Skip to main content
Log in

TSGA10 as a Potential Key Factor in the Process of Spermatid Differentiation/Maturation: Deciphering Its Association with Autophagy Pathway

  • Male Reproduction: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Testis-specific gene antigen 10 (TSGA10) plays an important role in spermatogenesis. However, the exact TSGA10 role and its relationship with the autophagy pathway in the process of spermatids differentiation/maturation is still not clear. Therefore, the present study evaluates the role of TSGA10 gene in the spermatid differentiation/maturation through its effect on autophagy and explores possible underlying pathway(s). Sperm samples from patients with teratospermia were collected. The mRNA and protein level of TSGA10 in these samples were assessed by real-time PCR and western blotting. Using the ingenuity pathway analysis (IPA) software, the gene network and interactions of TSGA10 involved in sperm maturation and autophagy were investigated. Based on these analyses, the expression levels of identified genes in patient’s samples and healthy controls were further evaluated. Moreover, using flow cytometry analysis, the levels of reactive oxygen species (ROS( production in teratospermic sperm samples were evaluated. The results showed that the expression levels of TSGA10 mRNA and protein decreased significantly in the teratospermic patients compared to controls (P < 0.05). Moreover, a significant reduction in the expression of the important genes involved in sperm maturation and autophagy was observed (P < 0.05). Also, the levels of ROS production in teratospermic sperm samples were shown to be significantly higher compared to those in normal sperms (P < 0.05). Our findings provide new evidence that simultaneous decrease in TSGA10 and autophagy beside the increased level of ROS production in sperm cells might be associated with the abnormalities in the spermatids differentiation/maturation and the formation of sperms with abnormal morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. De Braekeleer M, Nguyen MH, Morel F, Perrin A. Genetic aspects of monomorphic teratozoospermia: a review. J Assist Reprod Genet. 2015;32:615–23.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Heller CH, Clermont Y. Kinetics of the germinal epithelium in man. Recent Prog Horm Res. 1964;20:545–75.

    CAS  PubMed  Google Scholar 

  3. Amann RP, Hammerstedt RH, Veeramachaneni DN. The epididymis and sperm maturation: a perspective. Reprod Fertil Dev. 1993;5:361–81.

    Article  CAS  PubMed  Google Scholar 

  4. Chocu S, Calvel P, Rolland AD, Pineau C. Spermatogenesis in mammals: proteomic insights. Syst Biol Reprod Med. 2012;58(4):179–90.

    Article  CAS  PubMed  Google Scholar 

  5. Xu H, Yuan SQ, Zheng ZH, Yan W. The cytoplasmic droplet may be indicative of sperm motility and normal spermiogenesis. AsianJ Androl. 2013;15:799.

    Article  CAS  Google Scholar 

  6. Huang SL, Chou TC, Lin TH, Tsai MS, Wang SH. Gcse, a novel germ-cell-specific gene, is differentially expressed during meiosis and gametogenesis. Reprod Sci. 2013;20(10):1193–206.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang M, Jiang M, Bi Y, Zhu H, Zhou Z, Sha J. Autophagy and apoptosis act as partners to induce germ cell death after heat stress in mice. PLoS One. 2012;7:41412.

    Article  CAS  Google Scholar 

  8. Shang Y, Wang H, Jia P, Zhao H, Liu C, Liu W, et al. Autophagy regulates spermatid differentiation via degradation of PDLIM1. Autophagy. 2016;12(9):1575–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oh SY, Choi SJ, Kim KH, Cho EY, Kim JH, Roh CR. Autophagy-related proteins, LC3 and Beclin-1, in placentas from pregnancies complicated by preeclampsia. Reprod Sci. 2008;15(9):912–20.

    Article  CAS  PubMed  Google Scholar 

  10. Jiang P, Mizushima N. Autophagy and human diseases. Cell Res. 2014;24(1):69–79.

    Article  CAS  PubMed  Google Scholar 

  11. Bar-Yosef T, Damri O, Agam G. Dual role of autophagy in diseases of the central nervous system. Front Cell Neurosci. 2019;13:196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Asgari R, Bakhtiari M, Rezazadeh D, Vaisi-Raygani A, Mansouri K. Autophagy related gene expression status in patients diagnosed with azoospermia: A cross-sectional study. J Gene Med. 2020;22(4):3161.

    Article  Google Scholar 

  13. Eid N, Ito Y, Otsuki Y. Enhanced mitophagy in Sertoli cells of ethanol-treated rats: morphological evidence and clinical relevance. J Mol Histol. 2012;43:71–80.

    Article  CAS  PubMed  Google Scholar 

  14. Kanninen TT, de Andrade Ramos BR, Witkin SS. The role of autophagy in reproduction from gametogenesis to parturition. Eur J Obstet Gynecol Reprod Biol. 2013;171:3–8.

    Article  CAS  PubMed  Google Scholar 

  15. Modarressi MH, Cameron J, Taylor KE, Wolfe J. Identification and characterisation of a novel gene, TSGA10, expressed in testis. Gene. 2001;262:249–55.

    Article  CAS  PubMed  Google Scholar 

  16. Behnam B, Modarressi MH, Conti V, Taylor KE, Puliti A, Wolfe J. Expression of Tsga10 sperm tail protein in embryogenesis and neural development: from cilium to cell division. Biochem Biophys Res Commun. 2006;344:1102–10.

    Article  CAS  PubMed  Google Scholar 

  17. Tajaddini Mahani S, Behnam B, Abbassi M, Asgari H, Nazmara Z, Shirinbayan P, et al. Tsga10 expression correlates with sperm profiles in the adult formalin-exposed mice. Andrologia. 2016;48:1092–9.

    Article  CAS  PubMed  Google Scholar 

  18. Hagele S, Behnam B, Borter E, Wolfe J, Paasch U, Lukashev D, et al. TSGA10 prevents nuclear localization of the hypoxia-inducible factor (HIF)-1α. FEBS Lett. 2006;580:3731–8.

    Article  PubMed  CAS  Google Scholar 

  19. Behnam B, Mobahat M, Fazilaty H, Wolfe J, Omran H. TSGA10 is a centrosomal protein, interacts with ODF2 and localizes to basal body. J Cell Sci Ther. 2015;6:1.

    Google Scholar 

  20. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721.

    Article  CAS  PubMed  Google Scholar 

  21. Chen N, Chen X, Huang R, Zeng H, Gong J, Meng W, et al. BCL-xL is a target gene regulated by hypoxia-inducible factor-1α. J Biol Chem. 2009;284:10004–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gao P, Zhang H, Dinavahi R, Li F, Xiang Y, Raman V, et al. HIF-dependent anti tumorigenic effect of antioxidants in vivo. Cancer Cell. 2007;12:230e238.

    Article  CAS  Google Scholar 

  23. Movafagh S, Crook S, Vo K. Regulation of hypoxia-inducible factor-1a by reactive oxygen species: new developments in an old debate. J Cell Biochem. 2015;116:696e703.

    Article  CAS  Google Scholar 

  24. Mansouri K, Mostafie A, Rezazadeh D, Shahlaei M, Modarressi MH. New function of TSGA10 gene in angiogenesis and tumor metastasis: a response to a challengeable paradox. Hum Mol Genet. 2015;25:233–44.

    Article  PubMed  CAS  Google Scholar 

  25. Amoorahim M, Valipour E, Hoseinkhani Z, Mahnam A, Rezazadeh D, Ansari M, et al. TSGA10 overexpression inhibits angiogenesis of HUVECs: A HIF-2α biased perspective. Microvasc Res. 2020;128:103952.

    Article  CAS  PubMed  Google Scholar 

  26. Kruger TF, Acosta AA, Simmons KF, Swanson RJ, Matta JF, Veeck LL, et al. New method of evaluating sperm morphology with predictive value for human in vitro fertilization. Urology. 1987;30(3):248–51.

    Article  CAS  PubMed  Google Scholar 

  27. Rastogi RP, Singh SP, Häder DP, Sinha RP. Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′, 7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem Biophys Res Commun. 2010;397(3):603–7.

    Article  CAS  PubMed  Google Scholar 

  28. Sikka SC. Oxidative stress and role of antioxidants in normal and abnormal sperm function. Front Biosci. 1996;1:e78–86.

    Article  CAS  PubMed  Google Scholar 

  29. Agarwal A, Tvrda E, Sharma R. Relationship amongst teratozoospermia, seminal oxidative stress and male infertility. Reprod Biol Endocrinol. 2014;12(1):45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Marquez RT, Xu L. Bcl-2: Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch. Am J Cancer Res. 2012;2:214.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Parya RR, Mobasheri MB, Hashemzadeh-Chaleshtori M, Modarressi MH. Hypoxia-inducible factor α subunits are correlated with TSGA10 transcripts in HeLa, MCF7 and MDA-MB-231 cell lines. Basic Clin Cancer Res. 2018; 9.

  32. Bohensky J, Shapiro IM, Leshinsky S, Terkhorn SP, Adams CS, Srinivas V. HIF-1 regulation of chondrocyte apoptosis: induction of the autophagic pathway. Autophagy. 2007;3:207–14.

    Article  CAS  PubMed  Google Scholar 

  33. Williams H, Johnson JL, Jackson CL, White SJ, George SJ. MMP-7 mediates cleavage of N-cadherin and promotes smooth muscle cell apoptosis. Cardiovasc Res. 2010;87:137–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sha YW, Sha YK, Ji ZY, Mei LB, Ding L, Zhang Q, et al. TSGA10 is a novel candidate gene associated with acephalic spermatozoa. Clin Genet. 2017.

  35. Ye Y, Wei X, Sha Y, Li N, Yan X, Cheng L, et al. Loss-of-function mutation in TSGA10 causes acephalic spermatozoa phenotype in human. Mol Genet Genom Med. 2020; 1284.

  36. Zhang Q, Gao M, Zhang Y, Song Y, Cheng H, Zhou R. The germline-enriched Ppp1r36 promotes autophagy. Sci Rep. 2016;6(1):1–9.

    CAS  Google Scholar 

  37. Yin J, Ni B. Tian Z-q, Yang F, Liao W-g, Gao Y-q. Regulatory effects of autophagy on spermatogenesis. Biol Reprod. 2017;96:525–30.

    Article  PubMed  Google Scholar 

  38. Liu ML, Wang JL, Wei J, Xu LL, Yu M, Liu XM, et al. Tri-ortho-cresyl phosphate induces autophagy of rat spermatogonial stem cells. Reproduction. 2015;149:163–70.

    Article  CAS  PubMed  Google Scholar 

  39. Wang H, Wan H, Li X, Liu W, Chen Q, Wang Y, et al. Atg7 is required for acrosome biogenesis during spermatogenesis in mice. Cell Res. 2014;24:852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zheng H, Stratton CJ, Morozumi K, Jin J, Yanagimachi R, Yan W. Lack of Spem1 causes aberrant cytoplasm removal, sperm deformation, and male infertility. Proc Natl Acad Sci. 2007;104:6852–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brachmann CB, Sherman JM, Devine SE, Cameron EE, Pillus L, Boeke JD. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 1995;9:2888–902.

    Article  CAS  PubMed  Google Scholar 

  42. Smith JS, Brachmann CB, Celic I, Kenna MA, Muhammad S, Starai VJ, et al. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci. 2000;97:6658–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu C, Song Z, Wang L, Yu H, Liu W, Shang Y, et al. Sirt1 regulates acrosome biogenesis by modulating autophagic flux during spermiogenesis in mice. Development. 2017;144:441–51.

    CAS  PubMed  Google Scholar 

  44. Xu X, Toselli PA, Russell LD, Seldin DC. Globozoospermia in mice lacking the casein kinase II α′ catalytic subunit. Nat Genet. 1999;23:118–21.

    Article  CAS  PubMed  Google Scholar 

  45. Modarres P, Tavalaee M, Ghaedi K, Nasr-Esfahani MH. An overview of the globozoospermia as a multigenic identified syndrome. Int J Fertil Steril. 2019;12:273.

    CAS  PubMed  Google Scholar 

  46. Al Quobaili F, Montenarh M. CK2 and the regulation of the carbohydrate metabolism. Metabolism. 2012;61:1512–7.

    Article  PubMed  CAS  Google Scholar 

  47. Song H, Pu J, Wang L, Wu L, Xiao J, Liu Q, et al. ATG16L1 phosphorylation is oppositely regulated by CSNK2/casein kinase 2 and PPP1/protein phosphatase 1 which determines the fate of cardiomyocytes during hypoxia/reoxygenation. Autophagy. 2015;11:1308–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schuchman EH, Levran O, Pereira LV, Desnick RJ. Structural organization and complete nucleotide sequence of the gene encoding human acid sphingomyelinase (SMPD1). Genomics. 1992;12:197–205.

    Article  CAS  PubMed  Google Scholar 

  49. Teodosio C, Garcia-Montero AC, Jara-Acevedo M, Sanchez-Munoz L, Pedreira CE, Alvarez-Twose I, et al. Gene expression profile of highly purified bone marrow mast cells in systemic mastocytosis. J Allergy Clin Immunol. 2013;131:1213–24.

    Article  CAS  PubMed  Google Scholar 

  50. Agarwal A, Aitken RJ, Alvarez JG. Studies on men’s health and fertility. In: Oxidative stress in applied basic research and clinical practice: New York. Springer Sci Bus Media, LLC: Dordrecht, Heidelberg, London; 2012.

    Google Scholar 

  51. Thompson A, Agarwal A, du Plessis SS. Physiological role of reactive oxygen species in sperm function: a review. In: Parekatil SJ, Agarwal A, editors. Antioxidants in male infertility: a guide for clinicians and researchers. New York: Springer Sci Bus Media; 2013. p. 69–89.

    Chapter  Google Scholar 

  52. Gibson SB. A matter of balance between life and death: targeting reactive oxygen species (ROS)-induced autophagy for cancer therapy. Autophagy. 2010;6:835–7.

    Article  CAS  PubMed  Google Scholar 

  53. Li L, Ishdorj G, Gibson SB. Reactive oxygen species regulation of autophagy in cancer: Implications for cancer treatment. Free Radic Biol Med. 2012;53:1399–410.

    Article  CAS  PubMed  Google Scholar 

  54. De Lamirande E, Gagnon C. Impact of reactive oxygen species on spermatozoa: a balancing act between beneficial and detrimental effects. Hum Reprod. 1995;10(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  55. Kothari S, Thompson A, Agarwal A, du Plessis SS. Free radicals: their beneficial and detrimental effects on sperm function. Indian J Exp Biol. 2010;48(5):425–35.

    CAS  PubMed  Google Scholar 

  56. Yun HR, Jo YH, Kim J, Shin Y, Kim SS, Choi TG. Roles of autophagy in oxidative stress. Int J Mol Sci. 2020;21(9):3289.

    Article  CAS  PubMed Central  Google Scholar 

  57. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120:483–95.

    Article  CAS  PubMed  Google Scholar 

  58. Brand MD. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med. 2016;100:14–31.

    Article  CAS  PubMed  Google Scholar 

  59. Lopez-Fernandez C, Crespo F, Arroyo F, Fernandez JL, Arana P, Johnston SD, et al. Dynamics of sperm DNA fragmentation in domestic animals: II. The stallion Theriogenology. 2007;68:1240–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study has been supported by Kermanshah University of Medical Sciences, Kermanshah, Iran (grant number: 96118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamran Mansouri.

Ethics declarations

The present study has been approved by the Ethics Committee of the Kermanshah University of Medical Sciences (IR.KUMS.REC.1396.1).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgari, R., Bakhtiari, M., Rezazadeh, D. et al. TSGA10 as a Potential Key Factor in the Process of Spermatid Differentiation/Maturation: Deciphering Its Association with Autophagy Pathway. Reprod. Sci. 28, 3228–3240 (2021). https://doi.org/10.1007/s43032-021-00648-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00648-6

Keywords

Navigation