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Abstract
Endometriosis is a common condition in women of reproductive age, but its current interventions are unsatisfactory. Recent 
research discovered a dysregulation of the sphingosine 1-phosphate (S1P) signaling pathway in endometriosis and showed 
a positive outcome by targeting it. The S1P axis participates in a series of fundamental pathophysiological processes. This 
narrative review is trying to expound the reported and putative (due to limited reports in this area for now) interactions 
between the S1P axis and endometriosis in those pathophysiological processes, to provide some perspectives for future 
research. In short, S1P signaling pathway is highly activated in the endometriotic lesion. The S1P concentration has a surge 
in the endometriotic cyst fluid and the peritoneal fluid, with the downstream dysregulation of its receptors. The S1P axis 
plays an essential role in the migration and activation of the immune cells, fibrosis, angiogenesis, pain-related hyperalgesia, 
and innervation. S1P receptor (S1PR) modulators showed an impressive therapeutic effect by targeting the different S1P 
receptors in the endometriosis model, and many other conditions resemble endometriosis. And several of them already got 
approval for clinical application in many diseases, which means a drug repurposing direction and a rapid clinical translation 
for endometriosis treatments.
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Introduction

The Current Treatments for Endometriosis

Endometriosis, defined as the presence of ectopic endo-
metrium outside of the uterus, is a chronic, debilitating 
disease associated with pelvic pain and infertility [1]. The 
most common locations of this kind of dislocation are the 
surface of the peritoneum and ovary. Endometriosis is esti-
mated to affect 6–10% of reproductive-age women [2]. In 
2012, the estimated economic burden was over US$22 bil-
lion in the USA and 8.5 billion in the UK [3, 4]. The prev-
alence of endometriosis was estimated to exceed 50% of 
women with pelvic pain and 50% of women with infertility, 
which amounts to about 176 million women worldwide [5, 
6]. The asymptomatic women (confirmed by microscopic 

histological diagnosis) are another large group of endome-
triosis patients (45–50%) [7].

Symptoms of endometriosis considerably harm patients’ 
psychological wholesome, social well-being, and quality of 
life [8]. Compared to the general women population, endo-
metriosis patients have significantly high morbidity of sub-/
infertility, and the mechanism of it is still poorly understood. 
Even if the patients finally got pregnant, it was reported that 
a series of poor pregnancy outcomes, such as preterm labor, 
pre-eclampsia, ectopic pregnancy, miscarriage, and intrau-
terine growth restriction, are associated with the disease [9, 
10]. Pain symptoms like persistent or cyclical pelvic pain, 
dysmenorrhea, and dyspareunia are the other problematic 
annoyances for the patients. And, the same as other chronic 
pain conditions, endometriosis patients were reported to suf-
fer from fatigue and depression.

Current treatments for endometriosis, including surgical 
and medical management, aim to improve the pain symp-
tom and treat the infertility condition [2, 11]. Ovarian sup-
pression is the primary strategy of medical management 
that can limit lesions’ activity and growth, alleviating pain 
symptoms. The usual way of ovarian suppression consists 
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of oral contraceptives and gonadotrophin-releasing hor-
mone (GnRH) agonists with add-back hormone-replacement 
therapy [12], while GnRH agonists have side effects such 
as memory loss, insomnia, and hot flushes, thus limiting 
long-term use. The utilization of progesterone to counteract 
estrogen can reduce pain symptoms, but the contraceptive 
effect of the treatment is not good news for women longing 
for conception [13]. Although non-steroidal anti-inflamma-
tory drugs (NSAIDs) are another option for pain control, 
they cannot suppress the growth of endometriotic lesions, 
and long-time use is prone to inducing peptic ulcers. And 
for surgical management, laparoscopic surgery to remove 
lesions works for most patients in symptom relief. However, 
after the surgery, about 50% of patients will suffer symptom 
relapse within 2 years [14]. Thus, it is imperative to develop 
new treatments for endometriosis with fewer side effects, the 
ability to suppress lesion growth or even eliminate it, and, at 
the same time, allow patients to conceive.

There have been many attempts to develop new drugs 
for clinical use for endometriosis patients by repurposing 
drugs that have already proved effective in treating other 
diseases resembling endometriosis with painful inflamma-
tory conditions [11]. Several pieces of research have already 
shown that this is a feasible way. For instance, it is demon-
strated that immunotherapy targeting T cells or cytokines are 
a viable approach to handling the pain symptom of a simi-
lar disease like inflammatory bowel disease and rheumatoid 
arthritis [15]. And we noticed that as a biologically active 
molecule, sphingosine-1-phosphate (S1P) was demonstrated 
to play a pivotal role in endometriosis too and can be another 
promising direction for drug repurposing.

S1P Metabolism and Gradients

Sphingolipids, a specific class of lipids, are important com-
ponents of cell membranes, which have structural and func-
tional activities [16]. Sphingosine, 18-carbon amino alcohol 
with an unsaturated hydrocarbon chain, is the general char-
acterization of sphingolipids, which means it is a constitu-
ent of all the lipids named sphingolipids, sphingomyelin, 
and glycosphingolipids. S1P is the most biologically active 
one of the sphingolipids, not only taking part in cellular 
homeostasis and viability [17] but also regulating immune 
cell migration and inflammatory responses [18]. S1P can act 
as the second messenger for the intracellular pathway and as 
a signaling molecule for the extracellular compartment [17]. 
As an extracellular signaling molecule, S1P mainly relies 
on 5 G protein-coupled receptors,  S1P1–S1P5, to wield its 
regulatory power [19] (Fig. 1).

The gradients are vital for most cytokines, chemokines, 
and developmental morphogens to implement their func-
tions. Unlike other inflammation-related cytokines and 

chemokines, apart from secretion under tissue injury and 
pathogen invasion stimuli, S1P also acts as a “route sign” 
for immune cell trafficking and organ development [20]. 
The abundance of S1P lyase in tissues keeps S1P in a very 
low intercellular concentration. On the contrary, blood has 
a considerable concentration of S1P, about 1 μM, under the 
supply of red blood cells (RBCs), as might be the “route 
sign” of blood for immune cells. The synthesis of S1P is 
especially active in RBCs. However, the degradation of 
S1P is limited due to the lack of S1P lyase and phosphatase 
activity in RBCs, which makes RBCs to be the “S1P pool” 
[21–23]. And it was discovered recently that the major 
facilitator superfamily member MSFD2B was the primary 
transporter of RBCs to pump out S1P [24, 25]. Without the 
MSFD2B, S1P was found to accumulate in the inner layer 
of the RBCs’ plasma membrane of Mfsd2b−/− mice, which 
endows a significant proportion of RBCs a stomatocytes 
look [25]. As for platelets, MSFD2B is also critical for the 
release of S1P. The deletion of MSFD2B impairs platelet 
morphology and functions, reducing thrombus formation 
[26]. The secondary source of plasma S1P is endothelial 
cells, and, unlike RBCs and platelets, the major facilitator 
superfamily member SPNS2 is the transporter they rely on 
[27–31]. As a lipid mediator with limited aqueous solubil-
ity, S1P chaperone proteins solved this problem by stably 
binding and transporting S1P in plasma and interstitial 
fluids, helping activate S1PRs on target cells. The apoli-
poprotein M (ApoM) is the prototypical chaperone of S1P, 
which is a component of high-density lipoprotein (HDL), 
and HDL is used to be believed that is beneficial to vascu-
lar health [32]. Albeit at lower affinity, serum albumin is 
also a chaperone that binds to S1P [33].

Besides the blood plasma, lymph S1P plays an integral 
part in guiding immune cells out of lymph nodes and Peyer 
patches. Even though the circulatory loop is from plasma 
to interstitial fluid to lymph and then back to plasma, the 
concentration of S1P in tissues is extremely low due to 
the high activity of S1P lyase. However, the concentra-
tion of lymph S1P (∼0.1 μM) is relatively high [34], and 
it was demonstrated that lymphatic endothelial cells are 
the primary source of lymph S1P [21]. Loss of lymph 
S1P was observed in lymphatic endothelial cells lack of 
SphKs or SPNS2, which caused the block of lymphocytes 
to exit the lymph nodes [31, 35, 36]. And it was demon-
strated recently that the inflammatory monocyte-derived 
S1P in the lymph node also works in regulating immune 
responses [37].

In conclusion, the S1P spatial gradients are created and 
maintained by a sophisticated system including cell secre-
tion, tissue degradation, chaperone binding, and S1PRs, 
specifically activation, which guarantees that the S1P axis 
wields its biological function [38].
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S1P in Modulating the Immune Cells

Even though the exact pathogenesis of endometriosis is still 
controversial, multiple lines of evidence repeatedly illus-
trated an altered peritoneal environment of patients with 
endometriosis. Not only a lot of immune cells were attracted 
to the lesions, but also plenty of pro-inflammatory proteins 
and cytokines such as IL-1, IL-6, IL-8, and IL-33, insu-
lin-like growth factor 1 (IGF-1), and tumor necrosis factor 
(TNF) were aberrantly produced [11, 39–41]. A multiparam-
eter single-cell technique was utilized to detect a large num-
ber of different immune cell types in the peritoneal fluid (PF) 
of the patients. Among these immune cells, the mononu-
clear phagocyte was the predominating one from the innate 
immune system, and it was suggested that  CD69+ T cells 
might be associated with endometriosis [42]. Macrophages 
are originally the predominant immune cell type in the PF of 
the healthy population, and the number is further increased 

in endometriosis patients. Another immune cell worth noting 
are T cells. The activation and effector activity was increased 
compared to healthy control [42]. Xiao et al. recently proved 
the potential importance of T cell phenotype in the etiology 
of endometriosis, which assured the T cell dysregulation 
in the endometriotic lesions [43]. The S1P axis was highly 
associated with the migration, activation, and residence of 
macrophages and T cells. And perturbed S1P signaling was 
demonstrated both in the PF and the endometriotic lesions 
[44, 45]. Thus, we mainly reviewed these two groups of 
immune cells below (Fig. 2).

Macrophage

Although the ontogeny of macrophages gathering in endo-
metriosis is still an enigma, studies show an increase in the 
total number and proportion of macrophages in the endo-
metriotic lesions and the association between lesion growth 

Fig. 1  The metabolism of sphingosine 1-phosphate (S1P). Ceramide 
is the core of sphingomyelin metabolism, which can be de novo syn-
thesized in the endoplasmic reticulum or degraded from sphingomy-
elin in the lysosome. And the sphingosine comes from the deacyla-
tion of ceramide which is catalyzed by ceramidase (CDase) in the 
lysosome or on the cell membrane. Then the sphingosine can be 
phosphorylated by sphingosine kinase 1 (SphK1) or SphK2 to form 
S1P. S1P can be exported by SPNS2, MFSD2B for red blood cells 

and platelets, to activate different S1PRs called “inside out signal-
ing” to achieve a series of functions. The red blood cell, albumin, and 
ApoM on HDL are the main transporters of S1P in plasma. SPT, ser-
ine palmitoyltransferase; KDSR, 3-ketodihydrosphingosine reductase; 
CERS, ceramide synthase; DES, dihydroceramide desaturase; SMS, 
sphingomyelin synthase; SPP, sphingosine phosphate phosphatase; 
SPL, S1P lyase
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and macrophage activation. It was detected that the lesion-
resident macrophages contain both those from eutopic endo-
metrium and those from the peritoneal environment [46]. An 
increased number of macrophages imply prolonged longev-
ity of resident one or a rise of infiltrating one or both.

For prolonged longevity, researchers have found that 
S1P plays a pivotal role in the immune system homeosta-
sis by regulating immune cell migration and their longev-
ity, including the differentiation, migration, and survival of 
macrophages [47]. S1P wields an anti-apoptotic function 
on macrophages. It was shown that S1P prevented caspase-
induced apoptosis by inducing the expression of anti-apop-
totic proteins through extracellular-signal-regulated kinase 
(ERK1/2), phosphoinositide-3-kinase (PI3K), and  Ca2+ 
signaling pathways or altering the metabolic balance from 
ceramide to sphingosine or S1P [48–50]. It was also shown 
that the anti-apoptotic function of HDL depends on S1P to 
induce inhibitor of apoptosis (IAP) family member survivin 
via STAT3 signaling in THP-1 and RAW264.7 macrophages. 
Still, this effect can be inhibited by antagonists of  S1P2/3, 
indicating that this effect is mediated by  S1P2/3 [51].  S1P2 
was shown to suppress macrophage pyroptosis by decreas-
ing the expression of caspase11 protein in peritoneal mac-
rophages [52].

And for the increased infiltration of the environment mac-
rophages, S1P can act as a chemokine to recruit macrophages 

into the inflammatory site [53]. Previous research showed 
that the S1PRs expression profile of macrophages would 
determine the S1P-dependent macrophage migration [54]. 
Among all the S1PRs,  S1P1 acts pro-migratory in peritoneal 
and bone marrow-derived macrophages (BMDM) through 
Rho kinase and PI3K-Akt1 signaling to the inflammatory 
site [53, 55].  S1P1 is also vital for post-inflammatory mac-
rophage emigration because macrophage-specific deletion 
of  S1P1 resulted in tissue retention of macrophages in a 
chemical-induced mouse model of resolving peritoneal 
inflammation [56]. Studies have shown that  S1P4 signaling 
may act as an anti-migratory factor, and consequently, the 
 S1P1/S1P4 ratio is critical for M1 migratory behavior. The 
analysis of M1 and M2 macrophages showed that the  S1P1/
S1P4 ratio of M1 macrophages was higher than that of M2 
macrophages [57]. Compared to the pro-migratory effect of 
 S1P1, using S1pr2-knockout mice in an acute inflammatory 
peritonitis model demonstrated that  S1P2 signaling can pre-
vent macrophage migration by stimulating cAMP production 
and therefore abating the Akt phosphorylation [58]. These 
works illustrated that  S1P1 and  S1P2 have opposite proper-
ties in immune cell migration. Chemotaxis of bone mac-
rophages, osteoclast precursors, is simultaneously regulated 
by  S1P1/2, which is used to adjust their localization in bone, 
which supports the previous hypothesis to some extent [59].

Fig. 2  The infiltration of macrophages and T cells from blood and 
peritoneal fluid into the endometriotic lesions. The S1P receptor 1 
 (S1P1) is the most concerned one among all S1PRs in regulating T 
cells and macrophage migration. And the  S1P2 and  S1P3 are reported 

to take part in modulating macrophage polarization into M1 and M2, 
respectively. The erythrocyte lysis and platelet activation in endo-
metriotic lesion release amounts of S1P in the lesion. And multiple 
cytokine and chemokine release is also regulated by the S1P axis
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Not only the number of macrophages but also the phe-
notypes and activation status exhibit a difference between 
women with and without endometriosis. Macrophages show 
different or diametrical roles in different stages of inflamma-
tory response. According to their functional characteristics 
and differences in cytokine expression, they are generally 
divided into two categories with different functions: classi-
cally activated macrophage (M1) produces a large number 
of inflammatory cytokines, specifically removes microorgan-
isms and defective cells, and exhibits an overall pro-inflam-
matory effect; and alternatively activated macrophage (M2) 
regulates adaptive immune responses, remove cell debris, 
promote angiogenesis and tissue repair, and generally exhibit 
anti-inflammatory effects.

Macrophages have been found to accumulate in the foci 
[42]. An abnormally elevated proportion of M2-type mac-
rophages has been found in rhesus monkey models, and 
patients with endometriosis [60, 61], and M2 has a signifi-
cant impact on the lesions. The promotion of growth and 
fibrosis has been demonstrated in mouse models [62], and 
the anti-inflammatory effects of M2 play a role in ectopic 
endometriotic lesion survival, foci formation, angiogen-
esis, and regulation of T-cell immunity. In addition to 
locally aggregated macrophages, circulating monocytes in 
patients have also been shown to promote the proliferation 
of endometrial cells, while controls exhibit an inhibitory 
effect [63]. Peritoneal macrophages may also play a pivotal 
role in infertility symptoms and pelvic pain. Macrophages 
release pro-fibrotic mediators such as transforming growth 
factor (TGF), interleukin 13 (IL-13), or platelet-derived 
growth factor (PDGF) [64], which is the key to fibroblast 
activation and proliferation. Although the effects of mac-
rophages on lesions are determined, we still do not know 
the molecular mechanisms underlying macrophage aggre-
gation at endometriosis foci and why massive M2 polari-
zation occurs. Studies have shown that a large number of 
macrophages are often gathered in the foci of endometriosis, 
and M2 has an abnormally high proportion in it [65, 66]. By 
comparing patients with endometriosis and healthy people, 
it was found that M2 macrophages were distributed in large 
numbers in the lesions and increased in the peritoneal epi-
thelium and peritoneal fluid [60, 67]. The total number and 
proportion of activated macrophages are both increased in 
endometriosis patients, and consequentially, they produce 
more cytokines. Inflammatory conditions, especially those 
with erythrocyte lysis, will release a lot of S1P, which will 
be sensed by macrophages. Not only macrophages but a lot 
of circulating progenitor cells and various immune cells are 
also proven to be able to sense the increased concentration 
of S1P in the inflammatory site [47]. It was demonstrated 
in the bone healing model that activation of S1P/S1PRs 
could activate M2 polarization of macrophages, which pro-
moted vascularization and attracted more BMDM to the 

site of inflammation [68]. And recently, an endometriosis 
study demonstrated that the elevated S1P concentration in 
PF skewed M2 activation and causatively induced IL-6 and 
cyclooxygenase-2 (COX2) mRNA overexpression [69]. 
However, the exact mechanism of how S1P regulates M1/M2 
differentiation is still not fully understood. When research-
ers use FTY720, a non-selective S1PRs agonist except for 
 S1P2, to treat bone fractures, no difference in the total num-
ber of osteoclast (a kind of macrophage) was observed at 
the wound site, and no sign of improved healing [70]. In 
research on myocardial infarction, the S1P/S1P1 signaling 
pathway was activated by exosomes from adipose-derived 
mesenchymal stem cells to induce macrophage M2 polariza-
tion [71]. And Yang et al. showed that S1P could promote 
BMDMs into M1 differentiation, and it was demonstrated 
that the suppression of  S1P2/3 expression or any part of the 
G(α)i/o/PI3K/JNK signaling pathway could prevent this 
effect, which suggests that the  S1P2/3/G(α)i/o/PI3K/JNK 
signaling pathway is the mechanism S1P relies on to induce 
M1 differentiation [72]. Consistently, a single-cell analysis 
observed a decrease in the M1/M2 ratio and an increase of 
muscle stem cells that are beneficial to injury repair in an 
S1pr3-knockout muscle injury model, and this result can be 
reconstructed with VPC01091, an  S1P3 antagonist, which 
improved tissue regeneration [73]. Due to the different main 
roles of macrophages in different stages of the inflamma-
tory response, the types of macrophages in various tissues 
are also quite different. Therefore, different tissue sources 
and different in vitro macrophage differentiation protocols 
affect macrophage migration and activation. The regulation 
of S1P on macrophages is flexibly regulated according to 
the local environment, the difference in intracellular and 
extracellular concentrations of S1P, and the specific S1PR 
activated on macrophages [47]. That is why S1P can not only 
promote the polarization of macrophages to M2 type but also 
promote the production of M1-related macrophage markers 
under a different context. SphK1 is mainly distributed in 
the cytoplasm, and when activated, it will be transferred to 
the plasma membrane to catalyze sphingosine to form S1P, 
a cofactor involved in activating M1. M1 is primarily trig-
gered by various microbial components, such as lipopolysac-
charide (LPS), with or without IFN-γ. After activation, M1 
rapidly produces large amounts of TNF-α through enhanced 
mRNA stability [74]. Then, TNF-α binds to its cognate 
receptor tumor necrosis factor receptor-associated factor 2 
(TRAF-2), promoting the activation of NF-κB [75]. SphK1 
is activated downstream of TNF receptor activation, which 
is associated with TRAF2. S1P catalyzed by SphK1 then 
acts as a cofactor for TRAF2 and is involved in mediating 
the polyubiquitination of RIP1 [76, 77].

In endometriosis, there is a decrease in the phagocytic 
activity of macrophages [78], resulting in the inability of 
macrophages to clear the ectopic endometrial cells that reach 
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the lumen through retrograde menstruation. Beyond regulat-
ing macrophage activation and facilitating recruitment, S1P 
was recently proven to be involved in priming macrophages 
for uptaking cell debris [79]. During the studying of another 
chronic inflammatory disease, chronic obstructive pulmo-
nary disease (COPD), researchers found that the activation 
of erythropoietin (EPO) signaling in murine macrophages 
by the S1P released from apoptotic cells induced upregula-
tion of phagocytic receptors, CD36 and Mer tyrosine kinase 
(MerTK), and simultaneously, mice lacking the EPO recep-
tor in myeloid cells showed delayed clearance of apoptotic 
cells and lupus-like autoimmune symptoms [79]. And for 
macrophages themselves, inhibition of SphKs by pharma-
cological inhibitors or cigarette smoke can both reduce the 
efferocytosis in human THP-1 macrophages, which can be 
reversed by exogenous S1P or FTY720 [80]. This means 
a promotive effect for S1P in the phagocytic activity of 
macrophages. On the contrary, stimuli like smoke exposure 
increased the SPNS2 expression of alveolar macrophages, 
and an impaired efferocytosis of macrophages seems to be 
associated with the upregulation of the  S1P5 [81–84]. So, 
the in vivo models showed a dramatic opposite effect of S1P 
and S1PRs on the phagocytic ability of macrophages, which 
indicated a significant context-associated impact of S1P and 
S1PRs profile in inflammation.

In conclusion, the S1P axis participates in macrophages’ 
longevity, migration, phagocytic activity, etc., suggesting a 
pharmacologic potential in targeting macrophage-associated 
abnormalities of endometriosis.

T cell

Studies showed that T cells also participate in the formation 
and progression of endometriosis [85]. T lymphocytes are 
derived from the bone marrow and developed in the thymus. 
They are classified into several subtypes. The glycoproteins 
CD4 and CD8 expressed on the cell surface, which func-
tion as co-receptors for MHC class II and class I molecules, 
respectively, are the primary markers for the two groups. The 
 CD4+ T cells can be further classified into Th1, Th2, Th9, 
Th17, and Treg [86].

It was reported that there is a higher CD4/CD8 ratio in 
patients with endometriosis, and the T lymphocytes showed 
an increased concentration of all subsets in the PF of the 
patients [87]. Compared to the eutopic endometrium, the 
endometriotic lesions have a higher concentration of T 
lymphocytes. However, there is no significant difference in 
the peripheral blood [85]. And Th17 is one of them, which 
derives from naïve  CD4+ T cells under the activation of 
transforming growth factor alpha (TGFα), IL-6, and IL-23 
[88]. Intriguingly, the abundance of Th17 cells is higher 
in the PF of women with severe endometriosis than those 
with mild ones [89]. The regulatory T cells (Treg), another 

important subset of the T lymphocytes, are potent suppres-
sors of inflammatory immune responses and are responsi-
ble for maintaining antigen-specific T-cell tolerance and 
immune homeostasis. The expression of the forkhead box 
P3 transcription factor  (Foxp3+) is the marker of Tregs. The 
production of IL-10, TGF-β, and other anti-inflammatory 
cytokines by Tregs are weapons to suppress T helper cells. It 
was shown that endometriotic lesions have the accumulation 
of  CD4+/FoxP3+ Tregs [90]. And for patients with endo-
metriosis, the Treg percentage is decreased in the periph-
eral blood but increased in the PF [91]. Additionally, it was 
demonstrated that the proportion of both subgroups of Tregs, 
 CD45RA+Foxplow resting Tregs and  CD45RA−Foxphigh 
effector Tregs, have an increased concentration in the peri-
toneal fluid, while no difference in the peripheral blood, 
which suggests a local accumulation within endometriotic 
lesions [92].

The S1P signaling mediates matured T cells exit from 
the thymus and activated T cells exit from the lymph nodes 
[93, 94]. The first US Food and Drug Administration (FDA)-
approved drug FTY720 for the treatment of multiple scle-
rosis is based on the immune-regulating function, and the 
next-generation S1PRs-mediators have been promising in 
a series of diseases, including inflammatory bowel disease 
(IBD), systemic lupus erythematosus (SLE), and pulmonary 
conditions like asthma, fibrosis, and even COVID-19. [95]. 
The main mechanism of these drugs is believed to prevent 
activated T cells from exiting the lymphoid organs and infil-
trating into inflammatory sites.

T cells develop in the thymus, and once they mature, they 
would exit the thymus by expressing  S1P1 to sense the gra-
dient of S1P between tissue and lymphatic fluid and blood 
[96]. Different S1PRs have been illustrated to affect differ-
ent lymphocyte biology, including migration and determi-
nation of T cell phenotypes. And the expression of  S1P1 
on the lymphocyte surface is downregulated in the higher 
concentration of S1P (blood), upregulated in the lower con-
centration of S1P (lymphoid organs), and downregulated 
again in the relatively high concentration (lymphatic fluid). 
This concentration-associated regulation of  S1P1 in circu-
lating lymphocytes is important to set up their lymphoid 
organ transit time [97]. For T cells, exiting  S1P1 signaling 
competes with CCR7 and CXCR4, which are retention sig-
nals [98, 99]. Treatment of pertussis toxin to block the Gαi 
signaling of T cells relieved the  S1P1-deficient lymphocytes 
exiting from lymph nodes, indicating that the T cells have 
an inherent tendency to egress [97]. It was reported that 
under the stimuli of IFN-α/β, T cells would induce CD69 to 
form a complex with  S1P1 to downregulate  S1P1 and cause 
lymphocyte retention in lymphoid organs [100]. In contrast, 
the T cell recruitment was inhibited through S1P/S1P2 axis 
in mast cell-dependent acute allergic responses in the early 
airway of mice [101].
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The increased S1P present in the inflammatory site 
induces T cell retention. The release of S1P by endothe-
lial cells under the activation of a B cell peptide PEPITEM 
inhibited T cell recruitment, implying that an S1P con-
centration gradient between inflamed tissue and blood is 
important for T cell migration [102]. The T cell retention 
is mainly induced through agonism of  S1P1, which inhib-
its the egress of inflammatory site T cells into the affer-
ent lymph in inflammatory conditions. It was mediated 
partially by interactions of the integrin VLA-4 with its 
ligand VCAM-1 and of the integrin LFA-1 with its ligand 
ICAM-1 of polarized T cells at the basal surface of lymph 
but not blood vessel endothelium, ensuring the increased 
S1P present in inflammatory site to unidirectionally recruit 
T cells and suppress T cells egress [103]. It was reported 
that heterotrimeric guanine nucleotide-binding protein-
coupled receptor kinase-2 (GRK2) functions in blunting 
 S1P1 on blood-exposed lymphocytes, resulting in resisting 
the attraction by blood S1P [104]. It was demonstrated that 
without the expression of the transcription factor KLF2 
and its target gene S1pr1 in  CD8+-resident memory T cells 
allows them to stay in the peripheral tissue [105]. And 
CD69 also takes part in the regulation of T cell retention 
and local memory formation through S1P-S1P1 signaling 
[106]. It is conceivable that the activity of S1P lyase can 

regulate S1P gradient-mediated lymphocyte trafficking, 
which is a possible target [107].

Thus, the modulation of T cell recruitment in endometri-
otic lesions through the S1P axis might be a brand new direc-
tion of the T cell manipulation treatment for endometriosis.

S1P in the Endometriotic Fibrosis

As mentioned above, classical endometriotic lesions are 
defined as endometrial-like tissue containing glands and 
stroma. Still, a recent re-evaluation of the disease defini-
tion suggests that fibrosis and smooth muscle cells are more 
consistent features of lesions [108]. Fibrosis is a significant 
part of all kinds of endometriosis development. Classically, 
endometriotic lesions would go through a process from 
a soft, active, and vascularized red lesion to a hard black 
one because of hemoglobinolysis and fibrotic component 
accumulation. And then, as the fibrosis process progresses, 
the harder areas of white opacification and yellow–brown 
lesions show up, and they are considered latent stages of 
endometriosis [109] (Fig. 3).

The pathophysiology of fibrosis follows a routine 
as below. Priming is the infiltration of various immune 
cells, such as macrophages, dendritic cells, lymphocytes, 

Fig. 3  The S1P axis participates in the fibrosis of endometriotic 
lesions. A–D The process of endometriotic lesion fibrosis from 
implantation, initiation, contraction, and consolidation. E The S1P 
axis in the process of fibroblast-to-myofibroblast transdifferentiation 

(FMT). FTY720-P, FTY720-phosphate;  S1P2/3, S1P receptor 2/3; 
PI3K, phosphoinositide-3 kinase; ERK1/2, extracellular regulated 
protein kinase; SphK1, sphingosine kinase 1; ECM, extracellular 
matrix; α-SMA, α-smooth muscle actin
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monocytes, and mast cells, into the endometriotic lesion 
[85]. These immune cells are attracted by chemokines and 
then activated by various factors like cytokines and reactive 
oxygen species (ROS), which induce continuing, non-resolv-
ing inflammation [110]. The next stage is the conversion and 
transdifferentiation into a myofibroblast [111] phenotype, 
which is characterized by the acquisition of expression of 
α-smooth muscle actin (α-SMA), a smooth muscle protein. 
Myofibroblasts produce and secrete an amount of extracellu-
lar matrix (ECM) and play a vital role in wound healing and 
tissue remodeling and the progression of fibrotic diseases 
[111]. Then comes a large number of ECM proteins that 
are synthesized, deposited, and modified to resist proteo-
lytic degradation. That is an early stage of fibrosis, which 
theoretically can be treated to reverse the process of fibrosis. 
There are at least five sources of myofibroblasts in endo-
metriotic lesion fibrosis, such as differentiation from peri-
cytes, activation from interstitial fibroblasts, recruitment of 
fibrocytes, and from other cells by mechanisms collectively 
known as the epithelial-to-mesenchymal transition (EMT) 
and fibroblast-to-myofibroblast transdifferentiation (FMT) 
[112]. Solid evidence indicates that TGF-β1/Smad signaling 
is one of the key pathways in endometriotic lesion fibrosis 
and participates in the whole process of fibrogenesis because 
it not only mediates EMT but also modulates the production 
and degradation of ECM [111].

Emerging evidence indicates that the SphK1/S1P/S1PRs 
axis participates in fibrogenesis, such as liver fibrosis, car-
diac fibrosis, pulmonary fibrosis, and renal fibrosis. It was 
reported that the S1P concentration, SK1, SPNS2, and  S1P2 
expression level have a positive correlation with the fibrosis 
extent [113, 114]. Genetical deletion of the S1PR2 mouse 
model showed an ameliorated liver fibrosis of the CCl4-
induced model [115]. And the BMDM, which S1P could 
attract to the injured liver, performed as an aggravating fac-
tor in the fibrotic response [116, 117].  S1P1 expressed by 
hepatic sinusoidal endothelial cells regulates liver regenera-
tion after partial hepatectomy or bile duct ligation through 
activation of  ApoM+HDL-bound S1P. Apom-deficient mice 
have impaired hepatic sinusoidal vascular remodeling and 
recovery of hepatic tissue function, characterized by perivas-
cular fibrosis and thrombosis. In contrast, Apom-transgenic 
mice exhibited minimal fibrosis through endothelial cell 
 S1P1 function in the hepatic sinusoids, which means S1P 
has a positive role in alleviating liver fibrosis through  S1P1 
expressed on the endothelial cells of the special vascular 
niche of the liver [118]. On the other hand, to myocardial 
fibrosis, the SphK1 overexpressed mouse model showed 
a nearly 20-fold increase in enzymatic activity, developed 
detectable cardiac pathological fibrosis in the heart through 
Smad signaling, and it could be inhibited by Rho family G 
protein inhibitor or S1pr3 deletion [119]. And in normal 
lung fibroblast cell lines, FTY720-P induced the synthesis of 

ECM through the activation of  S1P2 and  S1P3 in vitro [120]. 
Conversely, FTY720-P suppressed the migration of bone 
marrow-derived mesenchymal stem cells both to the circu-
lation and to the liver, and this effect had an ameliorating 
effect on liver fibrosis [121]. In diabetic nephropathy, S1P 
induced the EMT from tubular epithelial cells to myofibro-
blast via activating  S1P2 and the downstream Rho kinases, 
which is associated with the development of renal fibrosis 
[122]. Furthermore, the expression of fibrotic markers was 
induced in a normal rat kidney fibroblasts cell line by S1P 
stimulation, including α-SMA, and its effect could be attenu-
ated by SphK1 inhibitor, N, N-dimethylsphingosine [123].

Notably, SphK1 has already been found to be overex-
pressed in the endometriotic lesion (endometrial cyst of the 
ovary and peritoneal endometriosis), and the S1P concen-
tration was hundreds of times higher than in control [45]. 
The TGF-β1-Smad signaling pathway is one of the most 
important mediators of endometriotic lesion fibrosis [111, 
124, 125]. And the SphK1-S1P-S1PRs axis has been found 
to be closely associated with the TGF-β1 signaling pathway 
in many different diseases and fibrogenesis-associated states. 
Studies showed that S1P could activate the Smad signaling, 
independent of the TGF-β1, to contribute to myofibroblast 
differentiation of keratinocytes [126]. Accordingly, FTY720-
P induced transdifferentiation of fibroblasts to myofibro-
blasts via  S1P3 activation, which required Smad signaling 
but without TGF-β1 activation [127]. On the other hand, in 
the study mentioned above that used a normal human lung 
fibroblasts cell line, FTY720-P was reported to be capable of 
inducing ECM synthesis via  S1P2/3, PI3K/Akt, and ERK1/2 
signaling activation but could not induce the expression of 
α-SMA, which means FTY720-P cannot directly promote 
EMT like TGF-β1/Smad signaling in vitro [120]. Proto-
myofibroblasts are defined as an intermediate stage between 
fibroblasts and myofibroblasts, and ECM is synthesized in 
proto-myofibroblasts without expressing α-SMA in the cells 
[128]. Thus, maybe the SphK1-S1P-S1PRs axis not only 
takes part in the transdifferentiation of fibroblasts to myofi-
broblasts but also stimulates ECM synthesis in both stages 
of proto-myofibroblasts and myofibroblasts, or the stimula-
tion of transdifferentiation is microenvironment-dependent.

Recently, a study suggested that the SphK1-S1P-S1PRs 
axis mediates endometriotic lesion fibrosis induced by TGF-
β1 [129]. It was demonstrated that SphK1 and calcium- and 
integrin-binding protein 1 (CIB1), an activating protein 
of SphK1 which helps SphK1 to translocate to the plasma 
membrane to wield its function [130], were both significantly 
upregulated in the endometriosis with the overexpression of 
EMT and fibrotic markers including α-SMA, and S1P3 was 
the most dominantly expressed one of all S1PRs. In vitro 
experiments suggested that suppressing SphK1, SphK2, and 
 S1P2,  S1P3 by siRNA could suppress the EMT and fibrotic 
markers expression induced by TGF-β1 [129]. As mentioned 



2048 Reproductive Sciences (2023) 30:2040–2059

1 3

above, the SphK1-S1P-S1PRs axis contributes to the down-
stream TGF-β1 signaling. In two different fibrosis models, 
TGF-β1 upregulated the expression of SphK1 and activated 
 S1P3 to induce the transdifferentiation of precursor cells 
into myofibroblasts [131, 132]. SphK1 transcription may 
be regulated by TGF-β1 via Smad signaling or connective 
tissue growth factor signaling. It is worth noting that the 
Rho-Rho kinase signaling pathway participates in myofi-
broblast differentiation, and activation of  S1P2 and  S1P3 
can stimulate the Rho-Rho kinase signaling pathway [133, 
134]. These reports support a complex interaction between 
the SphK1-S1P-S1PRs axis and TGF-β1/Smad signaling in 
endometriotic lesion fibrosis. Of course, the activation of 
fibrogenic signaling pathways and the immune responses are 
indispensable for the fibrosis process. As mentioned above 
in the inflammation section, for example, the S1P axis pro-
motes the infiltration and activation of macrophages, which 
contributes to the transdifferentiation of myofibroblasts by 
secreting TGF-β1 [135].

In conclusion, fibrosis is a necessary, even defining pro-
cess of endometriosis, which leads to tissue adhesions, scar-
ring, and anatomical alterations associated with a series of 
symptoms. To date, effective treatment for fibrosis is still 
lacking, especially when fibrous tissue is formed. Thus, to 
prevent or slow down the process, modulating the S1P axis 
is a feasible way to achieve this end in endometriosis.

S1P in the Endometriotic Angiogenesis

Endometriosis is a benign disease that holds a series of 
malignant characteristics, including apoptosis resistance, 
metastasis, invasion, and angiogenesis [136]. Angiogenesis 
is defined as the growth of new blood vessels. The newly 
developed endometriotic lesion has a highly activated angio-
genesis process that endows it with a red appearance. It is 
primarily believed that numerous vasculatures could bring 
ectopic lesions enough nutrients and oxygen supplies. Physi-
ologically, angiogenesis is highly regulated in endometrial 
growth and remodeling in the female reproductive tract 
[137]. Under estrogen and progesterone control, endome-
trial blood vessels routinely grow and regress through the 
menstrual cycle. Modulation of endometrial angiogenesis 
is complicated and involves a variety of biologically active 
factors. Reports demonstrated that the role of estrogen in 
endometrial angiogenesis was context-dependent [138–142], 
and amounts of angiogenic factors and inhibitors are con-
cerned in the endometrium. Vascular endothelial growth 
factor-A (VEGF-A) is believed to be one of the most pivotal 
angiogenic growth factors in the endometrium, and VEGFR-
1, VEGFR-2, and neuropilin-1 (NRP-1) are its receptors. 
Several cytokines, including platelet-derived endothelial cell 
growth factor (PDGF), fibroblast growth factor (FGF), tumor 

necrosis factor-α (TNF-α), hepatocyte growth factor (HGF), 
and prokineticins (PK) are also reported to be facilitators of 
the angiogenic process [143, 144]. Women with endometrio-
sis show an increased expression of VEGF-A, angiopoietin-1 
(Ang-1), and Ang-2 and their receptors VEGFR-2 and Tie2 
in the eutopic endometrium [145–152]. Thus, these stud-
ies suggested that patients with endometriosis have a more 
significant angiogenic potential in the eutopic endometrium 
compared to women without it, which allows the deciduous 
endometrial fragments to get enough nutrients from more 
vessels when they arrive at the peritoneum.

And for endometriotic lesions, VEGF-A is strongly 
expressed within it [147, 148, 150, 153–155]. Compared 
to older black or white scarred lesions, VEGF-A and other 
angiogenic cytokines were expressed higher in early-
stage, red, and vascular, peritoneal endometriotic lesions 
[147, 153]. Furthermore, the primary receptor of VEGF-
A, VEGFR-2, had a higher expression with consequential 
higher vascularization and proliferative activity in the red 
lesions [150, 155].

A large number of studies showed that the S1P signaling 
pathway plays a vital role in vascular development, and the 
description of a hypoxia-induced proangiogenic factor to 
S1P would be oversimplifying its complicated role in vascu-
lar growth and homeostasis [156]. The specific receptor sub-
type primarily involved, and the carrier protein that takes the 
lipid to the target receptor would determine the quantity and 
integrity of the vessels formed under the stimulation of S1P 
[157]. Additionally,  S1P1 is able to sense fluid shear stress 
and be activated by it even without S1P [158]. It is worth 
noting that among five S1P receptors, only  S1P1-3 expression 
was detected on endothelial cells [158, 159].

It was first found by Liu et  al. that S1pr1−/− and 
Sphk1−/−Sphk2−/− mice were embryonic lethal due to vas-
cular defect and severe hemorrhage [160]. While single 
S1pr2−/− or S1pr3−/− did not show any vascular develop-
mental defects, S1pr2/3 double knockout mice had a reduced 
litter size and could not survive infancy for most of them, 
and S1pr1/2/3 triple-knockout mice were found to have an 
earlier and more severe hemorrhage than S1pr1−/− mice, 
which means  S1P2 and  S1P3 are also functioning in vascular 
development [161, 162]. Observation of endothelial-specific 
S1pr1−/− mice showed that the lack of  S1P1 induced exces-
sive sprouting of neovessels, and the activation of endothe-
lial  S1P1 suppressed the excessive sprouting and maintained 
vascular barrier functions to consolidate the neovessels by 
the blood full of S1P [163–165]. The cross-species evo-
lutionary conservation is suggested with the same hyper-
sprouting phenotype observed in S1pr1−/− zebrafish in sev-
eral studies [163, 164, 166, 167].

Angiogenesis is primarily induced by hypoxia which is 
predominantly mediated by the oxygen-dependent transcrip-
tional activators, and hypoxia-inducible factors (HIFs), and 
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their expression increases in hypoxic cells in response to the 
hypoxic environment. S1P was released to the medium under 
the stimulation of hypoxia in an in vitro model of glioma 
cells through the upregulation of SphK1, which can be abol-
ished by the knockdown of HIF-2α, and HIF-2α could bind 
to the SphK1 promoter [168]. And in adenocarcinoma cells, 
hypoxia-induced SphK2 expression and S1P release [169]. 
Intriguingly, SphK1, SPNS2, or  S1P1 siRNA was found to 
abolish the HIF-2α upregulation in two renal cancer cell 
lines, suggesting that SphK1/SPNS2/S1P1 (S1P “inside-out” 
signaling) signaling axis can be the stimulator to HIF-2α 
expression too [170]. However, in another renal cancer cell 
line, just as in the glioma cells, HIF-2α siRNA suppressed 
the upregulated SphK1 expression, indicating that HIF-2α 
is an upstream regulator of SphK1 as also shown in glioma 
cells [171], which means there is a positive feedback loop 
between S1P and HIF-2α. And for HIF-1α,  S1P2 signaling 
was shown to positively regulate its expression by stabilizing 
the protein [172].

The most prominent angiogenic promoter, VEGF, is pri-
marily stimulated by hypoxia and mediated by HIF [173]. 
Unlike the S1pr1 deletion resulted in the hypersprouting 
phenotype, significantly reduced endothelial sprouting and 
vessel density were observed in the Vegfr2 deletion model 
[174]. VE-cadherin is very important to endothelial cell 
adhesive. It was reported that the VEGF signal induced 
VE-cadherin internalization from the plasma membrane 
[174], while the  S1P1 activation promoted the stabilization 
of VE-cadherin localized at endothelial junctions [159]. All 
these suggest a functional antagonism between  S1P1 and 
VEGFR2 signaling in the barrier function of vasculature 
through VE-cadherin localization and endothelial junctional 
stability. In conclusion, VEGFR2 signaling takes control of 
the early phase of the angiogenic process to sprout prema-
ture leaky vasculature, and  S1P1 signaling is responsible for 
stabilizing the neovessels to mature in the later phase. And 
this explained the suppression of  S1P1 by siRNA reduced 
tumor angiogenesis and vascular maturation to cause less 
primary tumor growth in the implantation of tumor cells 
[175]. Additionally, neutralization of S1P by monoclonal 
antibodies inhibited the proangiogenic effect of VEGF and 
reduced tumor progression in multiple cancer cell lines 
upon multiple murine models [176]. A proangiogenic role 
of S1P signaling is strongly suggested by all experiments 
in multiple systems, but S1PRs are widely expressed in 
most cell types, and which S1PR is expressed by what cells 
or what combination of them were determinants to angio-
genesis remains to be elucidated. In contrast to  S1P1,  S1P2 
receptors play an angiogenetic role that resembles that of 
VEGF, causing a hypersprouting phenotype in response to 
hypoxia [177]. In the retinal endothelium, hypoxia upregu-
lated  S1P2 receptor expression and led to the formation of 
blood vessel sprouts with leaky basement membranes and 

limited perfusion [178]. The blood vessel sprouts were com-
petent enough to have a comparable blood flow to the mature 
vasculature in S1pr2-knockout mice [178]. But, the  S1P2 
inhibitor, JTE013 administration potentiated S1P-mediated 
angiogenesis in vivo in the Matrigel implant assay of mice, 
so the effect of  S1P2 on angiogenesis may vary in a dif-
ferent context [179]. The balance between  S1P1 and  S1P2 
activation determines the terminal effect of S1P on vascular 
endothelium (Fig. 4a).

As for the endometriosis research, Rudzitis-Auth et al. 
demonstrated recently that SKI-5C, a SphK1 inhibitor, could 
notably inhibit the development and vascularization of per-
itoneal lesions. A significantly smaller lesion size, lower 
functional microvessel density, smaller microvessel diam-
eters, and reduced blood perfusion of the newly developing 
microvascular networks were observed in SKI-5C-treated 
mice [180].

In conclusion, angiogenesis is a vital part of endometri-
otic lesion development which has been repeatedly proven 
as a targetable process for endometriosis. The SphK1 inhibi-
tor, SKI-5C-treated mouse model, demonstrated an obvi-
ous suppression of vascularization of endometriotic lesions. 
And it is noteworthy that the treatment did not affect the 
microvessel density of the ovaries and uterine horns [180]. 
This means the S1P axis is a promising target for endome-
triosis angiogenesis.

S1P in the Pain of Endometriosis

Endometriosis is a chronic disease. Chronic pain is one 
of the central problems of patients. Dysmenorrhea, cyclic 
dysuria, cyclic or acyclic lower abdominal pain, dyspareu-
nia, dyschezia, and infertility are the typical complaints of 
endometriosis patients. The pain-related symptom is closely 
associated with inflammation, and the neuro-immune cross-
talk plays a vital role in the inflammation and pain signal 
conduction. For example, allodynia, a phenomenon known 
as peripheral sensitization, makes innocuous mechanical or 
thermal stimuli induce pain. And hyperalgesia, which makes 
pain sensation associated with noxious stimulation causes 
drastically increased pain. They are both caused by the sen-
sory threshold lowered by inflammation [181].

Nerve growth factor (NGF), a main neurotrophic factor 
released at the inflammatory site [182], is critical for the 
initiation and maintenance of both mechanical and thermal 
hypersensitivity [183]. Immunohistochemical staining of 
endometriotic specimens found the NGF expression in the 
endometriotic interstitium [184], and there is a significant 
increase of NGF expression in invasive lesions compared to 
noninvasive ones [185]. Inflammatory cytokines, including 
TNF-α and IL-1β, can regulate the NGF expression. Activat-
ing mast cell degranulation and cytokine production is a way 
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to cause persistent inflammatory pain by this neurotrophin 
[186]. Khodorova et al. proved that NGF could activate neu-
tral SMase to increase ceramide and S1P production via the 
p75 neurotrophin receptor (p75NTR), which is key signaling 
of mechanical allodynia [187].

The concentration of TNF-α is higher in PF and serum of 
endometriosis patients, especially in the early stages of the 
disease [188, 189]. It is worth noting that the SMase activa-
tion and resultant ceramide production can be modulated 
by TNF through binding to TNFR1, which causes pain and 
caspase-dependent apoptosis [190]. Intradermal injection of 
ceramide was found to induce a dose-dependent thermal and 
mechanical hyperalgesia in rats, mediated by the S1P/S1P1 
axis [191].  S1P1 stimulation was reported to induce perox-
ynitrite formation through local activation of NADPH oxi-
dase and nitric oxide synthase, which is a potent nitroxida-
tive species implicated in many pain states [192]. Moreover, 
NF-κB- and MAPK-dependent COX2 pathway is also taking 

part in pain caused by increasing prostaglandin E2 (PGE2) 
production in the same model [193]. The concentration of 
PGE2 and PGF2α is long known to have a high level in 
endometriosis patients and is positively correlated with the 
severity of vaginal hyperalgesia and dysmenorrhea, respec-
tively [194]. A recent study demonstrated that S1P stimula-
tion induced a significant surge of COX2 mRNA expression 
in the peritoneal macrophage, which may contribute to the 
pain symptom [69].

The innervation within endometriotic lesions is also 
known as pain-related. The sympathetic, parasympathetic, 
and sensory nerve fiber development was repeatedly 
found in ectopic endometrium implants in humans and 
multiple rodent models [195, 196]. Many studies have 
demonstrated the sensory innervation and the abnormal 
secretion of different cytokines, which can mediate neuro-
genesis and subsequent peripheral neuroinflammation in 
endometriosis [197]. Aδ sensory, C sensory, cholinergic, 

Fig. 4  The mechanism of the S1P axis regulates angiogenesis, inner-
vation, and hyperalgesia. A The hypoxia within the endometriotic 
lesion can induce the expression of hypoxia-induced factor (HIF), 
then the downstream upregulation of vascular endothelial growth fac-
tor (VEGF) and sphingosine 1-phosphate (S1P) to form a VEGF and 
S1P gradient. The VEGF alone can induce multiple immature sprout-
ing of neovessels, but only with S1P can consolidate the neovessels 
to become mature functional vessels. B The role of the S1P axis in 
the innervation and mechanism of hyperalgesia.  S1P1, S1P receptor 1; 

VE-cadherin, vascular endothelial-cadherin; TNF-α, tumor necrosis 
factor-α; TNFR, tumor necrosis factor receptor; IL-1β, interleukin-1β; 
IL-1R, interleukin-1 receptor; NGF, nerve growth factor; SMase, 
sphingomyelinase; p-MAPK, phosphate- mitogen-activated protein 
kinase; p-p38, phosphate-protein 38; NF-κB, nuclear factor kappa B; 
NADPH, nicotinamide adenine dinucleotide phosphate; NOS, nitric 
oxide synthase; COX2, cyclo-oxygenase 2; NO, nitric oxide; PGE2, 
prostaglandin E2
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and adrenergic nerves are those usually concerned in 
endometriosis, and the sensory nerve density within the 
lesion is increased [195, 198, 199]. A study showed that 
PF collected from endometriosis patients could induce 
increased sprouting of sensory neuritis from dorsal root 
ganglia (DRG) and decreased neurite outgrowth from 
sympathetic ganglia (DRG and sympathetic ganglia were 
dissected from the spinal cord of the Valo-specific path-
ogen-free egg embryos) [195]. It was proved that endo-
metriosis patients have a high concentration of S1P both 
in the PF and cyst fluid [45]. And the S1P concentration 
and the receptor subtype that is mostly activated would 
alternatively affect the same population of sensory neu-
rons. Another study showed that  S1P3-mediated growth 
cone collapse and neurite retraction through Ras homolog 
gene family, member A (RhoA) activation, whereas  S1P1 
stimulation resulted in the elongation of neuronal pro-
cesses [200]. It was also proved that the way S1P/S1P1 
pathway affects pain transduction acts upon immune 
cells concentration, such as neutrophil infiltration, and 
activated  CD4+ T cell persistence [201, 202]. Moreover, 
activation of S1P/S1P1 signaling in macrophages induced 
IL-6 production, which is also observed in endometriotic 
stromal cells (ESC), and the production of IL-6 upregu-
lated  S1P1 expression on cell membranes and vice versa 
to form a feed-forward cycle, contributing to the persis-
tence of chronic inflammation and pain [45, 203].

The S1P axis plays a role in mediating peripheral sen-
sitization too. Treating isolated sensory neurons with spe-
cific siRNAs targeted to individual S1PRs demonstrated 
that activation of  S1P2,  S1P4, or  S1P5 is not sufficient to 
elicit significant neuronal firing [204, 205]. Thus, except 
for  S1P1,  S1P3 plays an important part in pain too [205]. 
 S1P3 has emerged as a key contributor to S1P-induced 
peripheral sensitization [206]. S1pr3−/− mice showed loss 
of mechanical sensitivity, and intraplantar injection of 
TY-52156, an  S1P3 selective antagonist, in normal mice 
caused dramatically decreased responsiveness to noxious 
stimulation [207], which seems at odds with the in vitro 
experiments (Fig. 4b).

In conclusion, pain is one of the most problematic 
symptoms of endometriosis patients. The innervation 
and peripheral nerve sensitization contribute to the exac-
erbation of the pain symptom, and that is the part S1P 
axis has a high correlation. Except for the inflammation-
associated signaling pathway, studies also showed the 
regulation of nerve fiber infiltrating and retraction by the 
S1P axis. Unfortunately, up to the present, there is still 
no research exploring the exact impact of the S1P axis 
on endometriosis-associated pain symptoms, which is an 
imperative part of the mechanism resolving.

Conclusion and Future Outlook

Endometriosis is a problematic situation for both the 
patients and the physicians. For patients, a series of symp-
toms is annoying. Long-time heavy menstruation leads to 
anemia. Pelvic pain (cyclical and non-cyclical), painful 
periods, painful sex, and pain on defecation and urina-
tion pain brings obstacles to living a normal life and are 
associated with fatigue and depression. Last but not the 
least, sub-/infertility is significantly higher in patients with 
endometriosis compared to the general female population, 
which is also a challenge for physicians [208]. Current 
treatments for endometriosis are divided into medical man-
agement, surgical removement of the lesion, and a com-
bination of them. Medical management mainly includes 
hormone regulation and non-steroidal anti-inflammatory 
drugs (NSAIDs). The most routinely prescribed treatment 
to endometriosis patients in clinical practice is hormonal 
therapies, because of their effectiveness in pain symptom 
control [209]. However, on the one hand, patients have 
to keep taking pills to maintain relief because symptoms 
return once the treatments stop. On the other hand, none 
of the hormone treatments allow patients to conceive. For 
NSAIDs, they can only handle the pain symptoms with-
out suppressing the progression of lesions, and the study 
suggested an ovulation inhibition possibility of continu-
ous usage [210]. The benefit of surgical removement in 
improving pain is still controversial, and the cumulative 
probability of persistent endometriosis-related pain fol-
lowing surgical treatment may be as high as 40–50% in 
5 years [211, 212]. Therefore, current treatments for endo-
metriosis are far from satisfying.

As a disease characterized by periodic hemorrhage and 
chronic inflammation, the endometriotic lesions are proven 
to have a significantly increased S1P concentration and 
dysregulated S1PRs profile expression [44, 45]. Studies 
of endometriosis and other abnormalities pertaining to 
inflammation all have fibrosis and angiogenesis processes, 
showing druggable active S1P signaling. SphK inhibitors, 
S1P monoclonal antibodies, and S1PRs modulators are the 
mainly pharmacologic agents targeting the S1P axis at pre-
sent. Because of the vital physiological role S1P plays in 
maintaining multiple systems’ homeostasis, the relatively 
intense treatments of SphKs inhibitors are mainly under 
the development of malignant diseases. And the overall 
pro-proliferative effect of S1P on most somatic cells is 
another reason. As for S1PRs modulators, the ubiquitous 
expression of S1PRs in every organ and system brings 
the first approved S1P modulator for multiple sclerosis, 
fingolimod, which acts through multiple receptors, the car-
diovascular and ocular side effects due to the activation of 
S1PRs in non-target systems. Thus, the next generation 
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of S1PRs modulators is trying to fine-tune receptor selec-
tivity to focus on specific S1PR [95]. For example, sup-
pression of  S1P2 by JTE013, an antagonist for  S1P2 was 
demonstrated to block the pro-proliferative effect induced 
by S1P administration to endometriotic stromal cells [58]. 
On the contrary, a thioglycolate-induced peritonitis model 
showed the inhibition of  S1P2 increased the recruitment 
of macrophages into the inflammatory site [58], which is 
considered a promotion factor for endometriotic lesion 
growth. The highly active interaction between immune 
cells, endometriotic cells, and neurocytes in different 
stages of inflammation makes the same S1P renders dif-
ferent and even completely opposite effect. Therefore, a 
clear elucidation of the S1P axis from the synthesis to 
transportation, activation, signaling transduction, and 
degradation is very important for precise targeting. And 
the crosstalk of immune cells, endometriotic cells, and 
neurocytes emphasizes the indispensable role of in vivo 
models in further research. Finally, the S1P axis closely 
participates in the pregnancy process and fetus develop-
ment [213], which is also a vital consideration in the usage 
of S1P axis-associated medicine.
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