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Abstract
In recent years, the matrisome, a set of proteins that make up the extracellular matrix (ECM) or are closely involved in ECM 
behavior, has been shown to have great importance for characterizing and understanding disease pathogenesis and progres-
sion. The matrisome is especially critical for examining diseases characterized by extensive tissue remodeling. Endometriosis 
is characterized by the extrauterine growth of endometrial tissue, making it an ideal condition to study through the lens of 
matrisome gene expression. While large gene expression datasets have become more available and gene dysregulation in 
endometriosis has been the target of several studies, the gene expression profile of the matrisome specifically in endome-
triosis has not been well characterized. In our study, we explored four Gene Expression Omnibus (GEO) DNA microarray 
datasets containing eutopic endometrium of people with and without endometriosis. After batch correction, menstrual cycle 
phase accounted for 53% of variance and disease accounted for 23%; thus, the data were separated by menstrual cycle phase 
before performing differential expression analysis, statistical and machine learning modeling, and enrichment analysis. We 
established that matrisome gene expression alone can effectively differentiate endometriosis samples from healthy ones, 
demonstrating the potential of matrisome gene expression for diagnostic applications. Furthermore, we identified specific 
matrisome genes and gene networks whose expression can distinguish endometriosis stages I/II from III/IV. Taken together, 
these findings may aid in developing future in vitro models of disease, offer insights into novel treatment strategies, and 
advance diagnostic tools for this underserved patient population.
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Introduction

Endometriosis affects approximately 10–15% of people who 
menstruate and is characterized by the growth of ectopic 
endometrium [1–4]. This can be associated with chronic, 
sometimes debilitating, pain, infertility, and other dysfunc-
tion of reproductive organs [1, 3, 5]. While the underlying 
cause of endometriosis remains unknown, tissue remodeling 
is critical to the pathogenesis and progression of this disease 
[6, 7]. Tissue remodeling is a complex and dynamic process, 
involving both extracellular matrix (ECM) deposition as 
well as ECM degradation [8]. While individual components 

of the ECM and ECM-affiliated cytokines have been subject 
to investigation, it is crucial to recognize that the ECM itself 
along with its affiliated proteins forms a complex intercon-
nected network comprising over 1000 genes, collectively 
known as the matrisome [9]. Thus, a holistic yet targeted 
evaluation of the entire endometriosis matrisome holds the 
potential to elucidate specific microenvironmental cues 
involved in the underlying pathogenesis as well as perpetu-
ation of endometriosis.

Though endometriosis has been shown to have a strong 
association with heredity and family clustering, it is not 
hereditary in a predictable Mendelian manner [2, 4]. Tran-
scriptomics analyses, which quantify and assess gene expres-
sion in disease and healthy tissue, are well-suited for charac-
terizing gene expression in endometriosis pathophysiology. 
However, only one large-scale transcriptomic analysis has 
been performed using DNA microarrays to study endome-
triosis, assessing global gene expression and focusing on 
immune infiltration [4]. To our knowledge, no existing 
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studies have performed a targeted analysis of matrisome 
gene expression in endometriosis using large gene expres-
sion datasets of endometriosis tissue samples. Thus, the 
goal of this study was to establish the significance of the 
matrisome in characterizing endometriosis and identify key 
matrisome components which have inferential value with 
respect to the initiation of endometriosis and distinguishing 
endometriosis I/II from III/IV.

In this study, we unified publicly available whole tran-
scriptome microarrays from normal and endometriosis 
samples of eutopic endometrium. We employed a variety 
of statistical and machine learning methods to explore dys-
regulation of genes in endometriosis and identify the matri-
some genes, gene networks, gene ontology (GO) terms [10], 
and pathways [11] involved in endometriosis dynamics. We 
found that matrisome gene expression effectively stratified 
endometriosis and normal tissue and that ECM-related GO 
terms were highly enriched among differentially expressed 
matrisome genes. Additionally, we found that the menstrual 
cycle phase accounted for over a third of the matrisome gene 
expression variance; thus, we needed to separate the data by 
menstrual cycle phase before performing differential expres-
sion analysis, statistical and machine learning modeling, and 
enrichment analysis. From these approaches, we identified 
matrisome genes and gene networks with inferential sig-
nificance to separate endometriosis stages I/II from III/IV.

Materials and Methods

Data Sources and Preprocessing

All data preprocessing was done using the R programming 
language. [12]

Gene Expression Omnibus Data

The Gene Expression Omnibus (GEO) database (http://​ncbi.​
nlm.​nih.​gov/​geo/) was accessed to retrieve four datasets using 
the same search criteria, and subsequent filtration methods, 
as Poli-Neto et al. [4] The four datasets which were retrieved 
were from GSE4888 [13], GSE6364 [14], GSE7305 [15], 
and GSE51981 [16]. However, the data corresponding to 
GSE7305 were excluded from our analyses due to the sam-
ples being paired (disease and normal tissue samples taken 
from the same patient) and the tissue samples were collected 
from the ovaries. We also included an additional dataset of 
only healthy endometrium, GSE29981, that was not included 
in the original search criteria, specifically for the purpose of 
building a training set for our logistic regression classifica-
tion model. In consideration of the distinct phenotypic and 
genotypic characteristics associated with different stages of 
endometriosis, we stratified the endometriosis samples into 

two groups: endometriosis stages I–II and III–IV, respectively. 
Additionally, samples with unknown menstrual cycle phase or 
ambiguous histology readings were excluded from our analy-
ses. A summary of clinical information regarding each dataset 
is included in Supplemental Table 1. As this is an in silico 
study, the quality of sample collection cannot be assured by 
the authors, since the authors have access only to the data of 
the public repository.

Each of these datasets was made up of samples assessed 
using the Affymetrix Human Genome U133 Plus 2.0 Array 
(HG-U133 Plus 2, Affymetrix, Santa Clara, CA). [4] The 
data were then loaded and normalized via the robust multiar-
ray average method (RMA) using the Affy package [17–19]. 
Finally, the data were batch corrected using the comBat 
function from the sva package [20], using GSE4888 as the 
reference batch. This was the approach that yielded the best 
empirical results in terms of removing batch effects (along 
with batch interactions) and the most variance attribut-
able to disease condition and menstrual cycle phase. The 
weighted proportion of variance for the effects factors of 
interest was computed using principal variant component 
analysis (PVCA), which combines principal component 
analysis (PCA) and variance component analysis (VCA) to 
determine the amount of variance in the data attributable to 
specified variables [21]. The pvcaBatchAssess function from 
the pvca package was used with the parameter threshold 
assigned a value of 0.6. This function allowed us to assess 
the relative amount of variance, divided among factors of 
interest using principal components, which explained 60% 
of the variance in the data [22]. Clinical data were retrieved 
by downloading the series matrix files, loading them using 
the getGEO function from the GEOquery package [23], and 
then performing necessary data cleaning.

The Matrisome Database

The human matrisome database, compiled by Naba et al., 
was retrieved from their online repository (http://​matri​
somep​roject.​mit.​edu/​other-​resou​rces/​human-​matri​some) 
on 2020/07/21 [24]. Genes classified as “retired” were fil-
tered out, yielding a master list of 1027 genes, 964 of which 
were present in the GEO datasets. Of the genes in the com-
bined dataset, the divisions consisted of “Core matrisome” 
( n = 258 ) and “Matrisome-associated” ( n = 706 ). Matri-
some categories included: collagens, ECM glycoproteins, 
ECM regulators, ECM-affiliated proteins, proteoglycans, and 
secreted factors (Table 1).

Dimensionality Reduction

Principal component analysis (PCA) was performed using 
the prcomp function from the stats package in R [12]. PCA 
was used to explore batch and biological effects in the data.

http://ncbi.nlm.nih.gov/geo/
http://ncbi.nlm.nih.gov/geo/
http://matrisomeproject.mit.edu/other-resources/human-matrisome
http://matrisomeproject.mit.edu/other-resources/human-matrisome
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Unsupervised Analysis

Hierarchical clustering was conducted to group samples 
based on similarities in their matrisome expression, with-
out any reference to the corresponding clinical labels. The 
matrisome expression data were standardized to ensure that 
the variability in expression levels between different genes 
did not affect the clustering process. A clustermap was then 
created using a complete linkage method, which works by 
minimizing the furthest Euclidean distance between obser-
vations from different clusters. Although the clustering itself 
was unsupervised, we incorporated two sidebars alongside 
the heatmap to display the clinical condition and the phase 
of menstrual cycle associated with each sample. This was 
done to allow for a post-hoc exploration of any patterns that 
may emerge between these clinical labels and the clusters 
identified by the analysis.

Stratification of Endometriosis and Normal Tissue

A training dataset was built from GEO datasets GSE4888, 
GSE51981, and GSE29981 and the GSE6364 dataset was 
held out and used as a test set (Supplemental Table 1). 
Within each phase, elastic net logistic regression models 
were trained on the Robust Multi-array Average (RMA) 
matrisome data [25]. Elastic net regression utilizes the 
objective function JEN(�) = J(�) + �1‖�‖1 + �2‖�‖2 , where 
J(�) is a less complex loss function, and the parameters �1 
and �2 control the proportion of L1 (lasso) and L2 (ridge) 
regression penalization to use. Within each phase, these 
models were trained to classify samples as endometriosis as 
normal or endometriosis tissue. Model performance was 
measured using balanced classification accuracy [26]. This 
scoring method utilizes observation weights defined accord-
ing to wc =

n

C⋅nc
 , where wc is the weight assigned to observa-

tions from class c , n is the total number of observations, C 
is the total number of classes (factor levels of the response), 
and nc is the number of observations in class c . [27] Obser-
vation weights sum to 1, ensuring that models are penalized 
equally for bad performance in any class regardless of the 

imbalanced representation of classes. Using sequential 
model-based optimization [28], these models were opti-
mized based on 5-fold cross-validation scores. All features 
(genes) were standardized to have a mean of 0 and a standard 
deviation of 1. The scikit-learn implementation of logistic 
regression was used [27], and sequential model-based opti-
mization was performed using gp_minimize from scikit-
optimize [29]. These packages are open source and available 
for the Python programming language, which was used for 
this portion of the study.

Differential Gene Expression Analysis

Differential gene expression (DGE) analysis was conducted 
on the full set of Robust Multi-array Average (RMA) nor-
malized gene expression counts using the limma package 
in R [30]. All genes with expression units larger than (50) 
(Affy’s rma function produces results in log2 ) in at least 
25% of samples were considered sufficiently expressed. A 
permissive expression cutoff was chosen so that matrisome 
genes were filtered at similar rates in each category to genes 
overall (Supplemental Table 2). DGE analysis was then per-
formed by phase, and genes with a log fold-change of (1.5) 
and adjusted p-value less than 0.05 were considered differ-
entially expressed. Adjusted p-values were computed using 
the Benjamini-Hochberg false discovery adjustment method.

Univariable and Multivariable Statistical Analyses

Several univariate and multivariable statistical analyses were 
performed on the RMA normalized gene expression data 
(endometriosis samples only). The stage-wise DGE analysis 
was performed using all genes to allow for better estimation 
of global parameters. The other analyses were performed 
on the matrisome genes alone. False discovery rates were 
estimated for statistical tests using computed q-values [31]. 
Similar to the endometriosis versus normal tissue DGE 
analysis, the data were stratified by phase for each analysis, 
yielding separate results for each menstrual cycle phase.

Table 1   Matrisome category 
counts in master list and in 
dataset. Counts of matrisome 
genes in each matrisome 
category in the matrisome 
master list and in our dataset. Of 
the 1027 non-retired matrisome 
genes in the human matrisome 
master list, 964 were tested for 
using the Affymetrix Human 
Genome U133 Plus 2.0 Array 
chip

Division Category Master list count Dataset count

Core matrisome Collagens 44 44
Core matrisome ECM glycoproteins 195 179
Core matrisome Proteoglycans 35 35
Matrisome-associated ECM regulators 238 230
Matrisome-associated ECM-affiliated proteins 171 151
Matrisome-associated Secreted factors 344 325
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Stage‑Wise Differential Gene Expression Analysis

Differential gene expression analysis was performed between 
endometriosis samples from the two different endometriosis 
stages in the dataset, endometriosis I/II and endometriosis III/
IV. The same minimum expression threshold as the endome-
triosis versus normal DGE analysis was used. This analysis was 
performed on the set of all genes, at which point the results were 
filtered to include only matrisome genes. Differential expres-
sion was determined using the same adjusted p-value and log 
fold-change cutoffs as the endometriosis versus normal DGE 
analysis. The limma package was used for this analysis.

Point‑Biserial Correlation

Point-biserial correlation is mathematically equivalent to the 
Pearson correlation between a continuous and dichotomous 
variable [32]. Endometriosis stage was coded as an indicator 
variable, with a value of 1 corresponding endometriosis stages 
III/IV and 0 corresponding to endometriosis stages I/II. Genes 
were deemed significant if their Student asymptotic q-values 
were below the significance threshold ( q < 0.05 ). [33] Student 
asymptotic p-values were computed using the corPvalueStudent 
function from the WGCNA package and then adjusted.

Endometriosis Stage‑Predictive Penalized Logistic 
Regression

Multivariable L1 penalized logistic regression models were 
fit to the endometriosis data in each phase. The models were 
fit using the glmnet package in R [34]. The models were opti-
mized for parsimony which is done by tuning the value of � 
in the L1 penalty objective function JL1(�) = J(�) + �‖�‖1 , 
where J(�) is some simpler loss function (misclassifica-
tion rate, for example) and ‖�‖1 is the L1 norm of the model 
parameters. The models were fit using a 1-dimensional grid 
search over values of � , and the least parsimonious model 
(smallest value of � ) which scored within 1 standard error of 
the best performing model was selected for each phase. This 
was done to avoid using models which selected too few matri-
some genes, since these results were then filtered to include 
only DEMGs. The models were fit using 5-fold cross-vali-
dation using the cv.glmnet function from the glmnet package 
with arguments family set to “binomial” and type.measure set 
to “class.” Balanced class-weighting (as in the endometriosis/
normal stratification models) was used to ensure models did 
not favor performance in only the majority class.

Weighted Gene Correlation Network Analysis

Univariable and multivariable analyses assessed a gene’s inde-
pendent association with endometriosis stage or a gene’s ability 
to serve as a proxy for a set of other co-expressed genes. In 

contrast, weighted gene correlation network analysis (WGCNA) 
identified genes which, as a cluster, demonstrated a significant 
link to delineating endometriosis I/II from III/IV [33]. This was 
achieved by establishing unsigned gene co-expression modules, 
where co-expression is estimated using unsigned topological 
overlap measures [35]. Each module was then represented using 
the module’s eigengene, which was the first principal compo-
nent representation of the gene expression of all genes assigned 
to that module [33]. These eigengenes were then be correlated 
with endometriosis stage. Finally, a module’s constituent genes 
were identified as significant based on correlation tests with 
their respective eigengenes.

WGCNA was performed according to the instructions pro-
vided by the package authors [36]. First, the data were strati-
fied by phase. Then, a topological overlap measure matrix was 
constructed over the matrisome gene expression values using a 
minimum soft power threshold which yielded a scale-free topo-
logical overlap metric (TOM) greater than 0.8 [35], representing 
a gene-wise estimate of unsigned co-expression among matri-
some genes. Hierarchical clustering was then performed on this 
matrix, and modules with a correlative distance of 0.25 or less 
(i.e., module correlation of 0.75 or more) merged. The mod-
ules found using this method were then related to endometrio-
sis severity via point-biserial correlation. Matrisome genes that 
belonged to a module which was significantly correlated with 
endometriosis stage (Student asymptotic q < 0.05 ) and showed 
significant correlation with their respective module eigengenes 
(Student asymptotic p < 0.05 ) were deemed significant. All 
WGCNA was performed using R code and functions from the 
WGCNA package in R. [33]

Enrichment Analysis

Gene set and pathway enrichment analyses were performed 
using the clusterProfiler package in R. [37] For gene set 
enrichment analysis, the function enrichGO was used to find 
enriched gene ontologies (GO) among significant genes [38]. 
Subsequently, the simplify function was utilized to group 
similar GO terms and select representative terms for each 
group, thereby simplifying the interpretation of results. For 
pathway enrichment analysis, the function enrichKEGG was 
used to find KEGG pathways that were enriched among sig-
nificant genes [11]. Gene function and pathway significance 
was determined based on the q-value reported in the results 
of each function ( q < 0.05).

Results

Sources of Variance

To examine the sources of variance in our dataset, we 
used principal component analysis (PCA). Because the 
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data we used came from three different clinical studies, 
we assessed the level of variance attributable to techni-
cal differences in the data collection processes. To cor-
rect for these sources of technical variance, often called 
“batch effects,” we performed batch correction using an 
empirical Bayes method (Fig. 1). [39] The data used in our 
study consisted of tissue samples from the proliferative, 
early-secretory, and mid-secretory phases of the menstrual 
cycle from patients with and without a clinical diagnosis 
of endometriosis.

For the global gene expression data ( ngenes = 21, 407 ), 
before batch correction the first principal component cap-
tured 34% of the variance and appeared to separate samples 
mostly by disease status, whereas the second component 
captured 24% of the variance and appeared to primarily 
separate samples by study. After batch correction, the first 
component explained 49% of the variance in the data and 
clearly separated samples by disease status. The second 
component explained only 9% of the variance and seemed 
to somewhat separate samples by menstrual cycle phase 
(Fig. 1A, B). When we examined matrisome gene expres-
sion alone ( nmat.genes = 964 ), before batch correction the 
first principal component captured 28% of the variance and 
appeared to separate samples mostly by disease status, while 
the second component captured 21% of the variance and 
separated samples primarily by study. After batch correc-
tion, the first component accounted for 42% of the variance 
and separated samples by disease status, while the second 
component explained 10% of the variance and appeared to 
mostly separate samples by menstrual cycle phase (Fig. 1C, 
D). Overall, the effects of batch correction can be seen by 
comparing the clustering of samples by study number on the 
left column before clustering (Fig. 1A, C) compared to the 
clustering of samples by menstrual phase and disease status 
in the right column (Fig. 1B, D).

Principal variant component analysis (PVCA) was then 
used to reduce the gene expression data to the first principal 
components which accounted for 60% of the variance, then 
evaluate relative proportions of variance within these prin-
cipal components due to clinical study, disease status, men-
strual phase, and their interactions. PVCA was performed 
before and after batch correction for global (Fig. 1E, F) and 
matrisome (Fig. 1G, H) gene expression. Before batch cor-
rection, batch (study) and batch interaction terms accounted 
for approximately 47% of the variance in the global gene 
expression data and 36% in the matrisome gene expression 
data. After batch correction, these percentages were reduced 
to approximately 5% in both the global and matrisome gene 
expression data. We found that disease status accounted 
for the most variation in the batch corrected global expres-
sion data (42%), closely followed by menstrual cycle phase 
(37%). For the batch corrected matrisome expression data, 
menstrual cycle phase accounted for the most variation 

(53%), followed by disease status (23%). The high level of 
variance attributed to menstrual cycle phase in the matri-
some gene expression data was unsurprising, given that the 
endometrium is highly dynamic and heterogeneous between 
phases of the menstrual cycle. [13, 40]

Stratification by Menstrual Phase

The demonstration of extensive variance attributable to men-
strual cycle phase prompted us to adopt a similar approach 
to Poli-Neto et al. and stratify the data by menstrual cycle 
phase before performing our differential expression analy-
sis, statistical and machine learning modeling, and enrich-
ment analysis [4]. However, in each of these analyses, it 
became apparent that the differentially expressed and oth-
erwise significant matrisome genes in the early- and mid-
secretory phases were almost entirely subsets of those found 
to be differentially expressed or significant in the prolifera-
tive phase (Fig. 2). Furthermore, when there was overlap 
between phases, the directionality of significant matrisome 
gene influence (e.g., fold-change sign) was also virtually 
identical between phases for all analyses. Only 1 of 6961 
unique DEGs was found to be differentially expressed in 
endometriosis in an inconsistent direction between phases, 
and only 1 of 259 DEMGs later found to be significantly 
related to endometriosis stage was directionally inconsistent 
between phases (Supplemental Table 3). For this reason, we 
decided to conduct the various analyses separately within 
each phase, then perform a union operation on the results of 
the various analyses—pooling all unique genes significant in 
any phase—before conducting enrichment analyses.

Differentially Expressed Genes Between 
Endometriosis and Normal Uterine Tissue Samples

To investigate the importance of the matrisome in char-
acterizing endometriosis, we performed differential gene 
expression (DGE) analysis on the full set of genes in the 
dataset ( ngenes = 21, 407 ), comparing endometriosis samples 
( nproliferative = 35 , nearly−secretory = 24 , nmid−secretory = 37 ) to 
normal tissue samples ( nproliferative = 28 , nearly−secretory = 9 , 
nmid−secretory = 20 ), examined differential expression rates 
among matrisome genes ( nmat.genes = 964 ), and performed 
functional enrichment analysis on the full list of differen-
tially expressed genes (DEGs) to observe whether ECM-
related gene ontology (GO) terms were enriched. The DGE 
analysis was performed separately for samples in each 
phase, and 6841, 2889, and 1327 differentially expressed 
genes (DEGs) were found in the proliferative, early-secre-
tory, and mid-secretory phases, respectively (Fig. 3A and 
Table 2). Next, we filtered these results to include only the 
matrisome genes and identified 290, 96, and 49 differentially 
expressed matrisome genes (DEMGs) in the proliferative, 
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Fig. 1   Sources of variance within the data. Each clinical study is dis-
tinguished by color (GSE4888, red; GSE51981, blue; and GSE6364, 
green), each menstrual cycle phase is distinguished by shade (pro-
liferative, light gray; early-secretory, dark gray; and mid-secretory, 
black), and disease status is distinguished by shape (normal, open 
squares; endometriosis, closed circles). A Principal component anal-
ysis (PCA) of the full gene expression data ( ngenes = 21, 407 ) before 
(left) and after (right) batch correction. Percent variance explained: 
left (PC1, 33.6%; PC2, 24.3%), right (PC1, 49.4%; PC2, 9.3%). B 
PCA of the full gene expression data before (left) and after (right) 
batch correction. Percent variance explained: left (PC1, 33.6%; 
PC2, 24.3%), right (PC1, 49.4%; PC2, 9.3%). C PCA of the matri-

some gene expression data ( nmat. genes = 964 ) before (left) and after 
(right) batch correction. Percent variance explained: left (PC1, 27.5%; 
20.6%), right (PC1, 41.6%; PC2, 10.0%). D PCA of the matrisome 
gene expression data before (left) and after (right) batch correction. 
Percent variance explained: left (PC1, 27.5%; 20.6%), right (PC1, 
41.6%; PC2, 10.0%). E Principal variant component analysis (PVCA) 
of global gene expression before batch correction. For PVCA, the x
-axis corresponds to the factors of interest and their linear interac-
tion terms. F PVCA of global gene expression after batch correction. 
G PVCA of matrisome gene expression before batch correction, H 
PVCA of matrisome gene expression after batch correction
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early-secretory, and mid-secretory phases, respectively 
(Fig. 3B and Table 2). These data demonstrate that global 
gene expression and matrisome gene expression were 
equally upregulated and downregulated in endometriosis 
samples compared to healthy samples and that samples from 
the proliferative phase demonstrated the greatest amount of 
dysregulation compared to samples from the early- and mid-
secretory phases.

Next, we performed a set union of DEGs between 
phases (yielding a set of all genes which were differentially 
expressed in one or more phases) to compare the rates of 
differential expression in any phase between genes overall 
and matrisome genes. The phase-union set of DEGs con-
tained approximately 33% of the total set of genes, while the 
phase-union set of DEMGs contained approximately 31% 
of the total matrisome genes (Table 2). The phase-union 
DEMGs were then stratified by their respective matrisome 
categories, and we found that ECM glycoproteins and ECM 
regulator were differentially expressed at higher rates than 
the full set of genes. In contrast, ECM-affiliated proteins 
were differentially expressed at the same rate as the full set 
of genes, and proteoglycans, secreted factors, and collagens 
were differentially expressed at lower rates (Fig. 3C). A total 
of 6961 unique DEGs were contained in the phase-union 
DEG list while 296 unique DEMGs were contained in the 
phase-union DEMG list (Supplemental Table 4).

It was observed that both the DEGs (global gene expres-
sion) and DEMGs (matrisome gene expression) in the early- 
and mid-secretory phases were almost entirely subsets of 
those found to be differentially expressed in the proliferative 
phase. In addition, all overlapping DEGs shared by each 
phase were differentially expressed in the same direction, 
except for ATP12A, which was upregulated in proliferative 
stage samples but downregulated in mid-secretory samples. 
Due to the fact that ATP12A is not defined as a matrisome 
gene, no DEMGs which were shared by each phase had disa-
greement in differential expression direction. Furthermore, 
DEGs and DEMGs in the mid-secretory phase seemed to 
be almost entirely a subset of the DEGs and DEMGs in the 
early-secretory phase. Taken together, these data indicate 
that the maximum dysregulation between endometriosis 
and normal uterine tissue occurs in the proliferative phase. 
It also implies that the dysregulation which occurs in the 
early- and mid-secretory phases is a reduced form of the 
dysregulation which occurs in the proliferative phase. After 
making this observation, we defined our final set of DEGs 
to be this union list, which contained genes that were dif-
ferentially expressed in at least one phase of the menstrual 
cycle in tissue from patients with endometriosis compared 
to those without endometriosis across all menstrual phases. 
This approach identified the genes that were overall dysregu-
lated in endometriosis regardless of menstrual phase. This 
final list was then used to define DEGs and DEMGs, rather 
than the phase-specific results.

To further explore the importance of the matrisome in 
tissue dysregulation between endometriosis and normal 
endometrium, we performed functional enrichment analy-
sis on our final phase-union set of DEGs, defined as those 
genes that were differentially expressed in one or more 
menstrual phases. We identified several gene ontology 
(GO) terms (groups of functionally related genes found 

Fig. 2   Overlaps of significant genes between phases. Inter-phase 
overlaps within the set of A genes which were differentially expressed 
between normal and endometriosis tissue (DEGs) ( n = 6961 ), B 
matrisome genes which were differentially expressed between normal 
and endometriosis tissue (DEMGs) ( n = 296 ), and C DEMGs which 
were significant with respect to endometriosis stage ( n = 259)
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to be overrepresented among gene sets of interest using 
enrichment analysis) as enriched among our DEG list 
(Fig. 3D). [10] Enriched GO terms included functions such 
as focal adhesion, cell response to extracellular stimulus, 

and functions related to collagen and other structural ECM 
composition. These results further supported our decision 
to narrow our investigation to the matrisome gene expres-
sion specifically, instead of global gene expression.

Fig. 3   Differential gene expression within each phase and functional 
enrichment analysis of combined results. Differentially expressed 
genes in each phase among A all genes and B matrisome genes. C 
Breakdown of differentially expressed matrisome genes (union of 

results in all phases) by matrisome category. D Results of functional 
enrichment analysis for all genes, with respect to ECM-related gene 
functions. Gene counts in dataset: all genes ( ngenes = 21, 415 ) and 
matrisome genes ( nmat. genes = 964)
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Unsupervised Analysis

To gain insights into the underlying patterns of matrisome gene 
expression, we conducted hierarchical clustering, an unsuper-
vised approach that allowed samples to group based solely on 
their matrisome gene expression profiles. Clustering revealed 
distinct clusters of samples grouped by similarity in matrisome 
expression (using the Euclidean distance metric). Subsequent 
examination of the clinical labels associated with each cluster 
indicated that samples within the same cluster often shared simi-
lar clinical conditions and menstrual cycle phases, suggesting 
a correlation between matrisome gene expression and relevant 
clinical characteristics (Fig. 4A).

Machine Learning Classification Between 
Endometriosis and Normal Tissue, Using Matrisome 
Gene Expression

We then used machine learning techniques to construct 
optimized elastic net penalized logistic regression models, 

Table 2   Differentially expressed gene counts. Counts and percentages 
of differentially expressed (DE) genes among all genes ( n = 21, 415 ) 
and matrisome genes ( n = 964 ) within phases and after pool-
ing (computing union of) results for each phase. Includes counts of 
upregulated and downregulated genes for each phase and among all 
phases

Phase Total DE % DE Upregulated Downregulated

All genes (n = 21,407)
  Proliferative 6841 32% 2585 4256
  Early-secretory 2889 13% 493 2396
  Mid-secretory 1327 6% 312 1015
  Union of phases 6961 33% 2603 4357

Matrisome genes (n = 964)
  Proliferative 290 30% 179 111
  Early-secretory 96 10% 44 52
  Mid-secretory 49 5% 29 20
  Union of phases 296 31% 181 115

Fig. 4   A Heatmap and hierarchical clustering of matrisome gene 
expression levels from normal and endometriosis samples of eutopic 
endometrium (GSE4888, GSE6364, GSE51981, and GSE29981). 
Rows represent genes, and columns represent samples. Samples are 
color coded by condition (healthy, light blue; endometriosis I/II, 
soft blue; endometriosis III/IVm deep purple) and menstrual phase 
(proliferative, beige; early-secretory, light orange; late-secretory, 
dark orange). B Confusion matrix depicting the performance of the 
machine learning classification model using all of matrisome genes. 
True positives are instances where the samples with a true label of 
endometriosis was predicted to have a label of endometriosis (21/21), 

and true negatives are instances where the samples with a true label 
of healthy were predicted to have a label of healthy (16/16). C Confu-
sion matrix depicting the performance of the machine learning clas-
sification model only using the core matrisome genes. True positives 
are instances where the samples with a true label of endometriosis 
was predicted to have a label of endometriosis (19/21), true negatives 
are instances where the samples with a true label of healthy were 
predicted to have a label of healthy (16/16), and false negatives are 
instances where the samples with a true label of endometriosis was 
predicted to have a label of healthy (2/21)
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aiming to explore the potential of matrisome gene expres-
sion to stratify normal and endometriosis samples. We 
considered two scenarios: using all matrisome genes and 
using only core matrisome genes [25]. Additionally, since 
we observed that menstrual phase significantly contributed 
to the variance in matrisome gene expression, we evaluated 
model accuracy separated by menstrual phase. When using 
all matrisome genes, the logistic regression models demon-
strated exceptional performance, achieving over 95% accu-
racy in the training set (n = 179) and 100% accuracy on an 
independent test set (n = 37) (Fig. 4B). [26] However, if only 
core matrisome genes were used, 5% of the samples were 
misclassified (Fig. 4C). Taken together, these results suggest 
the expression of the full set of matrisome genes could be 
used for diagnostic purposes to distinguish endometriosis 
from normal tissue. Additionally, they reinforce the signifi-
cance of gene expression alterations within the matrisome 
in the context of endometriosis.

Stage Significance Analysis

To explore the dynamics of how the matrisome changes 
with increasing endometriosis stage, we performed several 
univariable and multivariable analyses, as well as weighted 
gene correlation network analysis (WGCNA) on the matri-
some genes present in our dataset. Matrisome genes found 
to be significant via any of these analyses were cross-refer-
enced with the DEMGs and classified using the following 
terms: DEMGs that were found to be significant via uni-
variable or multivariable analyses were termed stage model 
significant; DEMGs that were significant via WGCNA were 
deemed stage network significant; DEMGs that were both 
stage model significant and stage network significant were 
deemed stage significant.

Univariable and Multivariable Analyses to Assess 
Association with Endometriosis Stage

To investigate the relationship between individual matrisome 
genes and endometriosis stage, we performed the following 
univariable analyses: gene-wise point-biserial correlation 
tests between each matrisome gene and endometriosis stage 
[32] and differential gene expression (DGE) analysis among 
endometriosis samples comparing endometriosis I/II to III/
IV. For multivariable analysis, we performed L1 penalized 
logistic regression, classifying endometriosis samples as 
endometriosis I/II or III/IV [34, 41]. Within each menstrual 
phase, the L1 penalized logistic regression models settled 
on a similar number of DEMGs, and all models performed 
reasonably well compared to baseline values (Supplemental 
Tables 5, 6). For point-biserial correlation and stage-wise 
DGE analysis, significance was determined based on q-val-
ues. For L1 penalized logistic regression, significance was 

determined based on non-zero coefficient values. These 
analyses yielded 214, 3, and 152 unique model significant 
DEMGs among the proliferative, early-secretory, and mid-
secretory samples, respectively (Table 3). Of the 237 unique 
DEMGs identified as stage model significant within at least 
one phase, only 23 were not present among proliferative 
phase samples (Fig. 5) and only one gene, ANXA4, had con-
flicting effects between groups. ANXA4 was shown to be 
upregulated in III/IV compared to I/II endometriosis in both 
proliferative and mid-secretory samples but downregulated 
in early-secretory samples. All other overlaps among model 
significant DEMGs between phases agreed in terms of gene 
effect (point-biserial correlation sign, fold-change sign in I/
II and III/IV DGE analysis, or coefficient sign in penalized 
logistic regression model).

Weighted Gene Correlation Network Analysis

WGCNA analysis identified two significant matrisome gene 
modules in the proliferative and two significant gene mod-
ules in the mid-secretory phases, indicating the presence 
of co-expressed clusters of matrisome genes within each of 
these two phases (Fig. 6). Between these four modules, we 
identified 219 unique network significant DEMGs, with 168 
and 178 network significant DEMGs found in the prolif-
erative and mid-secretory phases, respectively. As with all 
other analyses, extensive overlap was observed between net-
work significant genes in the proliferative and mid-secretory 
phases. Gene networks were unsigned, so unlike the univari-
able and multivariable analyses, agreement in terms of effect 
direction (e.g., up or downregulation) was not assessed. 
Early-secretory phase samples were explored with WGCNA, 
but no significant modules were identified, and a reasonable 
soft threshold value (used in WGCNA to construct topo-
logical overlap measure matrix) was not achievable for these 
samples [42]. Finally, networks within phases were explored 
to identify hub genes, defined as genes with high levels of 
connectivity within their respective modules.

Stage Significant Genes

Both the model and network analyses evaluated gene signifi-
cance with respect to disease stage. Thus, results for these 
analyses were combined within each menstrual phase. As 
with our DGE analysis between diseased and normal endo-
metrium, the majority of stage significant DEMGs across all 
menstrual phases were a subset of those that were signifi-
cant within the proliferative phase. Therefore, the DEMGs 
that were both network and model significant were pooled 
between phases. Early-secretory had very few stage signifi-
cant DEMGs, which may be due to reduced statistical power, 
as there were fewer samples in the early-secretory phase 
compared to the other menstrual phases (Supplemental 
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Table 3   Stage model, stage 
network, and stage significant 
differentially expressed 
matrisome genes (DEMGs). 
Number of DEMGs found to 
be significant with respect to 
endometriosis stage among 
models, networks, or both. 
Results presented within 
phase and as union of phases. 
Union of methods is defined 
as unique genes when method 
results were pooled (point-
biserial correlation, stage-wise 
differential gene expression 
(DGE) analysis and penalized 
logistic regression)

c

Phase Point-biseral correlation Stage-wise DGE analysis L1 penalized 
logistic regres-
sion

  Proliferative 203 61 7
  Early-secretory 0 1 2
  Mid-secretory 132 57 6
  Union of phases 227 94 14

Stage model significant DEMGs (union of methods)
  Proliferative 214
  Early-secretory 3
  Mid-secretory 152
  Union of phases 237

Stage network significant DEMGs
  Phase Significant modules Significant genes
  Proliferative 2 168
  Mid-secretory 2 178
  Union of phases 4 219

Stage significant DEMGs (model or network)
  Phase Significant genes
  Proliferative 242
  Early-secretory 3
  Mid-secretory 194
  Union of phases 259

Fig. 5   Overlaps among phases with respect to stage model significant 
DEMGs and stage network significant DEMGs. Overlaps among pro-
liferative, early-secretory, and mid-secretory samples in terms of A 

stage model significant and B stage network significant differentially 
expressed matrisome genes (DEMGs)
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Table 8). Alternatively, the smaller number of stage sig-
nificant DEMGs could be due to an underlying biological 
mechanism.

Among the stage significant DEMGs were 60 secreted 
factors including chemokines CCL3, CCL5, CCL14, CCL21, 

CX3CL1, and CXCL14, interleukins IL13, IL15, and IL17C, 
growth factors NGF, PDGFA, TGFB1, TNF, and VEGFB, 65 
ECM regulators including ADAM metallopeptidase, matrix 
metallopeptidase, cathepsin, and lysyl oxidase families, 56 
glycoproteins including agrin, elastin, fibrillin, laminin, and 
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matrillin families, 41 ECM affiliated proteins including lec-
tin and mucin families, 10 genes related to collagen includ-
ing the COL4A and COL5A families, and 8 proteoglycans 
including decorin, podocin, and versican. These genes were 
again evaluated by matrisome category, and the relative pro-
portions of genes that were differentially expressed only, 
stage significant and differentially expressed, or stage sig-
nificant only were visualized for each matrisome category 
(Fig. 7).

Functional Enrichment and Pathway Analyses

Among stage-significant DEMGs, gene ontology (GO) terms 
such as extracellular matrix, extracellular structure, and 
external encapsulating structure organization were highly 
enriched due to dysregulation of ADAM and ADAMTS 
family genes, collagens, laminins, matrix metallopeptidases, 
and others (Fig. 8A). Basement membrane, cytokine activ-
ity, growth factor activity, and glycosaminoglycan binding 
were also significantly enriched stage significant DEMGs 
(Fig. 8A). The Kyoto Encyclopedia of Genes and Genomes 
(KEGG) is a knowledge base which connects established 
genomic information with high order functional behavior 
among genes, defining pathways which describe critical 
cellular processes [11]. Pathways that were significantly 
enriched among stage significant DEMGs included ECM-
receptor interaction, cytokine–cytokine receptor interaction, 
PI3K-Akt signaling, focal adhesion, complement and coag-
ulation cascades, protein digestion and absorption, TGF-β 
signaling, lysosome, AGE-RAGE signaling, MAPK signal-
ing, Wnt signaling, and axon guidance (Fig. 8B).

We then analyzed gene expression from endometriosis I/
II and III/IV samples in the proliferative phase, focusing on 
genes in the top five significantly enriched KEGG pathways: 
(1) ECM-receptor interaction, (2) cytokine–cytokine recep-
tor interaction, (3) PI3K-Akt signaling pathway, (4) focal 
adhesion, and (5) protein digestion and absorption. Interest-
ingly, among the 49 genes involved in these pathways, all 
but one exhibited greater dysregulation compared to healthy 

samples in endometriosis I/II compared to endometriosis 
III/IV. Upon closer examination of the genes upregulated 
in endometriosis compared to healthy samples, 28 genes 
had statistically significant increased expression in endo-
metriosis I/II compared to III/IV, while 4 genes followed this 
trend but were not statistically significant (Fig. 8C). Exam-
ining the genes that were downregulated in endometriosis 
compared to healthy samples, 13 genes had statistically 
significant decreased expression in endometriosis I/II com-
pared to III/IV, while 3 genes followed this trend but were 
not statistically significant (Fig. 8D). These patterns were 
consistent across a broader analysis of all stage significant 
DEMGs. Specifically, of the 259 stage significant DEMGs, 
239 exhibited this same trend of greater dysregulation in 
endometriosis I/II compared to III/IV, with only 3 genes 
being more dysregulated in the endometriosis III/IV samples 
compared to the endometriosis I/II samples. Furthermore, 
when separate DGE analyses were performed of endome-
triosis I/II compared to healthy samples and endometriosis 
III/IV compared to healthy samples, we found that only 7 
genes were exclusively upregulated in endometriosis I/II and 
not III/IV and only 10 genes were exclusively downregu-
lated in endometriosis I/II and not III/IV. This trend further 
underscored the observation that the matrisome genes were 
notably more dysregulated in the endometriosis I/II samples 
compared to the endometriosis III/IV samples.

Discussion

In summary, we analyzed the relationship between matri-
some gene expression and the presence and stage of endo-
metriosis. First, we identified genes that were differentially 
expressed between endometriosis and normal tissue and 
established that ECM-related GO terms were significantly 
enriched among these genes. Next, we demonstrated that 
machine learning models could accurately distinguish 
between normal and endometriosis tissue using matrisome 
gene expression data alone. We then identified matrisome 
genes and gene networks that had inferential significance 
to delineate endometriosis stages I/II from III/IV and used 
these results to identify dysregulated pathways and gene 
ontology terms.

The endometrium is a highly dynamic tissue, necessitat-
ing separate analysis of samples from different menstrual 
cycle phases. Our results provide valuable insights into the 
potential significance of the proliferative phase in study-
ing endometriosis. Notably, we observed that dysregula-
tion of matrisome genes in the early- and mid-secretory 
phases appear to be a subset of the dysregulation observed 
in the proliferative phase. The proliferative phase samples 
exhibited the highest number of differentially expressed 
genes, both overall and within the matrisome gene group. 

Fig. 6   Matrisome gene network modules. Differentially expressed 
matrisome genes (DEMGs) whose modules, found using weighted 
gene correlation network analysis (WGCNA), were significantly cor-
related with endometriosis stage in the A proliferative and B mid-
secretory phases. Module genes were filtered, scaled, and shaded 
based on connectivity as compared to the connectivity of their mod-
ule’s hub gene, the most connected DEMG in the module. Module 
DEMGs which were below the 30th percentile in terms of connec-
tivity are not pictured, but were utilized in our analyses. Module 
DEMGs which were in the 90th percentile of connectivity are shaded 
darker than those below the 90th percentile. Hub genes are shaded 
darkest. Connectivity was determined based on the row-wise (gene-
wise) sum of a given module’s adjacency matrix. Connectivity is rela-
tive to each module within each cohort, so node sizes cannot be com-
pared between modules within the same or different cohorts

◂
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This observation aligns with the proliferative phase’s role 
in increased endometrial growth and repair, making it 
inherently relevant to the matrix remodeling associated 

with endometriosis. Consequently, the proliferative phase 
could present an opportune time for conducting protein or 
gene expression-based analysis on tissue from people with 

Fig. 7   Matrisome category differential expression and stage signifi-
cance breakdown. Visualization of the overlap between matrisome 
genes which are differentially expressed (DE) in endometriosis ver-
sus normal tissue and matrisome genes which have inferential signifi-

cance with respect to endometriosis stage. The green area (overlap 
between DE and stage significant matrisome genes) represents the 
stage significant differentially expressed matrisome genes which were 
the subject of a large portion of our analysis

Fig. 8   Functional enrichment and pathway analysis. A Gene ontol-
ogy (GO) functional enrichment of stage-significant differentially 
expressed matrisome genes (DEMGs). Value of −(q) > 1.3 indi-
cates significance ( q < 0.05 ). B KEGG pathway analysis results of 
stage-significant DEMGs. Value of −(q) > 1.3 indicates significance 
( q < 0.05 ). C Gene expression of DEMGs within the top five sig-
nificantly enriched KEGG pathways that are upregulated in endome-
triosis compared to healthy samples. Data are from endometriosis I/

II and III/IV samples in the proliferative phase. N = 12 proliferative 
endometriosis stage I/II, N = 23 proliferative endometriosis stage III/
IV; *p < 0.05 by t-test. D Gene expression of DEMGs within the top 
five significantly enriched KEGG pathways that are downregulated in 
endometriosis compared to healthy samples. Data are from endome-
triosis I/II and III/IV samples in the proliferative phase. N = 12 pro-
liferative endometriosis stage I/II, N = 23 proliferative endometriosis 
stage III/IV; *p < 0.05 by t-test
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endometriosis. Furthermore, our findings suggest that dys-
regulation of matrisome genes in endometrial tissue from 
people with endometriosis compared to those without could 
be used for diagnostic purposes to distinguish endometriosis 
from normal tissue.

Our work confirmed and consolidated previous findings 
on the dysregulation of matrisome genes and pathways in 
endometriosis. For example, similar to previous bioinfor-
matics studies of endometriosis, we found that ECM-recep-
tor interactions, cytokine–cytokine receptor interactions, 
immune–stromal cell interactions, coagulation cascades, 
and TGF-β signaling were dysregulated in endometriosis 
tissue compared to healthy endometrium [7, 43–46]. We also 
found that inflammatory and neurotransmission cytokines 
and pathways were correlatively dysregulated, which is in 
line with studies that have investigated neuroinflammation 
in endometriosis patients [47, 48]. The PI3K-Akt signaling 
pathway was significantly enriched in endometriosis samples 
and inferentially significant for endometriosis stage. Upregu-
lation of PI3K-Akt has been reported in animal models of 
endometriosis as well as eutopic endometrium samples from 
people with endometriosis. [49, 50] The AGE-RAGE was 
also dysregulated and significant for endometriosis stage, 
which has been linked to endometriosis pathogenesis as well 
as oxidative stress, inflammation, apoptosis, and angiogene-
sis [51]. Lastly, our work confirmed that both the MAPK and 
Wnt signaling pathways are highly dysregulated in endome-
triosis, which have been implicated in endometriosis pathol-
ogy through in vitro experiments. [52, 53]

In an effort to better understand the differences between 
samples from different endometriosis stages, we observed 
a surprising trend: the dysregulation of matrisome gene 
expression was more pronounced in endometriosis I/II 
samples compared to endometriosis III/IV samples. This 
was true for 93% of all stage significant DEMGs and 84% 
of stage significant DEMGs in the top five significantly 
enriched KEGG pathways. To our knowledge, we are the 
first to make this observation, which is the opposite of what 
we anticipated. Future work could expand on this finding.

While combining results from different phases for enrich-
ment analysis was justifiable given the extensive inter-phase 
overlaps observed, this may obfuscate more granular char-
acteristics of each phase. Additionally, our analyses were 
limited to only eutopic samples of normal and endometrio-
sis endometrium, thus relying on the retrograde menstrua-
tion theory of endometriosis origins [1]. This constraint 
allowed us to control for variation attributable to the tis-
sue of origin but prevented us from considering matrisome 
characteristics of ectopic endometrium. As endometriosis 
datasets grow in size and tissue diversity, matrisome expres-
sion analysis of ectopic endometrium could be an area of 
interest for future work. Future work could also attempt to 
deconvolve the activity of specific cell types involved in the 

matrisome dysregulation we observed, similar to the use of 
CIBERSORT and xCell in the work by Poli-Neto [4, 54, 55]. 
Finally, we only investigated matrisome genes that were dys-
regulated between normal and endometriosis tissue overall 
when assessing genes that held significance for delineating 
endometriosis I/II from III/IV. Future work could expand 
on our unfiltered analysis and explore results for matrisome 
genes which were stage significant without cross-referencing 
for differential expression in disease overall.

Additionally, we acknowledge several potential limita-
tions inherent in our analytical approach. The use of machine 
learning models involves adjusting multiple hyperparame-
ters, which could introduce bias and potentially reduce the 
model’s ability to generalize to new datasets. Although we 
have carefully optimized these hyperparameters to obtain 
reliable results, it is essential to be aware of the potential 
influence on the findings. Moreover, the reliance on tradi-
tional statistical cutoffs, such as p < 0.05, although widely 
accepted, may be considered somewhat arbitrary and could 
be subject to debate. Results that hover around these cutoffs 
warrant careful interpretation, as different threshold choices 
could lead to varying conclusions. We have exercised cau-
tion in interpreting our results and have taken into account 
the implications of the selected cutoffs. These limitations do 
not diminish the value of our study; rather, they underscore 
the complexities inherent in such analyses and pave the way 
for future research and potential refinement of our under-
standing. By being open about these potential biases and 
limitations, we aim to encourage further investigation and 
discussion within the scientific community. The considera-
tion of these factors will allow readers to interpret our results 
with full awareness of possible future, potentially divergent, 
interpretations.

This work builds upon our previous work that used a 
similar approach to analyze the relationships between matri-
some gene expression and gynecological cancers [56]. This 
analysis pipeline represents a clear and consolidated appli-
cation of many of the most influential and well-established 
methods for analyzing transcriptional data and machine 
learning methods to evaluate the significance of matrisome 
genes and gene networks in the context of disease dynamics. 
This provides individuals with expertise in ECM biology or 
tissue engineering but little expertise in computer science 
with an overview of how to analyze their datasets and iden-
tify matrisome components of interest for their applications.

Overall, the work presented here is one of the most com-
prehensive omics analyses of endometriosis data currently 
available, and to our knowledge, the only such study which 
focuses on exploring matrisome dysregulation of endome-
triosis. Our results reinforce and expand upon previous find-
ings related to gene expression dysregulation in endometrio-
sis and hold significant value for future drug discovery and 
tissue engineering research focused on endometriosis.
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