Skip to main content

Advertisement

Log in

Understanding the Mechanisms of Diminished Ovarian Reserve: Insights from Genetic Variants and Regulatory Factors

  • Reproductive Genetics: Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Delaying childbearing age has become a trend in modern times, but it has also led to a common challenge in clinical reproductive medicine—diminished ovarian reserve (DOR). Since the mechanism behind DOR is unknown and its clinical features are complex, physicians find it difficult to provide targeted treatment. Many factors affect ovarian reserve function, and existing studies have shown that genetic variants, upstream regulatory genes, and changes in protein expression levels are present in populations with reduced ovarian reserve function. However, existing therapeutic regimens often do not target the genetic profile for more individualized treatment. In this paper, we review the types of genetic variants, mutations, altered expression levels of microRNAs, and other related factors and their effects on the regulation of follicular development, as well as altered DNA methylation. We hope this review will have significant implications for the future treatment of individuals with reduced ovarian reserve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Zhang Q-L, et al. Treatment progress in diminished ovarian reserve: Western and Chinese medicine. Chin J Integr Med. 2023;29(4):361–7.

    PubMed  Google Scholar 

  2. Park SU, Walsh L, Berkowitz KM. Mechanisms of ovarian aging. Reprod (Camb Engl). 2021;162(2):R19–33.

    CAS  Google Scholar 

  3. Busnelli A, et al. Is diminished ovarian reserve a risk factor for miscarriage? Results of a systematic review and meta-analysis. Human Reprod Update. 2021;27(6):973–88.

    Google Scholar 

  4. Jaswa EG, et al. Diminished ovarian reserve is associated with reduced euploid rates via preimplantation genetic testing for aneuploidy independently from age: evidence for concomitant reduction in oocyte quality with quantity. Fertil Steril. 2021;115(4):966–73.

    CAS  PubMed  Google Scholar 

  5. Kaufmann KB, et al. Gene therapy on the move. EMBO Mol Med. 2013;5(11):1642–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Tatone C, et al. Sirtuin functions in female fertility: possible role in oxidative stress and aging. Oxid Med Cell Longev. 2015;2015:659687.

    PubMed  PubMed Central  Google Scholar 

  7. Russo G, et al. Evaluation of controlled ovarian stimulation protocols in patients with normal and low ovarian reserve: analyses of miRNAs and selected target genes involved in the proliferation of human cumulus cells and oocyte quality. Int J Mol Sci. 2022;23:3.

    Google Scholar 

  8. Streiter S, et al. The importance of neuronal growth factors in the ovary. Mol Human Reprod. 2016;22:1.

    Google Scholar 

  9. Wang X, Wang L, Xiang W. Mechanisms of ovarian aging in women: a review. J Ovarian Res. 2023;16(1):67.

    PubMed  PubMed Central  Google Scholar 

  10. Tzavlaki K, Moustakas A. TGF-β Signaling. Biomolecules. 2020;10:3.

    Google Scholar 

  11. Trombly DJ, Woodruff TK, Mayo KE. Roles for transforming growth factor beta superfamily proteins in early folliculogenesis. Semin Reprod Med. 2009;27(1):14–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Elvin JA, Yan C, Matzuk MM. Oocyte-expressed TGF-beta superfamily members in female fertility. Mol Cell Endocrinol. 2000;159(1–2):1–5.

    CAS  PubMed  Google Scholar 

  13. Diaz FJ, Wigglesworth K, Eppig JJ. Oocytes are required for the preantral granulosa cell to cumulus cell transition in mice. Dev Biol. 2007;305(1):300–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Persani L, et al. The fundamental role of bone morphogenetic protein 15 in ovarian function and its involvement in female fertility disorders. Hum Reprod Update. 2014;20(6):869–83.

    CAS  PubMed  Google Scholar 

  15. Paulini F, Melo EO. The role of oocyte-secreted factors GDF9 and BMP15 in follicular development and oogenesis. Reprod Domest Anim. 2011;46(2):354–61.

    CAS  PubMed  Google Scholar 

  16. Mottershead DG, et al. Cumulin, an oocyte-secreted heterodimer of the transforming growth factor-β family, is a potent activator of granulosa cells and improves oocyte quality. J Biol Chem. 2015;290(39):24007–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Peng J, et al. Growth differentiation factor 9:bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions. Proc Natl Acad Sci U S A. 2013;110(8):E776-85.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sugiura K, et al. Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development. 2007;134(14):2593–603.

    CAS  PubMed  Google Scholar 

  19. Su YQ, et al. Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development. 2008;135(1):111–21.

    CAS  PubMed  Google Scholar 

  20. Ebeling S, et al. Bone morphogenetic protein-6 (BMP-6): mRNA expression and effect on steroidogenesis during in vitro maturation of porcine cumulus oocyte complexes. Reprod Fertil Dev. 2011;23(8):1034–42.

    CAS  PubMed  Google Scholar 

  21. Akiyama I, et al. The role of bone morphogenetic protein 6 in accumulation and regulation of neutrophils in the human ovary. Reprod Sci. 2014;21(6):772–7.

    PubMed  PubMed Central  Google Scholar 

  22. Rebbeck TR, et al. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. Jama. 2015;313(13):1347–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Turan V, Oktay K. BRCA-related ATM-mediated DNA double-strand break repair and ovarian aging. Hum Reprod Update. 2020;26(1):43–57.

    CAS  PubMed  Google Scholar 

  24. Wang ET, et al. BRCA1 germline mutations may be associated with reduced ovarian reserve. Fertil Steril. 2014;102(6):1723–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Turan V, et al. Association of Germline BRCA Pathogenic variants with diminished ovarian reserve: a meta-analysis of individual patient-level data. J Clin Oncol. 2021;39(18):2016–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Grynberg M, et al. BRCA1/2 gene mutations do not affect the capacity of oocytes from breast cancer candidates for fertility preservation to mature in vitro. Human Reprod (Oxford Engl). 2019;34(2):374–9.

    CAS  Google Scholar 

  27. Fang E, et al. CPEB3 deficiency in mice affect ovarian follicle development and causes premature ovarian insufficiency. Cell Death Dis. 2021;13(1):21.

    Google Scholar 

  28. Mendez R, et al. Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature. 2000;404(6775):302–7.

    CAS  PubMed  Google Scholar 

  29. Huang YS, et al. CPEB3 and CPEB4 in neurons: analysis of RNA-binding specificity and translational control of AMPA receptor GluR2 mRNA. Embo J. 2006;25(20):4865–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ivshina M, Lasko P, Richter JD. Cytoplasmic polyadenylation element binding proteins in development, health, and disease. Annu Rev Cell Dev Biol. 2014;30:393–415.

    CAS  PubMed  Google Scholar 

  31. Wang Y, et al. CPEB3 regulates the proliferation and apoptosis of bovine cumulus cells. Anim Sci J. 2020;91(1):e13416.

    CAS  PubMed  Google Scholar 

  32. Convissar S, et al. Sp1 regulates steroidogenic genes and LHCGR expression in primary human luteinized granulosa cells. J Steroid Biochem Mol Biol. 2019;190:183–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Matoba S, et al. Predictive value of bovine follicular components as markers of oocyte developmental potential. Reprod Fertil Dev. 2014;26(2):337–45.

    CAS  PubMed  Google Scholar 

  34. Skiadas CC, et al. Ovarian reserve status in young women is associated with altered gene expression in membrana granulosa cells. Mol Hum Reprod. 2012;18(7):362–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Menon B, Gulappa T, Menon KMJ. Molecular regulation of LHCGR expression by miR-122 during follicle growth in the rat ovary. Mol Cell Endocrinol. 2017;442:81–9.

    CAS  PubMed  Google Scholar 

  36. Xu X, et al. Low Klotho level related to aging is associated with diminished ovarian reserve. Fertil Steril. 2020;114(6):1250–5.

    CAS  PubMed  Google Scholar 

  37. Zhu Z, et al. Klotho gene polymorphisms are associated with healthy aging and longevity: Evidence from a meta-analysis. Mech Ageing Dev. 2019;178:33–40.

    CAS  PubMed  Google Scholar 

  38. Liu T, et al. miR-15b induces premature ovarian failure in mice via inhibition of α-Klotho expression in ovarian granulosa cells. Free Radic Biol Med. 2019;141:383–92.

    CAS  PubMed  Google Scholar 

  39. Biyik I, et al. The effects of recombinant Klotho in cisplatin-induced ovarian failure in mice. J Obstet Gynaecol Res. 2021;47(5):1817–24.

    CAS  PubMed  Google Scholar 

  40. Liang Y, et al. Rehmannioside D mitigates disease progression in rats with experimental-induced diminished ovarian reserve via Forkhead box O1/Klotho axis. Korean J Physiol Pharmacol. 2023;27(2):167–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou Y, et al. MiR-497-3p induces premature ovarian failure by targeting KLF4 to inactivate Klotho/PI3K/AKT/mTOR signaling pathway. Cytokine. 2023;170:156294.

    CAS  PubMed  Google Scholar 

  42. Pavlová S, et al. The involvement of SIRT1 and transcription factor NF-κB (p50/p65) in regulation of porcine ovarian cell function. Anim Reprod Sci. 2013;140(3–4):180–8.

    PubMed  Google Scholar 

  43. Bordone L, et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell. 2007;6(6):759–67.

    CAS  PubMed  Google Scholar 

  44. Guo L, et al. Decrease in ovarian reserve through the inhibition of SIRT1-mediated oxidative phosphorylation. Aging (Albany NY). 2022;14(5):2335–47.

    CAS  PubMed  Google Scholar 

  45. Morita Y, et al. Resveratrol promotes expression of SIRT1 and StAR in rat ovarian granulosa cells: an implicative role of SIRT1 in the ovary. Reprod Biol Endocrinol. 2012;10:14.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Pacella-Ince L, Zander-Fox DL, Lan M. Mitochondrial SIRT3 and its target glutamate dehydrogenase are altered in follicular cells of women with reduced ovarian reserve or advanced maternal age. Hum Reprod. 2014;29(7):1490–9.

    CAS  PubMed  Google Scholar 

  47. Fu H, et al. SIRT3 positively regulates the expression of folliculogenesis- and luteinization-related genes and progesterone secretion by manipulating oxidative stress in human luteinized granulosa cells. Endocrinology. 2014;155(8):3079–87.

    PubMed  Google Scholar 

  48. Zhu J, et al. Sirt3 deficiency accelerates ovarian senescence without affecting spermatogenesis in aging mice. Free Radic Biol Med. 2022;193(Pt 2):511–25.

    CAS  PubMed  Google Scholar 

  49. Gazdag E, et al. Analysis of TATA-binding protein 2 (TBP2) and TBP expression suggests different roles for the two proteins in regulation of gene expression during oogenesis and early mouse development. Reproduction. 2007;134(1):51–62.

    CAS  PubMed  Google Scholar 

  50. Gazdag E, et al. TBP2 is essential for germ cell development by regulating transcription and chromatin condensation in the oocyte. Genes Dev. 2009;23(18):2210–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. He WB, et al. A recurrent mutation in TBPL2 causes diminished ovarian reserve and female infertility. J Genet Genomics. 2020;47(12):785–8.

    CAS  PubMed  Google Scholar 

  52. Wang Y, et al. A homozygous missense mutation in TBPL2 is associated with oocyte maturation arrest and degeneration. Clin Genet. 2021;100(3):324–8.

    CAS  PubMed  Google Scholar 

  53. Yang P, et al. A homozygous variant in TBPL2 was identified in women with oocyte maturation defects and infertility. Hum Reprod. 2021;36(7):2011–9.

    CAS  PubMed  Google Scholar 

  54. Lourenço D, et al. Mutations in NR5A1 associated with ovarian insufficiency. New Engl J Med. 2009;360(12):1200–10.

    PubMed  Google Scholar 

  55. Hughes CHK, et al. Steroidogenic factor 1 (SF-1; Nr5a1) regulates the formation of the ovarian reserve. Proc Nat Acad Sci U S A. 2023;120(32):e2220849120.

    CAS  Google Scholar 

  56. Jaillard S, et al. Analysis of NR5A1 in 142 patients with premature ovarian insufficiency, diminished ovarian reserve, or unexplained infertility. Maturitas. 2020;131:78–86.

    CAS  PubMed  Google Scholar 

  57. Bertrand-Delepine J, et al. In cases of familial primary ovarian insufficiency and disorders of gonadal development, consider NR5A1/SF-1 sequence variants. Reprod Biomed Online. 2020;40(1):151–9.

    CAS  PubMed  Google Scholar 

  58. Man L, et al. Fragile X-associated diminished ovarian reserve and primary ovarian insufficiency from molecular mechanisms to clinical manifestations. Front Mol Neurosci. 2017;10:290.

    PubMed  PubMed Central  Google Scholar 

  59. Rehnitz J, et al. FMR1 expression in human granulosa cells and variable ovarian response: control by epigenetic mechanisms. Mol Human Reprod. 2021;27:2.

    Google Scholar 

  60. Eslami H, et al. Epigenetic aberration of FMR1 gene in infertile women with diminished ovarian reserve. Cell J. 2018;20(1):78–83.

    PubMed  PubMed Central  Google Scholar 

  61. Gleicher N, et al. Relevance of triple CGG repeats in the FMR1 gene to ovarian reserve. Reprod Biomed Online. 2009;19(3):385–90.

    CAS  PubMed  Google Scholar 

  62. Schufreider A, et al. Diminished ovarian reserve is not observed in infertility patients with high normal CGG repeats on the fragile X mental retardation 1 (FMR1) gene. Hum Reprod. 2015;30(11):2686–92.

    PubMed  Google Scholar 

  63. Dube JL, et al. The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Mol Endocrinol. 1998;12(12):1809–17.

    CAS  PubMed  Google Scholar 

  64. Liu M-N, Zhang K, Xu T-M. The role of BMP15 and GDF9 in the pathogenesis of primary ovarian insufficiency. Human Fertil (Camb Engl). 2021;24(5):325–32.

    CAS  Google Scholar 

  65. Alam MH, Miyano T. Interaction between growing oocytes and granulosa cells in vitro. Reprod Med Biol. 2020;19(1):13–23.

    CAS  PubMed  Google Scholar 

  66. Wang TT, et al. Identification of a mutation in GDF9 as a novel cause of diminished ovarian reserve in young women. Hum Reprod. 2013;28(9):2473–81.

    CAS  PubMed  Google Scholar 

  67. Zhao H, et al. Analyses of GDF9 mutation in 100 Chinese women with premature ovarian failure. Fertil Steril. 2007;88(5):1474–6.

    PubMed  PubMed Central  Google Scholar 

  68. Wang TT, et al. G546A polymorphism of growth differentiation factor-9 contributes to the poor outcome of ovarian stimulation in women with diminished ovarian reserve. Fertil Steril. 2010;94(6):2490–2.

    CAS  PubMed  Google Scholar 

  69. Di Pasquale E, Beck-Peccoz P, Persani L. Hypergonadotropic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene. Am J Hum Genet. 2004;75(1):106–11.

    PubMed  PubMed Central  Google Scholar 

  70. Rossetti R, et al. Fundamental role of BMP15 in human ovarian folliculogenesis revealed by null and missense mutations associated with primary ovarian insufficiency. Human Mutation. 2020;41(5):983–97.

    CAS  PubMed  Google Scholar 

  71. Santos M, et al. Association of BMP15 and GDF9 variants to premature ovarian insufficiency. J Assist Reprod Genet. 2019;36(10):2163–9.

    PubMed  PubMed Central  Google Scholar 

  72. Kumar R, et al. BMP15 and GDF9 gene mutations in premature ovarian failure. J Reprod Infertility. 2017;18(1):185–9.

    Google Scholar 

  73. Di Pasquale E, Beck-Peccoz P, Persani L. Hypergonadotropic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene. Am J Human Gen. 2004;75(1):106–11.

    Google Scholar 

  74. Afkhami F, et al. Novel bone morphogenetic protein 15 (BMP15) gene variants implicated in premature ovarian insufficiency. Reprod Biol Endocrinol : RB&E. 2022;20(1):42.

    CAS  Google Scholar 

  75. Faiza H, et al. Two novel mutations in exon 2 of bone morphogenetic protein (BMP) 15 gene in Pakistani infertile females. Saudi J Biol Sci. 2021;28(9):5364–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. McCallie BR, et al. Forecasting early onset diminished ovarian reserve for young reproductive age women. J Assist Reprod Genet. 2021;38(7):1853–60.

    PubMed  PubMed Central  Google Scholar 

  77. Hefler LA, Gregg AR. Influence of the angiotensinogen gene on the ovulatory capacity of mice. Fertil Steril. 2001;75(6):1206–11.

    CAS  PubMed  Google Scholar 

  78. Moll R, Divo M, Langbein L. The human keratins: biology and pathology. Histochem Cell Biol. 2008;129(6):705–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Druker J, et al. RSUME enhances glucocorticoid receptor SUMOylation and transcriptional activity. Mol Cell Biol. 2013;33(11):2116–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Di Pietro C, et al. Expression analysis of TFIID in single human oocytes: new potential molecular markers of oocyte quality. Reprod Biomed Online. 2008;17(3):338–49.

    PubMed  Google Scholar 

  81. Zhang Q, et al. Homozygous variant in KASH5 causes premature ovarian insufficiency by disordered meiotic homologous pairing. J Clin Endocrinol Metab. 2022;107(9):2589–97.

    PubMed  Google Scholar 

  82. Zeng Y, et al. Genetic screening in patients with ovarian dysfunction. Clin Genetics. 2023;103(3):352–7.

    CAS  Google Scholar 

  83. Wan Y, et al. Identification of compound heterozygous variants in MSH4 as a novel genetic cause of diminished ovarian reserve. Reprod Biol Endocrinol. 2023;21(1):76.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Saliminejad K, et al. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019;234(5):5451–65.

    CAS  PubMed  Google Scholar 

  85. Abu-Halima M, et al. Characterization of micro-RNA in women with different ovarian reserve. Sci Rep. 2021;11(1):13351.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Woo I, et al. Micro-RNAs involved in cellular proliferation have altered expression profiles in granulosa of young women with diminished ovarian reserve. J Assist Reprod Genet. 2018;35(10):1777–86.

    PubMed  PubMed Central  Google Scholar 

  87. Luo J, Sun Z. MicroRNAs in POI, DOR and POR. Arch Gynecol Obstet. 2023;308(5):1419–30.

  88. Hong L, et al. miR-106a increases granulosa cell viability and is downregulated in women with diminished ovarian reserve. J Clin Endocrinol Metab. 2018;103(6):2157–66.

    PubMed  Google Scholar 

  89. Chen Z, et al. ASK1 mediates apoptotic cell death induced by genotoxic stress. Oncogene. 1999;18(1):173–80.

    CAS  PubMed  Google Scholar 

  90. Li H, et al. Mir-484 contributes to diminished ovarian reserve by regulating granulosa cell function via YAP1-mediated mitochondrial function and apoptosis. Int J Biol Sci. 2022;18(3):1008–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. von Gise A, et al. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Nat Acad Sci U S A. 2012;109(7):2394–9.

    Google Scholar 

  92. Wei C, et al. miR-221-3p regulates apoptosis of ovarian granulosa cells via targeting FOXO1 in older women with diminished ovarian reserve (DOR). Mol Reprod Dev. 2021;88(4):251–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kandula V, et al. Forkhead box transcription factor 1: role in the pathogenesis of diabetic cardiomyopathy. Cardiovasc Diabetol. 2016;15:44.

    PubMed  PubMed Central  Google Scholar 

  94. Luo H, et al. Identification of microRNAs in granulosa cells from patients with different levels of ovarian reserve function and the potential regulatory function of miR-23a in granulosa cell apoptosis. Gene. 2019;686:250–60.

    CAS  PubMed  Google Scholar 

  95. Zhang X, et al. MicroRNA-127-5p impairs function of granulosa cells via HMGB2 gene in premature ovarian insufficiency. J Cell Physiol. 2020;235(11):8826–38.

    CAS  PubMed  Google Scholar 

  96. Pangas SA. Bone morphogenetic protein signaling transcription factor (SMAD) function in granulosa cells. Mol Cell Endocrinol. 2012;356(1–2):40–7.

    CAS  PubMed  Google Scholar 

  97. Liu J, et al. MicroRNA-26b functions as a proapoptotic factor in porcine follicular granulosa cells by targeting Sma-and Mad-related protein 4. Biol Reprod. 2014;91(6):146.

    PubMed  Google Scholar 

  98. Lin F, et al. miR-26b promotes granulosa cell apoptosis by targeting ATM during follicular atresia in porcine ovary. PLoS One. 2012;7(6):e38640.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu J, et al. Conserved miR-26b enhances ovarian granulosa cell apoptosis through HAS2-HA-CD44-Caspase-3 pathway by targeting HAS2. Sci Rep. 2016;6:21197.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Ma M, et al. miR-361-5p mediates SMAD4 to promote porcine granulosa cell apoptosis through VEGFA. Biomolecules. 2020;10:9.

    Google Scholar 

  101. Cai L, et al. Molecular mechanisms of enhancing porcine granulosa cell proliferation and function by treatment in vitro with anti-inhibin alpha subunit antibody. Reprod Biol Endocrinol : RB&E. 2015;13:26.

    Google Scholar 

  102. Du X, et al. TGF-β signaling controls FSHR signaling-reduced ovarian granulosa cell apoptosis through the SMAD4/miR-143 axis. Cell Death Dis. 2016;7(11):e2476.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Lu H, et al. Cytoplasmic localization of Lrh-1 down-regulates ovarian follicular cyp19a1a expression in a teleost, the orange-spotted grouper Epinephelus coioides. Biol Reprod. 2014;91(2):29.

    PubMed  Google Scholar 

  104. Liu J, et al. miR-1275 controls granulosa cell apoptosis and estradiol synthesis by impairing LRH-1/CYP19A1 axis. Biochim Biophys Acta Gene Regul Mech. 2018;1861(3):246–57.

    CAS  PubMed  Google Scholar 

  105. Li Q, et al. Upregulation of miR-146b promotes porcine ovarian granulosa cell apoptosis by attenuating CYP19A1. Domest Anim Endocrinol. 2021;74:106509.

    CAS  PubMed  Google Scholar 

  106. Cao R, et al. Let-7g induces granulosa cell apoptosis by targeting MAP3K1 in the porcine ovary. Int J Biochem Cell Biol. 2015;68:148–57.

    CAS  PubMed  Google Scholar 

  107. Xu Z, et al. MicroRNA-338-3p helps regulate ovarian function by affecting granulosa cell function and early follicular development. J Ovarian Res. 2023;16(1):175.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang C, et al. MicroRNA-125a-5p induces mouse granulosa cell apoptosis by targeting signal transducer and activator of transcription 3. Menopause (New York, NY). 2016;23(1):100–7.

    PubMed  Google Scholar 

  109. Zhang M, et al. miR-181a increases FoxO1 acetylation and promotes granulosa cell apoptosis via SIRT1 downregulation. Cell Death Dis. 2017;8(10):e3088.

    PubMed  PubMed Central  Google Scholar 

  110. Peng JY, et al. MicroRNA-10b suppresses goat granulosa cell proliferation by targeting brain-derived neurotropic factor. Domest Anim Endocrinol. 2016;54:60–7.

    CAS  PubMed  Google Scholar 

  111. Qiang J, et al. Upregulation of miR-33 exacerbates heat-stress-induced apoptosis in granulosa cell and follicular atresia of Nile tilapia (Oreochromis niloticus) by Targeting TGFβ1I1. Genes (Basel). 2022;13:6.

    Google Scholar 

  112. Gong X, et al. MiR-17-5p/FOXL2/CDKN1B signal programming in oocytes mediates transgenerational inheritance of diminished ovarian reserve in female offspring rats induced by prenatal dexamethasone exposure. Cell Biol Toxicol. 2023;39(3):867–83.

    CAS  PubMed  Google Scholar 

  113. Olsen KW, et al. A distinctive epigenetic ageing profile in human granulosa cells. Hum Reprod. 2020;35(6):1332–45.

    CAS  PubMed  Google Scholar 

  114. Hanson BM, et al. Young women with poor ovarian response exhibit epigenetic age acceleration based on evaluation of white blood cells using a DNA methylation-derived age prediction model. Hum Reprod. 2020;35(11):2579–88.

    CAS  PubMed  Google Scholar 

  115. Olsen KW, et al. Identification of a unique epigenetic profile in women with diminished ovarian reserve. Fertil Steril. 2021;115(3):732–41.

    CAS  PubMed  Google Scholar 

  116. Wu X, Zhang Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet. 2017;18(9):517–34.

    CAS  PubMed  Google Scholar 

  117. Liu L, et al. Tet1 deficiency leads to premature ovarian failure. Front In Cell Dev Biol. 2021;9:644135.

    Google Scholar 

  118. Kawai T, Richards JS, Shimada M. Large-scale DNA demethylation occurs in proliferating ovarian granulosa cells during mouse follicular development. Commun Biol. 2021;4(1):1334.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Chen F, et al. TET family members are integral to porcine oocyte maturation and parthenogenetic pre-implantation embryogenesis. Int J Molec Sci. 2023;24:15.

    Google Scholar 

  120. Arand J, et al. Tet enzymes are essential for early embryogenesis and completion of embryonic genome activation. EMBO Reports. 2022;23(2):e53968.

    CAS  PubMed  Google Scholar 

  121. Garg A, Seli E. Leukocyte telomere length and DNA methylome as biomarkers of ovarian reserve and embryo aneuploidy: the intricate relationship between somatic and reproductive aging. Fertil Steril. 2024;121(1):26–33.

    CAS  PubMed  Google Scholar 

  122. Zhang X-L, et al. Pnma5 is essential to the progression of meiosis in mouse oocytes through a chain of phosphorylation. Oncotarget. 2017;8(57):96809–25.

    PubMed  PubMed Central  Google Scholar 

  123. Zhang N-N, et al. Fam70A binds Wnt5a to regulate meiosis and quality of mouse oocytes. Cell Prolif. 2020;53(6):e12825.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Shi L-Y, et al. Placenta-specific 1 regulates oocyte meiosis and fertilization through furin. FASEB J. 2018;32(10):5483–94.

    CAS  PubMed  Google Scholar 

  125. Chen LJ, et al. Gm364 coordinates MIB2/DLL3/Notch2 to regulate female fertility through AKT activation. Cell Death Differ. 2022;29(2):366–80.

    CAS  PubMed  Google Scholar 

  126. Li C-J, et al. Phosphoglycerate mutase family member 5 maintains oocyte quality via mitochondrial dynamic rearrangement during aging. Aging Cell. 2022;21(2):e13546.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Tatone C, et al. Sirtuins in gamete biology and reproductive physiology: emerging roles and therapeutic potential in female and male infertility. Hum Reprod Update. 2018;24(3):267–89.

    CAS  PubMed  Google Scholar 

  128. Said RS, et al. Resveratrol inhibits inflammatory signaling implicated in ionizing radiation-induced premature ovarian failure through antagonistic crosstalk between silencing information regulator 1 (SIRT1) and poly(ADP-ribose) polymerase 1 (PARP-1). Biochem Pharmacol. 2016;103:140–50.

    CAS  PubMed  Google Scholar 

  129. Azami SH, et al. The antioxidant curcumin postpones ovarian aging in young and middle-aged mice. Reprod Fertil Dev. 2020;32(3):292–303.

    CAS  PubMed  Google Scholar 

  130. Liu J, et al. Network pharmacology and experimental validation on Yangjing Zhongyu decoction against diminished ovarian reserve. J Ethnopharmacol. 2024;318(Pt B):117023.

    CAS  PubMed  Google Scholar 

  131. Yang L, et al. Promising anti-ovarian aging herbal formulation He’s Yangchao promotes in vitro maturation of oocytes from advanced maternal age mice. J Ethnopharmacol. 2024;318(Pt A):116890.

    CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No.81960278 and No.82360303), the Intra-Hospital Funds of the First Hospital of Lanzhou University (ldyyyn2022-72), and the Excellence Program Project for students of the First Clinical Medical School of Lanzhou University (20230060173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolei Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Ma, H., Wang, J. et al. Understanding the Mechanisms of Diminished Ovarian Reserve: Insights from Genetic Variants and Regulatory Factors. Reprod. Sci. 31, 1521–1532 (2024). https://doi.org/10.1007/s43032-024-01467-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-024-01467-1

Keywords

Navigation