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Abstract
Chronic intrauterine hypoxia is a significant pregnancy complication impacting fetal heart growth, metabolism, and 
mitochondrial function, contributing to cardiovascular programming of the offspring. PGC1α (peroxisome proliferator-
activated receptor γ co-activator 1α) is the master regulator of mitochondrial biogenesis. We investigated the effects of 
hypoxia on PGC1α expression following exposure at different gestational ages. Time-mated pregnant guinea pigs were 
exposed to normoxia (NMX, 21%  O2) or hypoxia (HPX, 10.5%  O2) at either 25-day (early-onset) or 50-day (late-onset) 
gestation, and all fetuses were extracted at term (term = ~65-day gestation). Expression of nuclear PGC1α, sirtuin 1 (SIRT1), 
AMP-activated protein kinase (AMPK), and mitochondrial sirtuin 3 (SIRT3) was measured, along with SIRT3 activity 
and mitochondrial acetylation of heart ventricles of male and female fetuses. Early-onset hypoxia increased (P<0.05) fetal 
cardiac nuclear PGC1α and had no effect on mitochondrial acetylation of either growth-restricted males or females. Late-
onset hypoxia had either no effect or decreased (P<0.05) PCC1α expression in males and females, respectively, but increased 
(P<0.05) mitochondrial acetylation in both sexes. Hypoxia had variable effects on expression of SIRT1, AMPK, SIRT3, 
and SIRT3 activity depending on the sex. The capacity of the fetal heart to respond to hypoxia differs depending on the 
gestational age of exposure and sex of the fetus. Further, the effects of late-onset hypoxia on fetal heart function impose a 
greater risk to male than female fetuses, which has implications toward cardiovascular programming effects of the offspring.
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Introduction

Chronic intrauterine hypoxia is one of the most significant 
complications of pregnancy, altering normal placenta and 
fetal development and leading to fetal growth restriction [1, 
2]. Tissue hypoxia disrupts cellular energy metabolism and 
mitochondrial dysfunction, both of which are at the core 
of generating oxidative stress and fetal organ dysfunction. 
Chronic hypoxia generates oxidative stress via electron leak 
along the respiratory chain, thereby reducing the efficiency 
of oxidative phosphorylation and altering mitochondrial 
function [3, 4].

The mitochondria are important cellular organelles for 
generating energy supply. In early gestation, the fetal heart is 
reliant on anaerobic glycolysis for ATP [5]. With maturation, 
the fetal heart increases its capacity for oxidative phosphoryl-
ation as it increases its mitochondrial density, ultrastructural 
organization [6], and cellular compartmentation of metabolic 
processes [5, 7, 8]. This assures an efficient energy trans-
fer to contractile proteins in accordance with an increasing 
metabolic demand at the time of birth [5]. Chronic hypoxia 
disrupts mechanisms associated with both contractile [9, 10] 
and mitochondrial function in the fetal heart [11–14]. This 
has long-term consequences associated with cardiovascular 
programming of the offspring [15–18]. Thus, understanding 
how hypoxia alters mitochondrial function of the fetal heart is 
important for identifying the underlying mechanisms that ini-
tiate developmental programming of cardiovascular disease.

Peroxisome proliferator-activated receptor γ co-activator 1α 
(PGC1α) is the master regulator of mitochondrial biogenesis 
via regulation of both nuclear- and mitochondrial-encoded 
protein expression in several tissues including the heart [19–21]. 

 * Loren P. Thompson 
 lthompson1@umm.edu

1 Department of Obstetrics, Gynecology and Reproductive 
Sciences, University of Maryland, Baltimore, School 
of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, 
USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s43032-023-01245-5&domain=pdf
http://orcid.org/0000-0003-1693-3617


2997Reproductive Sciences (2023) 30:2996–3009 

1 3

Translocation of PGC1α into the nucleus is regulated by 
deacetylation by sirtuin 1 (SIRT1) and phosphorylation by AMP-
activated protein kinase (AMPK) in the cytosol. While AMPK is a 
sensor of metabolic conditions, effects of both AMPK and SIRT1 
on PGC1α transcription are mediated within the nucleus [19, 22]. 
Activated-nuclear PGC1α induces expression of transcription 
factors, such as NRF 1/2 and mitochondrial TFAM, which are 
transported to the mitochondrial DNA and regulate respiratory 
complex subunit and SIRT3 expression [19]. SIRT3 is the most 
important mitochondrial deacetylase, which regulates protein 
acetylation by acetyl Co A of respiratory complex subunits [23]. The 
link between PGC1α and nuclear-encoded SIRT3 is important in the 
regulation of mitochondrial protein acetylation and function [19].

We have previously reported that chronic intrauterine hypoxia 
disrupts the expression of mitochondrial respiratory complex 
subunits (CI, CIII, and CV) and alters CI and CIV activities in 
both left cardiac ventricles and isolated cardiomyocytes of fetal 
guinea pig hearts [11, 13]. Further, there is a sexual dimorphism 
in mitochondrial responses of fetal hearts to intrauterine 

hypoxia, depending on the gestational age of exposure (early vs 
late gestation) [13]. For example, exposure to hypoxia in early 
gestation (40–50 days, 65 days = term) increases the expression 
of mitochondrial CI, CIII, and CV subunits in male fetal heart 
ventricles, whereas exposure in late gestation decreases the 
expression of the same subunits in both male and female hearts 
[13]. These studies show that gestational timing of hypoxia 
can differentially affect mitochondrial protein expression and, 
potentially, impact cardiac mitochondrial function.

In adult heart, the importance of PGC1α in the regulation of 
mitochondrial biogenesis is well established [19–21]. Yet, its role 
in the fetal heart and the effects of gestational hypoxia on PGC1α 
expression has not been investigated. Given the differential 
effects of hypoxia on mitochondrial respiratory complex subunit 
expression shown in our previous study [13], our aim in this study 
was to determine the effects of hypoxia on upstream signaling of 
PGC1α as a mechanism of downstream mitochondrial protein 
activity in fetal hearts. We hypothesized that the hypoxia-induced 
increase in respiratory complex I, III, and V subunit expression 

Table 1  Effects of early- and 
late-onset hypoxia on fetal 
organ and placental weights

Comparisons between treatment and sex using 2-way ANOVA with statistical significance (P<0.05) indi-
cated by an asterisk differences from their respective NMX control. If P<0.05, then a post hoc analysis 
using Holm-Sidak method was performed to identify differences between groups. There were no sex differ-
ences with HPX treatment
NMX normoxia, HPX hypoxia, F fetal, BW body wt, Ht heart, Br brain, Plac placenta
*P<0.05
†P<0.001

Males Females

NMX HPX NMX HPX

Early-onset hypoxia
N values 20 15 20 14
Absolute wt
  FBW(g) 91.2.0±2.96 81.3±3.73† 87.3±3.16 79.2±3.08†
  FHt (g) 0.53±0.02 0.51±0.02 0.50±0.02 0.46±0.02
  FBr (g) 2.58±0.03 2.62±0.03 2.55±0.04 2.56±0.04
  Plac Wt (g) 4.65±0.24 5.08±0.20† 4.40±0.18 4.94±0.24†

Relative wt
  FHt/FBW 0.0057±0.0002 0.0062±0.0002 0.0057±0.0002 0.0059±0.0002
  FBr/FBW 0.0287±0.0008 0.0330±0.0014† 0.0298±0.0009 0.0329±0.0012†
  Plac/FBW 0.0506±0.0017 0.0633±0.0024† 0.0506±0.0015 0.0623±0.0017†

Late-onset hypoxia
N values 20 9 20 9
Absolute wt
  FBW(g) 91.2.0±2.96 80.1±3.60 † 87.3±3.16 77.3±4.06†
  FHt (g) 0.53±0.02 0.42±0.02* 0.50±0.02 0.45±0.02*
  FBr (g) 2.58±0.03 2.46±0.06† 2.55±0.04 2.44±0.05†
  Plac Wt (g) 4.65±0.24 4.97±0.41 4.40±0.18 4.69±0.38

Relative wt
  FHt/FBW 0.0057±0.0002 0.0053±0.0002 0.0057±0.0002 0.0058±0.0002
  FBr/FBW 0.0287±0.0008 0.0311±0.0015* 0.0298±0.0009 0.0320±0.0011*
  Plac/FBW 0.0506±0.0017 0.0618±0.0035† 0.0506±0.0015 0.0602±0.0033†
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would be mediated by increased PGC1α expression in early-
onset hypoxia and decreased with late-onset hypoxia. We further 
aimed to determine sex differences in this signaling response to 
assess the fetuses’ vulnerability to the hypoxic challenges.

Methods

All animal procedures using guinea pigs were approved 
by the University of Maryland Institutional Animal 
Care and Use Committee in accordance with AAALAC 

International accreditation (Animal Welfare Assurance 
no. A3200-01).

Animal Model

Timed-mated pregnant guinea pigs were housed under condi-
tions of either normoxia (room air, NMX) or chronic hypoxia 
(10.5%  O2, HPX) in a normobaric plexiglass chamber, gen-
erating maternal [11] and fetal hypoxia, the latter evidenced 
by fetal cardiac HIF (hypoxia-inducible factor) signaling [24] 
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Fig. 1  Expression of nuclear PGC1α (peroxisome proliferator-acti-
vated receptor γ co-activator 1α) and SIRT1 (sirtuin 1) in normoxic 
(NMX) and hypoxic (HPX) male (left) and female (right) heart ven-
tricles from fetal guinea pigs whose mothers were exposed to early-
onset hypoxia (25-day gestation, 39-day duration, 10.5%O2). Density 

values of target bands (PGC1α or SIRT1) from immunoblots are 
normalized to Lamin A/C as a loading control. Data are expressed as 
mean± SEM (N=7 for each group). * indicates P<0.05 vs NMX, ** 
indicates P<0.01
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and oxidative stress [25]. Oxygen levels were reduced in the 
chamber with  N2 gas mixed with room air, monitored with an 
 O2 sensing probe (Reming Bioinstruments, Redfield, NY) and a 
servo-controlled feedback regulator to maintain a stable 10.5% 
 O2 level. Excess  CO2 and  H2O vapor were removed by expos-
ing the air mixture to soda lime and silica gel, respectively, Ani-
mals were kept in individual box containers within the chamber 
so food and water, provided ad libitum, could be monitored 
and replenished every other day. All animals are housed in a 
temperature-controlled room with a light/dark cycle every 12 
h. Similar to our previous study [13], animals were exposed to 
hypoxia at either 25-day or 50-day gestation (term = ~65-day 
gestation), corresponding to a duration of 39 and 14d, respec-
tively. Exposure at 25-day gestation corresponds to early stages 
of trophoblast invasion (~21-day gestation and placental devel-
opment) in the guinea pig, and exposure at 50-day gestation 
corresponds to the rapid fetal growth phase, post organogenesis, 
and placenta maturation [26]. At near term, pregnant guinea 
pigs were anesthetized (ketamine, 80mg/kg, s.c.; xylazine, 
6mg/kg, s.c.) and fetuses extracted via an abdominal incision 
and uterotomy following subcutaneous administration of 2% 
lidocaine. Anesthetized fetuses were weighed and sexed. Fetal 
hearts were weighed and left ventricles excised and flash frozen 
in liquid  N2 and stored in −80 οC freezer.

Extraction of Nuclear and Mitochondrial Fraction 
from Fetal Heart Ventricles

Frozen fetal cardiac ventricles were used to obtain 
nuclear and mitochondrial protein fractions for west-
ern immunoblot analysis. Brief ly, 20–30 mg frozen 
ventricle pieces were ground with a mortar pestle in 
liquid  N2 and resuspended in 800 μl of ice-cold homog-
enization buffer. The nuclear fraction was obtained by 
using a modified method with two-time homogeniza-
tion and centrifugation [27–29]. The pellet containing 
the nuclear fraction was resuspended in 1x RIPA Lysis 
Buffer (Millipore, Calbiochem, MA, USA) and sup-
plemented with 1x protease and phosphatase inhibitor 
cocktail tablet (Roche Diagnostics, Munich, Germany). 
The mitochondrial fraction was isolated by a standard 
differential centrifugation method [11, 13]. The pellet 
containing the mitochondrial fraction was resuspended 
in 1x RIPA Lysis Buffer (Millipore) and supplemented 
with 1x protease inhibitor cocktail tablet (Roche). All 
sample protein concentrations were measured by using 
the Bio-Rad Protein Assay (Bio-Rad). These procedures 
generate nuclear and mitochondrial fractions [30] with-
out contamination.
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Fig. 2  Expression of nuclear pAMPKα (phosphorylated AMP-acti-
vated protein kinase) and total AMPKα in normoxic (NMX) and 
hypoxic (HPX) male (left) and female (right) heart ventricles from 
fetal guinea pigs whose mothers were exposed to early-onset hypoxia 
(25-day gestation, 39-day duration, 10.5%O2). Density values of 

target bands (pAMPKα) were normalized to its corresponding total 
AMPKα for each sample as a pAMPKα/AMPKα ratio. Ratios were 
normalized to their corresponding LaminA/C loading control and 
expressed as density values. Data are expressed as mean± SEM (N=7 
for each group)
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Western Immunoblot

Protein expression was measured for nuclear fractions of 
PGC1α, SIRT1, phosphorylated-AMPK, total AMPK, and 
mitochondrial fractions of SIRT3. 20–30μg of total protein 
from either nuclear or mitochondrial fractions were loaded 
onto precast 4–12% Bis-Tris mini gels (Invitrogen, Walth am, 
MA) for gel electrophoresis and then transferred to a PVDF 
membrane. Nuclear proteins were detected by anti-PGC1α 
(1:1000), anti-SIRT1 (1:1000, Proteintech, Rosemont, IL), 
anti-AMPKa (1:1000), and anti-phospho-AMPK (Thr172) 
(1:1000, Cell Signaling Technology, Danvers, MA). Density 
values of each of the bands were normalized to their corre-
sponding loading control, Lamin A/C (4C11) (1:2000, Cell 
Signaling Technology), and expressed as relative expression. 

Mitochondrial proteins were detected by anti-SIRT3 
(1:1000, Abcam, Cambridge, MA) and anti-acetylated-lysine 
(Ac-K2-100) (1:1000, Cell Signaling Technology). Each of 
the bands was normalized to VDAC1/Porin (1:1000, Abcam) 
as a loading control and expressed as relative expression. A 
peroxidase-conjugated secondary antibody (SeraCare Life 
Sciences, Gaithersburg, MD) was used for all immunoblots.

Immunoprecipitation was performed to confirm respira-
tory complex I subunit was the acetylated mitochondrial 
protein at MW 20kDa. Mitochondrial protein was isolated 
from fetal heart left ventricle, and immunoprecipitation was 
performed using Dynabeads Protein A Immunoprecipitation 
Kit (Invitrogen, Waltham, MA) following the manufacturer’s 
protocol. Briefly, anti-acetylated-lysine (Ack) antibody at 
1:100 dilution (Cell Signaling Technology) was mixed with 
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Fig. 3  Expression of nuclear PGC1α (peroxisome proliferator-acti-
vated receptor γ co-activator 1α) and SIRT1 (sirtuin 1) in normoxic 
(NMX) and hypoxic (HPX) male (left) and female (right) heart ven-
tricles from fetal guinea pigs whose mothers were exposed to late-

onset hypoxia (50-day gestation, 14-day duration, 10.5%O2). Den-
sity values of target bands (PGC1α or SIRT1) from immunoblots are 
normalized to Lamin A/C as a loading control. Data are expressed as 
mean± SEM (N=7 for each group), * indicates P<0.05 vs NMX
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50 μl of Dynabeads and then incubated with 100 μl of pro-
tein lysate overnight. Lysates containing acetylated mito-
chondrial protein were probed with anti-NDUFB8 antibody 
(anti-complex I subunit, Abcam) at 1:20 dilution.

Sirtuin Activity Assay

SIRT3 enzyme activity of mitochondrial fractions was 
measured using the SIRT3 Activity Assay Kit (Fluoromet-
ric, Abcam, Cambridge, MA) per the manufacturer’s proto-
col. Briefly, 50μg of mitochondrial protein was added into 
individual microplate wells containing a designated amount 
of fluorescence-labeled acetylated substrate peptide, nico-
tinamide adenine dinucleotide (NAD), and the developer. 
Fluorescence intensity was measured (excitation at 350 nm/
emission at 450 nm) for 30 min at 1-min intervals by the 
microplate reader (BioTek, Winooski, VT). Enzyme activity 
rate was calculated as ΔOD/min.

Statistical Analysis

Data are expressed as means ± SE. Each N value repre-
sents a single fetus. A total number of 20 NMX, 15 early-
onset HPX, and 9 late-onset HPX pregnant sows were used 
to obtain the same number of male and female fetuses, 

respectively. Fetal heart tissue from the same fetuses were 
used for quantification of nuclear PGC1α, SIRT1, and SIRT3 
expression. Additional animals were used for assays of 
SIRT3 activity and AMPK because of the limitation of tissue 
availability for all assays. Fetal body weight characteristics 
were generated from all of the fetuses used in the study. Sta-
tistical analysis was performed using Systat software (San 
Jose, CA). Comparisons of fetal body and organ weights 
were made using two-way analysis of variance (ANOVA) 
using the same NMX group as control. If significant effects 
were detected (P<0.05), post hoc analysis using the Holm-
Sidak method was performed to identify differences between 
groups. Comparisons between protein expression and SIRT3 
activity rate were made using Student’s t test because only 
two groups were run on a single gel and comparisons were 
not made between gels.

Results

Effects of HPX on Fetal Body and Heart Weights

Both early- and late-onset hypoxia significantly reduced 
fetal body weight (P=0.008 and P=0.006, respectively), 
and increased relative placental weight (placental wt/
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Fig. 4  Expression of nuclear pAMPKα (phosphorylated AMP-acti-
vated protein kinase) and total AMPKα in normoxic (NMX) and 
hypoxic (HPX) male (left) and female (right) heart ventricles from 
fetal guinea pigs whose mothers were exposed to late-onset hypoxia 
(50-day gestation, 14-day duration, 10.5%O2). Density values of 

target bands (pAMPKα) were normalized to its corresponding total 
AMPKα for each sample as a pAMPKα/AMPKα ratio. Ratios were 
normalized to its LaminA/C loading control and expressed as density 
values. Data are expressed as mean± SEM (N=7 for each group)
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body wt ratios) (P<0.001 for both) independent of sex 
compared to age-matched normoxic controls (Table 1). In 
addition, both early- and late-onset hypoxia significantly 
increased relative brain weight (P<0.001 and P=0.04, 
respectively) similarly between males and females 
compared to their respective normoxic controls while 
relative heart weight was unchanged. This is characteristic 
of asymmetric fetal growth restriction, established in our 
animal model [13]. Neither food nor water intake rates 
are affected by intrauterine hypoxia [13], indicating that 
the fetal growth restriction induced by hypoxia in our 
animal model is not due to nutrient deficiency, but rather 
an effect on placental function [30, 31] and/or on fetal 
growth mechanisms [32].

Expression of Nuclear Protein Expression with Early‑ 
and Late‑Onset Hypoxia

Nuclear PGC1α, SIRT1 (Fig. 1), and p-AMPK and total 
AMPK levels (Fig.  2) were measured in normoxic and 
hypoxic male and female fetal heart ventricles. Early-onset 
hypoxia significantly increased nuclear PGC1α in both 
male (p<0.001) and female (p=0.04) hearts. Nuclear SIRT1 
levels were decreased with early-onset hypoxia in male 
(p=0.004) but not female hearts. Activated nuclear AMPK 
levels, measured as ratios of p-AMPK/total AMPK, were 
unaffected by early-onset hypoxia compared to normoxic 
controls. Although total AMPK levels were highly expressed 
in the nuclear fractions there was considerable variability in 
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Fig. 5  Mitochondrion-associated sirtuin 3 (SIRT3) expression and 
activity rates in normoxic (NMX) and hypoxic (HPX) male (left) and 
female (right) heart ventricles from fetal guinea pigs whose mothers 
were exposed to early-onset hypoxia (25-day gestation, 39-day dura-

tion, 10.5%O2). Density values of SIRT3 are normalized to VDAC 
as a loading control. SIRT3 activity is expressed as ΔOD/min units. 
Data are expressed as mean± SEM (N=7 for each group), * indicates 
P<0.05 vs NMX, ** indicates P<0.01
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expression of the p-AMPK in both normoxic and hypoxic 
fetal hearts.

In contrast, late-onset hypoxia had no effect on nuclear 
PGC1α levels in male hearts but significantly decreased 
expression of both PGC1α (p=0.004) and SIRT1 (p=0.05) 
in female hearts (Fig. 3). There was no effect of hypoxia on 
the p-AMPK/total AMPK ratios in either male or female 
heart tissues (Fig. 4).

Expression of Mitochondrial Protein Expression 
with Early‑ and Late‑Onset Hypoxia

SIRT3 is a mitochondrion-associated deacetylase important 
in regulating acetylation of mitochondrial proteins such as 
complex I and IV subunits, among others [33, 34]. Early-
onset hypoxia increased both mitochondrial SIRT3 expres-
sion and the activity rate (p=0.003 and p=0.01, respec-
tively) in male fetal hearts but had no effect in female hearts 
(Fig. 5). Figure 6 illustrates acetylation of mitochondrial 
proteins of fetal hearts was identified as a strong band at 
20kDa MW similar to that for respiratory complex I, while 
there was no corresponding band at CIV subunit (not shown) 
[13]. Immunoprecipitation (inset Fig. 8) confirms that the 
acetylated band at 20kDa MW corresponds to complex I 
subunit (NDUFB8). Additional bands were only able to be 
visualized at longer exposure times but were faint and unable 

to be quantified. Early-onset hypoxia had no effect on mito-
chondrial acetylation in either male or female hearts.

Late-onset hypoxia significantly increased mitochondrial 
SIRT3 protein expression levels in both male (p<0.005) and 
female (p=0.01) hearts (Fig. 7). However, hypoxia inhib-
ited SIRT3 activity (p=0.03) in male hearts only. In con-
trast to early-onset, late-onset hypoxia significantly (p<0.05) 
increased acetylation of mitochondrial proteins in hearts of 
both males (p=0.001) and females (p<0.001) (Fig. 8), which 
corresponded to respiratory complex subunit I (NDUFB8).

Discussion

Intrauterine hypoxia generates oxidative stress [4, 18, 35, 
36], inhibits mitochondrial biogenesis and bioenergetics 
[37, 38], and disrupts normal fetal heart development [16, 
39–42]. Fetal responses to chronic hypoxia include asym-
metric fetal growth restriction and placental insufficiency, as 
well as, redistribution of its cardiac output to critical organs 
[36], and altered energy metabolism of fetal organs [37].

The first part of the study focused on the effects of 
hypoxia on nuclear PGC1α, a regulator of mitochondrial 
biogenesis, and nuclear SIRT1 and AMPK as regulators of 
PGC1α activity to determine whether chronic hypoxia alters 
the expression of upstream regulators in a similar direction 
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as downstream targets such as mitochondrial respiratory 
complex subunits [13]. Effects of hypoxia on PGC1α expres-
sion can vary depending on the cell type, redox status of the 
cell, the presence of inflammation, and severity/duration of 
hypoxia [43], all of which can occur in hypoxic heart tis-
sue. We previously reported increased expression of res-
piratory complex subunits (I, III, V) measured with early-
onset hypoxia in male fetal hearts and decreased expression 
of the same subunits with late-onset hypoxia in fetal heart 
ventricles of both sexes under identical conditions [13] 
(see Fig. 9). In early-onset hypoxia, the increased PGC1α 
expression in male fetal hearts corresponded to a compen-
satory increase in respiratory complex subunits, despite a 
lack of change in either SIRT1 or activated-AMPK expres-
sion. We expected the levels of both of these proteins to be 
changed in a similar direction as PGC1α. However, nuclear 

SIRT1 levels were paradoxically decreased with hypoxia and 
AMPK levels were unchanged. In hypoxic female hearts, 
early-onset hypoxia increased PGC1α expression but to a 
lesser degree compared to males, which may account for the 
lack of change measured in mitochondrial complex subunit 
expression. In late-onset hypoxia, PGC1α expression was 
not increased, but either unchanged in male or decreased in 
female hearts, corresponding to the decreased mitochondrial 
respiratory complex subunit expression measured in both 
sexes [13]. In other tissue types, hypoxia increased PCG1α 
expression in fetal adipose tissue from high altitude pregnant 
sheep [44], decreased levels in hypoxic cardiomyocyte [45] 
and adipocyte [46] cell cultures, and decreased expression in 
chronically (2 and 4 weeks) hypoxic adult mice diaphragm 
but not skeletal muscle [47]. The current study provides new 
evidence that intrauterine hypoxia differentially disrupts 
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PGC1α expression in the fetal heart ventricle depending on 
the timing of gestation and/or duration of hypoxia.

The regulation of downstream mitochondrial biogenesis 
by PGC1α is complex. Both nuclear- and mitochondrial-
encoded proteins are involved in the synthesis, transport, 
and import into the mitochondria for assembly into respira-
tory chain complexes [19] via PGC1α signaling. Its expres-
sion/activity is regulated within the nucleus [19] by several 
processes including phosphorylation/acetylation and HIF-1 
signaling [48, 49], which increase binding to DNA promoter 
regions [19] and induce transcription of mitochondrial pro-
teins (i.e., transcription factors NRF1/2, TFAM), as well as, 

PGC1α itself. A limitation of the study is that a distinct 
expression pattern of nuclear and mitochondrial protein 
signaling is difficult to causally link. However, the trends 
in the overall group of data provide some insight into the 
significance of the directional changes in expression that 
occurred with hypoxia. The increased PGC1α signaling 
induced by early-onset hypoxia may be an adaptive response 
for preventing the decrease in the mitochondrial complex 
subunit expression and/or respiratory function in response 
to hypoxia [13]. In late-onset hypoxia, the lack of increase 
or decrease in PGC1α signaling is associated with decreased 
respiratory complex subunit expression, resulting in fetuses 
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more vulnerable to cardiac mitochondrial dysfunction. This 
has implications regarding postnatal consequences in the 
programmed offspring. Hearts of prenatally hypoxic (late-
onset) guinea pig male offspring exhibit downregulation of 
mitochondrial respiratory chain complex subunits (CI, CIII, 
CV) in both ventricular tissue and isolated cardiomyocytes, 
as well as, decreased respiratory function (i.e., maximal 
oxygen consumption, respiratory reserve capacity), com-
pared to their normoxic age-matched controls [12]. In the 
same study [12], prenatal hypoxia reduces contractile func-
tion (e.g., stroke volume, cardiac output, ejection fraction, 
fractional shortening) measured by ultrasound of offspring 
hearts [12]. Both studies, combined, suggest an important 
programming effect of intrauterine hypoxia on disruption of 
PGC1α signaling and mitochondrial protein expression in 
fetal hearts with consequences manifest in the offspring. Yet, 
prenatally hypoxic female offspring hearts did not exhibit 
sustained effects on either contractile or mitochondrial func-
tion compared to males, despite hypoxic effects on PGC1α 
signaling and mitochondrial protein expression in female 

fetal hearts. Thus, there may be secondary environmental 
responses, postnatally, that are adaptive in female offspring.

The second part of the study investigated the effects of 
hypoxia on mitochondrial SIRT3 expression/activity and 
protein acetylation. Mitochondrial acetylation reduces 
mitochondrial function via inhibiting ATP generation, 
hormone synthesis, and calcium regulation [50]. SIRT3 
is a mitochondrial deacetylase encoded in the nucleus, 
transported to and imported into the mitochondria where 
it regulates acetylation of mitochondrial proteins [51, 52] 
such as complexes I, II, and IV [31, 32, 53]. With late-onset 
hypoxia, the increased mitochondrial acetylation corresponds 
to the decrease in SIRT3 activity in males or no change in 
females. The compensatory increase in SIRT3 expression 
may limit the effects of SIRT3 activity although not sufficient 
enough to prevent the increased acetylation. An alternative 
may be that other mitochondrial SIRTs (i.e., SIRT4, SIRT5) 
[54] whose activities may be decreased by hypoxia contribute 
to the increased acetylation levels. Interestingly, the increased 
acetylation is associated with respiratory complex I subunit 
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(NDUFB8), which SIRT3 has been reported to deacetylate 
[55]. In contrast, early-onset hypoxia did not increase 
mitochondrial acetylation in either sex. In males, there was a 
greater increase in SIRT3 expression compared to late-onset 
hypoxia along with increased activity, which may contribute 
to a protective response in preventing increased acetylation. 
Overall, increased mitochondrial acetylation, which targets 
complex I, imposes a great risk to mitochondrial respiration 
in hypoxic fetal hearts due to its potential inhibitory actions 
on the respiratory chain [31, 55].

Sex differences in fetal cardiac protein expression 
occurred in response to chronic hypoxia with regard to 
PGC1α and SIRT3, along with SIRT3 activity. The com-
bined increase in levels of PGC1α, SIRT3 expression/
activity, and mitochondrial respiratory complex subunits 
in early-onset hypoxic male but not female hearts identi-
fies a compensatory capacity that is somewhat sex-related. 
With late-onset hypoxia, however, PGC1α was decreased in 
females but not males although both sexes increased SIRT3 
expression, mitochondrial acetylation, and decreased res-
piratory complex subunit expression [13]. The mechanisms 
underlying sex differences between fetuses and adults differ, 
with the former relying on genetic and/or epigenetic influ-
ences [56, 57]. Mitochondria of adult female hearts exhibit a 
greater functional advantage over mitochondria from males 
because of a greater antioxidant capacity, lower generation 
of reactive oxygen species, greater energy production, and 
lower calcium uptake [56, 58]. This is attributed, in part, to 
a hormonal effect of estrogen on mitochondrial function and 
biogenesis, regulated by binding to both ERα in the nucleus 
and ERβ in the mitochondrion [59, 60]. While we did not 
evaluate baseline sex differences, sex-related responses to 
hypoxia appear compensatory with early-onset and decom-
pensatory with late-onset hypoxia, regarding PGC1α sign-
aling, SIRT1 expression/activity and respiratory complex 
subunit expression.

Overall, exposure to hypoxia in early gestation initiates 
adaptive mechanisms that protect the fetal heart with 
regard to mitochondrial respiration prior to birth or has 
a lesser impact due to reduced mitochondrial maturity 
[6, 61]. The cardiac response to hypoxia in late gestation, 
however, shows a decompensation with no change or 
decreased PCC1α signaling, decreased mitochondrial 
respiratory subunit expression [13], and increased 
mitochondrial acetylation. The reduced capacity of fetal 
hearts to adaptively respond to hypoxia in late gestation 
may be due to a shorter time interval and/or a reduced 
plasticity of cellular mechanisms for compensation. 
This identifies a differential capacity of the fetal heart 
mitochondria to respond to chronic hypoxia depending 
on the conditions, which may increase the risk of 
mitochondrial dysfunction, contributing to cardiovascular 
programming of the offspring [15, 57].
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