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Abstract
Obstructive sleep apnea (OSA) usually leads to the occurrence of diabetes. Gestational diabetes mellitus (GDM) is a com-
mon gestational complication associated with adverse maternal and fetal outcomes. Increasing studies suggest that women 
with OSA during pregnancy may be at a significantly greater risk of developing GDM. It is crucial to explore the associa-
tion between OSA and GDM and the mechanisms underlying this association. In this review, we presented a comprehensive 
literature review of the following: the association between OSA and GDM, the possible mechanisms of this association, and 
the effects of continuous positive airway pressure (CPAP) on OSA with GDM. The results showed that most authors sug-
gested that there was an association between OSA and GDM. The intermittent hypoxemia (IH) and reduction of slow-wave 
sleep (SWS) may be the key to this association. IH induces the products of oxidative stress and inflammation as well as dys-
regulation of the hypothalamic–pituitary–adrenal, which lead to diabetes. In addition, SWS reduction in OSA enhances the 
inflammation by increasing the inflammatory cytokines, increases the sympathetic activation, and causes changes in leptin 
level, which result in the development of GDM. Additionally, whether CPAP is beneficial to GDM remains still unclear.
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Introduction

Obstructive sleep apnea (OSA) is characterized by recurrent 
intermittent hypoxemia (IH) and arousals during sleep. It is 
reported that OSA impairs glucose-induced insulin secretion 
from pancreatic β cells and causes the aggregation of inflam-
matory factors in adipose tissue, leading to the occurrence of 

diabetes or insulin resistance (IR) [1, 2]. Continuous posi-
tive airway pressure (CPAP), as the gold standard for OSA 
treatment, improves diabetes or IR in OSA patients [3, 4]. 
Consequently, there is an association between OSA and dia-
betes, and this association is independent of adiposity and 
family history of diabetes [5, 6].

As a state of abnormal glucose tolerance, gestational dia-
betes mellitus (GDM) is a common gestational complication 
defined as any degree of glucose intolerance with onset or 
first recognition during pregnancy [7]. GDM is usually diag-
nosed at 24–28 weeks of pregnancy and is associated with 
adverse maternal and fetal outcomes [8–12]. In addition, 
mothers with GDM have an increased risk of preeclampsia, 
cesarean section, premature delivery, polyhydramnios, and 
infection [13–15]. The infants of a diabetic mother have an 
increased risk of neurodevelopmental deficits or physical 
defects [13, 16].

The associations between OSA and GDM may not be 
causal. Increasing evidence suggest that OSA is associated 
with GDM [17, 18]. It is reported that the prevalence of OSA 
is 3.6–22% in different stages of pregnancy [17, 19, 20]. 
Bisson M. et al. estimated the prevalence of OSA in GDM 
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is about 31% [21]. In addition, Facco FL. et al. found “high-
risk” women (BMI ≥ 30 kg/m2, hypertension, pre-pregnancy 
diabetes, preeclampsia, and/or twin pregnancy) had a much 
higher incidence of OSA from early pregnancy to the third 
trimester of pregnancy, ranging from 30 to 50% [22].

The mechanisms that link OSA to GDM are not yet clear. 
Moreover, continuous positive airway pressure (CPAP) is the 
gold standard treatment for OSA. So far, few studies have 
systematically explored the effect of CPAP on GDM with 
OSA. This article aimed to review the association between 
OSA and GDM, the possible mechanisms of association 
between OSA and GDM, and the effect of CPAP on OSA 
with GDM.

Methods

PubMed was used to search the articles published between 
March 1, 1977, and August 24, 2021. Search terms in Pub-
Med included sleep apnea, sleep apnea syndrome, snor-
ing, diabetes, pregnancy, pregnant, and mellitus. The arti-
cles were included, in which the OSA was diagnosed with 

polysomnography (PSG), home sleep testing monitor, or 
Watch-PAT, rather than symptom-based questionnaires, as 
some studies suggested that these questionnaires were not 
credible among pregnant women [23–25]. In addition, lit-
erature in languages other than English were excluded as 
well as the conference abstract or literature. The chart of the 
article screened is shown in Fig. 1.

Results

Twelve articles were finally included in this review (Tables 1 
and 2), of which nine were prospective and three were 
case–control studies. In addition, seven articles included 
were published in the last five years. Among these arti-
cles, there were three randomized controlled trials (RCT) 
[26–28].

Prevalence of OSA with GDM

GDM occurred in 4.1% of women without pre-gestational 
diabetes [19]. Women with OSA developed GDM during 

Fig. 1   Chart of article screened 
strategy. OSA, obstructive sleep 
apnea; GDM, gestational diabe-
tes mellitus
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pregnancy more often [29]. A study suggested that the prev-
alence of GDM in pregnant women with OSA is higher than 
that without OSA: 48.3% compared with 23.7% [29]. It is 
reported that the prevalence of OSA with GDM is 4.1–73% 
and is increasing year by year [19, 28, 30, 31]. In addition, 
the prevalence of OSA with GDM presents 30–50% in dif-
ferent stages of pregnancy [33]. Facco FL. et al. considered 
that the prevalence of GDM in severe OSA was 35% in the 
third trimester and 21% in early pregnancy [32]. However, 
Wanitcharoenkul E. suggested that the prevalence of GDM 
with OSA was 62.7% in early pregnancy and 37.2% in late 
pregnancy, respectively [28]. Moreover, the prevalence of 
GDM with OSA was 17% in a cohort consisting mainly of 
multigravida, multiparous, Caucasian women with GDM 
[20]. Accordingly, the prevalence of GDM with OSA varies 
widely in different studies.

The Association Between OSA and GDM

Studies indicated the risk that the GDM accompanying with 
OSA was much higher [20, 21]. It is reported that GDM 
risk was significantly higher among women with a higher 
overall apnea–hypopnea index (AHI) [odds ratio (OR), 1.81; 
95% CI, 1.01–3.27], higher AHI in REM (OR, 2.09; 95% 
CI, 1.02–4.31), and higher oxygen desaturation index (OR, 
2.21; 95% CI, 1.03–4.73) [17]. Consequently, there is an 
association between GDM and OSA [17, 30]. For the pres-
ence and absence of OSA, the adjusted OR (aOR) for GDM 
was 3.47 (95% CI, 1.95–6.19) in early pregnancy [19]. In 
the second trimester of pregnancy, the severity of OSA was 
significantly associated with an increased risk of GDM even 
when the apnea–hypopnea index (AHI) was 1–5 events/h, 
which was below the standard threshold for OSA in non-
pregnant women [21]. Additionally, the severity of OSA is 
correlated with IR, fasting glucose, and β-cell function [28]. 
Moreover, Chirakalwasan et al. explored the CPAP effect on 
GDM, and the results showed that β cell function was sig-
nificantly improved and a trend of improving fasting blood 
glucose levels was found in GDM adherent to CPAP in an 
RCT [26]. These results support that the OSA plays a vital 
role in GDM.

OSA is a complex sleep disorder including IH and reoc-
currence of arousal, leading to sleep fragmentation, light 
sleep, low amounts of SWS, and usually reducing total 
sleep time [34, 35]. A randomized cross-sectional study 
indicated that there was an approximate 30% reduction 
of cellular insulin sensitivity in adipocytes from subcu-
taneous fat samples collected in healthy subjects after 4 
nights of sleep restriction compared with 4 nights of nor-
mal sleep, leading to impaired insulin signal transduction 
and IR in human fat cells [36]. Reutrakul et al. [30] evalu-
ated OSA in women with GDM using PSG, and the results 
showed that the sleep fragmentation degree and AHI in Ta
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women with GDM was higher than that in normal pregnant 
women. Authors suggested that sleep fragmentation and 
SWS inhibition led to a decrease in insulin sensitivity [37, 
38]. In addition, acute exposure to IH in healthy volun-
teers was associated with decreased insulin sensitivity and 
impaired glucose tolerance [39]. Moreover, higher arousal 
index and more frequent hypoxic desaturation events are 
associated with higher fasting blood glucose levels [38]. 
On the contrary, two studies suggested that there is no 
relationship between GDM and OSA [21, 32]. However, 
the BMI effect on OSA or GDM has not been completely 
eliminated in these studies. Consequently, there is an asso-
ciation between GDM and OSA [19, 40].

Obesity may be a confounding factor of the association 
between OSA and GDM. However, Bourjeily et al. con-
firmed that OSA was associated with GDM (aOR, 1.51; 
95% CI, 1.34–1.72) after adjusting for potential confound-
ing factors (maternal obesity, pre-pregnancy hypertension, 
pre-pregnancy diabetes, maternal age, race/ethnicity, mul-
tiple births, tobacco use, alcohol use, drug use, rural/urban 
status, coronary heart disease, anemia, hyperlipidemia, 
hypothyroidism, disorders of the adrenal gland) in a study 
in which 1,577,632 deliveries women were included [40]. 
Moreover, GDM was found to be associated with the OSA 
(aOR, 6.60; 95% CI, 1.15–37.96) after adjusting for pre-
pregnancy BMI though the sample size was small in this 
case–control study [30]. After adjusting for potential con-
founding factors including age, gestational age, BMI, and 
race, another study suggested that women with OSA had 
a higher GDM risk (OR, 4.71; 95% CI, 1.05–21.04) and 
GDM risk was also significantly higher among women 
with higher AHI (OR, 1.81; 95% CI, 1.01–3.27) [17]. Con-
sequently, there is an association between GDM and OSA 
after adjusting for age, BMI, chronic hypertension, and 
pregnancy-related weight gain or not [19, 30, 40]. In con-
clusion, there is an association between OSA and GDM, 
which may not be caused by obesity.

The Mechanisms of Association Between OSA 
and GDM

Normal pregnant women usually have mild IR resulting 
from changes of hormonal or alteration of endothelial 
function during pregnancy [41]. Therefore, even small 
changes in sleep parameters may make pregnant women 
to be more susceptible to hyperglycemia or GDM. GDM 
has the same risk factors and genetic susceptibility as type 
2 diabetes, which is related to IR and impaired insulin 
secretion [41]. Though exact mechanisms of the associa-
tion between OSA and GDM remain not completely clear, 
several mechanisms may be involved in this association 
(Fig. 2).

Oxidative Stress and Inflammation

Increased studies suggest that oxidative stress and inflam-
mation are associated with endothelial dysfunction [18, 
42–44]. For pregnant women with OSA, IH has a range of 
downstream effects on tissues and organs [33, 45]. These 
effects include increased oxidative stress, the release of pro-
inflammatory, and activation of cytokines or transcription 
factors [46–48]. IH during OSA leads to the increase of oxi-
dative stress, which activates the pro-inflammatory cascade 
and the inflammatory pathway, consequently causing dys-
lipidemia and IR [47, 49]. In addition, cyclic reoxygenation 
after IH also promotes the production of reactive oxygen 
species (ROS) in OSA [50]. When ROS is accumulated, it 
will be eliminated by antioxidants [51]. However, exces-
sive ROS that exceeds the antioxidant scavenging capacity 
often impairs the function of cells [52]. It is suggested that 
pancreatic cells are more vulnerable to oxygen stress than 
muscles, kidneys, and liver, which may be due to an inad-
equate antioxidant system [53]. Additionally, redox-sensitive 
transcription factors, such as nuclear factor kappa B (NF-
κB) and HIF-1, are usually induced by ROS [51, 54]. The 
activation of NF-κB induces the release of several cytokines, 
such as tumor necrosis factor α (TNF-α) and interleukin-1 
(IL-1), thereby leading to the presence of inflammation 
[51, 55]. Moreover, it is reported that IH upregulates CC 
chemokine family ligand 2 (CCL2) [56]. CCL2 is one of the 
key chemokines that regulate monocyte/macrophage migra-
tion and infiltration. Overexpressing CCL2 attracts inflam-
matory cells from the blood into adipose tissue and increases 
the number of macrophages, which cause metabolic pheno-
type to be deteriorated and then IR presents [57–59]. Conse-
quently, the oxidative stress and inflammation induced by IH 
in OSA is an important factor in the pathogenesis of GDM.

Moreover, the reduction of SWS which presents in OSA 
may enhance the inflammation by increasing the concentra-
tion of TNF-α, interleukin-6 (IL-6), and C-reactive protein 
(CRP) in circulation, which is involved in IR [36, 60]. In the 
Cleveland Family Study, the reduction of sleep duration was 
also associated with increased TNF-α levels and increased 
habitual sleep time was associated with increased CRP and 
IL-6 levels [61]. Similarly, in the second and third trimes-
ters, lower SWS and poorer sleep quality were found to be 
associated with higher levels of IL-6 [62]. TNF-α increases 
the phosphorylation of serine 307 of IRS-1 through JNK 
activation, which negatively modulates the interaction of 
stimuli with insulin receptors and the subsequent tyrosine 
phosphorylation of IRS-1, leading to impaired insulin sign-
aling and β cell function [63–65]. OSA leads to pancreatic 
β-cell dysfunction, which is manifested by impaired basal 
insulin secretion and leads to diabetes [66]. TNF-α could 
significantly increase the secretion of IL-6, while IL-6 could 
reduce glucose transport [67]. In addition, IL-6 treatment 
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increases insulin-stimulated glucose disposal, glucose 
uptake, and fatty acid oxidation in vitro via AMP-activated 
protein kinase [68]. Thus, the oxidative stress and inflamma-
tion induced by changes in sleep structure in OSA is a vital 
factor in the pathogenesis of GDM.

Increase of Sympathetic Activity

In the general population, frequent arousal and hypoxia 
generally reduce SWS time and increase sympathetic 
activity, leading to wakefulness during sleep [47, 69–71]. 
The reduction of SWS time increases the brain’s utilization 
of glucose and sympathetic nerve activity, which affect 
the regulation of glucose. In addition, when the sleep/
wake cycle is abnormal, dozing may disturb the changes 
in hormones which regulate glucose metabolism, appetite, 
and the balance between sympathetic and parasympathetic 
nerves, which may impair glucose tolerance [72, 73]. Con-
sequently, increased sympathetic activation may lead to 
GDM [47, 74].

Overactivation of the Hypothalamic–Pituitary–Adrenal 
(HPA) Axis

The HPA axis consists of three cell populations and spe-
cific hormones secreted by each group cell. Neurons in 
the medial paraventricular cells of the hypothalamic para-
ventricular nucleus (PVN) secrete corticotropin-releasing 
hormone (CRH), the endocrine cells of the anterior pitui-
tary secrete adrenocorticotropic hormone (ACTH), and 
the endocrine cells in the adrenal cortical bundle mainly 

secrete the corticosteroid [75–77]. HPA activation stimu-
lates the synthesis and release of ACTH, and the ACTH 
subsequently promotes gluconeogenesis and regulates 
blood glucose levels [78]. It is reported that poor sleep 
quality in pregnancy is associated with elevated levels of 
nocturnal cortisol [79], which suggested that the effect 
of OSA on the HPA axis may be related to sleep depriva-
tion. In addition, pro-inflammatory cytokines and IH may 
lead to excessive activation of the HPA axis, which sub-
sequently increase the release of glucocorticoid [80–82]. 
Long-term augment of the glucocorticoid increases sus-
ceptibility to impaired IR and impaired glucose tolerance 
[83]. In addition, there are significant negative correla-
tions between morning plasma cortisol levels and AHI, 
as well as oxygen desaturation index, which confirm that 
OSA is associated with dysregulation of the HPA axis and 
alterations in glucose metabolism with increased risk for 
diabetes [84]. Moreover, sleep disruption and IH during 
sleep in pregnant women with OSA may lead to activation 
of the HPA axis and increase cortisol levels, consequently 
increasing the risk of GDM [85]. Therefore, the hyperac-
tivation of the HPA axis caused by sleep fragmentation, 
pro-inflammatory cytokines, and IH may play a vital role 
in the development of GDM in patients with OSA.

CRH is a hypothalamic neuropeptide which is pro-
duced and released from the placenta at intervals and plays 
a central role in regulating the HPA axis [86, 87]. Stud-
ies confirmed the relationship between OSA and placental 
dysfunction caused by hypoxia damage in OSA [88–90]. 
Consequently, the association between OSA with GDM may 
be mediated by the placenta regulating the HPA axis.

Fig. 2   The mechanism of gestational diabetes mellitus and insulin 
resistance induced by obstructive sleep apnea. OSA, obstructive sleep 
apnea; IH, intermittent hypoxemia; SWS, slow-wave sleep; HPA, 

hypothalamic–pituitary–adrenal; TNF-a, tumor necrosis factor α; IL-
6, interleukin-6; CRP, C-reactive protein; CCL2, CC chemokine fam-
ily ligand 2; ROS, reactive oxygen species; IR, insulin resistance

86 Reproductive Sciences (2023) 30:81–92



1 3

The Levels of Leptin

Increasing evidence suggest that sleep deprivation, espe-
cially SWS loss, regulates appetite and satiety by reduc-
ing leptin sensitivity and increasing ghrelin levels, conse-
quently boosting food intake and increasing IR [91, 92]. 
Leptin levels are higher in extreme situations where sleep 
time is shorter or longer [93]. Additionally, leptin levels 
were elevated in OSA and decreased after CPAP treatment, 
accompanying the increase of insulin secretion [94, 95]. 
Meanwhile, leptin is significantly associated with IR in 
patients with moderate-to-severe OSA [96]. However, the 
leptin levels in GDM are controversial. Some authors sug-
gested that leptin levels were elevated in GDM and were 
associated with GDM status [97, 98], while other authors 
found there were no changes or reductions in leptin levels 
of GDM [99, 100]. Consequently, more studies are needed 
to confirm the role of leptin in the association between 
OSA and GDM.

Adipose Tissue

Obesity is associated with the presence of OSA and dia-
betes [101]. Obesity and particularly central adiposity are 
potent risk factors for sleep apnea [102]. At the same time, 
obesity in pregnancy is associated with the occurrence 
of GDM [103]. It seems that the increased prevalence of 
OSA in GDM patients results from obesity rather than 
the association between OSA and GDM. However, several 
studies confirm that OSA is still associated with GDM 
after adjusting for BMI [17, 30, 40], which means that 
obesity is not really the main factor contributing to the 
association between GDM and OSA. Authors suggested 
the maternal TNF-α level in circulation increased and 
was an independent predictor of GDM [104, 105]. Addi-
tionally, changes of adipokines induced by IH aggravate 
inflammation in adipose tissue, thereby leading to IR [106, 
107]. Meanwhile, overexpression of monocyte-chemoat-
tractant protein-1 (MCP-1) promotes the infiltration of 
monocytes/macrophages into adipose tissue and activates 
pro-inflammatory macrophages which are related to IR 
[108, 109]. Moreover, the increased free fatty acids (FFA) 
induce macrophages to produce inflammatory cytokines 
by activating the NF-κB pathway, which is related to IR 
[110, 111]. More importantly, pregnant women with OSA 
present an augment of the NF-κB pathway as well as mac-
rophages inflammation [47, 112]. Thus, inflammation of 
macrophages in adipose tissue of the OSA may be related 
to GDM. However, macrophages inflammation and its 
signal pathways in OSA with GDM remain unclear and 
require more research to confirm in the future.

The Effect of OSA Treatment on GDM

CPAP is the gold standard for the treatment of OSA and 
can reduce the occurrence of various complications [113, 
114]. However, the effect of CPAP on glucose metabolism 
and adverse outcomes of pregnancy is still debated. The 
authors suggested that CPAP treatment of OSA significantly 
improved glycaemic control via amelioration of evening fast-
ing glucose metabolism and a reduction in the dawn phe-
nomenon and may be more beneficial in participants with 
poor glycemic control at baseline [115, 116]. In addition, 
CPAP is beneficial to the decrease of glycated hemoglobin 
and improves β cell function [117]. On the contrary, other 
authors suggest that therapeutic CPAP does not significantly 
improve glycaemic control or IR [118, 119].

Carnelio S. confirmed that CPAP does not prevent 
adverse outcomes of pregnant women (early miscarriage, 
premature deliveries, etc.) [120]. However, among partici-
pants who adhered to CPAP, there is a significant improve-
ment in the hospitalization rates of premature births and 
unplanned cesarean sections and neonatal intensive care 
units were lower in mothers who used CPAP for > 2 weeks 
than those who used CPAP for ≤ 2 weeks [26, 121].

CPAP is a safe and effective method for pregnant women 
with OSA [122, 123]. It was reported that 2 weeks of CPAP 
treatment in late pregnancy was safe but did not improve 
glucose metabolism of OSA with GDM, though there was a 
tendency of improvement in fasting glucose [26]. However, 
CPAP treatment improved insulin secretion (P = 0.002) and 
insulin sensitivity of OSA with GDM (P = 0.015) after deal-
ing with nonadherence in the RCT [26]. At present, it is 
uncertain whether the CPAP is beneficial to OSA with GDM 
because a single study with a small sample size (n = 36) was 
included in this review [26]. Accordingly, more research on 
CPAP effects on OSA with GDM are urgently needed.

Discussions

Currently, most of the studies suggest that there is an asso-
ciation between OSA and GDM. However, the exact mecha-
nisms of this association remain unclear. There are several 
possible mechanisms involved in this association. Among 
these mechanisms, the IH and reduction of SWS were plau-
sible. On the one hand, IH in OSA induces the products 
of oxidative stress and inflammation in adipose tissue or 
circulation, which lead to IR or diabetes [47, 49]. On the 
other hand, IH results in dysregulation of the HPA axis and 
thereby impairs glucose metabolism [80, 81]. In addition, 
SWS reduction plays an important role in the association 
between OSA and GDM. SWS reduction in OSA enhances 
the inflammation by increasing the inflammatory cytokines, 
increases the sympathetic activation, and causes the changes 
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in leptin level, which result in the development of GDM [36, 
60, 72, 73, 91].

Obesity hypoventilation syndrome (OHS) may develop 
from a complex interaction between severe OSA, central 
obesity, obesity-related respiratory disorders, and reduced 
respiratory drive [124]. OSA is present in 90% of individuals 
with OHS, and the remaining 10% of OHS is characterized 
by an apnea–hypopnea index (AHI) < 5 events/hour [125]. 
Currently, OHS is still poorly understood [126]. Most pre-
vious studies on OSA did not distinguish OHS from OSA, 
which means that the OSA subjects in these studies may 
have mixed with OHS patients. Similarly, we failed to sepa-
rate OHS from OSA in this review due to the limitations 
of previous studies. Therefore, studies on the association 
between OSA and GDM are needed with the exclusion of 
OHS confounding in the future.

Moreover, studies are needed to explore the mechanisms 
of association between OSA and GDM. IH may up-regulate 
other factors besides resistin, TNF-α, and CCL2. Cytokines 
or inflammatory factors which strongly contribute to GDM 
are needed to find. Additionally, the insulin downstream sig-
nal of insulin regulated by cytokines remains unclear. Mean-
while, the effect of leptin levels in GDM is still debated. In 
addition, clinical trials should be designed to confirm the 
effect of CPAP on the maternal and fetal outcomes of GDM.

There were several limitations in this review. Firstly, 
some studies included presented a small sample size. Sec-
ondly, studies included failed to distinguish OHS from OSA. 
Thirdly, among the twelve studies included, there are only 
three RCTs. Another limitation is that none of the included 
studies listed the type of obesity and gestational weight gain, 
which may be a confounding factor. However, these limita-
tions pointed to the direction of future research. Meanwhile, 
several strengths were presented in this review. In addition, 
the studies in which OSA subjects diagnosed with a ques-
tionnaire were excluded.

In conclusion, researchers should pay more attention to 
the association between OSA and GDM in the future. More 
studies should focus on mechanisms of this association as 
well as the CPAP effects on the OSA with GDM.
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