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Abstract
In vitro fertilisation (IVF) is estimated to account for the birth of more than nine million babies worldwide, perhaps making it 
one of the most intriguing as well as commoditised and industrialised modern medical interventions. Nevertheless, most IVF 
procedures are currently limited by accessibility, affordability and most importantly multistep, labour-intensive, technically 
challenging processes undertaken by skilled professionals. Therefore, in order to sustain the exponential demand for IVF 
on one hand, and streamline existing processes on the other, innovation is essential. This may not only effectively manage 
clinical time but also reduce cost, thereby increasing accessibility, affordability and efficiency. Recent years have seen a 
diverse range of technologies, some integrated with artificial intelligence, throughout the IVF pathway, which promise per-
sonalisation and, at least, partial automation in the not-so-distant future. This review aims to summarise the rapidly evolving 
state of these innovations in automation, with or without the integration of artificial intelligence, encompassing the patient 
treatment pathway, gamete/embryo selection, endometrial evaluation and cryopreservation of gametes/embryos. Addition-
ally, it shall highlight the resulting prospective change in the role of IVF professionals and challenges of implementation of 
some of these technologies, thereby aiming to motivate continued research in this field.

Introduction

Infertility affects 8–12% of couples worldwide for women 
aged between 20–44 [1, 2]. The growing safety and popular-
ity of assisted reproductive technology (ART) means that an 
estimated nine million babies have been born through ART. 
Strikingly, however, live birth rates in the UK have only mar-
ginally improved over the last decade, currently ranging from 
31% in patients under 35 to 11% for 40–42 years and over, 
and 23% live birth for combined age groups [3]. Although 
live birth rates in the USA remain higher (48–50% in patients 
under 35 to around 12% for 41–42 years), there is still scope 
for much improvement [4, 5]. The lack of improvement of 

overall live birth rates may be attributed to a combination of 
limitation of current technology and our understanding of the 
role of age on ovarian reserve and gametes’ quality, in vitro 
human embryo development, the implantation potential of 
the human endometrium, and the cumulative effect of each 
procedural step on success rates of in vitro fertilisation (IVF) 
treatment. The manual nature of these processes challenges 
the reproducibility and efficiency of ART. Furthermore, many 
existing steps in ART are labour- and time-intensive, as well 
as subject to high inter- and intra-observer variability. There-
fore, a significant increase in success rates demands optimisa-
tion of each of these steps in an IVF treatment pathway.

In the current age of digitalisation, automation holds a 
promising role in improving efficiency, reproducibility, 
and consistency in ART. Automation may be defined as 
the mechanisation of tasks usually performed by, or even 
previously impossible for, humans, through a computerised 
system [6]. In medicine, this has mainly been achieved using 
robotic systems and microfluidics. Artificial intelligence 
(AI) on the other hand may aid automation by incorporat-
ing memory through learning and can be trained to perform 
measured actions without human interaction in certain 
cases. Classification of AI is difficult due to ambiguity of 
the term; however, it can be broadly divided into three types 
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based on its capability to perform a myriad of tasks: narrow, 
general, and strong AI [7]. Currently, the world of com-
puter science has only successfully achieved narrow AI, the 
weakest form of AI [6, 8]. A further subset of AI includes 
machine learning (ML) and natural language processing 
(NLP), which have the ability to learn from the input data 
and even understand human language respectively, without 
being specifically programmed. This high processing ability 
resulted in its popularity and applicability. At present, there 
has been a notable shift from traditional machine learning 
approaches (e.g., logistic regression, random forest) to more 
robust deep learning algorithms, such as artificial neural net-
works (ANN), convolutional neural networks (CNN), and 
more recently transformer neural network (TNN) [9]. Deep 
learning uses hierarchical representations to analyse larger 
data sets with an increasingly diminished need for human 
involvement and interpretation [8]. As we enter the next gen-
eration of rapid biomedical advancements, it is highly prob-
able that automation will be revolutionising ART success 
rates. This may be achieved through incorporation of auto-
mation and AI into several key steps in ART. This review 
aims to discuss the existing use and improvements produced 
by automation within the scope of ART and the strengths 
and limitations of these approaches.

Automation: the Next Revolution in ART?

Data Management

Digitalisation of medical records through electronic medi-
cal recording has allowed for the generation of large raw 
patient data sets, which may act as ‘big data’ within ART. 
A combination of AI, in particular ML and NLP, with big 
data, presents a powerful and promising tool for data analy-
sis that reduces the need for manual processing. This can aid 
in the identification of new predictive outcomes and markers 
for infertility that would not have been identified through 
traditional statistical modelling [10]. Additionally, storage 
of data on a central cloud database improves safety of infor-
mation storage and transferability between medical centres 
[11]. Automated patient identification has been achieved 
with the use of electronic witnessing systems and radio fre-
quency identification (RFID) technology. The widely used 
RI-witness™ system (Research Instrument, CooperSurgi-
cal, Denmark) supports the transition from manual barcode 
identification, which requires at least two embryologists to 
confirm sample labelling, to automated RFID-based label-
ling. This greatly decreases IVF workflow time, improves 
accuracy, and reduces risk of manual error including gam-
ete mismatch [12]. However, errors may still arise during 
the numerous steps of micromanipulation and handling of 
gametes/embryos between dishes; a recent advancement 

promises a unique AI embryo witnessing system utilizing 
CNN to track and successfully (100%) assign patient spe-
cific key to their fresh embryos, thereby allowing traceability 
at every micro-movement, alongside eliminating mismatch 
between embryos of different origin [13]. It must be noted, 
however, that this algorithm was trained with fresh cleavage 
and blastocyst stage embryos, therefore, not yet applicable 
for use with frozen embryos. Moreover, the AI algorithm 
may require further systemic evaluation prior to routine 
clinical use.

Patient Treatment Pathway

Integration of AI in the very first steps of ART has allowed 
for a personalised medicine approach, especially in the char-
acterisation and decision-making process of patient stimu-
lation protocol and dosing, as well as predictive modelling 
for determination of success. For example, an algorithm 
designed to predict live birth rates from patient anti-Mülle-
rian hormone (AMH) levels saw high predictive ability with 
low error rates [14, 15]. Similarly, the PIVET algorithm, 
aimed to personalise recombinant follicle-stimulating hor-
mone (rFSH) dosing using input patient data such as BMI, 
age, and antral-follicle counts (AFC) [16]. Furthermore, an 
individualised rFSH dosing algorithm based on women’s 
AMH and body weight (Rekovelle®, Ferring Pharmaceu-
ticals Ltd, UK) has been recently shown to reduce risk of 
OHSS [17]. Such clinical application of prediction outcomes 
throughout the entirety of IVF has already been used and 
made commercially available through digital platforms 
such as Univfy® (Univfy Inc, USA). Similarly, many fer-
tility units are developing patient-focused mobile applica-
tions, with the aim to generate clinically relevant ‘big data’ 
through the integration of intelligent algorithms. Whilst the 
potential these applications hold must not be underestimated, 
their market adoption within IVF may take time; a recurrent 
issue within the clinical transferability of many automated 
innovations. Additionally, we must acknowledge that the 
diversity of examples in a given data set is paramount to 
the training of an AI algorithm and later generalization of a 
system. Therefore, the fact that the data currently collected 
is limited by the size and geographical distribution of the 
individual or chain of units could become particularly limit-
ing, given, for example, the role of ethnicity in determining 
current IVF success rates [18].

Trans‑vaginal Oocyte Retrieval

Oocyte retrieval essentially consists of two steps: ultra-
sound-guided aspiration of follicular f luid (contain-
ing oocytes) from the ovary into test tubes followed by 
microscopic recovery of oocytes in a petri dish in the IVF 
laboratory. Matsubayashi and colleagues showed that 
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application of AI in recognition of empty and oocyte-con-
taining follicles, trained from ultrasound images, may aid 
accuracy and decrease the duration of trans-vaginal oocyte 
retrieval (TVOR), performed by surgeons [19]. Further-
more, the development of a fluid filled, oocyte retrieval 
chamber (Eggcell) by scientists from Newcastle University 
in collaboration with Newcastle Hospitals NHS Trust and 
Labman Automation, currently in early clinical use, pro-
vides hope for a semi-automated process of oocyte recov-
ery alongside protecting the oocytes from temperature and 
pH variations during TVOR (Trial registration ISRCTN: 
15,509,950). It should be noted that neither of the above 
technologies are currently available for direct clinical use 
and would require further data and clinical trials prior to 
approval for routine implementation. Nonetheless, training 
clinicians or embryologists, alone, to efficiently and accu-
rately perform oocyte recovery, identification of cumulus 
oocyte complex is a long and fallible process. In compari-
son, coupling oocyte recovery and selection with robotics 
and microscopy with in-built computational vision and/or 
AI tools to identify cumulus-oocyte complexes promises 
to aid this process.

Oocyte Selection

Oocyte selection does not currently form a part of routine 
IVF, albeit due to practical and clinical limitations; while the 
presence of the cumulus mass surrounding an oocyte makes 
it practically impossible to determine oocyte maturity/qual-
ity, selecting oocytes based on morphological parameters 
may further reduce the already-limited number of oocytes 
available for treatment. However, stripping the oocyte of 
the cumulus mass prior to an IVF-intra-cytoplasmic sperm 
injection (ICSI) procedure opens the possibility to classify 
oocytes according to their fertilization/blastocyst develop-
mental potential. Image-trained CNN deep learning algo-
rithms such as AIR-O (Artificial Intelligence Ranking sys-
tem for Oocytes, IVF 2.0 Ltd., UK) [20], VIOLET (Future 
Fertility, Canada) promises to outperform skilled embry-
ologists in accurately predicting fertilization and blasto-
cyst development rate [21]. Integration of AI in predicting 
oocyte developmental potential may be beneficial in cases of 
social freezing, in managing patient expectations, as part of 
oocyte allocation strategies during egg-donation cycles and 
to some extent opens doors for future research determining 
the effect of different stimulation protocols on oocyte qual-
ity. Although it may not be utilized as a de-selection tool 
yet, most significantly due to the limited starting number 
of oocytes, improvement/incorporation of intelligent oocyte 
selection tools might also become significant if generation 
and use of synthetic oocytes does become a necessary real-
ity [22].

Semen Analysis and Preparation

Male factor contributes to 50% of infertility cases, 80% 
of which are due to sperm motility [23]. Therefore, robust 
semen analysis and preparation form an integral part of 
effective diagnosis and management of infertility. While 
application of computer-assisted sperm analysis (CASA) for 
analysing sperm motility has been in use for a long time, an 
automated version of this software CASAnova was shown 
to have the ability to accurately classify alterations in sperm 
motility [24].

Several attempts have also been made to automate semen 
preparation for treatment, primarily utilising microfluidics, 
an emerging technology in biomedicine that employs the use 
of minute volumes of solvents manipulated on a chamber or 
chip [25]. Furthermore, microfluidic chips allow incorpora-
tion of mechanical barriers, which have been suggested to 
better emulate natural barriers of the female reproductive 
tract, ensuring only morphologically normal or progressive 
motile sperm are isolated [26]. A microfluidic chamber, 
therefore, promises a non-invasive, high-precision, high-
throughput, and rapid means of performing semen prepara-
tion, further reducing the risk of DNA damage due to tra-
ditional density gradient centrifugation methods for sperm 
sorting [27]. One such example is the FERTILE (Zymot) 
device (DxNow Inc., Gaithersburg, MD, USA). This single-
use filtered chip, with inlet and outlet chambers, connected 
by a microfluidic channel has shown to allow for better selec-
tion of sperm with improved progressive motility and DNA 
Fragmentation Index [27]. In addition, this partial automa-
tion in semen analysis and preparation has the potential to 
be fully automated with the incorporation of robotics and 
further integration with AI, whereby computational model-
ling may be able to optimise fluid flow and displacement 
further personalising the process. A close example is the AI 
and robotics-powered microscopy system, the Mojo©-AISA 
(Mojo, Sweden), which promises to perform rapid analysis 
of raw semen samples within ten minutes, compared to the 
usual 30 min by trained andrologists. The system has been 
noted to conform to the 2010 World Health Organization 
(WHO) semen analysis values and shows a promising way 
of standardising semen analysis which is currently limited 
by high inter- and intra- observer variation [28]. However, 
further clinical training of the CNN-based AI algorithm used 
will be required to reduce the observed high false positive 
prediction rates, especially significant for low concentration 
samples.

Insemination and Intra‑cytoplasmic Sperm Injection 
(ICSI)

The possibility of automating insemination via conven-
tional IVF or ICSI is perhaps quite futuristic and exciting. 
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Nonetheless, attempts have already been made, albeit strictly 
for research purposes and in animal models, to automate 
conventional IVF utilising microfluidic chips [29, 30]. For 
example, Han et al. designed a two-layered, 200-µm micro-
well array microfluidic device for the single-step trapping 
and in situ insemination of oocyte with sperm as well as 
simultaneous embryo culture [29]. Insemination using con-
ventional IVF essentially consists of two steps: sperm prepa-
ration and introduction of a specific concentration of sperm 
to an oocyte; therefore, this may seem less challenging to 
automate.

Contrastingly, insemination using ICSI is a multi-step 
process: oocyte denudation, oocyte selection based on 
maturity, sperm immobilisation, holding and injection 
needle positioning, oocyte positioning, zona and oolemma 
rupture and finally injection of the sperm. Thus, ICSI is 
far more complex, challenging, time-consuming, and con-
sequently strictly operator dependent. Despite these chal-
lenges, attempts have been made to automate several of 
these steps. A microfluidic chip-based system successfully 
automated the denudation of oocytes and oocyte selection 
based on oocyte sedimentation rate prior to ICSI. Good-
quality oocytes settled in lower outlet chambers as proven 
by cytoplasmic maturity and blastocyst formation rates [31, 
32]. Another contact-free oocyte denudation process has 
been presented recently, which proposes the use of ultra-
sonic waves to subsequently denude oocytes by induced 
acoustic streaming and acoustic radiation force, within a 
microfluidic device [33]. Oocyte positioning to avoid the 
polar body during ICSI is normally performed manually. A 
Hough transform algorithm trained with input oocyte images 
has been shown to successfully detect 100% of polar body 
location in various images of different magnification and 
background, allowing use of this algorithm across different 
microscopes [34]. This type of AI-based oocyte positioning 
may perhaps be integrated into existing imaging systems 
such as the Oosight® (Hamilton Thorne, USA), which uses 
liquid crystal technology to visualise oocyte spindle, thereby 
aiding oocyte positioning prior to ICSI.

Attempts have also been made to automate sperm 
immobilisation [35, 36]; integration of automation using 
a robotic arm and a visual servo control AI algorithm in 
sperm tracking and immobilisation prior to ICSI showed 
96% and 94.5% success rates, respectively [36]. However, 
this system requires initial operator selection of sperm 
based on morphology, which makes it subjective. Another 
promising design, FertDish, combines motile sperm selec-
tion directly using channels and transfer capillaries in one 
dish and shows high clinical feasibility as it is adapted onto 
existing clinically used ICSI dishes [37]. While the above 
highlight the scope for partial automation for sperm selec-
tion and immobilisation, an example of the use of AI algo-
rithm for sperm selection with the aim for improved ICSI 

outcome and subsequent embryo development would be the 
SiD software (V1.0; IVF 2.0 Ltd.) [38]. Though promising, 
the study demands larger data sets, while caution should 
be taken during gauging future implications since oocyte 
competence and operatory competency are very likely to 
have a direct effect on the outcome of ICSI and potential 
embryo development.

Finally, robotic injection of sperm showed a 90% success 
rate, performed in comparable times to experienced opera-
tors [39]. Interestingly, the rise in electrical resistance fol-
lowing oolemma penetration was suggested to be used as a 
measure of penetration success using an electrical adaptor 
system connected to the injecting needle [40]. The scope 
for an automated sperm injection robot functioning with 
the help of AI algorithms, optics, cell microinjectors and 
mechatronics, has recently been presented, such that their 
efficiency with respect to injection time, survival, cleav-
age, and blastocyst development rate in mouse and hamster 
gametes/embryos, were comparable to manual controls [41]. 
The main limitations of many of these novel approaches 
described here are in the use of animal models which are 
different in terms of gamete size, cytoplasmic integrity, and 
resistance compared to human gametes. Although this ques-
tions the reliability and transferability of these systems in 
a clinical setting; the only way forward is further research 
using human gametes. While clinical implementation of 
automated ICSI may be a futuristic dream, improving exist-
ing ICSI methodology with the help of AI algorithms may 
not be, where a trained AI model is able to standardise as 
well as optimise ICSI procedures, resulting in better clini-
cal outcome [42, 43]. However, these models are at their 
nascent developmental stage and would require further data 
and training prior to clinical implementation.

Embryo Culture and Selection

In the recent past, the development of single-step continu-
ous culture medium to grow a zygote to blastocyst stage has 
paved the way for the use of time-lapse imaging (TLI) incu-
bators such as the Embryoscope™ (Vitrolife, Sweden) and 
Geri® (Merck group, Germany) in human IVF laboratory. 
This, in turn, has allowed continuous automated monitoring 
of embryo development without exposure to environmental 
stress. Although multiple studies have shown improvement 
in success rates using Embryoscope, results remain varied 
between laboratories [44]. Additionally, the TLI culture con-
sists of two elements: continuous undisturbed culture and 
monitoring of morphokinetic parameters, which a multi-
centre randomised clinical trial is aiming to dissect in con-
junction with clinical outcome [45].

Nonetheless, clinical implementation of the TLI cul-
ture system has allowed for an exponential evolution in 
embryo grading from conventional morphology grading to 
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morphokinetic grading and finally integration of AI algo-
rithms, a step towards automation [46–52]. Multiple studies 
investigating the potential benefit of multi-time point evalua-
tion of morphokinetic parameters in embryos resulted in the 
growing interest and application of TLI and morphokinetic 
embryo grading [51, 53–58]. Consequently, embryo selec-
tion is currently based on a combination of morphological 
and kinetic parameters often utilising semi/automated and/
or AI algorithms such as KIDScore® (Vitrolife, Sweden) 
and Eeva® System (Merck group, Germany). However, TLI 
systems are expensive, some require manual annotation of 
key parameters by embryologists, and thus are still subject 
to inter-observer variability [59]. AI has been introduced to 
reduce human decision-making involved in TLI through the 
integration of algorithms such as the iDAScore® system 
(Vitrolife, Sweden). Other AI algorithms exist; STORK, 
based on Google’s Inception model, has been indicated to 
predict blastocyst quality with an AUC of > 0.98 outper-
forming embryologists [60]. Contrasting to the KIDScore®, 
iDAScore®, and Eeva® systems which utilise time-lapse 
images, other promising AI embryo selection tools such as 
AIR-E (Artificial Intelligence Ranking system for Embryos, 
IVF 2.0 Ltd., UK) and Life Whisperer© (Presagen, Aus-
tralia), both computer-based softwares, provide deep learn-
ing platforms using static images of embryos, requiring 
no costly equipment, making its clinical application most 
affordable and flexible [61, 62]. Most of the afore-mentioned 
algorithms are currently in clinical use with limitations; 
while it is impossible to achieve a 100% implantation pre-
diction potential, the use of AI in doing so can only increase 
the probability of successful implantation.

Preimplantation Genetic Testing and Metabolomics

Despite the conflicting evidence of the effectiveness of pre-
implantation genetic testing (PGT) in improving ART suc-
cess rates [63–67], it is widely used as an embryo selection 
tool in many IVF clinics [65]. This growing demand for 
PGT has led to the development of AI integrated platforms 
such as  PGTaiSM (CooperSurgical, Denmark), a predictor 
algorithm that increases the sensitivity, efficiency, and objec-
tivity of PGT-aneuploidy (PGT-A) sequencing data analysis 
by reducing human involvement in the process. Excitingly, 
to circumvent invasiveness of PGT-A altogether, image-
based detection of embryo ploidy and prediction of embryo 
success rates at any developmental stage has been explored 
through the creation of an AI algorithm, ERICA® (Embryo 
Ranking Intelligent Classification Algorithm). ERICA® has 
been shown to be superior in its ability to predict blastocyst 
ploidy status and selection of embryos with best clinical 
outcome with a 92.5% success rate, when compared with 
trained embryologists [68]. Additionally, this dynamic 
ERICA® algorithm has recently been tested for its ability 

to be personalised according to individual clinic protocols 
and procedures [69] and a positive correlation has also been 
shown between lower ERICA® grades and chances of early 
miscarriage, independent of patient age [70]. However, this 
algorithm would require further development using diverse 
training data sets.

A non-invasive approach to PGT-A (NIPGT) has been 
shown to accurately test for ploidy status utilising cell-free 
DNA within spent culture system, with striking concord-
ance to routine invasive trophectoderm biopsy [71]. Interest-
ingly, a non-invasive metabolomic approach has been used 
in the design of a predictive algorithm based on 60 poten-
tial biomarkers of embryo aneuploidy, discovered through 
spent culture media analysis. The algorithm showed a 97.5% 
accuracy rate in selecting aneuploid over euploid embryos 
[72]. This approach of using AI for non-invasive embryo 
selection has been commercialised by the Overture© 
Metabolomics (Overture Life, USA). Additionally, Raman 
spectroscopy–based metabolic profiling combined with AI 
for ploidy prediction has also been demonstrated [73]. It is 
evident that there is scope for embryo selection based on its 
ploidy status; what remains to be seen, however, is if/how 
we may be able to harness the combined strength of NIPGT 
and metabolomics through AI algorithms to significantly 
improve clinical outcomes, thus making them undeniably 
cost effective.

Endometrial Evaluation for Personalised Embryo 
Transfer

Advancements in molecular techniques have more recently 
allowed detailed study of endometrial receptivity [74–77] 
resulting in a genomic diagnostic tool, endometrial receptiv-
ity array (ERA) [78], and subsequent personalised embryo 
transfer (pET). The ERA utilises endometrial gene expres-
sion analysis, which, integrated with AI, aims to increase 
accuracy and reproducibility when compared with con-
ventional histological analysis of the endometrium [79]. 
Although ERA continues to be used clinically, there is con-
flicting evidence on its clinical benefit [80–85].

Cryopreservation and Cryostorage

The first automated cryopreservation (vitrification) device, 
Gavi® (Genea Biomedx, Australia), showed equivalent 
clinical efficiency in embryo survival post-embryo thaw 
when compared to existing manual methods [86]. The auto-
mated equilibration of embryos prior to vitrification offers 
reduced labour intensity and improved accuracy with the 
maintenance of optimal conditions such as embryo position-
ing, cryoprotectant concentration, exposure time, cooling 
rates, volume, and temperature [87]. Another cryopreser-
vation system, Sarah® (FertileSafe Ltd, Israel), along with 
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the warming system Helia® (FertileSafe Ltd, Israel), uses 
a robotic arm for rapid exposure of embryos in straws into 
equilibration and vitrification solutions and finally into liq-
uid nitrogen. This device was shown to produce 100% and 
95% survival, for embryos and oocytes, respectively. How-
ever, further device validation is required prior to clinical 
use, since validation studies were performed using an animal 
model [88]. Additionally, both of the systems are semi-auto-
mated, costly, and still require considerable human interac-
tion for operation, thus limiting routine clinical implementa-
tion of automated cryopreservation systems.

Cryostorage, post cryopreservation presents us with sev-
eral short- and long-term challenges such as risk of speci-
men contamination, reduction or loss of viability, loss during 
shipping, and risks of shipping and handling [89]. Although 
legal principles and best practices exist to minimise such 
losses [90], they may never be completely eliminated. How-
ever, recent advancements in the automated management of 
cryopreserved gamete and embryo storage through a data 
management system introduced by TMRW® Lifesciences 
gives a much needed scope for improvement [91, 92]. The 
ivFOS® system integrates RFID technology and centralised 
cloud database storage to ensure unique patient identification 
of all cryopreserved samples, accessible from any screen in 
the world. The use of AI and automation in the maintenance 
and monitoring of critical parameters and conditions in the 
cryopreservation tanks has also been achieved through their 
TMRW overwatch™ system, which is integrated with its 
own algorithm for early prediction of future system failures.

Painting a Realistic Future

Limitations and Clinical Feasibility

Implementation of any novel technology is challenging. 
Despite the breadth of efforts to automate the procedural 
steps of ART, there has been relatively small penetration 
into the clinic due to practical restrictions, ethical concerns, 
and importantly lack of further research and clinical trials.

This review highlighted a notable shift in ART, towards 
utilisation of a combination of automated and/or more 
independent self-supervised deep learning algorithms with 
higher processing potential and reduced human bias. How-
ever, algorithmic bias may still be an overarching limitation 
of such black box modelling, resulting from self-supervised 
applications. Supervised learning is fundamentally biased 
and could easily become resource-intensive in terms of com-
putational power and human resources, making the automa-
tion of such process desirable. One potential solution is the 
self-supervised learning approach, as is the case with the 
use of adversarial networks (AANNs)s, where a second AI 
is programmed to evaluate and try to outperform the original 

one. An example of AANNs successfully tested in the field 
of reproductive medicine was presented by Kanakasabapathy 
et. al., where they subjected an AANNs to evaluate embryos, 
sperm, and blood cells using a range of images from differ-
ent image qualities [93]. Although the current clinical value 
of this approach is still to be tested, the authors make an 
interesting proposal towards generalisation and automation 
of an AI system. In a clinical setting, the safety and outcome 
of utilising a predictive algorithm based on what cannot be 
fully understood by a healthcare practitioner can be both 
questionable and detrimental, thereby necessitating regular 
systematic performance assessments [94]. Additionally, we 
need to understandably acknowledge that AI in its current 
form (i.e., narrow AI) is better approached as an assisting 
tool, rather than as a replacement, for embryologists and 
clinicians, and must only be implemented through well-
designed researched processes. Moreover, a combination of 
an expert human, a machine, and a well-designed process 
is highly likely to outperform either machine or human, 
alone [95]; such combined approach may circumvent the 
possibility of lack of control over clinical decision-making 
going against the innate human nature of an experienced 
embryologist.

Another rate-limiting step is practicality and importantly 
the question of cost-effectiveness. For example, the semi-
automated Gavi® cryopreservation system is much more 
costly compared to manual cryopreservation, for the same 
blastocyst survival rates post thawing. This is reflected in 
the poor clinical use of the system, where, despite this novel 
technique being available since 2013, live birth rates were 
only recorded by 2017 in Europe [96].

Usability and integrability of many of these automated 
approaches are also limited in certain cases, such as the 
Gavi® system. This system operates with Gavi® only con-
sumables rather than existing consumables, further limit-
ing its accessibility while also increasing its cost. Similarly, 
microfluidic approaches, though promising for semen anal-
ysis and sperm preparation, may be less feasible in high-
throughput laboratories, due to the necessity of a high vol-
ume of raw semen assessment requiring multiple chips.

Lack of robust clinical evaluation through randomised 
control trials (RCT) to support the safety and efficacy 
of many of these automated and AI systems immensely 
restricts much-needed evidence for/against clinical use as 
well as highlights the need for further clinical research. 
This lack of quality in evidence may be attributed to 
the time from ideation to publication of results from an 
RCT, data insufficiency, variability in data sets, and bias 
within individual studies [19, 94]. Again, bias greatly 
limits transferability of study approaches between groups 
due to inter-clinic variation including niche laboratory 
conditions and heterogeneous data points such as differ-
ent input and output measures [97]. Data insufficiency, 



1012 Reproductive Sciences (2023) 30:1006–1016

1 3

particularly prospective data, limits the use of large and 
representative data sets in many of these studies. These 
issues restrict the reliability and reproducibility of AI, 
which is essential prior to generalised clinical use [98]. 
While the literature remains conflicted in terms of an 
‘ideal’ size for data sets, usage of synthetic data, albeit 
arguable, has been suggested as a probable approach to 
overcoming such shortcomings [99]. This is especially 
true in the UK, where ART is regulated by the Human 
Fertilisation and Embryology Authority (HFEA), and all 
products used in an IVF laboratory must be CE marked 
prior to clinical use, requiring evidence of effectiveness 
backed up by large RCTs. Blockchain technology, which 
offers a decentralised and freely available breadth of 
prospective anonymous patient data, has been proposed 
to overcome these issues and could greatly increase the 
strength of generalised AI use clinically [98].

As with many initial advancements and especially 
within IVF, ethical regulations must be addressed. With 
the high processing power of big data brought about using 
general processing units (GPUs) in AI, it is important to 
have Health Insurance Portability and Accountability Act 
(HIPAA)–compliant patient data protection software in 
place and perhaps the development and implementation 
of AI-driven defence mechanisms [99]. Furthermore, user 
transparency and responsible disclosure systems must 
also be in place prior to clinical use of AI systems [11].

Future of ART 

As we enter the era of Web 3.0, exponential advance-
ments in medical sciences have followed due to integra-
tion of computer and biomedical sciences. The researched 
areas reviewed here together with future extrapolations 
from other fields such as soft robotics and telesurgery 
[100] may result in an ART process that is very much 
distinct from what it is today. Mixed reality (MR), com-
bining virtual reality (VR) and augmented reality (AR), 
may be an option to fully automate patient consultations 
especially significant in times of global pandemics. Oper-
ative procedures such as TVOR and embryo transfer may 
also be performed with mixed reality, the main benefit 
of which removes physical limitations of consultants to 
one clinic [101]. Synergy between microfluidics [102], 
AI, and robotics may indeed achieve a fully automated, 
intelligent, single-step device for the entirety IVF treat-
ment pathway. This idea of ‘IVF in a box’ has already 
been conceptualised by NaturaLife (Overture Life, USA), 
which currently offers three limited features including 
cryopreservation of oocytes and embryos and non-inva-
sive testing of embryos.

Conclusion

In conclusion, as the world is at the forefront of science 
and technology, implementation of novel technologies 
for the automation of ART will soon become a reality. 
The goal of automation in ART is not to replace the role 
of embryologists and practitioners but rather to aid in its 
improvement. In addition, considering the foreseeable 
increase in demands of ART due to a rise in infertility 
cases, popularity of social freezing and the pursuit of 
‘healthy’ offspring, in the future, the number of embry-
ologists may not be reduced, but their role may change 
considerably from performing repetitive mechanical tasks 
to precise logical decision-making. Indeed, it would be 
interesting to foresee, if, in fact, today’s clinical embryolo-
gists may re-evolve into at least partial research embry-
ologists in the near future. The benefits of automation in 
the future of ART are clear; standardisation and increased 
precision to increase efficiency and accessibility of ART 
will become a necessity. However, taking into considera-
tion the minimal turnover of concepts into commercially 
available clinical applications, the gap between research 
and clinical implementation of innovative technologies 
must first be bridged in order to standardise the use of 
automation and AI in improving ART.
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