Skip to main content

Advertisement

Log in

Improvement of Astragalin on Spermatogenesis in Oligoasthenozoospermia Mouse Induced by Cyclophosphamide

  • Reproductive Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

More than 40% of infertile men are diagnosed with oligoasthenozoospermia and the incidence is still rising, but the effective treatments are not been found until now. Astragalin, one of the main active ingredients in traditional Chinese medicine, may be effective in the treatment of oligoasthenozoospermia. This study investigated the pharmacological effects of astragalin for treatment of oligoasthenozoospermia in male mice, induced by cyclophosphamide (CTX). Male mice were intraperitoneally injected by CTX (50 mg/kg), and astragalin (30 mg/kg) was given via oral gavage once daily. RNA-seq analysis highlighted astragalin upregulated gene expression of anti-apoptosis (AKT1and BCL2-XL), cell proliferation (ETV1, MAPKAPK2, and RPS6KA5) and synthesis of testosterone (STAR, CYP11A1, and PRKACB), but downregulated gene expression of cell apoptosis (BAD, BCL-2, CASPASE9, and CASPASE3) in mouse testis. Astragalin also significantly reversed the reduction in body weight, reproductive organs index, and sperm parameters (sperm concentration, viability, and motility) induced by CTX, and restored testicular abnormal histopathologic morphology induced by CTX. Furthermore, astragalin dramatically rescued the gene expression related to spermatogenesis (AKT1, BCL-2, CASPASE9, CASPASE3, MAPKAPK2, RPS6KA5, STAR, and PRKACB), and increased the level of testosterone by improving related proteins (STAR, CYP11A1, PRKACB) for oligoasthenozoospermia induced by CTX. In conclusion, astragalin may be a potential beneficial agent for oligoasthenozoospermia by increasing the testosterone levels in testis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All the data is contained in the manuscript, raw datasets used and/or analyzed during the current study is available from the corresponding author on reasonable request.

Abbreviations

CTX:

Cyclophosphamide

BAD:

BCL2-associated agonist of cell death

BCL-2:

B cell leukemia/lymphoma 2

CASPASE9:

Cysteinyl aspartate specific proteinase 9

CASPASE3:

Cysteinyl aspartate specific proteinase 3

AKT1:

Thymoma viral proto-oncogene 1

BCL2-XL:

BCL2-associated X protein

ETV1:

ETS variant 1

MAPKAPK2:

MAP kinase-activated protein kinase 2

RPS6KA5/MSK1:

Ribosomal protein S6 kinase, polypeptide 5

STAR:

Steroidogenic acute regulatory protein

PRKACB:

Protein kinase, cAMP dependent regulatory, type II alpha

CYP11A1:

Cytochrome P450, family 11, subfamily a, polypeptide 1

LH:

Luteinizing hormone

DEGs:

Differentially expressed genes

GO:

Gene ontology

BP:

Biological process

MF:

Molecular function

CC:

Cellular component

KEGG:

Kyoto Encyclopedia of Genes and Genomes

References

  1. Cooper T, Castilla JA (2009) WHO laboratory manual for the examination and processing of human semen. in 9th International Congress of Andrology.

  2. Jungwirth A, et al. European Association of Urology guidelines on male infertility: the 2012 update. Eur Urol. 2012;62(2):324–32.

    Article  PubMed  Google Scholar 

  3. Chambers GM, et al. Infertility management in women and men attending primary care-patient characteristics, management actions and referrals. Hum Reprod. 2019;34(11):2173–83.

    Article  PubMed  Google Scholar 

  4. Foresta C, et al. Genetic abnormalities among severely oligospermic men who are candidates for intracytoplasmic sperm injection. J Clin Endocrinol Metab. 2005;90(1):152–6.

    Article  CAS  PubMed  Google Scholar 

  5. Saito S, et al. Astragalin from Cassia alata induces DNA adducts in vitro and repairable DNA damage in the yeast Saccharomyces cerevisiae. Int J Mol Sci. 2012;13(3):2846–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kumaraswamy D, Puchchakayala G. Evaluation of anti-rheumatoid activity of cuscuta reflexa in freund’s adjuvant induced arthritic rats. Int J Phar Technol. 2016;8(2):13515–30.

    CAS  Google Scholar 

  7. Donnapee S, et al. Cuscuta chinensis Lam.: a systematic review on ethnopharmacology, phytochemistry and pharmacology of an important traditional herbal medicine. J Ethnopharmacol. 2014;157:292–308.

    Article  CAS  PubMed  Google Scholar 

  8. Walker WH. Testosterone signaling and the regulation of spermatogenesis. Spermatogenesis. 2011;1(2):116–20.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang Q, Zhang P, Gao HB. Luteinizing hormone induces expression of 11beta-hydroxysteroid dehydrogenase type 2 in rat Leydig cells. Reprod Biol Endocrinol. 2009;7:39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hu F, et al. Smad ubiquitylation regulatory factor 1 promotes LIM-homeobox gene 9 degradation and represses testosterone production in Leydig cells. Faseb j. 2018;32(9):4627–40.

    Article  CAS  PubMed  Google Scholar 

  11. Singh J, O’Neill C, Handelsman DJ. Induction of spermatogenesis by androgens in gonadotropin-deficient (hpg) mice. Endocrinology. 1995;136(12):5311–21.

    Article  CAS  PubMed  Google Scholar 

  12. Ye L, et al. Insights into the development of the adult Leydig cell lineage from stem Leydig cells. Front Physiol. 2017;8:430.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Payne AH, Hales DB. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev. 2004;25(6):947–70.

    Article  CAS  PubMed  Google Scholar 

  14. Colpi GM, et al. European Academy of Andrology guideline Management of oligo-astheno-teratozoospermia. Andrology. 2018;6(4):513–24.

    Article  CAS  PubMed  Google Scholar 

  15. Egozcue S, et al. Human male infertility: chromosome anomalies, meiotic disorders, abnormal spermatozoa and recurrent abortion. Hum Reprod Update. 2000;6(1):93–105.

    Article  CAS  PubMed  Google Scholar 

  16. Ajduk A, Zernicka-Goetz M. Quality control of embryo development. Mol Aspects Med. 2013;34(5):903–18.

    Article  PubMed  Google Scholar 

  17. Zhou SH, et al. Traditional Chinese medicine as a remedy for male infertility: a review. World J Mens Health. 2019;37(2):175–85.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yuan D, et al. Protective effects of total flavonoids from Epimedium on the male mouse reproductive system against cyclophosphamide-induced oxidative injury by up-regulating the expressions of SOD3 and GPX1. Phytother Res. 2014;28(1):88–97.

    Article  CAS  PubMed  Google Scholar 

  19. Lu WP, et al. Zn(II)-curcumin protects against oxidative stress, deleterious changes in sperm parameters and histological alterations in a male mouse model of cyclophosphamide-induced reproductive damage. Environ Toxicol Pharmacol. 2015;39(2):515–24.

    Article  CAS  PubMed  Google Scholar 

  20. Kim YH, et al. Astragalin inhibits allergic inflammation and airway thickening in ovalbumin-challenged mice. J Agric Food Chem. 2017;65(4):836–45.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang W, et al. Inhibitory effects of emodin, thymol, and astragalin on leptospira interrogans-induced inflammatory response in the uterine and endometrium epithelial cells of mice. Inflammation. 2017;40(2):666–75.

    Article  CAS  PubMed  Google Scholar 

  22. Alblihed MA. Astragalin attenuates oxidative stress and acute inflammatory responses in carrageenan-induced paw edema in mice. Mol Biol Rep. 2020;47(9):6611–20.

    Article  CAS  PubMed  Google Scholar 

  23. Peng L, et al. Astragalin attenuates dextran sulfate sodium (DSS)-induced acute experimental colitis by alleviating gut microbiota dysbiosis and inhibiting NF-κB activation in mice. Front Immunol. 2020;11:2058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Han XX, et al. Protective effects of Astragalin on spermatogenesis in streptozotocin-induced diabetes in male mice by improving antioxidant activity and inhibiting inflammation. Biomed Pharmacother. 2019;110:561–70.

    Article  CAS  PubMed  Google Scholar 

  25. Jamal M, et al. Ethanol and acetaldehyde after intraperitoneal administration to Aldh2-knockout mice-reflection in blood and brain levels. Neurochem Res. 2016;41(5):1029–34.

    Article  CAS  PubMed  Google Scholar 

  26. Yu S, et al. Chestnut polysaccharides benefit spermatogenesis through improvement in the expression of important genes. Aging (Albany NY). 2020;12(12):11431–45.

    Article  CAS  Google Scholar 

  27. Ritchie ME, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Ashburner M, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kanehisa M, et al. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353-d361.

    Article  CAS  PubMed  Google Scholar 

  30. Yu G, et al. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang YF, et al. Protective effects of melatonin against nicotine-induced disorder of mouse early folliculogenesis. Aging (Albany NY). 2018;10(3):463–80.

    Article  CAS  Google Scholar 

  32. Zhang P, et al. Murine folliculogenesis in vitro is stage-specifically regulated by insulin via the Akt signaling pathway. Histochem Cell Biol. 2010;134(1):75–82.

    Article  CAS  PubMed  Google Scholar 

  33. Liu H, et al. Evaluation of decalcification techniques for rat femurs using HE and immunohistochemical staining. Biomed Res Int. 2017;2017:9050754.

    PubMed  PubMed Central  Google Scholar 

  34. Castaneda JM, et al. TCTE1 is a conserved component of the dynein regulatory complex and is required for motility and metabolism in mouse spermatozoa. Proc Natl Acad Sci U S A. 2017;114(27):E5370-e5378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang Y, et al. Regulation of steroid hormones and energy status with cysteamine and its effect on spermatogenesis. Toxicol Appl Pharmacol. 2016;313:149–58.

    Article  CAS  PubMed  Google Scholar 

  36. Green DM, et al. Cumulative alkylating agent exposure and semen parameters in adult survivors of childhood cancer: a report from the St Jude Lifetime Cohort Study. Lancet Oncol. 2014;15(11):1215–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Choy JT, Eisenberg ML. Male infertility as a window to health. Fertil Steril. 2018;110(5):810–4.

    Article  PubMed  Google Scholar 

  38. Cheng X, Ferrell JE Jr. Apoptosis propagates through the cytoplasm as trigger waves. Science. 2018;361(6402):607–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ho HJ, et al. A novel function of geranylgeraniol in regulating testosterone production. Biosci Biotechnol Biochem. 2018;82(6):956–62.

    Article  CAS  PubMed  Google Scholar 

  40. Kalkavan H, Green DR. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ. 2018;25(1):46–55.

    Article  CAS  PubMed  Google Scholar 

  41. Fleisher TA (1997) Apoptosis. Ann Allergy Asthma Immunol 78(3): p. 245–9; quiz 249–50

  42. Im YH, et al. EWS-FLI1, EWS-ERG, and EWS-ETV1 oncoproteins of Ewing tumor family all suppress transcription of transforming growth factor beta type II receptor gene. Cancer Res. 2000;60(6):1536–40.

    CAS  PubMed  Google Scholar 

  43. Guo YJ, et al. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 2020;19(3):1997–2007.

    PubMed  PubMed Central  Google Scholar 

  44. Sharpe RM. Intratesticular factors controlling testicular function. Biol Reprod. 1984;30(1):29–49.

    Article  CAS  PubMed  Google Scholar 

  45. Fraiser LH, Kanekal S, Kehrer JP. Cyclophosphamide toxicity. Characterising and avoiding the problem. Drugs. 1991;42(5):781–95.

    Article  CAS  PubMed  Google Scholar 

  46. Zhou Q, et al. Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell. 2016;18(3):330–40.

    Article  CAS  PubMed  Google Scholar 

  47. Kumar S, et al (2021) Leydig cell-specific DAX1-deleted mice has higher testosterone level in the testis during pubertal development. Reprod Sci

  48. Afshar A, et al. Curcumin-loaded iron particle improvement of spermatogenesis in azoospermic mouse induced by long-term scrotal hyperthermia. Reprod Sci. 2021;28(2):371–80.

    Article  CAS  PubMed  Google Scholar 

  49. Tanaka T, et al. The luteinizing hormone-testosterone pathway regulates mouse spermatogonial stem cell self-renewal by suppressing WNT5A expression in Sertoli cells. Stem Cell Reports. 2016;7(2):279–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Baburski AZ, Andric SA, Kostic TS. Luteinizing hormone signaling is involved in synchronization of Leydig cell’s clock and is crucial for rhythm robustness of testosterone production†. Biol Reprod. 2019;100(5):1406–15.

    Article  PubMed  Google Scholar 

  51. Scott HM, et al. Role of androgens in fetal testis development and dysgenesis. Endocrinology. 2007;148(5):2027–36.

    Article  CAS  PubMed  Google Scholar 

  52. Stocco DM. StAR protein and the regulation of steroid hormone biosynthesis. Annu Rev Physiol. 2001;63:193–213.

    Article  CAS  PubMed  Google Scholar 

  53. Gonzalez E, Guengerich FP. Kinetic processivity of the two-step oxidations of progesterone and pregnenolone to androgens by human cytochrome P450 17A1. J Biol Chem. 2017;292(32):13168–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lin D, et al. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science. 1995;267(5205):1828–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (No. 81960278), the Outstanding Youth Funds of Science and Technology Department of Gansu Province (No. 20JR5RA371), the Gansu Provincial Health and Family Planning Commission (GSWSKY2017-34), and the Science Foundation of the Gansu Province, China (20YF3FA030), Fundamental Research Funds for the Central Universities (No. lzujbky-2021-kd38).

Author information

Authors and Affiliations

Authors

Contributions

Xiaolei Liang, Qigang Fan, Qing Meng, and Hongli Li designed the study. Qigang Fan, Pu Gao, and Fengqin Shen performed the animal studies and finished all the experiments. Zhongying Zhao, Ruifeng He, and Meigui Zhang analyzed the data. Yi Li, Qinying Zhu, Hongli Li, and Xinlong Li prepared the draft figures and tables. Xiaolei Liang, Qigang Fan, and Qing Meng prepared the manuscript. All authors have reviewed the final manuscript.

Corresponding author

Correspondence to Xiaolei Liang.

Ethics declarations

Ethics Approval and Consent to Participate

This study makes the use of male C57BL/6 N mice, and all the experimental protocol for the use of animal was approved the Ethics Committee of The First Hospital of Lanzhou University (LDYYLL2019-44).

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Q., Zhao, Z., Meng, Q. et al. Improvement of Astragalin on Spermatogenesis in Oligoasthenozoospermia Mouse Induced by Cyclophosphamide. Reprod. Sci. 29, 1738–1748 (2022). https://doi.org/10.1007/s43032-021-00808-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00808-8

Keywords

Navigation