Skip to main content

Advertisement

Log in

Immunological Indicators of Recurrent Pregnancy Loss: A Mendelian Randomization Study

  • General Gynecology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Recurrent pregnancy loss (RPL) is thought to be related to maternal-fetal immune tolerance disorders. Immune monitoring of RPL patients mainly involves two aspects: inflammatory factors and immune cells. However, most observational studies have reported controversial findings. This study aimed to confirm whether abnormal inflammatory factors and immune cells in peripheral blood may lead to RPL, and guide clinical immune monitoring. We demonstrated causality using two-sample Mendelian randomization. Sensitivity analysis, reverse Mendelian randomization and meta-analysis were used to enhance the effectiveness of the results. There was a causal relationship between the level of IL-12 (OR = 1.78, 95% CI = 1.25–2.55; P = 0.00149) and RPL for 41 inflammatory factors. We screened 5 groups of immune cell subtypes that were causally associated with RPL: switched memory B-cell absolute count (OR = 0.66, 95% CI = 0.49–0.87, P = 0.00406), IgD + CD24 + B-cell absolute count (OR = 0.69, 95% CI = 0.53–0.88, P = 0.00319), CD39 + resting CD4 regulatory T-cell %CD4 regulatory T-cell (OR = 0.86, 95% CI = 0.78–0.95, P = 0.00252), activated & resting CD4 regulatory T-cell %CD4 regulatory T-cell (OR = 0.89, 95% CI = 0.82–0.97, P = 0.00938) and CD45 RA + CD28-CD8 + T-cell %CD8 + T-cell (OR = 0.99, 95% CI = 0.98-1.00, P = 0.01231). In terms of inflammatory factors, a causal relationship between IL-12 and RPL in peripheral blood was confirmed. We also identified five immune cell phenotypes that play a protective role. This suggests that there may be protective B cells and CD8 + T-cell subsets in peripheral blood, and the protective effect of Tregs was proved again. Immune monitoring of peripheral blood in patients with RPL seems to be necessary and the foundation for precision medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are openly available in https://pubmed.ncbi.nlm.nih.gov/33239672, https://pubmed.ncbi.nlm.nih.gov/27989323, and https://pubmed.ncbi.nlm.nih.gov/32929287, reference number 19, 20 and 21.

References

  1. Dimitriadis E, Menkhorst E, Saito S, Kutteh WH, Brosens JJ. Recurrent pregnancy loss. Nat Rev Dis Primers. 2020;6(1):97.

    Article  Google Scholar 

  2. Bender Atik R, Christiansen OB, Elson J, Kolte AM, Lewis S, Middeldorp S, et al. ESHRE guideline: recurrent pregnancy loss. Hum Reprod Open. 2018;2018(2):hoy004.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bender Atik R, Christiansen OB, Elson J, Kolte AM, Lewis S, Middeldorp S, et al. ESHRE guideline: recurrent pregnancy loss: an update in 2022. Hum Reprod Open. 2023;2023(1):hoad002.

    PubMed  PubMed Central  Google Scholar 

  4. Rai R, Regan L. Recurrent miscarriage. Lancet (London England). 2006;368(9535):601–11.

    Article  PubMed  Google Scholar 

  5. Voss P, Schick M, Langer L, Ainsworth A, Ditzen B, Strowitzki T, et al. Recurrent pregnancy loss: a shared stressor—couple-orientated psychological research findings. Fertil Steril. 2020;114(6):1288–96.

    Article  PubMed  Google Scholar 

  6. Ferreira LMR, Meissner TB, Tilburgs T, Strominger JL. HLA-G: at the interface of maternal-fetal tolerance. Trends Immunol. 2017;38(4):272–86.

    Article  CAS  PubMed  Google Scholar 

  7. Wang W, Sung N, Gilman-Sachs A, Kwak-Kim JT. Helper (th) cell profiles in pregnancy and recurrent pregnancy losses: Th1/Th2/Th9/Th17/Th22/Tfh cells. Front Immunol. 2020;11:2025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Granne I, Shen M, Rodriguez-Caro H, Chadha G, O’Donnell E, Brosens JJ, et al. Characterisation of peri-implantation endometrial Treg and identification of an altered phenotype in recurrent pregnancy loss. Mucosal Immunol. 2022;15(1):120–9.

    Article  CAS  PubMed  Google Scholar 

  9. McFadden JP, Thyssen JP, Basketter DA, Puangpet P, Kimber I. T helper cell 2 immune skewing in pregnancy/early life: chemical exposure and the development of atopic disease and allergy. Br J Dermatol. 2015;172(3):584–91.

    Article  CAS  PubMed  Google Scholar 

  10. Laird SM, Tuckerman EM, Cork BA, Linjawi S, Blakemore AIF, Li TC. A review of immune cells and molecules in women with recurrent miscarriage. Hum Reprod Update. 2003;9(2):163–74.

    Article  CAS  PubMed  Google Scholar 

  11. Comba C, Bastu E, Dural O, Yasa C, Keskin G, Ozsurmeli M et al. Role of inflammatory mediators in patients with recurrent pregnancy loss. Fertil Steril. 2015;104(6).

  12. Abu-Ghazaleh N, Brennecke S, Murthi P, Karanam V. Association of vascular endothelial growth factors (VEGFs) with recurrent miscarriage: a systematic review of the literature. Int J Mol Sci. 2023;24(11).

  13. Shakhar K, Rosenne E, Loewenthal R, Shakhar G, Carp H, Ben-Eliyahu S. High NK cell activity in recurrent miscarriage: what are we really measuring? Hum Reprod. 2006;21(9):2421–5.

    Article  PubMed  Google Scholar 

  14. Kwak JY, Beaman KD, Gilman-Sachs A, Ruiz JE, Schewitz D, Beer AE. Up-regulated expression of CD56+, CD56+/CD16+, and CD19 + cells in peripheral blood lymphocytes in pregnant women with recurrent pregnancy losses. Am J Reprod Immunol. 1995;34(2):93–9.

    Article  CAS  PubMed  Google Scholar 

  15. Ntrivalas EI, Kwak-Kim JY, Gilman-Sachs A, Chung-Bang H, Ng SC, Beaman KD, et al. Status of peripheral blood natural killer cells in women with recurrent spontaneous abortions and infertility of unknown aetiology. Hum Reprod. 2001;16(5):855–61.

    Article  CAS  PubMed  Google Scholar 

  16. Ticconi C, Pietropolli A, Di Simone N, Piccione E, Fazleabas A. Endometrial immune dysfunction in recurrent pregnancy loss. Int J Mol Sci. 2019;20(21).

  17. Larsson SC, Butterworth AS, Burgess S. Mendelian randomization for cardiovascular diseases: principles and applications. Eur Heart J. 2023;44(47):4913–24.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhao J, Stewart ID, Baird D, Mason D, Wright J, Zheng J, et al. Causal effects of maternal circulating amino acids on offspring birthweight: a mendelian randomisation study. EBioMedicine. 2023;88:104441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Laisk T, Soares ALG, Ferreira T, Painter JN, Censin JC, Laber S, et al. The genetic architecture of sporadic and multiple consecutive miscarriage. Nat Commun. 2020;11(1):5980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ahola-Olli AV, Würtz P, Havulinna AS, Aalto K, Pitkänen N, Lehtimäki T, et al. Genome-wide Association Study identifies 27 loci influencing concentrations of circulating cytokines and growth factors. Am J Hum Genet. 2017;100(1):40–50.

    Article  CAS  PubMed  Google Scholar 

  21. Orrù V, Steri M, Sidore C, Marongiu M, Serra V, Olla S, et al. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy. Nat Genet. 2020;52(10):1036–45.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Huang Y, Wang J, Yang H, Lin Z, Xu L. Causal associations between polyunsaturated fatty acids and kidney function: a bidirectional mendelian randomization study. Am J Clin Nutr. 2023;117(1):199–206.

    Article  PubMed  Google Scholar 

  23. Chen X, Kong J, Diao X, Cai J, Zheng J, Xie W, et al. Depression and prostate cancer risk: a mendelian randomization study. Cancer Med. 2020;9(23):9160–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wilson R, Jenkins C, Miller H, McInnes IB, Moore J, McLean MA, et al. Abnormal cytokine levels in non-pregnant women with a history of recurrent miscarriage. Eur J Obstet Gynecol Reprod Biol. 2004;115(1):51–4.

    Article  CAS  PubMed  Google Scholar 

  25. Szereday L, Varga P, Szekeres-Bartho J. Cytokine production by lymphocytes in pregnancy. Am J Reprod Immunol. 1997;38(6):418–22.

    Article  CAS  PubMed  Google Scholar 

  26. Adib Rad H, Basirat Z, Mostafazadeh A, Faramarzi M, Bijani A, Nouri HR, et al. Evaluation of peripheral blood NK cell subsets and cytokines in unexplained recurrent miscarriage. J Chin Med Assoc. 2018;81(12):1065–70.

    Article  PubMed  Google Scholar 

  27. Zenclussen AC, Fest S, Busse P, Joachim R, Klapp BF, Arck PC. Questioning the Th1/Th2 paradigm in reproduction: peripheral levels of IL-12 are down-regulated in miscarriage patients. Am J Reprod Immunol. 2002;48(4):245–51.

    Article  PubMed  Google Scholar 

  28. Wu Y, Li Y, Zhu J, Long J. Shared genetics and causality underlying epilepsy and attention-deficit hyperactivity disorder. Psychiatry Res. 2022;316:114794.

    Article  CAS  PubMed  Google Scholar 

  29. Yeung CHC, Au Yeung SL, Kwok MK, Zhao JV, Schooling CM. The influence of growth and sex hormones on risk of alzheimer’s disease: a mendelian randomization study. Eur J Epidemiol. 2023;38(7):745–55.

    Article  PubMed  Google Scholar 

  30. Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol. 2003;3(2):133–46.

    Article  CAS  PubMed  Google Scholar 

  31. Watford WT, Moriguchi M, Morinobu A, O’Shea JJ. The biology of IL-12: coordinating innate and adaptive immune responses. Cytokine Growth Factor Rev. 2003;14(5):361–8.

    Article  CAS  PubMed  Google Scholar 

  32. Lamptey J, Li F, Adu-Gyamfi EA, Chen X-M, Czika A, Otoo A, et al. Downregulation of fascin in the first trimester placental villi is associated with early recurrent miscarriage. Exp Cell Res. 2021;403(1):112597.

    Article  CAS  PubMed  Google Scholar 

  33. Pan T, Liu Y, Zhong LM, Shi MH, Duan XB, Wu K, et al. Myeloid-derived suppressor cells are essential for maintaining feto-maternal immunotolerance via STAT3 signaling in mice. J Leukoc Biol. 2016;100(3):499–511.

    Article  CAS  PubMed  Google Scholar 

  34. Li ZY, Chao HH, Liu HY, Song ZH, Li LL, Zhang YJ, et al. IFN-γ induces aberrant CD49b+ NK cell recruitment through regulating CX3CL1: a novel mechanism by which IFN-γ provokes pregnancy failure. Cell Death Dis. 2014;5(11):e1512.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Arruvito L, Sotelo AI, Billordo A, Fainboim L. A physiological role for inducible FOXP3(+) Treg cells. Lessons from women with reproductive failure. Clin Immunol. 2010;136(3):432–41.

    Article  CAS  PubMed  Google Scholar 

  36. Zhu X, Liu H, Zhang Z, Wei R, Zhou X, Wang Z, et al. MiR-103 protects from recurrent spontaneous abortion via inhibiting STAT1 mediated M1 macrophage polarization. Int J Biol Sci. 2020;16(12):2248–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wegmann TG, Lin H, Guilbert L, Mosmann TR. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today. 1993;14(7):353–6.

    Article  CAS  PubMed  Google Scholar 

  38. Rugeles MT, Shearer GM. Alloantigen recognition in utero: dual advantage for the fetus? Trends Immunol. 2004;25(7):348–52.

    Article  CAS  PubMed  Google Scholar 

  39. Lim KJ, Odukoya OA, Ajjan RA, Li TC, Weetman AP, Cooke ID. The role of T-helper cytokines in human reproduction. Fertil Steril. 2000;73(1):136–42.

    Article  CAS  PubMed  Google Scholar 

  40. Wilson R, McInnes I, Leung B, McKillop JH, Walker JJ. Altered interleukin 12 and nitric oxide levels in recurrent miscarriage. Eur J Obstet Gynecol Reprod Biol. 1997;75(2):211–4.

    Article  CAS  PubMed  Google Scholar 

  41. Ostojić S, Volk M, Medica I, Kapović M, Meden-Vrtovec H, Peterlin B. Polymorphisms in the interleukin-12/18 genes and recurrent spontaneous abortion. Am J Reprod Immunol. 2007;58(5):403–8.

    Article  PubMed  Google Scholar 

  42. Fraccaroli L, Alfieri J, Larocca L, Calafat M, Mor G, Leirós CP, et al. A potential tolerogenic immune mechanism in a trophoblast cell line through the activation of chemokine-induced T cell death and regulatory T cell modulation. Hum Reprod. 2009;24(1):166–75.

    Article  CAS  PubMed  Google Scholar 

  43. Erlebacher A. Immunology of the maternal-fetal interface. Annu Rev Immunol. 2013;31:387–411.

    Article  CAS  PubMed  Google Scholar 

  44. Colamatteo A, Fusco C, Micillo T, D’Hooghe T, de Candia P, Alviggi C, et al. Immunobiology of pregnancy: from basic science to translational medicine. Trends Mol Med. 2023;29(9):711–25.

    Article  CAS  PubMed  Google Scholar 

  45. Dosiou C, Giudice LC. Natural killer cells in pregnancy and recurrent pregnancy loss: endocrine and immunologic perspectives. Endocr Rev. 2005;26(1):44–62.

    Article  CAS  PubMed  Google Scholar 

  46. Silver RM, Branch DW, Scott JR. Prednisone and aspirin in women with recurrent fetal loss. N Engl J Med. 1997;337(22):1629–30.

    Article  CAS  PubMed  Google Scholar 

  47. Geva E, Amit A, Lerner-Geva L, Lessing JB. Prevention of early pregnancy loss in autoantibody seropositive women. Lancet (London England). 1998;351(9095):34–5.

    Article  CAS  PubMed  Google Scholar 

  48. Laskin CA, Bombardier C, Hannah ME, Mandel FP, Ritchie JW, Farewell V, et al. Prednisone and aspirin in women with autoantibodies and unexplained recurrent fetal loss. N Engl J Med. 1997;337(3):148–53.

    Article  CAS  PubMed  Google Scholar 

  49. Egerup P, Nielsen HS, Andersen AN, Christiansen OB. Live birth rate in women with recurrent pregnancy loss after in vitro fertilization with concomitant intravenous immunoglobulin and prednisone. J Clin Med. 2022;11(7).

  50. Ou H, Yu Q. Efficacy of aspirin, prednisone, and multivitamin triple therapy in treating unexplained recurrent spontaneous abortion: a cohort study. Int J Gynaecol Obstet. 2020;148(1):21–6.

    Article  CAS  PubMed  Google Scholar 

  51. Han AR, Ahn H, Vu P, Park JC, Gilman-Sachs A, Beaman K, et al. Obstetrical outcome of anti-inflammatory and anticoagulation therapy in women with recurrent pregnancy loss or unexplained infertility. Am J Reprod Immunol. 2012;68(5):418–27.

    Article  CAS  PubMed  Google Scholar 

  52. Thum MY, Bhaskaran S, Bansal AS, Shehata H, Ford B, Sumar N, et al. Simple enumerations of peripheral blood natural killer (CD56 + NK) cells, B cells and T cells have no predictive value in IVF treatment outcome. Hum Reprod. 2005;20(5):1272–6.

    Article  CAS  PubMed  Google Scholar 

  53. Darmochwal-Kolarz D, Leszczynska-Gorzelak B, Rolinski J, Oleszczuk J. The immunophenotype of patients with recurrent pregnancy loss. Eur J Obstet Gynecol Reprod Biol. 2002;103(1):53–7.

    Article  PubMed  Google Scholar 

  54. Ângelo-Dias M, Martins C, Dias SS, Borrego LM, Lima J. Association of B cells with idiopathic recurrent pregnancy loss: a systematic review and Meta-analysis. Int J Mol Sci. 2022;23(23).

  55. Fettke F, Schumacher A, Costa S-D, Zenclussen AC. B cells: the old new players in reproductive immunology. Front Immunol. 2014;5:285.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bird L. Immunometabolism: regulatory B cells weigh in. Nat Rev Immunol. 2014;14(1):6–7.

    Article  CAS  PubMed  Google Scholar 

  57. Rosser EC, Mauri C, Regulatory. B cells: origin, phenotype, and function. Immunity. 2015;42(4):607–12.

    Article  CAS  PubMed  Google Scholar 

  58. Wolf SD, Dittel BN, Hardardottir F, Janeway CA. Experimental autoimmune encephalomyelitis induction in genetically b cell-deficient mice. J Exp Med. 1996;184(6):2271–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mizoguchi A, Mizoguchi E, Takedatsu H, Blumberg RS, Bhan AK. Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity. 2002;16(2):219–30.

    Article  CAS  PubMed  Google Scholar 

  60. Rivera DL, Olister SM, Liu X, Thompson JH, Zhang XJ, Pennline K, et al. Interleukin-10 attenuates experimental fetal growth restriction and demise. FASEB J. 1998;12(2):189–97.

    Article  CAS  Google Scholar 

  61. Jensen F, Muzzio D, Soldati R, Fest S, Zenclussen AC. Regulatory B10 cells restore pregnancy tolerance in a mouse model. Biol Reprod. 2013;89(4):90.

    Article  PubMed  Google Scholar 

  62. Danaii S, Ghorbani F, Ahmadi M, Abbaszadeh H, Koushaeian L, Soltani-Zangbar MS, et al. IL-10-producing B cells play important role in the pathogenesis of recurrent pregnancy loss. Int Immunopharmacol. 2020;87:106806.

    Article  CAS  PubMed  Google Scholar 

  63. Rolle L, Memarzadeh Tehran M, Morell-García A, Raeva Y, Schumacher A, Hartig R, et al. Cutting edge: IL-10-producing regulatory B cells in early human pregnancy. Am J Reprod Immunol. 2013;70(6):448–53.

    Article  CAS  PubMed  Google Scholar 

  64. Schumacher A, Wafula PO, Teles A, El-Mousleh T, Linzke N, Zenclussen ML, et al. Blockage of heme oxygenase-1 abrogates the protective effect of regulatory T cells on murine pregnancy and promotes the maturation of dendritic cells. PLoS ONE. 2012;7(8):e42301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liao J, Li Y, Li X, Su X, Peng J, Xiao N, et al. Blood CD4 + CD25 + T regulatory cells constitute a potential predictive marker of subsequent miscarriage in unexplained recurrent pregnancy loss. Int Immunopharmacol. 2022;110:108960.

    Article  CAS  PubMed  Google Scholar 

  66. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol (Baltimore Md: 1950). 1995;155(3):1151–64.

    Article  CAS  Google Scholar 

  67. Craenmehr MHC, Heidt S, Eikmans M, Claas FHJ. What is wrong with the regulatory T cells and foetomaternal tolerance in women with recurrent miscarriages? HLA. 2016;87(2):69–78.

    Article  CAS  PubMed  Google Scholar 

  68. Lee SK, Kim JY, Hur SE, Kim CJ, Na BJ, Lee M, et al. An imbalance in interleukin-17-producing T and Foxp3+ regulatory T cells in women with idiopathic recurrent pregnancy loss. Hum Reprod. 2011;26(11):2964–71.

    Article  CAS  PubMed  Google Scholar 

  69. Arruvito L, Sanz M, Banham AH, Fainboim L. Expansion of CD4 + CD25 + and FOXP3 + regulatory T cells during the follicular phase of the menstrual cycle: implications for human reproduction. J Immunol (Baltimore Md: 1950). 2007;178(4):2572–8.

    Article  CAS  Google Scholar 

  70. Mei S, Tan J, Chen H, Chen Y, Zhang J. Changes of CD4 + CD25high regulatory T cells and FOXP3 expression in unexplained recurrent spontaneous abortion patients. Fertil Steril. 2010;94(6):2244–7.

    Article  CAS  PubMed  Google Scholar 

  71. Yang H, Qiu L, Chen G, Ye Z, Lü C, Lin Q. Proportional change of CD4 + CD25 + regulatory T cells in decidua and peripheral blood in unexplained recurrent spontaneous abortion patients. Fertil Steril. 2008;89(3):656–61.

    Article  CAS  PubMed  Google Scholar 

  72. Cai S, Dai S, Lin R, Huang C, Zeng Y, Diao L, et al. The effectiveness and safety of intrauterine infusion of autologous regulatory T cells (Tregs) in patients with recurrent pregnancy loss and low levels of endometrial FoxP3 + cells: a retrospective cohort study. Am J Reprod Immunol. 2023;90(2):e13735.

    Article  CAS  PubMed  Google Scholar 

  73. Wang S, Sun F, Li M, Qian J, Chen C, Wang M, et al. The appropriate frequency and function of decidual Tim-3 + CTLA-4 + CD8 + T cells are important in maintaining normal pregnancy. Cell Death Dis. 2019;10(6):407.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to all the open data providers whose excellent work is the basis of this study. The authors thank all the reviewers and editors for their useful suggestions for improving this study.

Funding

This study was funded by the Wisdom Accumulation and Talent Cultivation Project of the Third Xiangya hospital of Central South University [YX202212].

Author information

Authors and Affiliations

Authors

Contributions

MZ and GL conceived and designed the study. JW drafted the manuscript. MZ, GL, and JW reviewed and revised the manuscript. QC, JL and JW collected the data and performed the data analysis. QC, FG, YL and JW produced the charts. All authors approved the final submission of the manuscript and agreed to be responsible for all aspects of the work.

Corresponding authors

Correspondence to Ge Lin or Mingyi Zhao.

Ethics declarations

Conflict of Interest

The authors declare there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Cao, Q., Liao, J. et al. Immunological Indicators of Recurrent Pregnancy Loss: A Mendelian Randomization Study. Reprod. Sci. (2024). https://doi.org/10.1007/s43032-024-01555-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43032-024-01555-2

Keywords

Navigation