Skip to main content

Advertisement

Log in

Network Pharmacology Was Used to Predict the Active Components and Prospective Targets of Paeoniae Radix Alba for Treatment in Endometriosis

  • General Gynecology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

A Correction to this article was published on 02 February 2024

This article has been updated

Abstract

Endometriosis is one of the most common benign gynecologic diseases. Paeoniae Radix Alba (PRA) has been utilized to treat endometriosis. We wished to identify potential targets for PRA in the treatment of endometriosis, as well as to provide a groundwork for future studies into its pharmacological mechanism of action. Network pharmacology was employed to conduct investigations on PRA. Target proteins were chosen from the components of PRA for endometriosis treatment. A protein–protein interaction (PPI) was established using overlapping genes. Analyses of enrichment of function and signaling pathways were undertaken using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes databases to select “hub genes.” Finally, the feasibility of analysis based on network pharmacology was determined using real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting. We demonstrated that PRA has 25 bioactive components and 167 putative targets that are therapeutically important. The anti-inflammatory and immune-boosting actions of tumor necrosis factor, albumin, signal transducer and activator of transcription (STAT)3, mitogen-activated protein kinase, Jun, interleukin (IL)-1B, prostaglandin-endoperoxide synthase 2, matrix metalloproteinase-9, vascular endothelial growth factor A, and IL-6 were identified as prospective targets. Seven major compounds in PRA and related to the STAT3 pathway could bind spontaneously to it. RT-qPCR and western blotting showed that expression of STAT3 and phospho-STAT3 was reduced significantly after PRA intervention. Hence, analyses of the active components of traditional Chinese medicine formulations through network pharmacology may open up new ideas for the treatment of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included in this article.

Data is transparent and publishable.

Code Availability

Not applicable.

Change history

References

  1. Bulun SE. Endometriosis. N Engl J Med. 2009;360(3):268–79.

    Article  CAS  PubMed  Google Scholar 

  2. Seo H, Kim M, Choi Y, Ka H. Salivary lipocalin is uniquely expressed in the uterine endometrial glands at the time of conceptus implantation and induced by interleukin 1beta in pigs. Biol Reprod. 2011;84(2):279–87.

    Article  CAS  PubMed  Google Scholar 

  3. Klein S, D’Hooghe T, Meuleman C, Dirksen C, Dunselman G, Simoens S. What is the societal burden of endometriosis-associated symptoms? a prospective Belgian study. Reprod Biomed Online. 2014;28(1):116–24.

    Article  PubMed  Google Scholar 

  4. Macer ML, Taylor HS. Endometriosis and infertility: a review of the pathogenesis and treatment of endometriosis-associated infertility. Obstet Gynecol Clin North Am. 2012;39(4):535–49.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Laganà SA, Garzon S, Götte M, Viganò P, Franchi M, Ghezzi F, Martin DC. The pathogenesis of endometriosis: Molecular and cell biology insights. Int J Mol Sci. 2019;20(22)

  6. Ferrero S. Endometriosis: modern management of an ancient disease. Eur J Obstet Gynecol Reprod Biol. 2017;209:1–2.

    Article  PubMed  Google Scholar 

  7. Vallve-Juanico J, Houshdaran S, Giudice LC. The endometrial immune environment of women with endometriosis. Hum Reprod Update. 2019;25(5):564–91.

    Article  PubMed  Google Scholar 

  8. Shen HH, Zhang T, Yang HL, Lai ZZ, Zhou WJ, Mei J, Shi JW, Zhu R, Xu FY, Li DJ, et al. Ovarian hormones-autophagy-immunity axis in menstruation and endometriosis. Theranostics. 2021;11(7):3512–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. He CN, Peng Y, Zhang YC, Xu LJ, Gu J, Xiao PG. Phytochemical and biological studies of paeoniaceae. Chem Biodivers. 2010;7(4):805–38.

    Article  CAS  PubMed  Google Scholar 

  10. Parker S, May B, Zhang C, Zhang AL, Lu C, Xue CC. A pharmacological review of bioactive constituents of Paeonia lactiflora Pallas and Paeonia veitchii Lynch. Phytother Res. 2016;30(9):1445–73.

    Article  PubMed  Google Scholar 

  11. Wang S, Xu J, Wang C, Li J, Wang Q, Kuang H, Yang B, Chen R, Luo Z. Paeoniae radix alba polysaccharides obtained via optimized extraction treat experimental autoimmune hepatitis effectively. Int J Biol Macromol. 2020;164:1554–64.

    Article  CAS  PubMed  Google Scholar 

  12. Jo GH, Kim SN, Kim MJ, Heo Y. Protective effect of Paeoniae radix alba root extract on immune alterations in mice with atopic dermatitis. J Toxicol Environ Health A. 2018;81(12):502–11.

    Article  CAS  PubMed  Google Scholar 

  13. Mao QQ, Ip SP, Xian YF, Hu Z, Che CT. Anti-depressant-like effect of peony: a mini-review. Pharm Biol. 2012;50(1):72–7.

    Article  CAS  PubMed  Google Scholar 

  14. He DY. Dai SM Anti-inflammatory and immunomodulatory effects of paeonia lactiflora pall, a traditional chinese herbal medicine. Front Pharmacol. 2011;2:10.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Huang YQ, Ma X, Wang J, Zhao YL, Wang JB, Chen Z, Zhu Y, Shan LM, Wei SZ, Wang J, et al. Therapeutic efficacy and safety of Paeoniae Radix Rubra formulae in relieving hyperbilirubinemia induced by viral hepatitis: a meta-analysis. Front Pharmacol. 2016;7:63.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhao Y, Zhang Y, Kong H, Zhang M, Cheng J, Wu J, Qu H, Zhao Y. Carbon dots from Paeoniae Radix Alba Carbonisata: hepatoprotective effect. Int J Nanomedicine. 2020;15:9049–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kolanska K, Alijotas-Reig J, Cohen J, Cheloufi M, Selleret L, d’Argent E, Kayem G, Valverde EE, Fain O, Bornes M, et al. Endometriosis with infertility: a comprehensive review on the role of immune deregulation and immunomodulation therapy. Am J Reprod Immunol. 2021;85(3): e13384.

    Article  CAS  PubMed  Google Scholar 

  18. Ru J, Li P, Wang J, Zhou W, Li B, Huang C, Li P, Guo Z, Tao W, Yang Y, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6:13.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tao W, Xu X, Wang X, Li B, Wang Y, Li Y, Yang L. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. J Ethnopharmacol. 2013;145(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  20. Ding S, Duan T, Xu Z, Qiu D, Yan J, Mu Z. Prediction of the active components and possible targets of Xanthii Fructus based on network pharmacology for use in chronic rhinosinusitis. Evid Based Complement Alternat Med. 2022;2022:4473231.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, Nativ N, Bahir I, Doniger T, Krug H, et al. GeneCards Version 3: the human gene integrator. Database (Oxford). 2010;2010:baq020.

    Article  PubMed  Google Scholar 

  22. The UniProt C. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45(D1):D158–69.

    Article  Google Scholar 

  23. Otasek D, Morris JH, Boucas J, Pico AR, Demchak B. Cytoscape Automation: empowering workflow-based network analysis. Genome Biol. 2019;20(1):185.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ma H, He Z, Chen J, Zhang X, Song P. Identifying of biomarkers associated with gastric cancer based on 11 topological analysis methods of CytoHubba. Sci Rep. 2021;11(1):1331.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Primmer CR, Papakostas S, Leder EH, Davis MJ, Ragan MA. Annotated genes and nonannotated genomes: cross-species use of Gene Ontology in ecology and evolution research. Mol Ecol. 2013;22(12):3216–41.

    Article  CAS  PubMed  Google Scholar 

  26. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353–61.

    Article  CAS  PubMed  Google Scholar 

  27. Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC, et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35(Web Server issue):W169-175.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang L, Wei W. Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony. Pharmacol Ther. 2020;207: 107452.

    Article  CAS  PubMed  Google Scholar 

  30. Yuan M, Li D, Zhang Z, Sun H, An M, Wang G. Endometriosis induces gut microbiota alterations in mice. Hum Reprod. 2018;33(4):607–16.

    Article  CAS  PubMed  Google Scholar 

  31. Becattini S, Taur Y, Pamer EG. Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol Med. 2016;22(6):458–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li B, He S, Liu R, Huang L, Liu G, Wang R, Yang Z, Liu X, Leng Y, Liu D, et al. Total glucosides of paeony attenuates animal psoriasis induced inflammatory response through inhibiting STAT1 and STAT3 phosphorylation. J Ethnopharmacol. 2019;243: 112121.

    Article  CAS  PubMed  Google Scholar 

  33. Li B, Liu G, Liu R, He S, Li X, Huang L, Wang Z, Li Y, Chen Y, Yin H, et al. Total glucosides of paeony (TGP) alleviates Sjogren’s syndrome through inhibiting inflammatory responses in mice. Phytomedicine. 2020;71: 153203.

    Article  CAS  PubMed  Google Scholar 

  34. Lebovic DI, Mueller MD, Taylor RN. Immunobiology of endometriosis. Fertil Steril. 2001;75(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  35. Lee B, Du H, Taylor HS. Experimental murine endometriosis induces DNA methylation and altered gene expression in eutopic endometrium. Biol Reprod. 2009;80(1):79–85.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kotlyar A, Taylor HS, D’Hooghe TM. Use of immunomodulators to treat endometriosis. Best Pract Res Clin Obstet Gynaecol. 2019;60:56–65.

    Article  PubMed  Google Scholar 

  37. Kim BG, Yoo JY, Kim TH, Shin JH, Langenheim JF, Ferguson SD, Fazleabas AT, Young SL, Lessey BA, Jeong JW. Aberrant activation of signal transducer and activator of transcription-3 (STAT3) signaling in endometriosis. Hum Reprod. 2015;30(5):1069–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li S, Zhang ZQ, Wu LJ, Zhang XG, Li YD, Wang YY. Understanding ZHENG in traditional Chinese medicine in the context of neuro-endocrine-immune network. IET Syst Biol. 2007;1(1):51–60.

    Article  PubMed  Google Scholar 

  39. Williamson EM. Synergy and other interactions in phytomedicines. Phytomedicine. 2001;8(5):401–9.

    Article  CAS  PubMed  Google Scholar 

  40. Zhai J, Song Z, Wang Y, Han M, Ren Z, Han N, Liu Z, Yin J. Zhixiong Capsule (ZXC), a traditional Chinese patent medicine, prevents atherosclerotic plaque formation in rabbit carotid artery and the related mechanism investigation based on network pharmacology and biological research. Phytomedicine. 2019;59: 152776.

    Article  PubMed  Google Scholar 

  41. Chen X, Yu J, Shi J. Management of diabetes mellitus with Puerarin, a natural isoflavone from Pueraria lobata. Am J Chin Med. 2018;46(8):1771–89.

    Article  CAS  PubMed  Google Scholar 

  42. Soleimani V, Delghandi PS, Moallem SA, Karimi G. Safety and toxicity of silymarin, the major constituent of milk thistle extract: an updated review. Phytother Res. 2019;33(6):1627–38.

    Article  CAS  PubMed  Google Scholar 

  43. Sikora J, Mielczarek-Palacz A, Kondera-Anasz Z. Imbalance in cytokines from interleukin-1 family - role in pathogenesis of endometriosis. Am J Reprod Immunol. 2012;68(2):138–45.

    Article  CAS  PubMed  Google Scholar 

  44. Kang YJ, Jeung IC, Park A, Park YJ, Jung H, Kim TD, Lee HG, Choi I, Yoon SR. An increased level of IL-6 suppresses NK cell activity in peritoneal fluid of patients with endometriosis via regulation of SHP-2 expression. Hum Reprod. 2014;29(10):2176–89.

    Article  CAS  PubMed  Google Scholar 

  45. Aydin GA, Ayvaci H, Koc N, Tarhan N, Demirci O. The relationship between decorin and VEGF in endometriosis. J Coll Physicians Surg Pak. 2021;31(11):1285–90.

    Article  PubMed  Google Scholar 

  46. Li WN, Hsiao KY, Wang CA, Chang N, Hsu PL, Sun CH, Wu SR, Wu MH, Tsai SJ. Extracellular vesicle-associated VEGF-C promotes lymphangiogenesis and immune cells infiltration in endometriosis. Proc Natl Acad Sci U S A. 2020;117(41):25859–68.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ahn SH, Monsanto SP, Miller C, Singh SS, Thomas R, Tayade C. Pathophysiology and immune dysfunction in endometriosis. Biomed Res Int. 2015;2015: 795976.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang XQ, Hu M, Chen JM, Sun W, Zhu MB. Effects of gene polymorphism and serum levels of IL-2 and IL-6 on endometriosis. Eur Rev Med Pharmacol Sci. 2020;24(9):4635–41.

    PubMed  Google Scholar 

  49. Tomassetti C, Meuleman C, Pexsters A, Mihalyi A, Kyama C, Simsa P, D’Hooghe TM. Endometriosis, recurrent miscarriage and implantation failure: is there an immunological link? Reprod Biomed Online. 2006;13(1):58–64.

    Article  CAS  PubMed  Google Scholar 

  50. Halis G, Arici A. Endometriosis and inflammation in infertility. Ann N Y Acad Sci. 2004;1034:300–15.

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Banu SK, Lee J, Speights VO Jr, Starzinski-Powitz A, Arosh JA. Selective inhibition of prostaglandin E2 receptors EP2 and EP4 induces apoptosis of human endometriotic cells through suppression of ERK1/2, AKT, NFkappaB, and beta-catenin pathways and activation of intrinsic apoptotic mechanisms. Mol Endocrinol. 2009;23(8):1291–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Osuga Y, Hirota Y, Yoshino O, Hirata T, Koga K, Taketani Y. Proteinase-activated receptors in the endometrium and endometriosis. Front Biosci (Schol Ed). 2012;4(4):1201–12.

    Article  PubMed  Google Scholar 

  53. Hogg C, Horne AW, Greaves E. Endometriosis-Associated Macrophages: Origin, Phenotype, and Function. Front Endocrinol (Lausanne). 2020;11:7.

    Article  PubMed  Google Scholar 

  54. Tkach M, Rosemblit C, Rivas MA, Proietti CJ, Diaz Flaque MC, Mercogliano MF, Beguelin W, Maronna E, Guzman P, Gercovich FG, et al. p42/p44 MAPK-mediated Stat3Ser727 phosphorylation is required for progestin-induced full activation of Stat3 and breast cancer growth. Endocr Relat Cancer. 2013;20(2):197–212.

    Article  CAS  PubMed  Google Scholar 

  55. Kotlyar AM, Mamillapalli R, Flores VA, Taylor HS. Tofacitinib alters STAT3 signaling and leads to endometriosis lesion regression. Mol Hum Reprod. 2021;27(4)

  56. Ruderman R, Pavone ME. Ovarian cancer in endometriosis: an update on the clinical and molecular aspects. Minerva Ginecol. 2017;69(3):286–94.

    PubMed  Google Scholar 

  57. Hillmer EJ, Zhang H, Li HS, Watowich SS. STAT3 signaling in immunity. Cytokine Growth Factor Rev. 2016;31:1–15.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lin WH, Chang YW, Hong MX, Hsu TC, Lee KC, Lin C, Lee JL. STAT3 phosphorylation at Ser727 and Tyr705 differentially regulates the EMT-MET switch and cancer metastasis. Oncogene. 2021;40(4):791–805.

    Article  CAS  PubMed  Google Scholar 

  59. Huan Q, Cheng SC, Du ZH, Ma HF, Li C. LncRNA AFAP1-AS1 regulates proliferation and apoptosis of endometriosis through activating STAT3/TGF-beta/Smad signaling via miR-424-5p. J Obstet Gynaecol Res. 2021;47(7):2394–405.

    Article  CAS  PubMed  Google Scholar 

  60. Yu H, Zhong Q, Xia Y, Li E, Wang S, Ren R. MicroRNA-2861 targets STAT3 and MMP2 to regulate the proliferation and apoptosis of ectopic endometrial cells in endometriosis. Pharmazie. 2019;74(4):243–9.

    CAS  PubMed  Google Scholar 

  61. Qian K, Fu D, Jiang B, Wang Y, Tian F, Song L, Li L. Mechanism of hedyotis diffusa in the treatment of cervical cancer. Front Pharmacol. 2021;12: 808144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Meresman GF, Gotte M, Laschke MW. Plants as source of new therapies for endometriosis: a review of preclinical and clinical studies. Hum Reprod Update. 2021;27(2):367–92.

    Article  CAS  PubMed  Google Scholar 

  63. Raja MHR, Farooqui N, Zuberi N, Ashraf M, Azhar A, Baig R, Badar B, Rehman R. Endometriosis, infertility and MicroRNA’s: a review. J Gynecol Obstet Hum Reprod. 2021;50(9): 102157.

    Article  PubMed  Google Scholar 

  64. Khodarahmian M, Amidi F, Moini A, Kashani L, Salahi E, Danaii-Mehrabad S, Nashtaei MS, Mojtahedi MF, Esfandyari S, Sobhani A. A randomized exploratory trial to assess the effects of resveratrol on VEGF and TNF-alpha 2 expression in endometriosis women. J Reprod Immunol. 2021;143: 103248.

    Article  CAS  PubMed  Google Scholar 

  65. Greene AD, Lang SA, Kendziorski JA, Sroga-Rios JM, Herzog TJ, Burns KA. Endometriosis: where are we and where are we going? Reproduction. 2016;152(3):R63-78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhao Y, Gong P, Chen Y, Nwachukwu JC, Srinivasan S, Ko C, Bagchi MK, Taylor RN, Korach KS, Nettles KW, et al. Dual suppression of estrogenic and inflammatory activities for targeting of endometriosis. Sci Transl Med. 2015;7(271):271ra279.

    Article  Google Scholar 

  67. Bulun SE, Monsavais D, Pavone ME, Dyson M, Xue Q, Attar E, Tokunaga H, Su EJ. Role of estrogen receptor-beta in endometriosis. Semin Reprod Med. 2012;30(1):39–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang H, Gorpudolo N, Behr B. The role of prolactin- and endometriosis-associated infertility. Obstet Gynecol Surv. 2009;64(8):542–7.

    Article  PubMed  Google Scholar 

  69. Khan KN, Kitajima M, Inoue T, Fujishita A, Nakashima M, Masuzaki H. 17beta-estradiol and lipopolysaccharide additively promote pelvic inflammation and growth of endometriosis. Reprod Sci. 2015;22(5):585–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Long Q, Zheng H, Liu X, Guo SW. Perioperative intervention by beta-blockade and NF-kappaB suppression reduces the recurrence risk of endometriosis in mice due to incomplete excision. Reprod Sci. 2019;26(5):697–708.

    Article  CAS  PubMed  Google Scholar 

  71. Zhou Y, Tao H, Wang A, Zhong Z, Wu X, Wang M, Bian Z, Wang S, Wang Y. Chinese herb pair Paeoniae Radix Alba and Atractylodis macrocephalae rhizoma suppresses LPS-induced inflammatory response through inhibiting MAPK and NF-kappaB pathway. Chin Med. 2019;14:2.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Liu H, Zhang Z, Xiong W, Zhang L, Xiong Y, Li N, He H, Du Y, Liu Y. Hypoxia-inducible factor-1alpha promotes endometrial stromal cells migration and invasion by upregulating autophagy in endometriosis. Reproduction. 2017;153(6):809–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pavone ME, Lyttle BM. Endometriosis and ovarian cancer: links, risks, and challenges faced. Int J Womens Health. 2015;7:663–72.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhang R, Zhu X, Bai H, Ning K. Network pharmacology databases for traditional Chinese medicine: review and assessment. Front Pharmacol. 2019;10:123.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Hainan Key Program of Research and Development (ZDYF2019123), the National Natural Science Foundation of China (82160549), and Hainan Province Clinical Medical Center.

Author information

Authors and Affiliations

Authors

Contributions

SB conceived and designed the study and experiments. YT S, SD, and JC collected the data. YT S designed the experiments and drafted the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Shan Bao.

Ethics declarations

Ethics Approval

Our project was reviewed by the Medical Ethics Committee of Hainan General Hospital. This project conformed to the relevant laws and regulations and was approved for implementation.

Consent for Publication

All authors have agreed to make this article publicly available.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Cai, J., Ding, S. et al. Network Pharmacology Was Used to Predict the Active Components and Prospective Targets of Paeoniae Radix Alba for Treatment in Endometriosis. Reprod. Sci. 30, 1103–1117 (2023). https://doi.org/10.1007/s43032-022-01102-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-01102-x

Keywords

Navigation