Skip to main content

Advertisement

Log in

The Implications of Insufficient Zinc on the Generation of Oxidative Stress Leading to Decreased Oocyte Quality

  • Infertility: Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Zinc is a transition metal that displays wide physiological implications ranging from participation in hundreds of enzymes and proteins to normal growth and development. In the reproductive tract of both sexes, zinc maintains a functional role in spermatogenesis, ovulation, fertilization, normal pregnancy, fetal development, and parturition. In this work, we review evidence to date regarding the importance of zinc in oocyte maturation and development, with emphasis on the role of key zinc-binding proteins, as well as examine the effects of zinc and reactive oxygen species (ROS) on oocyte quality and female fertility. We summarize our current knowledge about the participation of zinc in the developing oocyte bound to zinc finger proteins as well as loosely bound zinc ion in the intracellular and extracellular environments. These include aspects related to (1) the impact of zinc deficiency and overwhelming production of ROS under inflammatory conditions on the offset of the physiological antioxidant machinery disturbing biomolecules, proteins, and cellular processes, and their role in contributing to further oxidative stress; (2) the role of ROS in modulating damage to proteins containing zinc, such as zinc finger proteins and nitric oxide synthases (NOS), and expelling the zinc resulting in loss of protein function; and (3) clarify the different role of oxidative stress and zinc deficiency in the pathophysiology of infertility diseases with special emphasis on endometriosis-associated infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

LH:

Luteinizing hormone

ZFP:

Zinc finger protein

ROS:

Reactive oxygen species

NO:

Nitric oxide

iNOS:

Inducible nitric oxide synthase

HOCl:

Hypochlorous acid

O2 •− :

Superoxide

H2O2 :

Hydrogen peroxide

OH:

Hydroxyl radical

ONOO :

Peroxynitrite

Cl :

Chloride

H4B:

Tetrahydrobiopterin

CAT:

Catalase

RNS:

Reactive nitrogen species

References

  1. Garner TB, Hester JM, Carothers A, Diaz FJ. Role of zinc in female reproduction. Biol Reprod. 2021;104(5):976–94. https://doi.org/10.1093/biolre/ioab023.

    Article  PubMed  PubMed Central  Google Scholar 

  2. McClung JP. Iron, zinc, and physical performance. Biol Trace Elem Res. 2019;188(1):135–9. https://doi.org/10.1007/s12011-018-1479-7.

    Article  CAS  PubMed  Google Scholar 

  3. Fallah A, Mohammad-Hasani A, Colagar AH. Zinc is an essential element for male fertility: a review of Zn roles in men’s health, germination, sperm quality, and fertilization. J Reprod Infertil. 2018;19(2):69–81.

    PubMed  PubMed Central  Google Scholar 

  4. Sanna A, Firinu D, Zavattari P, Valera P. Zinc status and autoimmunity: a systematic review and meta-analysis. Nutrients. 2018;10(1):68 https://doi.org/10.3390/nu10010068.

  5. Skalny AV, Aschner M, Tinkov AA. Zinc. Adv Food Nutr Res. 2021;96:251–310. https://doi.org/10.1016/bs.afnr.2021.01.003

  6. Li J, Chen H, Gou M, Tian C, Wang H, Song X, et al. Molecular features of polycystic ovary syndrome revealed by transcriptome analysis of oocytes and cumulus cells. Front Cell Dev Biol. 2021;9:735684. https://doi.org/10.3389/fcell.2021.735684.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Qiao J, Feng HL. Extra- and intra-ovarian factors in polycystic ovary syndrome: impact on oocyte maturation and embryo developmental competence. Hum Reprod Update. 2011;17(1):17–33. https://doi.org/10.1093/humupd/dmq032.

    Article  PubMed  Google Scholar 

  8. Camp OG, Bai D, Goud PT, Diamond MP, Abu-Soud HM. A novel theory implicating hypochlorous acid as the primary generator of angiogenesis, infertility, and free iron in endometriosis. F&S Reviews. 2022;3(2):146–56. https://doi.org/10.1016/j.xfnr.2022.02.001.

    Article  Google Scholar 

  9. Wessels I, Maywald M, Rink L. Zinc as a gatekeeper of immune function. Nutrients. 2017;9(12):1286. https://doi.org/10.3390/nu9121286.

  10. Hennigar SR, Lieberman HR, Fulgoni VL 3rd, McClung JP. Serum zinc concentrations in the US population are related to sex, age, and time of blood draw but not dietary or supplemental zinc. J Nutr. 2018;148(8):1341–51. https://doi.org/10.1093/jn/nxy105.

    Article  PubMed  Google Scholar 

  11. Hennigar SR, Kelley AM, McClung JP. Metallothionein and zinc transporter expression in circulating human blood cells as biomarkers of zinc status: a systematic review. Adv Nutr. 2016;7(4):735–46. https://doi.org/10.3945/an.116.012518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eide DJ. The oxidative stress of zinc deficiency. Metallomics. 2011;3(11):1124–9. https://doi.org/10.1039/c1mt00064k.

    Article  CAS  PubMed  Google Scholar 

  13. Kloubert V, Rink L. Zinc as a micronutrient and its preventive role of oxidative damage in cells. Food & Function. 2015;6(10):3195–204. Epub 2015/08/20.  https://doi.org/10.1039/c5fo00630a. PubMed PMID: 26286461.

  14. Lee SR. Critical role of zinc as either an antioxidant or a prooxidant in cellular systems. Oxid Med Cell Longev. 2018;2018:9156285. https://doi.org/10.1155/2018/9156285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sethuram R, Bai D, Abu-Soud HM. Potential role of zinc in the COVID-19 disease process and its probable impact on reproduction. Reprod Sci. 2022;29(1):1–6. https://doi.org/10.1007/s43032-020-00400-6.

    Article  CAS  PubMed  Google Scholar 

  16. Cassandri M, Smirnov A, Novelli F, Pitolli C, Agostini M, Malewicz M, et al. Zinc-finger proteins in health and disease. Cell Death Discov. 2017;3:17071. https://doi.org/10.1038/cddiscovery.2017.71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Krishna SS, Majumdar I, Grishin NV. Structural classification of zinc fingers: survey and summary. Nucleic Acids Res. 2003;31(2):532–50. https://doi.org/10.1093/nar/gkg161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miloch A, Krezel A. Metal binding properties of the zinc finger metallome–insights into variations in stability. Metallomics. 2014;6(11):2015–24. https://doi.org/10.1039/c4mt00149d.

    Article  CAS  PubMed  Google Scholar 

  19. Kluska K, Adamczyk J, Krężel A. Metal binding properties, stability and reactivity of zinc fingers. Coord Chem Rev. 2018;367:18–64. https://doi.org/10.1016/j.ccr.2018.04.009.

    Article  CAS  Google Scholar 

  20. Colvin RA, Holmes WR, Fontaine CP, Maret W. Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics. 2010;2(5):306–17. https://doi.org/10.1039/b926662c.

    Article  CAS  PubMed  Google Scholar 

  21. Singh AK, Chattopadhyay R, Chakravarty B, Chaudhury K. Markers of oxidative stress in follicular fluid of women with endometriosis and tubal infertility undergoing IVF. Reprod Toxicol. 2013;42:116–24. https://doi.org/10.1016/j.reprotox.2013.08.005.

    Article  CAS  PubMed  Google Scholar 

  22. Yahfoufi ZA, Bai D, Khan SN, Chatzicharalampous C, Kohan-Ghadr HR, Morris RT, et al. Glyphosate induces metaphase II oocyte deterioration and embryo damage by zinc depletion and overproduction of reactive oxygen species. Toxicology. 2020;439:152466. https://doi.org/10.1016/j.tox.2020.152466.

    Article  CAS  PubMed  Google Scholar 

  23. Nikbakht R, Mohammadjafari R, Rajabalipour M, Moghadam MT. Evaluation of oocyte quality in Polycystic ovary syndrome patients undergoing ART cycles. Fertil Res Pract. 2021;7(1):2. https://doi.org/10.1186/s40738-020-00094-z.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Aldhaheri SR, Jeelani R, Kohan-Ghadr HR, Khan SN, Mikhael S, Washington C, et al. Dimercapto-1-propanesulfonic acid (DMPS) induces metaphase II mouse oocyte deterioration. Free Radic Biol Med. 2017;112:445–51. https://doi.org/10.1016/j.freeradbiomed.2017.08.015.

    Article  CAS  PubMed  Google Scholar 

  25. He M, Zhang T, Yang Y, Wang C. Mechanisms of oocyte maturation and related epigenetic regulation. Front Cell Dev Biol. 2021;9:654028. https://doi.org/10.3389/fcell.2021.654028.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bernhardt ML, Kong BY, Kim AM, O’Halloran TV, Woodruff TK. A zinc-dependent mechanism regulates meiotic progression in mammalian oocytes. Biol Reprod. 2012;86(4):114. https://doi.org/10.1095/biolreprod.111.097253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mehlmann LM. Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reproduction. 2005;130(6):791–9. https://doi.org/10.1530/rep.1.00793.

    Article  CAS  PubMed  Google Scholar 

  28. Gershon E, Maimon I, Galiani D, Elbaz M, Karasenti S, Dekel N. High cGMP and low PDE3A activity are associated with oocyte meiotic incompetence. Cell Cycle. 2019;18(20):2629–40. https://doi.org/10.1080/15384101.2019.1652472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shuhaibar LC, Egbert JR, Norris RP, Lampe PD, Nikolaev VO, Thunemann M, et al. Intercellular signaling via cyclic GMP diffusion through gap junctions restarts meiosis in mouse ovarian follicles. Proc Natl Acad Sci U S A. 2015;112(17):5527–32. https://doi.org/10.1073/pnas.1423598112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Granot I, Dekel N. Phosphorylation and expression of connexin-43 ovarian gap junction protein are regulated by luteinizing hormone. J Biol Chem. 1994;269(48):30502–9.

    Article  CAS  PubMed  Google Scholar 

  31. Norris RP, Freudzon M, Mehlmann LM, Cowan AE, Simon AM, Paul DL, et al. Luteinizing hormone causes MAP kinase-dependent phosphorylation and closure of connexin 43 gap junctions in mouse ovarian follicles: one of two paths to meiotic resumption. Development. 2008;135(19):3229–38. https://doi.org/10.1242/dev.025494.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang W, Colman RW. Conserved amino acids in metal-binding motifs of PDE3A are involved in substrate and inhibitor binding. Blood. 2000;95(11):3380–6.

    Article  CAS  PubMed  Google Scholar 

  33. Vaccari S, Weeks JL 2nd, Hsieh M, Menniti FS, Conti M. Cyclic GMP signaling is involved in the luteinizing hormone-dependent meiotic maturation of mouse oocytes. Biol Reprod. 2009;81(3):595–604. https://doi.org/10.1095/biolreprod.109.077768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fan H-Y, Sun Q-Y. Chapter 12 Oocyte meiotic maturation. Ovary. 2019:181–203. https://doi.org/10.1016/B978-0-12-813209-8.00012-1

  35. Tripathi A, Kumar KV, Chaube SK. Meiotic cell cycle arrest in mammalian oocytes. J Cell Physiol. 2010;223(3):592–600. https://doi.org/10.1002/jcp.22108.

    Article  CAS  PubMed  Google Scholar 

  36. Prasad S, Tiwari M, Koch B, Chaube SK. Morphological, cellular and molecular changes during postovulatory egg aging in mammals. J Biomed Sci. 2015;22:36. https://doi.org/10.1186/s12929-015-0143-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Madgwick S, Jones KT. How eggs arrest at metaphase II: MPF stabilisation plus APC/C inhibition equals Cytostatic Factor. Cell Div. 2007;2:4. https://doi.org/10.1186/1747-1028-2-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim AM, Bernhardt ML, Kong BY, Ahn RW, Vogt S, Woodruff TK, et al. Zinc sparks are triggered by fertilization and facilitate cell cycle resumption in mammalian eggs. ACS Chem Biol. 2011;6(7):716–23. https://doi.org/10.1021/cb200084y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu JM, Zelinski MB, Ingram DK, Ottinger MA. Ovarian aging and menopause: current theories, hypotheses, and research models. Exp Biol Med (Maywood). 2005;230(11):818–28. https://doi.org/10.1177/153537020523001106.

    Article  CAS  PubMed  Google Scholar 

  40. Xi X, Zou Q, Wei Y, Chen Y, Wang X, Lv D, et al. Dynamic changes of DNA methylation and transcriptome expression in porcine ovaries during aging. BioMed Res Int. 2019;2019:8732023. https://doi.org/10.1155/2019/8732023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Malhi PS, Adams GP, Mapletoft RJ, Singh J. Superovulatory response in a bovine model of reproductive aging. Anim Reprod Sci. 2008;109(1–4):100–9. https://doi.org/10.1016/j.anireprosci.2007.12.002.

    Article  CAS  PubMed  Google Scholar 

  42. Uliani RC, Conley AJ, Corbin CJ, Friso AM, Maciel LFS, Alvarenga MA. Anti-Müllerian hormone and ovarian aging in mares. J Endocrinol. 2019;240(2):147–56. https://doi.org/10.1530/joe-18-0391.

    Article  CAS  PubMed  Google Scholar 

  43. Nichols SM, Bavister BD, Brenner CA, Didier PJ, Harrison RM, Kubisch HM. Ovarian senescence in the rhesus monkey (Macaca mulatta). Hum Reprod (Oxford, England). 2005;20(1):79–83. https://doi.org/10.1093/humrep/deh576.

    Article  CAS  Google Scholar 

  44. Mendoza AD, Sue A, Antipova O, Vogt S, Woodruff TK, Wignall SM, et al. Dynamic zinc fluxes regulate meiotic progression in Caenorhabditis elegans†. Biol Reprod. 2022;107(2):406–18. https://doi.org/10.1093/biolre/ioac064.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Que EL, Bleher R, Duncan FE, Kong BY, Gleber SC, Vogt S, et al. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks. Nat Chem. 2015;7(2):130–9. https://doi.org/10.1038/nchem.2133.

    Article  CAS  PubMed  Google Scholar 

  46. Kim AM, Vogt S, O’Halloran TV, Woodruff TK. Zinc availability regulates exit from meiosis in maturing mammalian oocytes. Nat Chem Biol. 2010;6(9):674–81. https://doi.org/10.1038/nchembio.419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Celik O, Celik N, Gungor S, Haberal ET, Aydin S. Selective regulation of oocyte meiotic events enhances progress in fertility preservation methods. Biochem Insights. 2015;8:11–21. https://doi.org/10.4137/BCI.S28596.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tian X, Diaz FJ. Zinc depletion causes multiple defects in ovarian function during the periovulatory period in mice. Endocrinology. 2012;153(2):873–86. https://doi.org/10.1210/en.2011-1599.

    Article  CAS  PubMed  Google Scholar 

  49. Kong BY, Duncan FE, Que EL, Kim AM, O’Halloran TV, Woodruff TK. Maternally-derived zinc transporters ZIP6 and ZIP10 drive the mammalian oocyte-to-egg transition. Mol Hum Reprod. 2014;20(11):1077–89. https://doi.org/10.1093/molehr/gau066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang N, Duncan FE, Que EL, O’Halloran TV, Woodruff TK. The fertilization-induced zinc spark is a novel biomarker of mouse embryo quality and early development. Sci Rep. 2016;6:22772. https://doi.org/10.1038/srep22772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tian X, Diaz FJ. Acute dietary zinc deficiency before conception compromises oocyte epigenetic programming and disrupts embryonic development. Dev Biol. 2013;376(1):51–61. https://doi.org/10.1016/j.ydbio.2013.01.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jeon Y, Yoon JD, Cai L, Hwang SU, Kim E, Zheng Z, et al. Supplementation of zinc on oocyte in vitro maturation improves preimplatation embryonic development in pigs. Theriogenology. 2014;82(6):866–74. https://doi.org/10.1016/j.theriogenology.2014.06.021.

    Article  CAS  PubMed  Google Scholar 

  53. Jablonka-Shariff A, Olson LM. The role of nitric oxide in oocyte meiotic maturation and ovulation: meiotic abnormalities of endothelial nitric oxide synthase knock-out mouse oocytes. Endocrinology. 1998;139(6):2944–54. https://doi.org/10.1210/endo.139.6.6054.

    Article  CAS  PubMed  Google Scholar 

  54. Tranguch S, Steuerwald N, Huet-Hudson YM. Nitric oxide synthase production and nitric oxide regulation of preimplantation embryo development. Biol Reprod. 2003;68(5):1538–44. https://doi.org/10.1095/biolreprod.102.009282.

    Article  CAS  PubMed  Google Scholar 

  55. Khorram O. Nitric oxide and its role in blastocyst implantation. Rev Endocr Metab Disord. 2002;3(2):145–9. https://doi.org/10.1023/a:1015459029397.

    Article  CAS  PubMed  Google Scholar 

  56. Nishikimi A, Matsukawa T, Hoshino K, Ikeda S, Kira Y, Sato EF, et al. Localization of nitric oxide synthase activity in unfertilized oocytes and fertilized embryos during preimplantation development in mice. Reproduction. 2001;122(6):957–63. https://doi.org/10.1530/rep.0.1220957.

    Article  CAS  PubMed  Google Scholar 

  57. Goud AP, Goud PT, Diamond MP, Abu-Soud HM. Nitric oxide delays oocyte aging. Biochemistry. 2005;44(34):11361–8. https://doi.org/10.1021/bi050711f.

    Article  PubMed  Google Scholar 

  58. Abu-Soud HM, Stuehr DJ. Nitric oxide synthases reveal a role for calmodulin in controlling electron transfer. Proc Natl Acad Sci U S A. 1993;90(22):10769–72. https://doi.org/10.1073/pnas.90.22.10769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Raman CS, Li H, Martasek P, Kral V, Masters BS, Poulos TL. Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. Cell. 1998;95(7):939–50. https://doi.org/10.1016/s0092-8674(00)81718-3.

    Article  CAS  PubMed  Google Scholar 

  60. Stuehr DJ. Mammalian nitric oxide synthases. Biochim Biophys Acta. 1999;1411(2–3):217–30. https://doi.org/10.1016/s0005-2728(99)00016-x.

    Article  CAS  PubMed  Google Scholar 

  61. Goud AP, Goud PT, Diamond MP, Gonik B, Abu-Soud HM. Activation of the cGMP signaling pathway is essential in delaying oocyte aging in diabetes mellitus. Biochemistry. 2006;45(38):11366–78. https://doi.org/10.1021/bi060910e.

    Article  CAS  PubMed  Google Scholar 

  62. Goud PT, Goud AP, Diamond MP, Gonik B, Abu-Soud HM. Nitric oxide extends the oocyte temporal window for optimal fertilization. Free Radic Biol Med. 2008;45(4):453–9. https://doi.org/10.1016/j.freeradbiomed.2008.04.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ignarro LJ. Haem-dependent activation of guanylate cyclase and cyclic GMP formation by endogenous nitric oxide: a unique transduction mechanism for transcellular signaling. Pharmacol Toxicol. 1990;67(1):1–7. https://doi.org/10.1111/j.1600-0773.1990.tb00772.x.

    Article  CAS  PubMed  Google Scholar 

  64. Denninger JW, Marletta MA. Guanylate cyclase and the .NO/cGMP signaling pathway. Biochim Biophys Acta. 1999;1411(2–3):334–50. https://doi.org/10.1016/s0005-2728(99)00024-9.

    Article  CAS  PubMed  Google Scholar 

  65. Camp OG, Bai D, Awonuga A, Goud PT, Abu-Soud HM. Hypochlorous acid facilitates inducible nitric oxide synthase subunit dissociation: the link between heme destruction, disturbance of the zinc-tetrathiolate center, and the prevention by melatonin. Nitric Oxide. 2022;124:32–8. https://doi.org/10.1016/j.niox.2022.04.006.

    Article  CAS  PubMed  Google Scholar 

  66. Foster MW, Hess DT, Stamler JS. Protein S-nitrosylation in health and disease: a current perspective. Trends Mol Med. 2009;15(9):391–404. https://doi.org/10.1016/j.molmed.2009.06.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Banerjee J, Shaeib F, Maitra D, Saed GM, Dai J, Diamond MP, et al. Peroxynitrite affects the cumulus cell defense of metaphase II mouse oocytes leading to disruption of the spindle structure in vitro. Fertil Steril. 2013;100(2):578-84.e1. https://doi.org/10.1016/j.fertnstert.2013.04.030.

    Article  CAS  PubMed  Google Scholar 

  68. Shaeib F, Khan SN, Ali I, Thakur M, Saed MG, Dai J, et al. The defensive role of cumulus cells against reactive oxygen species insult in metaphase II mouse oocytes. Reprod Sci. 2016;23(4):498–507. https://doi.org/10.1177/1933719115607993.

    Article  CAS  PubMed  Google Scholar 

  69. Thakur M, Shaeib F, Khan SN, Kohan-Ghadr HR, Jeelani R, Aldhaheri SR, et al. Galactose and its metabolites deteriorate metaphase II mouse oocyte quality and subsequent embryo development by disrupting the spindle structure. Sci Rep. 2017;7(1):231. https://doi.org/10.1038/s41598-017-00159-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Goud AP, Goud PT, Diamond MP, Gonik B, Abu-Soud HM. Reactive oxygen species and oocyte aging: role of superoxide, hydrogen peroxide, and hypochlorous acid. Free Radic Biol Med. 2008;44(7):1295–304. https://doi.org/10.1016/j.freeradbiomed.2007.11.014.

    Article  CAS  PubMed  Google Scholar 

  71. Cetica PD, Pintos LN, Dalvit GC, Beconi MT. Antioxidant enzyme activity and oxidative stress in bovine oocyte in vitro maturation. IUBMB Life. 2001;51(1):57–64. https://doi.org/10.1080/15216540119253.

    Article  CAS  PubMed  Google Scholar 

  72. Cetica PD, Pintos LN, Dalvit GC, Beconi MT. Effect of lactate dehydrogenase activity and isoenzyme localization in bovine oocytes and utilization of oxidative substrates on in vitro maturation. Theriogenology. 1999;51(3):541–50. https://doi.org/10.1016/s0093-691x(99)00008-4.

    Article  CAS  PubMed  Google Scholar 

  73. Ferre-Pujol P, Nguyen XK, Nagahara T, Bui TTM, Wakai T, Funahashi H. Removal of cumulus cells around 20 h after the start of in vitro maturation improves the meiotic competence of porcine oocytes via reduction in cAMP and cGMP levels. J Reprod Dev. 2019;65(2):177–82. https://doi.org/10.1262/jrd.2018-130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Beckman JS, Chen J, Ischiropoulos H, Crow JP. Oxidative chemistry of peroxynitrite. Methods Enzymol. 1994;233:229–40. https://doi.org/10.1016/s0076-6879(94)33026-3.

    Article  CAS  PubMed  Google Scholar 

  75. Li MS, Adesina SE, Ellis CL, Gooch JL, Hoover RS, Williams CR. NADPH oxidase-2 mediates zinc deficiency-induced oxidative stress and kidney damage. Am J Physiol Cell Physiol. 2017;312(1):C47–55. https://doi.org/10.1152/ajpcell.00208.2016.

    Article  PubMed  Google Scholar 

  76. Olechnowicz J, Tinkov A, Skalny A, Suliburska J. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J Physiol Sci. 2018;68(1):19–31. https://doi.org/10.1007/s12576-017-0571-7.

    Article  CAS  PubMed  Google Scholar 

  77. Goud PT, Goud AP, Najafi T, Gonik B, Diamond MP, Saed GM, et al. Direct real-time measurement of intra-oocyte nitric oxide concentration in vivo. PLoS One. 2014;9(6):e98720. https://doi.org/10.1371/journal.pone.0098720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Huber KL, Hardy JA. Mechanism of zinc-mediated inhibition of caspase-9. Protein Sci. 2012;21(7):1056–65. https://doi.org/10.1002/pro.2090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Velazquez-Delgado EM, Hardy JA. Zinc-mediated allosteric inhibition of caspase-6. J Biol Chem. 2012;287(43):36000–11. https://doi.org/10.1074/jbc.M112.397752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Maret W, Jacob C, Vallee BL, Fischer EH. Inhibitory sites in enzymes: zinc removal and reactivation by thionein. Proc Natl Acad Sci U S A. 1999;96(5):1936–40. https://doi.org/10.1073/pnas.96.5.1936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Eron SJ, MacPherson DJ, Dagbay KB, Hardy JA. Multiple mechanisms of zinc-mediated inhibition for the apoptotic caspases-3, -6, -7, and -8. ACS Chem Biol. 2018;13(5):1279–90. https://doi.org/10.1021/acschembio.8b00064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Searle AJF, Tomasi A. Hydroxyl free radical production in iron-cysteine solutions and protection by zinc. J Inorg Biochem. 1982;17(2):161–6. https://doi.org/10.1016/S0162-0134(00)80085-9.

    Article  CAS  Google Scholar 

  83. Powell SR. The antioxidant properties of zinc. J Nutr. 2000;130(5S Suppl):1447S-S1454. https://doi.org/10.1093/jn/130.5.1447S.

    Article  CAS  PubMed  Google Scholar 

  84. Girotti AW, Thomas JP, Jordan JE. Inhibitory effect of zinc(II) on free radical lipid peroxidation in erythrocyte membranes. J Free Radic Biol Med. 1985;1(5–6):395–401. https://doi.org/10.1016/0748-5514(85)90152-7.

    Article  CAS  PubMed  Google Scholar 

  85. Shoji S, Muto Y, Ikeda M, He F, Tsuda K, Ohsawa N, et al. The zinc-binding region (ZBR) fragment of Emi2 can inhibit APC/C by targeting its association with the coactivator Cdc20 and UBE2C-mediated ubiquitylation. FEBS Open Bio. 2014;4:689–703. https://doi.org/10.1016/j.fob.2014.06.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jia JL, Han YH, Kim HC, Ahn M, Kwon JW, Luo Y, et al. Structural basis for recognition of Emi2 by Polo-like kinase 1 and development of peptidomimetics blocking oocyte maturation and fertilization. Sci Rep. 2015;5:14626. https://doi.org/10.1038/srep14626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhao MH, Kim NH, Cui XS. Zinc depletion activates porcine metaphase II oocytes independently of the protein kinase C pathway. In Vitro Cell Dev Biol Anim. 2014;50(10):945–51. https://doi.org/10.1007/s11626-014-9784-8.

    Article  CAS  PubMed  Google Scholar 

  88. Suzuki T, Yoshida N, Suzuki E, Okuda E, Perry AC. Full-term mouse development by abolishing Zn2+-dependent metaphase II arrest without Ca2+ release. Development. 2010;137(16):2659–69. https://doi.org/10.1242/dev.049791.

    Article  CAS  PubMed  Google Scholar 

  89. Hubner C, Haase H. Interactions of zinc- and redox-signaling pathways. Redox Biol. 2021;41:101916. https://doi.org/10.1016/j.redox.2021.101916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Marla SS, Lee J, Groves JT. Peroxynitrite rapidly permeates phospholipid membranes. Proc Natl Acad Sci U S A. 1997;94(26):14243–8. https://doi.org/10.1073/pnas.94.26.14243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Podrez EA, Abu-Soud HM, Hazen SL. Myeloperoxidase-generated oxidants and atherosclerosis. Free Radic Biol Med. 2000;28(12):1717–25. https://doi.org/10.1016/s0891-5849(00)00229-x.

    Article  CAS  PubMed  Google Scholar 

  92. Banerjee J, Maitra D, Diamond MP, Abu-Soud HM. Melatonin prevents hypochlorous acid-induced alterations in microtubule and chromosomal structure in metaphase-II mouse oocytes. J Pineal Res. 2012;53(2):122–8. https://doi.org/10.1111/j.1600-079X.2012.00977.x.

    Article  CAS  PubMed  Google Scholar 

  93. Zondervan KT, Becker CM, Koga K, Missmer SA, Taylor RN, Vigano P. Endometriosis Nat Rev Dis Primers. 2018;4(1):9. https://doi.org/10.1038/s41572-018-0008-5.

    Article  PubMed  Google Scholar 

  94. Alvarado-Diaz CP, Nunez MT, Devoto L, Gonzalez-Ramos R. Iron overload-modulated nuclear factor kappa-B activation in human endometrial stromal cells as a mechanism postulated in endometriosis pathogenesis. Fertil Steril. 2015;103(2):439–47. https://doi.org/10.1016/j.fertnstert.2014.10.046.

    Article  CAS  PubMed  Google Scholar 

  95. Xiu-li W, Su-ping H, Hui-hua D, Zhi-xue Y, Shi-long F, Pin-hong L. NF-kappaB decoy oligonucleotides suppress RANTES expression and monocyte chemotactic activity via NF-kappaB inactivation in stromal cells of ectopic endometrium. J Clin Immunol. 2009;29(3):387–95. https://doi.org/10.1007/s10875-009-9274-z.

    Article  CAS  PubMed  Google Scholar 

  96. Taniguchi F, Harada T, Miyakoda H, Iwabe T, Deura I, Tagashira Y, et al. TAK1 activation for cytokine synthesis and proliferation of endometriotic cells. Mol Cell Endocrinol. 2009;307(1–2):196–204. https://doi.org/10.1016/j.mce.2009.04.012.

    Article  CAS  PubMed  Google Scholar 

  97. Kim KH, Lee EN, Park JK, Lee JR, Kim JH, Choi HJ, et al. Curcumin attenuates TNF-alpha-induced expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1 and proinflammatory cytokines in human endometriotic stromal cells. Phytother Res. 2012;26(7):1037–47. https://doi.org/10.1002/ptr.3694.

    Article  CAS  PubMed  Google Scholar 

  98. Veillat V, Lavoie CH, Metz CN, Roger T, Labelle Y, Akoum A. Involvement of nuclear factor-kappaB in macrophage migration inhibitory factor gene transcription up-regulation induced by interleukin- 1 beta in ectopic endometrial cells. Fertil Steril. 2009;91(5 Suppl):2148–56. https://doi.org/10.1016/j.fertnstert.2008.05.017.

    Article  CAS  PubMed  Google Scholar 

  99. Cao WG, Morin M, Metz C, Maheux R, Akoum A. Stimulation of macrophage migration inhibitory factor expression in endometrial stromal cells by interleukin 1, beta involving the nuclear transcription factor NFkappaB. Biol Reprod. 2005;73(3):565–70. https://doi.org/10.1095/biolreprod.104.038331.

    Article  CAS  PubMed  Google Scholar 

  100. Ohama Y, Harada T, Iwabe T, Taniguchi F, Takenaka Y, Terakawa N. Peroxisome proliferator-activated receptor-gamma ligand reduced tumor necrosis factor-alpha-induced interleukin-8 production and growth in endometriotic stromal cells. Fertil Steril. 2008;89(2):311–7. https://doi.org/10.1016/j.fertnstert.2007.03.061.

    Article  CAS  PubMed  Google Scholar 

  101. Lebovic DI, Chao VA, Martini JF, Taylor RN. IL-1beta induction of RANTES (regulated upon activation, normal T cell expressed and secreted) chemokine gene expression in endometriotic stromal cells depends on a nuclear factor-kappaB site in the proximal promoter. J Clin Endocrinol Metab. 2001;86(10):4759–64. https://doi.org/10.1210/jcem.86.10.7890.

    Article  CAS  PubMed  Google Scholar 

  102. Sakamoto Y, Harada T, Horie S, Iba Y, Taniguchi F, Yoshida S, et al. Tumor necrosis factor-alpha-induced interleukin-8 (IL-8) expression in endometriotic stromal cells, probably through nuclear factor-kappa B activation: gonadotropin-releasing hormone agonist treatment reduced IL-8 expression. J Clin Endocrinol Metab. 2003;88(2):730–5. https://doi.org/10.1210/jc.2002-020666.

    Article  CAS  PubMed  Google Scholar 

  103. Liu Y, Wang J, Zhang X. An update on the multifaceted role of NF-kappaB in endometriosis. Int J Biol Sci. 2022;18(11):4400–13. https://doi.org/10.7150/ijbs.72707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ozaki Y, Ohashi T, Kume S. Potentiation of neutrophil function by recombinant DNA-produced interleukin 1a. J Leukoc Biol. 1987;42(6):621–7. https://doi.org/10.1002/jlb.42.6.621.

    Article  CAS  PubMed  Google Scholar 

  105. Berkow RL, Wang D, Larrick JW, Dodson RW, Howard TH. Enhancement of neutrophil superoxide production by preincubation with recombinant human tumor necrosis factor. J Immunol. 1987;139(11):3783–91.

    Article  CAS  PubMed  Google Scholar 

  106. Kocyigit A, Gur S, Erel O, Gurel MS. Associations among plasma selenium, zinc, copper, and iron concentrations and immunoregulatory cytokine levels in patients with cutaneous leishmaniasis. Biol Trace Elem Res. 2002;90(1–3):47–55. https://doi.org/10.1385/BTER:90:1-3:47.

    Article  CAS  PubMed  Google Scholar 

  107. Uzzo RG, Leavis P, Hatch W, Gabai VL, Dulin N, Zvartau N, et al. Zinc inhibits nuclear factor-kappa B activation and sensitizes prostate cancer cells to cytotoxic agents. Clin Cancer Res. 2002;8(11):3579–83.

    CAS  PubMed  Google Scholar 

  108. Kim CH, Kim JH, Moon SJ, Chung KC, Hsu CY, Seo JT, et al. Pyrithione, a zinc ionophore, inhibits NF-kappaB activation. Biochem Biophys Res Commun. 1999;259(3):505–9. https://doi.org/10.1006/bbrc.1999.0814.

    Article  CAS  PubMed  Google Scholar 

  109. Ho E, Quan N, Tsai YH, Lai W, Bray TM. Dietary zinc supplementation inhibits NFkappaB activation and protects against chemically induced diabetes in CD1 mice. Exp Biol Med (Maywood). 2001;226(2):103–11. https://doi.org/10.1177/153537020122600207.

    Article  CAS  PubMed  Google Scholar 

  110. Otsu K, Ikeda Y, Fujii J. Accumulation of manganese superoxide dismutase under metal-depleted conditions: proposed role for zinc ions in cellular redox balance. Biochem J. 2004;377(Pt 1):241–8. https://doi.org/10.1042/BJ20030935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Goud PT, Goud AP, Joshi N, Puscheck E, Diamond MP, Abu-Soud HM. Dynamics of nitric oxide, altered follicular microenvironment, and oocyte quality in women with endometriosis. Fertil Steril. 2014;102(1):151-9.e5. https://doi.org/10.1016/j.fertnstert.2014.03.053.

    Article  CAS  PubMed  Google Scholar 

  112. Hsu AL, Townsend PM, Oehninger S, Castora FJ. Endometriosis may be associated with mitochondrial dysfunction in cumulus cells from subjects undergoing in vitro fertilization-intracytoplasmic sperm injection, as reflected by decreased adenosine triphosphate production. Fertil Steril. 2015;103(2):347-52.e1. https://doi.org/10.1016/j.fertnstert.2014.11.002.

    Article  CAS  PubMed  Google Scholar 

  113. Mate G, Bernstein LR, Torok AL. Endometriosis is a cause of infertility. Does reactive oxygen damage to gametes and embryos play a key role in the pathogenesis of infertility caused by endometriosis? Front Endocrinol (Lausanne). 2018;9:725. https://doi.org/10.3389/fendo.2018.00725.

    Article  PubMed  Google Scholar 

  114. Xu B, Guo N, Zhang XM, Shi W, Tong XH, Iqbal F, et al. Oocyte quality is decreased in women with minimal or mild endometriosis. Sci Rep. 2015;5:10779. https://doi.org/10.1038/srep10779.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Jiang H, He X, Wang S, Jia J, Wan Y, Wang Y, et al. A microtubule-associated zinc finger protein, BuGZ, regulates mitotic chromosome alignment by ensuring Bub3 stability and kinetochore targeting. Dev Cell. 2014;28(3):268–81. https://doi.org/10.1016/j.devcel.2013.12.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Soubry A, Staes K, Parthoens E, Noppen S, Stove C, Bogaert P, et al. The transcriptional repressor Kaiso localizes at the mitotic spindle and is a constituent of the pericentriolar material. PLoS One. 2010;5(2):e9203. https://doi.org/10.1371/journal.pone.0009203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The first draft of this manuscript was conceptualized and written by Olivia Camp and Husam Abu-Soud. All authors critically reviewed and revised the work. An extensive literature search was conducted and contributed to by all authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Husam M. Abu-Soud.

Ethics declarations

Ethics Approval

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camp, O.G., Bembenek, J.N., Goud, P.T. et al. The Implications of Insufficient Zinc on the Generation of Oxidative Stress Leading to Decreased Oocyte Quality. Reprod. Sci. 30, 2069–2078 (2023). https://doi.org/10.1007/s43032-023-01212-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01212-0

Keywords

Navigation