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Abstract
There are approximately 5 million pregnancies per year in the USA, with 1 million ending in miscarriage (a loss occurring 
prior to 20 weeks of gestation) and over 20,000 ending in stillbirth at or beyond 20 weeks of gestation. As many as 50% 
of these losses are unexplained. Our objective was to evaluate the effect of expanding the placental pathology diagnostic 
categories to include the explicit categories of (1) dysmorphic chorionic villi and (2) small placenta in examining previ-
ously unexplained losses. Using a clinical database of 1256 previously unexplained losses at 6–43 weeks of gestation, the 
most prevalent abnormality associated with each loss was determined through examination of its placental pathology slides. 
Of 1256 cases analyzed from 922 patients, there were 878 (69.9%) miscarriages and 378 (30.1%) antepartum stillbirths. 
We determined the pathologic diagnoses for 1150/1256 (91.6%) of the entire series, 777/878 (88.5%) of the miscarriages 
(< 20 weeks’ gestation), and 373/378 (98.7%) of the stillbirths (≥ 20 weeks’ gestation). The most common pathologic fea-
ture observed in unexplained miscarriages was dysmorphic chorionic villi (757 cases; 86.2%), a marker associated with 
genetic abnormalities. The most common pathologic feature observed in unexplained stillbirths was a small placenta (128 
cases; 33.9%). Our classification system reinforced the utility of placental examination for elucidating potential mechanisms 
behind pregnancy loss. The improved rate of diagnosis appeared to be the result of filling a gap in previous pregnancy loss 
classification systems via inclusion of the categories of dysmorphic chorionic villi and small placenta.
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Introduction

Miscarriage rates based on life table analysis reveal that the 
cumulative risk of pregnancy loss between 5 and 20 weeks 
of gestation ranges between 11 and 22% [1]. Although preg-
nancy loss rates decrease after 20 weeks of gestation, there 
are approximately 2 million stillbirths globally per year [2], 
with over 20,000 losses occurring annually in the USA [3, 
4]. Up to 60–70% of miscarriages are caused by aneuploi-
dies [5–7], and although many of these cases were histori-
cally classified as unexplained, recent detailed studies have 

steadily increased the genetic fraction [8–10]. Despite these 
advances, the pressing clinical issue remains identifying 
the cause of the loss and employing methods of preventing 
future losses when possible [11–14].

Current pregnancy loss classification systems require 
improved consistency to more accurately determine the 
potential causes of each pregnancy loss [11, 15]. A 2009 
systemic review found a large variability in the rates of unex-
plained stillbirths when various classification systems were 
applied to the same cohort of stillbirths, ranging from 9.5 
to 50.4% [15]. Consistent with these findings, the Centers 
for Disease Control and Prevention’s 2015–2017 Cause of 
Fetal Death report found that the most frequent cause for 
fetal death was “Unspecified.” [16].

The key may be the placenta, as placental abnormali-
ties are commonly detected in adverse pregnancy outcomes 
[11, 17–20], and have been associated with potentially 
preventable types of losses [21–23]. One systemic review 
reported that up to 65% of stillbirths are attributable to 
placental abnormalities [24]. However, absent in these 
abovementioned classification systems are the categories 
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of dysmorphic chorionic villi, represented by trophoblast 
inclusions [20, 25–37], and the consistent inclusion of the 
category of a small placenta, which is clearly associated with 
pregnancy loss [38–41]. We thus hypothesized that expand-
ing the placental pathology diagnostic categories to include 
the two explicit categories of dysmorphic chorionic villi and 
small placenta in examining previously unexplained losses 
could decrease the number of cases that remained “Unspeci-
fied” [16].

Materials and Methods

Cases

A case series of 1527 singleton pregnancies that ended in 
loss were identified from our tertiary-care consult service. 
Cases were excluded if the cause of loss could be elucidated 
from the clinical records alone, such as the presence of ane-
uploidies. Available demographic, clinical data, and gross 
description were abstracted from the clinical records when 
submitted with the consult request. Hematoxylin and eosin 
placental slides (no autopsy slides) were reviewed by the 
senior author (HJK). The analysis of this retrospective case 
series was approved by the Yale University Human Research 
Protection Program Institutional Review Board (protocol ID 
2000029781).

Excluded Cases

Cases with missing pathology slides, or an absence or insuf-
ficient number (fewer than five cross sections) of chorionic 
villi in the placental sample (Fig. 1) were excluded. The sec-
ond exclusion criterion was an inability to date the clinical 
gestational age (GA), determined by the patient’s last men-
strual period (LMP). In the absence of an LMP, the GA was 
approximated by chorionic villus histologic criteria [42–44]. 
The remaining cases in which gestational age could not be 
reliably estimated were excluded from further analysis. All 
subsequent references to GA are related to LMP dating.

Pathologic Evaluation

The placental pathology of included cases was re-reviewed 
following the Amsterdam Placental Workshop Group Con-
sensus Statement [45], with the following modifications. 
This statement does not include the diagnostic categories 
of dysmorphic chorionic villi, trophoblast inclusions (TIs), 
and/or invaginations (Fig. 2). TIs were first described by 
Boyd and Hamilton in 1964 [46], and later linked specifi-
cally to placentas from triploid losses in 1969 [47, 48]. 
Over time other investigators found that TIs were not a 
specific marker of triploidy but rather were seen in a wide 

range of karyotypic and non-karyotypic genetic abnormali-
ties [25, 27–30, 49, 50], and adverse pregnancy outcomes, 
including stillbirth [20]. Importantly, the frequency of TIs 
in normal control placentas is very low [51–53]. Therefore, 
we added dysmorphic chorionic villi (not to be confused 
with villous dysmaturity [45]) as a diagnostic category, 
defined as identification of at least one TI and/or multiple 
invaginations in the examined slides. Additionally, based 
on normative curves developed by Pinar et al. [54], we 
added the explicit category of small placenta, defined as 
fixed trimmed disk weight below the 10th percentile for 
cases ≥ 20 weeks. Values below the 10th percentile were 
mathematically extrapolated from the primary Pinar data.

Identifying a nonacute cord accident required evidence 
of cord compression, as manifested by (1) the presence of 
squamous metaplasia [55–57] on the umbilical cord sur-
face (Fig. 3A); (2) fetal hypoxia defined as an abnormal 
increase in fetal nucleated RBCs [58]; (3) and thrombosis 
within the fetal circulation [59]. A loss was only identified 
as being caused by an infection when a fetal inflammatory 
response was observed, evidenced by either fetal neutrophil 
migration through the fetal chorionic plate vessels and/or 
through the umbilical cord vessels (funisitis) (Fig. 3B) [60]. 
A maternal inflammatory response alone, as evidenced by 
maternal neutrophils migrating into and through either the 
chorionic plate or external membranes, was not sufficient 
to identify a loss as being caused by an infection. Mater-
nal immunologic rejection was identified when significant 
numbers of maternal T-cells infiltrated the chorionic villi 
(chronic villitis, Fig. 3C) [61–64], or monocytes filled the 
intervillous space (chronic histiocytic intervillositis; CHI) 
[65–67]. Abruption occurred when a clear, well-developed 
fibrin clot was adherent to the maternal surface of the pla-
centa [68]. Fetal maternal hemorrhage was identified when 
intervillous fibrin forming layered lines of Zahn (indicative 
of blood clot formation in flowing blood [69]) was admixed 
with blood containing nucleated red blood cells (indicative 
of a fetal bleeding source) (Fig. 3E) [70, 71]. In contrast, 
massive perivillous fibrin (a manifestation of maternal inter-
villous blood thrombosis [72–74]) was identified when the 
intervillous space was largely filled with fibrin (Fig. 3F).

Classification System

After pathologic examination, we identified the most preva-
lent abnormality associated with the loss according to the 
following classification system. First, any clear and marked 
case of abruption, cord accident, or fetal bleed was assigned. 
Next, we identified all cases with evidence of thrombosis or 
fetal inflammatory response.

After losses associated with the above five abnormali-
ties were identified, the remaining cases with a placental 
weight < 10th percentile for the corresponding gestational age 
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were categorized as a small placenta and sorted into four etio-
logic sub-categories: small placenta with evidence of mater-
nal immunologic rejection, small placenta with dysmorphic 
chorionic villi, small placenta with evidence of uteroplacental 

insufficiency (evidenced by findings of increased syncytial 
knots and accelerated maturation of the chorionic villi), or 
small placenta with no other pathologic findings.

Fig. 1  Flowchart demonstrating the selection and exclusion criteria of the eligible cases
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Next, remaining cases with indication of maternal immu-
nologic rejection were classified. Cases that showed dys-
morphic chorionic villi with no other etiology were then 
assigned. The remaining “other” defined abnormalities 
included viral stigmata revealed on pathologic examination 

[75, 76], uteroplacental insufficiency without a concomi-
tantly small placenta [77], maternal and/or fetal sickle cell 
disease (Fig.  3D) [78], premature inappropriate mater-
nal perfusion prior to 8 weeks of gestation [79], complete 
mole [27], and severe intraamniotic fluid infection without 

Fig. 2  Trophoblast invaginations and inclusions (TIs). A Chori-
onic villi from a 6-week loss revealed both a trophoblast inclusion 
(TI) (arrow) and invagination (green asterisk), with surrounding 
cytotrophoblasts (black arrowheads). Intervillous space (I) and vil-
lus core (V). B Trophoblast invagination (arrow) in a villus from a 
7-week loss. C Trophoblast invagination (green arrowheads) forming 
a TI (arrow) with surrounding cytotrophoblasts (black arrowheads). 

D Cross section of a large TI (arrow) surrounded by cytotrophoblasts 
(black arrowheads) in a 14-week villus. E Multiple TIs (arrows) with 
surrounding cytotrophoblasts (black arrowheads) in an 18-week vil-
lus. F Trophoblast invagination (green arrowheads) forming a TI 
(arrow) with surrounding cytotrophoblasts (black arrowheads). Mag-
nification bars all represent 50  μM. Panels B–E are all at the same 
magnification
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Fig. 3  Select placental pathology findings in pregnancy losses. A 
Squamous metaplasia of the umbilical cord surface epithelium (black 
arrowheads) confirms compression in this 39-week gestation. Com-
pare to the normal umbilical cord surface epithelium (green arrow-
heads) in the inset. Wharton’s jelly (W). Magnification bar = 50 μM. 
B Severe fetal inflammatory response observed as a large wave of 
neutrophils (green asterisks) migrating through and into the Whar-
ton’s jelly (W) of a 34-week gestation umbilical vein. Magnification 
bar = 100  μM. Inset reveals individual neutrophils (black arrow-
heads). Magnification bar = 50 μM. C Maternal T-cells (green aster-
isks) infiltrating into a 19-week chorionic villus (V). Magnification 

bar = 50  μM. D Sickled erythrocytes observed in both the fetal (F) 
(black arrowheads) and maternal (M) circulations (green arrowheads) 
in a 36-week gestation. Magnification bars = 50 μM. E Fetal maternal 
hemorrhage evidenced by a large area of intervillous thrombosis with 
characteristic regions of fibrin (F) and lines of Zahn (Z). Magnifica-
tion bar = 100 μM. Inset reveals a nucleated fetal erythrocyte (black 
arrowhead). Magnification bar = 25 μM. F Villi (V) from a 16-week 
gestation are totally enmeshed in intervillous fibrin (referred to as 
massive perivillous fibrin)—a result of maternal intervillous blood 
thrombosis (I). Detached villus trophoblasts (black arrowheads) can 
be seen migrating through the fibrin. Magnification bar = 50 μM
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apparent fetal inflammatory responses [80]. Cases revealing 
no pathologic findings remained unexplained.

Statistical Analysis

We displayed the distribution of pregnancy losses across 
gestational age and associated abnormalities using kernel 
density estimation [81, 82]. This smoothed version of a his-
togram that replaces each individual data point is replaced 
with a Gaussian and the total density plot is the sum of 
all such Gaussians. For each individual category, all cor-
responding gestational ages were used to create a density 
estimate of that associated abnormality. Then, to account for 
how some abnormalities occur more frequently than others, 
we multiplied the density of each cause by the proportion of 
cases with that associated abnormality.

To analyze the frequencies of small and large placentas 
in our series, we converted placental weight percentiles to 
z-scores, allowing us to visualize this loss cohort against the 
standard z-score distribution of placentas from normal term 
or uncomplicated preterm deliveries [54].

We conducted an analysis of patients with multiple losses 
to investigate whether their associated abnormalities were cor-
related. More precisely, the null hypothesis to be tested was that 
the abnormality identified in the second loss was not related 
to that of the first loss. We tested this against the alternative 
hypothesis that the abnormality identified in the second loss 
was the same as that of the first. To perform this hypothesis 
test, we used a permutation test [83]. Specifically, we randomly 
shuffled the order of all second losses and calculated what pro-
portion of them matched the findings in the unshuffled first loss 
causes. Repeating this 500,000 times via computer algorithm 
gave an estimate of the distribution for the proportion of match-
ing abnormalities when the null hypothesis was true.

Statistical analysis was performed using R version 4.0.4 (R 
Foundation for Statistical Computing, Vienna, Austria) and 
the Python packages of Scikit-learn [84] and Matplotlib [85].

Results

Of the original 1527 cases, 12 cases were excluded due to 
an absence of any placental pathology slides (Fig. 1). Two 
hundred twenty-one cases could not be classified due to 
absence (n = 99) or lack of (n = 122) chorionic villi in the 
placental sample. We estimated the gestational ages of 178 
losses. Including these 178 cases did not lead to any visu-
ally identifiable change in the violin plot distributions of 
gestational age for any category of pregnancy loss (Fig. 4). 
Thirty-eight cases were excluded due to an inability to date 
the GA at loss by any means. The demographics of the 
final case series are presented in Table 1.

Of the 1256 cases analyzed from 922 patients, there were 
878 (69.9%) miscarriages and 378 (30.1%) antepartum still-
births. The average maternal age of these cases at delivery 
was 33.7 ± 4.8 years (range 14.8 to 48.3 years). A total of 
102 cases had no maternal age at delivery in the clinical 
record. Most pregnancy losses occurred in the first trimester 
(44.8%) as compared to the second (35.0%) and third trimes-
ters (20.2%), as defined by American College of Obstetri-
cians and Gynecologists (ACOG) criteria [86].

The tabulation of percentages of each type of abnor-
mality following the order of our classification system is 
displayed in Table 2, and a graphical density plot of this 
data is presented in Fig. 5. Abnormalities were identified in 

Fig. 4  Violin plot of pregnancy pathologies with and without esti-
mated gestational age (GA) cases. The frequencies of the different 
pathologies remained similar whether cases with estimated GA were 
included or not in the GA distributions

Table 1  Case series demographics

Characteristic Count (%)

Maternal age
  < 20 years 10 (0.8%)
  20– < 30 years 210 (17%)
  30– < 40 years 841 (67%)
  >  = 40 years 93 (7.4%)
  Data missing 102 (8.1%)

Maternal BMI
  Underweight (< 18 kg/m2) 11 (0.9%)
  Normal (18– < 25 kg/m2) 498 (40%)
  Overweight (25– < 30 kg/m2) 205 (16%)
  Obese (> = 30 mg/m2) 140 (11%)
  Data missing 402 (32%)

Sex of fetus
  Male 235 (19%)
  Female 212 (17%)
  Data missing 809 (65%)
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Table 2  Placental pathologies identified (n = 1256)

Pathologic
Finding

Subdivisiona Number (%) of 
Miscarriages

Number (%) 
of Stillbirths

Number (%) 
of Total 

Abruption 0 15 (4.0%) 15 (1.2%)
Cord Accident 1 (0.1%) 57 (15.1%) 58 (4.6%)
Fetal Bleed 0 13 (3.4%) 13 (1.0%)
Thrombotic 11 (1.3%) 2 (0.5%) 13 (1.0%)
Infection 1 (0.1%) 22 (5.8%) 23 (1.8%)
Small Placenta n/ab 128 (33.9%) 128 (10.2%)

Due to dysmorphic 
chorionic villi

80 (62.5%) 80 (62.5%)

Due to uteroplacental 
insufficiency

26 (20.3%) 26 (20.3%)

Due to maternal 
immunologic rejection

16 (12.5%) 16 (12.5%) 

No additional findings 6 (4.7%) 6 (4.7%) 
Maternal 
Immunologic 
Rejection

5 (0.6%) 9 (2.4%) 14 (1.1%)

Dysmorphic 
chorionic villi

757 (86.2%) 116 (30.7%) 873 (69.5%)

Inclusions 535 (70.7%) 109 (94.0%) 644 (73.8%)
Invaginations 222 (29.3%) 7 (6.0%) 229 (26.2%)

Other 2 (0.3%) 11 (2.9%) 13 (1.0%)
Complete Mole 1 (50%) 0 1 (7.7%)
Intraamniotic Fluid 
Infection

0 4 (36.4%) 4 (30.8%)

Premature 
Inappropriate 
Maternal Perfusion

1 (50%) 0 1 (7.7%)

Sickle Cell 0 1 (9.1%) 1 (7.7%)
Uteroplacental 
Insufficiency

0 2 (18.2%) 2 (15.4%)

Viral - Herpes 0 1 (9.1%) 1 (7.7%)
Viral – Parvovirus B19 0 3 (27.3%) 3 (23.1%)

No Pathology 101 (11.5%) 5 (1.3%) 106 (8.4%)

Total 878 (100%) 378 (100%) 1,256 (100%)
a Subdivision percentiles were calculated as fractions of the cases in the entire subdivision.
b Placental weight percentiles are not routinely defined for miscarriages.
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777/878 (88.5%) of miscarriages (losses prior to 20 weeks 
of gestation). Seven hundred fifty-seven out of 878 (86.2%) 
of miscarriages were marked by dysmorphic chorionic 
villi (Fig. 2), while 111/878 (11.5%) revealed no patho-
logic findings. In contrast, abnormalities were identified in 
373/378 (98.7%) of analyzed stillbirths. The most prevalent 

abnormalities associated with our 378 cases of antepartum 
stillbirth were small placenta (128, 33.9%), dysmorphic cho-
rionic villi (116, 30.7%), and cord accidents (57, 15.1%) 
(Fig. 6). Of the 873 total cases of losses with dysmorphic 
chorionic villi, 644 (73.8%) cases showed TIs, while 229 
(26.2%) showed only trophoblast invaginations.

Fig. 5  Density plot of pregnancy loss pathologies from 6 to 43 weeks 
of gestation. Hatched edges represent mathematical extrapolations 
of the density plot beyond the primary data. The vertical line at 

20 weeks represents the demarcation between miscarriages and still-
births. Mat. Immun. Rej. = maternal immunologic rejection

Fig. 6  Stacked bar charts of placental pathologies in pregnancy losses. All cases (left bar); miscarriages and stillbirths (middle pair); by trimes-
ter (right three bars). Mat. Immun. Rej. = maternal immunologic rejection
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Placental weights were available in 355/378 (93.9%) of 
stillbirth cases. Converting percentiles to z-scores enabled 
the visualization of this case series against the standard 

z-score distribution of placentas from uncomplicated term 
or preterm livebirths [54]. The normal z-score distribution 
of placental weights (pink curve, upper panel Fig. 7) differed 

Fig. 7  Normal versus loss case series weight distributions. (Upper) 
Normal placenta z-score weight distribution (pink line) compared 
to this loss case series (green columns). Tenth and 90th percentiles 
(black dashed lines) are indicated for reference. (Lower) q-q plot to 

illustrate excess number of small (47 cases) and large (20 cases) pla-
centas (green line) compared to the normal placenta z-score weight 
distribution (pink dashed line). Two large outliers with z-scores of + 9 
and + 16.6 were not plotted
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from our cases’ stillbirth placental weight distribution (green 
bars, upper panel Fig. 7), as 47/355 (13.2%) stillbirth cases 
fell below the normal distribution and 20/355 (5.6%) above 
(q-q plot, lower panel Fig. 7). The probability that the still-
births in this case series would demonstrate this degree of 
dispersion beyond the normal distribution by chance was 
less than 2 ×  10−16.

Within the group of 128 stillbirths with a small placenta, 
80 (62.5%) were associated with dysmorphic chorionic 
villi, 26 (20.3%) with uteroplacental insufficiency, and 16 
(12.5%) with maternal immunologic rejection (Fig. 8). Six 
cases (4.7%) demonstrated no additional pathologic findings. 
One hundred nine out of 128 (85%) of stillbirths with a small 
placenta had placental weights that were at or less than the 
1st percentile. Within the group of 44 stillbirths with a large 
placenta (trimmed fixed disk weight greater than the 90th 
percentile), 20 (45.5%) were associated with dysmorphic 
chorionic villi, while the remainder were associated other 
miscellaneous abnormalities.

Compared to losses occurring in the first two trimesters, 
third trimester stillbirths demonstrated increasingly varied 
abnormalities, with the highest percentage of cases with 
small placentas (36.2%) and cord accidents (21.2%) (Fig. 6). 
The median gestational age of loss for each pathologic find-
ing is displayed in Fig. 9. Thrombotic and dysmorphic cho-
rionic villi were the most prevalent associated findings in 
early pregnancy losses, with medians at 9.3 and 13.0 weeks, 
respectively. Most other abnormalities were seen later in ges-
tation, such as small placenta at 33.5 weeks, maternal immu-
nologic rejection at 35.0 weeks, abruptions at 35.4 weeks, 
fetal maternal hemorrhages at 36.9 weeks, cord accidents at 
37.2 weeks, and infections at 39.5 weeks.

Two hundred thirty-one out of 922 (25%) patients had 
more than one loss included in the case series, ranging 

between 2 (16.8%) and 6 (0.2%) losses. One hundred ninety-
one out of 231 patients (82.7%) with more than one loss had 
two or more losses with the same pathologic findings. The 
most prevalent recurrent findings were dysmorphic chori-
onic villi (94.8%), followed by no abnormalities (3.14%).

Discussion

Utilizing the presented classification system, we identified 
a pathologic finding in 91.6% of pregnancy losses ranging 
between 6 and 43 weeks of gestation and 98.7% of stillbirths, 
underscoring the utility of placental pathologic examination 
for elucidating potential mechanisms underlying pregnancy 
loss. As placental pathological examination is already the rec-
ommended standard of care following stillbirth [23, 87–92], 
our expanded methodology may aid clinicians in analyzing 
previously unexplained or challenging cases.

Our study’s finding that a mechanism for almost 99% 
of stillbirths could be elucidated by placental examination 
is a significant improvement compared to other studies. 
Blythe et al. examined 258 clinically unexplained still-
births (CUS) using ReCoDe criteria, finding that 60.5% 
of CUS were due to “placental insufficiency” and/or fetal 
growth restriction [90]. Specifically, their results showed 
that ReCoDe category C4 (placenta, “other placental 
insufficiency”) and C5 (placenta, “other”) were present in 
146 (56.5%) cases. Importantly, category C5 included the 
diagnosis of a small placenta, which was similarly defined 
as < 10th percentile placental weight for gestational age. 
Man et al. analyzed the placental pathology of 931 intrau-
terine fetal demises from 13 to 40 weeks of gestational age 
and found that 32% of stillbirths were due to abnormali-
ties of the placenta [87]. Another study from the Stillbirth 

Fig. 8  Density plot of small placenta associated pathologies
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Collaborative Research Network determined that 12.7% 
of all stillbirths were due to “placental insufficiency” and 
were, therefore, potentially preventable [93]. A study 
using TULIP criteria deemed that 27% of stillbirths fell 
in their placenta cause category [94].

The 20-week marker in the density plot of placental 
pathologies (Fig. 5) reveals the often-identified U-shaped 
curve for stillbirth rates [95–97]. Viewing these losses as 
a continuum, rather than starting at 20 weeks, suggests a 
more nuanced and improved understanding of the epide-
miology of pregnancy losses.

Our finding that a third of previously unexplained still-
births were associated with a small placenta may be of 
clinical utility, as prenatal identification of a small pla-
centa may reveal important growth discordance between 
the fetus and its primary supporting organ [98, 99]. While 
the Amsterdam criteria defines a placenta with a weight 
less than the 10th percentile as “placental hypoplasia due 
to maternal malperfusion,” [45] our data suggest that a 
placenta can be small for this and other reasons. While 
placental size alone may not predict stillbirth, we observed 
an increased number of small placentas in our case series. 
These results support Hutcheon et al.’s findings that the 
probability of stillbirth increased significantly with a pla-
cental weight more than one standard deviation below the 
mean [41]. Furthermore, our data contained a significant 

proportion of extremely small placentas weighing less than 
the 1st percentile for their gestational age.

Placental size evaluation could provide clinicians with 
additional data and tools to identify high-risk pregnancies 
and help determine when to deliver [98–100]. Our case 
series demonstrated a peak of losses at full term, in line 
with other studies that demonstrate the prevalence of full-
term stillbirths [90, 101]. Although not currently clinically 
validated, the identification of a fetus with a small placenta, 
when balanced with other clinical risk factors, may support 
an earlier delivery to potentially prevent antenatal stillbirth.

TIs and invaginations have been shown to be associated 
with abnormal genetics, including cases of triploidy, triso-
mies, and other genetic conditions [27–30, 47, 49]. There-
fore, the identification of TIs in most miscarriages suggests 
a genetic mechanism for these losses [20, 25]. Support for 
the strong association of developmental anomalies [102] 
and genetic abnormalities as the basis of pregnancy loss also 
comes from detailed genetic studies of loss cases [103–110]. 
However, validation of the specific genetic bases of TIs awaits 
further, more detailed, genetic analysis of these loss cases.

An increased frequency of TIs and invaginations have 
been observed in cases of placenta accreta, increta, and per-
creta [18] and intrauterine growth restriction [20], but not 
in cases of gestational diabetes, gestational hypertension, or 
preeclampsia [51]. There is no data relating TI frequencies 

Fig. 9  Box plot of pathologic findings in pregnancy loss cases. Gesta-
tional age median (gold line), interquartile (25th to 75th percentile) range 
(teal box), minimum without outliers (lower bar), maximum without out-

liers (upper bar), and outliers (grey circles) (left panel). Number and per-
centages of pregnancy loss cases for each pathologic finding (green bars) 
(right panel). Mat. Immun. Rej. = maternal immunologic rejection
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to other common obstetrical pathologies, such as placenta 
previa, or to the method of conception. Investigating the 
relationship between TIs and method of conception, such as 
in vitro fertilization (IVF) or intracytoplasmic sperm injec-
tion (ICSI), would be worthy of future studies.

Our study does not directly address mechanisms underly-
ing the association of TIs with either miscarriages or small 
placentas, but previous studies on the relationship between 
cytotrophoblasts and syncytiotrophoblasts may shed some 
light on this issue [26, 111]. First, syncytiotrophoblasts are 
created by the fusion of cytotrophoblasts [111]. Second, 
alterations in the rates of cytotrophoblast proliferation and 
fusion into the syncytial layer determines the bending of 
the trophoblast bilayer [26], and increased cytotrophoblast 
proliferation or decreased fusion leads to inward bending 
(invagination) of the trophoblast bilayer. Cross sections 
of chorionic villi through these invaginations create TIs. 
It should be noted that TIs are epithelial islands within a 
chorionic villus cross section, not a body within the syn-
cytiotrophoblast cytoplasm (see Fig. 2). Therefore, genetic 
abnormalities that lead to increased cell proliferation or 
decreased cell differentiation may lead to increased tropho-
blast invaginations and inclusions. Although this alteration 
in the placenta alone may not be deleterious to placental 
function, other organs in the embryo and fetus may be very 
susceptible to alterations in branching morphogenesis and 
infolding, such as the heart [110, 112, 113]. Therefore, fur-
ther molecular and genetic understanding of the formation 
of trophoblast invaginations and inclusions may elucidate 
specific mutations that lead to pregnancy loss.

Although a priori we did not define a separate causal cate-
gory for stillbirth with a large placenta, we also observed that 
there was an increased number of large placentas in our case 
series, indicating a potentially unexplored research avenue.

Our paper’s strengths included the large number of cases 
examined spanning over a wide gestational age range, as well 
as the utilization of a classification system for losses that 
may be elusive to prior classification measures. Although 
our study was limited by selection bias from the nature of 
our specialized consultation service, our findings aligned 
with US national pregnancy loss distributions across the 
course of pregnancy [6, 16]. In addition, the large number 
of cases with a small placenta suggests the potential benefit 
of further research examining the utility of estimated placen-
tal volume measurements during clinical care [41, 98, 99].

Our study’s greatest weaknesses were that the sample 
population was a non-random series of consultative cases, 
the data was analyzed by a single pathologist at one institu-
tion, and gross pathology descriptions relied on materials 
supplied by referring pathologists. In addition, the ges-
tational age for 178 out of 1256 total cases (14.2%) was 
approximated. However, this approximation did not appear 
to significantly affect the results (see Fig.  4). Another 

limitation was the lack of a comparison group of placentas 
from livebirths, although pathologic findings in normal pla-
centas have been well studied [114, 115]. We also lacked 
robust data on maternal demographic and clinical character-
istics. For instance, we did not have data on maternal race or 
ethnicity, which significantly limited us from analyzing this 
important mediating factor, as, for example, non-Hispanic 
Black patients have consistently higher rates of fetal demise 
[16, 116]. While lack of time of death data might also have 
led to placental weight changes after stillbirth, placental 
weights for intrapartum versus antepartum stillbirths have 
not been shown to vary significantly [41]. Lastly, assigning 
a single abnormality has potential limitations. Incidental 
findings surely play a contributing and compounding role 
to the mechanism of any given loss.

Conclusions

Prior research estimates that up to one-fourth of stillbirths are 
potentially preventable, most of whose etiology originates in 
the placenta [88, 93, 117]. Hutcheon et al. concluded their 
seminal 2012 paper with a clarion call that placental vol-
ume measurement may “improve the prenatal identification 
of fetuses at increased risk of developing adverse perinatal 
outcomes.” [41]. Our research reinforces this insight with the 
finding that one-third of previously unexplained stillbirths 
were associated with a small placenta. We also suggest that 
these small placentas could have been detected in utero and 
flagged as high risk prior to the loss. Additionally, we high-
light that the identification of dysmorphic chorionic villi con-
taining trophoblast inclusions may be one way to potentially 
identify genetic abnormalities for further exploration. Adding 
these two diagnostic categories appears to have eliminated 
most remaining unexplained loss cases, supporting their 
adoption and inclusion in pregnancy loss evaluations.
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