand for the Banach space of all bounded
linear and compact operators from H into K, respectively. The spaces B(H,H) and
K (H,H) are simply denoted by B(H) and K (H). Let T ∈ B(H,K). Then there exists
a unique T ∗ ∈ B(K,H) (called the adjoint of T ) satisfying 〈T x, y〉 = 〈x, T ∗y〉 for
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each x ∈ H and each y ∈ K. We note that (T ∗)∗ = T , ‖T ∗T ‖ = ‖T ‖2, and
that T �→ T ∗ is a conjugate linear isometry from B(H,K) onto B(K,H); see [9,
I.2.3.1]. Moreover, ifL is another Hilbert space, T ∈ B(H,L) and S ∈ B(L,K), then
(ST )∗ = T ∗S∗ holds.

LetA be a C∗-algebra. ThenA is said to be unital if it has the multiplicative unit. If
A is non-unital, there exists a unital C∗-algebra AI , called the unitization of A, such
that A is an ideal of AI with dim(AI /A) = 1. Let a ∈ A. Then a is self-adjoint if
a∗ = a; and is positive if it is self-adjoint and has the nonnegative spectrum in A
(or AI if A is non-unital). Let B be another C∗-algebra. A mapping ϕ : A → B is
called a ∗-isomorphism if it is a linear bijection satisfying (ϕ(IA) = IB if A and B
are unital), ϕ(a∗) = ϕ(a)∗ and ϕ(ab) = ϕ(a)ϕ(b) for each a, b ∈ A; in which case,
A and B are ∗-isomorphic. It is well-known that each C∗-algebra is ∗-isomorphic to
a C∗-subalgebra of B(H) for some Hilbert space H (by the Gelfand-Naimark-Segal
theorem); see [16, Theorem 4.5.6]. Another important fact is that if A is an abelian
C∗-algebra (that is, ab = ba holds for each a, b ∈ A) then it is ∗-isomorphic to the
C∗-algebra C0(K ) of all continuous functions on a locally compact Hausdorff space
K vanishing at infinity. If, additionally, A is unital, then K can be chosen as compact.
See [9, Theorem II.2.2.4] and [16, Theorem 4.4.3] for these results.

A von Neumann algebra R acting on a Hilbert space H is a C∗-subalgebra of
B(H) that is closed with respect to the weak-operator topology defined as the weak
topology induced by the family of functionals on B(H) of the form A �→ 〈Ax, y〉.
A bit stronger one, the strong-operator topology, is also important. A net (Aa) ⊂ R
converges to A in the strong-operator topology if ‖(Aa − A)x‖ → 0 for each x ∈ H.
The weak-operator and strong-operator closures coincide for convex subsets; see [16,
Sect. 5.1]. If A is an abelian von Neumann algebra and it is ∗-isomorphic to C(K ),
then K is Stonean (by [16, Theorem 5.2.1]), where K is said to be Stonean if it is
compact, Hausdorff and extremally disconnected (that is, the closure of an open set is
also open).

If T ∈ B(H), then T is self-adjoint if and only if 〈T x, x〉 ∈ R for each x ∈ H;
and is positive if and only if 〈T x, x〉 ≥ 0 for each x ∈ H. An element E ∈ B(H)

is called a projection if E2 = E = E∗. An isometry is an element U ∈ B(H,K)

with U∗U = IH; and a coisometry is the adjoint of an isometry, that is, an operator
U ∈ B(H,K) with UU∗ = IK. These notions are special cases of partial isometries.
An element V ∈ B(H,K) is called a partial isometry if V ∗V is a projection in B(H)

(and VV ∗ is a projection in B(K)); in which case, V ∗V is the initial projection and
VV ∗ is the final projection. We note that if V is a partial isometry then it is an isometry
on V ∗V (H) and V (V ∗V ) = V holds. Moreover, V ∗ is also a partial isometry with
the initial projection VV ∗ and the final projection V ∗V .

We recall that each T ∈ B(H,K) has the polar decomposition T = U |T | = |T ∗|U ,
where |T | = (T ∗T )1/2 and U is a partial isometry from the range projection of |T |
onto the range projection of T , where the range projection of T is defined to be the
projection from H onto T (H); see [9, I.5.2.2] or [17, Theorem 6.1.11].
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3 Left symmetric points

In this section, we provide characterizations of left symmetric points for ⊥B(H)

(⊥K (H)) in B(H,K) (K (H,K)), where H,K are Hilbert spaces. We begin with an
important result due to Arambašić and Rajić [6, Theorem 2.2].

Theorem 1 (Arambašić and Rajić [6]) Let M be a Hilbert C∗-module over a C∗-
algebra A. Then S ∈ M is left symmetric for ⊥A if and only if 〈S, S〉 is a minimal
projection.

Recall that B(H,K) (K (H,K)) is a Hilbert C∗-module over B(H) (K (H)) under
the B(H)- (K (H)-)valued inner product 〈·, ·〉 given by 〈S, T 〉 = S∗T for each
S, T ∈ B(H,K) (S, T ∈ K (H,K)). Moreover, a minimal projection in B(H) is
just a rank one projection in the usual sense. Hence, by the preceding theorem, we
have a necessary condition for left symmetry for strong Birkhoff orthogonality in
B(H,K) and K (H,K).

Lemma 1 Let H,K be Hilbert spaces, and let (M,A) be

(B(H,K), B(H)) or (K (H,K), K (H)).

If S ∈ M is left symmetric for ⊥A inM, then S is rank one.

We are now ready to provide characterizations of left symmetric points for strong
Birkhoff orthogonality in B(H,K) and K (H,K). It will turn out that the converse
of the preceding lemma holds true. The proof to be given here is essentially due to
Arambašić and Rajić [5, Proposition 2.3]. Recall that S ∈ B(H,K) is said to be rank
one if dim S(H) = 1.

Theorem 2 Let H,K be Hilbert spaces, and let (M,A) be

(B(H,K), B(H)) or (K (H,K), K (H)).

Suppose that S ∈ M is nonzero. Then S is left symmetric for ⊥A in M if and only if
S is rank one.

Proof The “only if” part is completed by Lemma 1. We shall show the “if” part.
Suppose that S is rank one. Let T be an element of M such that S ⊥A T . Then, by
[6, Lemma 2.1 (6)], one has S∗S ⊥A S∗T in A; and then S∗S ⊥B S∗T (T ∗S) in
A. On the other hand, the rank one operator S is represented by Sx = 〈x, x0〉y0 for
some x0, y0 ∈ H. It is easy to check that S∗x = 〈x, y0〉x0 for each x ∈ H, and that
S∗T T ∗S = aS∗S, where a = ‖y0‖−2‖T ∗y0‖2. Hence it follows from S∗S ⊥B aS∗S
and S∗S �= 0 that a = 0; which implies that S∗T T ∗S = 0 and (〈S, T 〉 =)S∗T = 0.
Thus T ⊥A S; and, S is left symmetric for ⊥A in A. ��

The following are immediate consequences of Theorem 2.

Corollary 1 LetH,K be Hilbert spaces. Suppose that S ∈ B(H,K) is nonzero. Then
the following are equivalent:
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(i) S is rank one.
(ii) S is left symmetric for ⊥B(H) in B(H,K).
(iii) S ∈ K (H,K), and is left symmetric for ⊥K (H) in K (H,K).

Corollary 2 Let H,K be Hilbert spaces, and let S ∈ B(H,K) be nonzero. Suppose
that dimH = 1. Then ⊥B(H) is symmetric in B(H,K).

Proof Since all S, T ∈ B(H,K) are at most rank one, S ⊥B(H) T always implies that
T ⊥B(H) S by Theorem 2. ��
It should be mentioned that Corollary 2 is a special case of [6, Theorem 2.6].

4 Right symmetric points

Our next aim is to characterize right symmetric points for strongBirkhoff orthogonality
in B(H,K) and K (H,K). The following elementary facts are needed in the sequel.
The proof can be essentially found, for example, in [16, Proposition 2.5.13].

Lemma 2 LetH,K be Hilbert spaces. Suppose that S ∈ B(H,K). Then the following
hold:

(i) S(H) = SS∗(K) = |S∗|(K).
(ii) S(H) = K if and only if |S∗| is injective.
One of the most important arguments in our study of right symmetry is the following.

Lemma 3 Let H,K be Hilbert spaces, and let (M,A) be

(B(H,K), B(H)) or (K (H,K), K (H)).

Suppose that S ∈ M is nonzero. If |S| �= ‖S‖IH and S(H) �= K, then S is not right
symmetric for ⊥A inM.

Proof We may assume that ‖S‖ = 1. Let A be the von Neumann algebra generated
by |S| and IH. Then there exists a Stonean space K such that A is ∗-isomorphic to
C(K ) under a ∗-isomorphism ϕ : A → C(K ). Since ( f =)ϕ(|S|) �= 1, we have
O = {t ∈ K : f (t) > α} �= K for some α ∈ (0, 1). Let e be the characteristic
function of the clopen set O , and let E = ϕ−1(e). Next, pick an arbitrary unit vector
x0 ∈ (IH − E)(H). Since S(H) �= K, the projection F from K onto S(H) satisfies
IK − F �= 0. Take a unit vector y0 ∈ (IK − F)(H). Let V x = 〈x, x0〉y0 for each
x ∈ H, and let T = V + SE . Then we have T ∈ M since V is compact. Moreover, it
follows from ‖V ‖ = ‖S‖ = 1, SE = FSE and V = (IK − F)V (IH − E) that

‖T x‖2 = ‖(IK − F)V (IH − E)x‖2 + ‖FSEx‖2 ≤ ‖x‖2

for each x ∈ H; which implies that ‖T ‖ = ‖T x0‖ = 1. From this, we obtain T ⊥A S
since

‖T + λSR‖ ≥ ‖(IK − F)(T + λSR)‖ = ‖V ‖ = 1 = ‖T ‖
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for each R ∈ A and each λ. On the other hand, since

‖S − 2−1T E‖ = ‖S(IH − 2−1E)‖ = max{2−1, α} < 1

it follows that S �⊥B T ; and then S �⊥A T . Thus S is not right symmetric for ⊥A in
M. ��
Recall that an element S of B(H,K) is said to be right invertible if ST = IK for some
T ∈ B(K,H). Typical examples are given by coisometries in B(H,K).

Theorem 3 Let H,K be Hilbert spaces, and let S ∈ B(H,K) be nonzero. Suppose
that either of the following statements holds:

(i) H is infinite dimensional.
(ii) dimH ≥ dimK.

Then S is right symmetric for ⊥B(H) in B(H,K) if and only if S is right invertible.

Proof Suppose that S is right symmetric for ⊥B(H) in B(H,K). We first show that
the existence of such an S assures that (i) ⇒ (ii). To see this, it is enough to show that
S(H) = K if H is infinite dimensional since

dim S(H) = dim |S|(H) ≤ dimH.

Suppose to the contrary that S(H) �= K. Then S is an isometry by Lemma 3; which
implies thatK is also infinite dimensional. Let (ea)be an orthonormal basis forH. Then
(Sea) is an orthonormal basis for S(H). If y0 is a unit vector inK that is orthogonal to
S(H), then there exists a bijection from {ea} onto {Sea} ∪ {y0}. The linear extension
U ∈ B(H,K) of such a bijection gives rise to an isometry satisfying S(H) ⊂ U (H).
Now, letting F be the projection from K onto [{y0}], we have U ⊥B(H) S since

‖U + λSR‖ ≥ ‖F(U + λSR)‖ = ‖FU‖ = 1 = ‖U‖

for each R ∈ B(H) and each λ. Hence S ⊥B(H) U by the right symmetry of S for
⊥B(H) in B(H,K). However, then, one has that S ⊥B U (U∗S). Since UU∗(K) =
U (H), we derive thatUU∗S = S; which implies that S = 0, a contradiction. Therefore
S(H) = K must hold.

From what we have shown in above, in either case, dimH ≥ dimK holds. By
considering an injection from an orthonormal basis for K into that of H, we can
construct an isometry V ∈ B(K,H). We shall show that k0 = inf{‖S∗y‖ : y ∈
K , ‖y‖ = 1} > 0. For this purpose, suppose to the contrary that k0 = 0. Take a
sequence (yn) of unit vectors in K satisfying ‖S∗yn‖ → 0. Since V is an isometry, it
follows that

‖V ∗ + λSR‖ = ‖V + λR∗S∗‖ ≥ ‖(V + λR∗S∗)yn‖ → 1 = ‖V ∗‖

for each R ∈ B(H) and each λ. Therefore V ∗ ⊥B(H) S. However, then, S ⊥B(H) V ∗
since S is right symmetric for ⊥B(H) in B(H,K). In particular, S ⊥B V ∗(V S) with
V ∗S ∈ B(H); which implies that S = 0, a contradiction. Hence we have k0 > 0.
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Now we have ‖S∗y‖ ≥ k0‖y‖ for each y ∈ K. From this, S∗ is injective and
has the closed range, that is, S∗(K) = S∗(K). In particular, S∗ can be viewed as an
isomorphism between K and S∗(K). Let S0 ∈ B(S∗(K),K) be such that S0S∗ = IK,
and let E be a projection from H onto S∗(K). Putting T = S0E ∈ B(H,K) yields
that T S∗ = S0ES∗ = S0S∗ = IK. Thus ST ∗ = IK holds; and S is right invertible.

Conversely, if ST = IK for someT ∈ B(K,H), then R ∈ B(H,K) and R ⊥B(H) S
imply that R ⊥B S(T R). This shows that R = 0; and hence, S ⊥B(H) R. The proof
is complete. ��
Hence the problem remains only in the case thatH is finite dimensional and dimH <

dimK. In this case, we have a consequence that is natural but completely different
from that of Theorem 3. We note that the case dimH = 1 was already completed in
Corollary 2.

Theorem 4 Let H,K be Hilbert spaces, and let S ∈ B(H,K) be nonzero. Suppose
that H is finite dimensional with 2 ≤ dimH < dimK. Then S is right symmetric for
⊥B(H) in B(H,K) if and only if S is a scalar multiple of an isometry.

Proof It may be assumed that ‖S‖ = 1. Suppose that S is right symmetric for ⊥B(H)

in B(H,K). SinceH is finite dimensional and dim S(H) ≤ dimH < dimK, we have
S(H) = S(H) �= K. By Lemma 3, it follows that |S| = IH. Therefore S∗S = IH
holds; that is, S is an isometry.

Conversely, we assume that S is an isometry. Let T ∈ B(H,K) be such that
T ⊥B(H) S. Then it follows from T ⊥B S(S∗T ) that ‖(IK − SS∗)T ‖ = ‖T ‖.
In particular, we have ‖(IK − SS∗)T x0‖ = ‖T ‖ for some unit vector x0 ∈ H;
in which case, ‖T x0‖ = ‖(IK − SS∗)T x0‖. Hence T x0 = (IK − SS∗)T x0 and
T x0 ⊥ Sx0 holds. Now let F be the projection from K onto S(H). Since FT x0 = 0
and dimH = dim ker FT + dim FT (H), we have

dim FT (H) < dimH = dim S(H),

which implies that FT (H) is a proper subspace of S(H). Let y1(= Sx1) be a unit
vector in S(H) that is orthogonal to FT (H). Then one obtains that y1 ⊥ T (H) by
(IK − F)y1 = 0 and

〈y1, T x〉 = 〈y1, (IK − F)T x〉 + 〈y1, FT x〉 = 0

for each x ∈ H. Thus the inequality

‖S + λT R‖ ≥ ‖(S + λT R)x1‖ ≥ ‖y1‖ = 1 = ‖S‖

holds for each R ∈ B(H) and each λ. Hence we have S ⊥B(H) T ; that is, S is right
symmetric for ⊥B(H) in B(H,K). ��
Remark 1 We remark that if H is infinite dimensional or dimH ≥ dimK, then each
right symmetric point S for ⊥B(H) in B(H,K) has no nonzero element T ∈ B(H,K)

satisfying T ⊥B(H) S by its right invertibility.
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On the other hand, if H is nonzero finite dimensional and dimH < dimK, then
each S ∈ B(H,K) always has a nonzero element T ∈ B(H,K) satisfying T ⊥B(H) S.
Indeed, as in thefirst paragraphof the proof ofTheorem4,wehavedim S(H) < dimK.
Let F be the projection from K onto S(H), and let y0 be an element of (I − F)(K)

with ‖y0‖ = 1. Fix an arbitrary x0 ∈ H with ‖x0‖ = 1. Then T x = 〈x, x0〉y0 defines
a nonzero element of B(H,K) satisfying 〈T x, Sx〉 = 0 for each x ∈ H (that is,
S∗T = 0). Thus we obtain T ⊥B(H) S.

We finally consider right symmetric points for ⊥K (H) in K (H,K). Since K (H,K) =
B(H,K) ifH is finite dimensional, the remainder part is only the case thatH is infinite
dimensional.

Theorem 5 Let H,K be Hilbert spaces, and let S ∈ K (H,K) be nonzero. Suppose
thatH is infinite dimensional. Then S is right symmetric for⊥K (H) in K (H,K) if and
only if S(H) = K.

Proof Throughout this proof, we may assume that ‖S‖ = 1. We note that |S| �= IH
since |S| ∈ K (H) and H is infinite dimensional. Hence, if S is right symmetric for
⊥K (H) in K (H,K), then, as in the first paragraph of the proof of Theorem 4, we have
S(H) = K by Lemma 3.

For the converse, suppose that S(H) = K. Then |S∗| is injective by Lemma 2;
which implies that 〈|S∗|y, y〉 > 0 for each nonzero y ∈ K. Let H be a nonzero
positive element of K (H). Since 0 ≤ |S∗| ≤ IK, at least, we have ‖H − |S∗|H‖ ≤
‖IK − |S∗|‖‖H‖ ≤ ‖H‖. Suppose that ‖H − |S∗|H‖ = ‖H‖. Then there exists
a sequence (yn) of unit vectors in K such that ‖(H − |S∗|H)yn‖ → ‖H‖. Since
H − |S∗|H ∈ K (K), we obtain a subsequence (ynk ) of (yn) with the property that
((H − |S∗|H)ynk ) converges to some z0 ∈ K. On the other hand, the reflexivity of K
generates a subsequence (ynkl ) of (ynk ) that converges weakly to some y0 ∈ K with
‖y0‖ ≤ 1. Since bounded linear operators are weak to weak continuous, we drive
that ((H − |S∗|H)ynkl ) converges weakly to (H − |S∗|H)y0. Hence one has that
(H − |S∗|H)y0 = z0, and that

‖(H − |S∗|H)y0‖ = ‖z0‖ = lim
k

‖(H − |S∗|H)ynk‖ = ‖H‖.

However, then, it turns out that

‖H‖2 = ‖(H − |S∗|H)y0‖2 ≤ (‖(IK − |S∗|)1/2‖‖(I − |S∗|)1/2Hy0‖)2
≤ 〈H(I − |S∗|)Hy0, y0〉
= 〈H2y0, y0〉 − 〈|S∗|Hy0, Hy0〉
< 〈H2y0, y0〉
≤ ‖H‖2.

This is a contradiction. Hence ‖H − |S∗|H‖ < ‖H‖ must hold.
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Now let T ∈ K (H,K) be nonzero, and let S = |S∗|U and T = |T ∗|V be the polar
decompositions. Since UU∗|S∗| = |S∗|, putting R = U∗T ∈ K (H) yields that

‖T − SR‖ = ‖|T ∗|V − (|S∗|U )(U∗|T ∗|V )‖
≤ ‖(|T ∗| − |S∗||T ∗|)V ‖
≤ ‖|T ∗| − |S∗||T ∗|‖
< ‖|T ∗|‖ = ‖T ‖.

This proves that there is no nonzero element T ∈ K (H,K) satisfying T ⊥K (H) S;
and thus, S is right symmetric for ⊥K (H) in K (H,K). This completes the proof. ��
Remark 2 As was mentioned in the last paragraph of the proof of Theorem 5, if H is
infinite dimensional, then each right symmetric point S for ⊥K (H) in K (H,K) has no
nonzero element T ∈ K (H,K) satisfying T ⊥K (H) S.

As a consequence of Theorem 5, it turns out that, if H is infinite dimensional, the
existence of nonzero right symmetric points for ⊥K (H) in K (H,K) depends on the
dimension of K.

Corollary 3 LetH,K be Hilbert spaces. Suppose thatH is infinite dimensional. Then
there exists a nonzero right symmetric point for ⊥K (H) in K (H,K) if and only ifK is
separable.

Proof Suppose first that there exists a nonzero right symmetric point S for ⊥K (H) in
K (H,K). Then, by Theorem 5, we have K = S(H); and S(H) is separable since S is
compact.

Conversely, we assume that K is separable. Let (ea) and ( fn)n∈N be orthonormal
bases for H and K, respectively, and let (ean )n∈N be a countably infinite subset of
(ea). Define an operator S ∈ K (H,K) by letting Sx = ∑

n∈N 2−n〈x, ean 〉 fn for
each x ∈ H. Then we have S(H) = K since { fn : n ∈ N} ⊂ S(H). Therefore, by
Theorem 5, S is a (nonzero) right symmetric point for ⊥K (H) in K (H,K). ��
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