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Abstract
Recurrent spontaneous abortion affects approximately 1–2% of women of childbearing, and describes a condition in which
women suffer from three or more continuous spontaneous miscarriages. However, the origin of recurrent spontaneous abortion
(RSA) remains unknown, preventing effective treatment and placing stress upon patients. It has been acknowledged that
successful pregnancy necessitates balanced immune responses. Therefore, immunological aberrancy may be considered a root
cause of poor pregnancy outcomes. Considerable published studies have investigated the relationship between various immune
cells and RSA. Here, we review current knowledge on this area, and discuss the five main categories of immune cells involved in
RSA; these include innate lymphocytes (ILC), macrophages, decidual dendritic cells (DCs), and T cells. Furthermore, we sought
to summarize the impact of the multiple interactions of various immune cells on the emergence of RSA. A good understanding of
pregnancy-induced immunological alterations could reveal new therapeutic strategies for favorable pregnancy outcomes.
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Introduction

Recurrent spontaneous abortion (RSA) is a serious reproduc-
tive disorder of pregnancy that presents an unresolved issue in
the fields of gynecology and obstetrics. In China, RSA is
usually defined as a woman suffering from ≥3 spontaneous
abortions with the same sexual partner. The incidence rate of
RSA ranges from 1 to 5% in women of childbearing age [1].
Recent research has determined that the etiology of RSA is
extremely varied, chiefly advanced high maternal age, inher-
itable genetic abnormalities, anatomical factors, infections,
and endocrine dysfunctions [2]. However, in most patients,
the cause is unclear. Immune dysfunction accounts for more
than half of these cases [3], and is usually referred to as
immune-related RSA [4]. A successful pregnancy requires
an accurate immunologic dialogue at the maternal-fetal im-
mune interface in the endometrium. During early gestation,

the occurrence of immunologic events over bilateral commu-
nication between the mother and fetus is extremely elaborate,
and encompasses a great deal of immunocytes, including in-
nate lymphocytes (ILC), macrophages, decidual dendritic
cells (DCs), and T cells. These cells play a crucial role in
establishing a balance between the inflammatory response
and immune tolerance. Existing evidence indicates that disor-
ders occurring in the endometrial immune microenvironment
are related to severe crucial reproductive disorders, which in-
volve recurrent implantation failure (RIF) and RSA with in-
explicable etiology [5]. In order to profile several immune
cells included in RSA pathogenesis and recognize potential
alloimmune risk factors, this review summarizes current re-
search on the immune mechanism of RSA to expand our
knowledge of its immune etiologies. However, in this article,
we did not take into account B lymphocytes, since it may be
closely related to antiphospholipid syndrome known as a
cause of RSA [6, 7].

Innate Lymphoid Cells

Innate lymphoid cells (ILCs) play significant roles in mem-
brane immunity, tissue equilibrium, and metabolism regula-
tion, and have inspired much research in recent years [8].
Researchers have identified that ILCs exist in the human
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decidua and are crucial at the maternal-fetal interface [9]. ILCs
with short antigen receptors substantiate a classical lymphoid
cell morphology, depending on two important components
(cytokine receptor γ-chain and the transcriptional repressor
inhibitor of DNA binding 2) [10, 11]. Based on distinct de-
velopmental pathways, they are classified into two subfields:
natural killer (NK) cells and non-cytotoxic helper ILCs, in-
cluding ILC1s, ILC2s, and ILC3s [12]. Decidual natural killer
(dNK) cells are the only subset of ILCs with cytotoxicity.
Maladjustment of cytotoxic regulation transforms dNK cells
into harmful cells and leads to reproductive disorders, includ-
ing RSA [13, 14]. Its internal mechanisms have been exten-
sively researched, including the unbalanced expression of ac-
tivating and inhibiting receptors on the surface of dNK cells.
This includes the increased presentation of NKG2D and the
lack of KIR, the combination of which causes adverse preg-
nancy outcomes [15, 16]. Furthermore, it has been found that
in the mouse uterus, dNK cell cytotoxicity is usually altered
by the unbalanced expression between Tumor Necrosis
Factor-Like Weak Inducer of Apoptosis TWEAK and its re-
ceptors, which could result in abortion [17]. More than half of
the women who experience RSA are diagnosed with unex-
plained recurrent pregnancy loss [18]. Some of them may
suffer immune defects, such as disorganized NK cells or ab-
normal NK cell subpopulations [19]. The quantity and viabil-
ity of peripheral blood NK (pNK) cells may also play an
important role in RSA development. Women who suffer from
RSA generally have higher active performance in the quantity
and viability of pNK cells compared with normal pregnant
women [20, 21]. This may be related to the high cytotoxic
activity of pNK [22]. Human NK cells are categorized into
four types, including NK1, NK2, NK3, and NKrl subsets,
based on cytokine production [23]. Among them, NK1 pro-
duces IFN-γ and TNF-α, and NK2 excretes IL-4, IL-5, and
IL-13 NK3 cells produce TGF-β; and NKr1 cells produce IL-
10 [24]. In order to achieve a good pregnancy outcome, NK
cells may change from type 1 to type 2 immune responses
[25]. A previous study presented an obvious type 1 shift in
pNK cells in patients with recurrent implantation failure (RIF)
or RSA [26]. This suggests that the growth in the NK1/NK2
ratio may be an indicator for the probability of pregnancy
failure. In addition, CD56bright/CD16 accounts for almost
90% of uterine NK (uNK) cells [27]. Cells with low cytotoxic
activity produce more cytokines. Women with RSA had a
smaller number of uNK than fertile controls, indicating that
recurrent spontaneous abortion is closely associated with an
abnormal proportion of uNK cells [28]. It is well known that
uNK cells are indispensable for controlling trophoblast inva-
sion and proliferation [29].

Successful pregnancy depends on correct spiral artery re-
modeling. During the process of placentation, the purpose of
invasive extravillous trophoblasts (EVTs) moving to the uter-
us is to remodel vessels. Spiral artery remodeling by EVTs

plays an important role in adapting blood flow and delivering
nutrients to developing fetuses [30]. Impaired spiral artery
remodeling has been linked to early miscarriage [31]. uNK
cells are the major source of various cytokines, including
GM-CSF, CSF-1, TNF-α, IFN-γ, TGF-β [23], and angiogen-
ic growth factors. A previous study has shown that in women
with RSA, the expression profile of angiogenic factors in
CD56bright uNK cells displays a significant overexpression
of angiogenin, bFGF, and VEGF-A. This may be relevant to
the overactive oxygenation and oxidative stress in the mother
and fetal immune interface of patients with RSA [32].
Overexpressed angiogenic growth factors cause aberrant en-
dometrial angiogenesis and vascular disorder, including pre-
cocious development of endometrial blood vessels and
lowered resistance of uterine artery to blood flow [33] and
microvessel density, which above have been found to accu-
mulate in women with RSA [34]. A recent study has shown
that obesity is associated with adverse reproductive outcomes.
This is because a high-fat diet, which is related to impaired
vascular remodeling within the uterus, promotes uNK cell
activation during pregnancy and altered uNK gene expression
[35].

In recent years, research on autophagy has become popular
in the immunological field. Autophagy, a firmly controlled
catabolic approach of cellular self-degradation, is defined as
a non-apoptotic form with relevance in overstimulated pro-
grammed cell death resulting from the stimuli-initiation [36],
and it is substantially a cellular tension reaction and quality
regulation mechanism [37]. Autophagy has an important ef-
fect on embryonic growth during the early stage of pregnancy.
This development is usually associated with reproductive dis-
orders, including abortion and preeclampsia [38, 39]. A recent
study reported that the level of autophagy in the villi of RSA
sufferers was remarkably lower than that of selective termina-
tion in pregnant women, and suggested that the suppression of
trophoblast autophagy causes RSA via IGF-2 secretion and
PEG10 reduction [40]. This study demonstrated that a high
level of IGF-2 leads to NK cell transformation into a special
category of cell with high cytotoxic activity, which then at-
tacks normal cells at the immune interface. The latter has a
negative influence on the process of vascular invasion, which
induces pregnancy failure [40].

A previous study identified a new type of NK cell produc-
ing IL-22, named NK22, in the intestinal mucosa [41]. By
2010, NK22 cells were also found in the uterine mucosa
[42]. In addition, Kamoi et al. indicated that during endome-
trial mid-secretory stage, the percentage of NK22 cells was
higher in a group of patients with RSA than in those suffering
from unexplained infertility (UI) [43]. To date, the mechanism
involved in these observations is not entirely clear. However,
a study has shown that the proliferation of human trophoblas-
tic cell line HTR8/SVneo is fueled by IL-22 [44]; this cytokine
also inhibits apoptosis of trophoblastic cell. And NK22 cells
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may play a major role in RSA at the maternal-fetal interface by
producing IL-22, fueling proliferation, boosting cell variabil-
ity, and inhibiting paracrine trophoblast apoptosis [45].

Uterine Dendritic Cells

In the decidua, uterine DCs are believed to play a key role in
the delicate equilibrium involved in maternal recognition of
paternal antigens. It has been suggested that in the aspect of
differentiation of endometrial stromal cell, DCs play a positive
role positive tropism, in proliferation, and local angiogenesis
[46]. They are considered major regulators of the immune
response, augmenting T cell–mediated immunity, and stimu-
lating regulatory T cell induction. It is suggested that decidual
DCs may also play a crucial role in the etiology of RSA [47].
Any disturbance in their distribution, maturation state, or
functionmight have a negative impact on pregnancy outcome,
leading to adverse pregnancy outcomes [48]. In recent human
studies, the following findings have been demonstrated: (1)
compared with the control group, the levels of myeloid DCs
(MDCs), and CD86+ DCs in the RSA group were increased
significantly, and CD200 expression on peripheral blood DCs
was significantly lower in the RSA group [49] ; (2) an elevated
number of mature DCs and a decreased quantity of immature
DCs may be associated with RSA[50]; (3) and compared with
controls, ILT4+ DCs in the peripheral blood and endometrium
were decreased in women with RSA [51].

Myeloid-Derived Suppressor Cells

Myeloid-derived suppressor cells (MDSCs) have emerged as
a new immune regulator at the maternal-fetal interface. They
participate in regulating other immune cells, especially on T
cells, by suppressing their activities [52]. We have two cate-
gories based on phenotypes:MDSCs (MO-MDSCs) and gran-
ulocytic MDSCs (GR-MDSCs). Recent studies have shown
that GR-MDSCs generally accumulate at the maternal-fetal
immune interface, and that their immunomodulatory proper-
ties may be significant for fetal-maternal tolerance [53, 54]. In
one study, researchers demonstrated that GR-MDSCs accu-
mulated in the human placenta in healthy pregnancies, while
they were remarkably diminished in patients suffering spon-
taneous abortion [55]. MDSCs are likely to function in RSA
by regulating hypoxia-inducible factor 1α (HIF-1α). Previous
research has also shown that HIF-1α expression was lower in
the missed abortion group than in the elective abortion group
[56]. Furthermore, scientists have extensively investigated the
relationship between HIF-1α, MDSCs, and RSA, and recent
research provides a reasonable explanation for the above phe-
nomena. Myeloid cells with deficient HIF-1α cause a
diminishing accumulation of MDSCs, diminish the

suppressive activity of MDSCs, increase the apoptotic rates
of MDSCs, and enhance the abortion rate [57]. It is also
known that MDSCs are myeloid cells with suppressive activ-
ity on other immune cells. Therefore, the alteration of the
number and function of MDSCs has a negative influence on
fetal-maternal immune tolerance. Furthermore, research clear-
ly suggests that in early miscarriage (EM) patients, the decline
in G-MDSCs is related to a decline in estrogen (E2) and pro-
gesterone (P4) [58].Women suffering from EM also generally
experience poor endometrial receptivity, due to the downreg-
ulation of ER-α and contravariant expression of caspase-3 in
endometrium decidua [59].

Neovascularization is crucial for decidualization and estab-
lishment of the placenta. Previous research has reported that
MDSCs are associated with the progression of neovasculari-
zation [60]. They facilitate nonimmune reactions such as an-
giogenesis by secreting the key pro-angiogenesis inducer
VEGF during pregnancy. Thus, we speculated that in RSA
patients, the reduction of GR-MDSCs might lead to
deovascularization disorder and embryo loss. A study con-
firmed this speculation, demonstrating that higher early mis-
carriage incidence is associated with a decrease in suppressive
monocyte levels in the peripheral blood and endometrium of
pregnant mice and women [61, 62]. Immune cells always
form an interactive network rather than being isolated in the
immune system. For example, pregnancy loss as a possible
result of myeloid-derived suppressor cell depletion is associ-
ated with the upregulation of decidual NK cell cytotoxicity
[63]. Meanwhile, a remarkable feature of a successful preg-
nancy is the higher frequency of non-cytotoxic NK cells and
lower number of cytotoxic NK cells present at the maternal-
fetal interface [63]. Some studies show that MDSCs could not
only suppress DC and T cell maturation but also supported
uNK cells and resting macrophage development [61]. It has
also been documented that MDSCs can induce Foxp3+ T
regulatory (Treg) cells by activating TGF-β via the TGF-β/
β-catenin signaling pathway [64]. The proportion of uNK
cells and Treg cells was therefore significantly upregulated,
revealing that as a new immunosuppressive network system,
the MDSCs-NK-Treg axis plays a complex and crucial role in
regulating fetal-maternal immune tolerance. MDSC-
tolerogenic dendritic cells and Treg cells play a crucial role
in supporting normal pregnancy and placenta formation, and
may represent a new network system in maternal-fetal immu-
nity [63]. Another study has shown that MDSCs not only
suppressed T cells via reactive oxygen species (ROS) produc-
tion but were also capable of inducing a shift toward Th2 cell
subtypes in a cell-cell contact manner [65]. Moreover, these
cells could reduce the presentation of L-selectin on immature
T cells, inhibiting their trafficking toward lymph nodes and
sustaining fetal-maternal tolerance [54]. Placental GR-
MDSCs play a negative regulatory role in T cell responses
by expressing arginase I and producing ROS [66]. In fact,
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GR-MDSCs can be sensitized at the immune interface be-
tween mother and embryo through interaction with tropho-
blasts [67]. Moreover, GR-MDSCs isolated from placenta po-
larized CD4+ T cells toward a Th2 cytokine response [68]. As
mentioned above, due to the importance of MDSCs in preg-
nancy, their absence or dysregulation may cause
complications.

Macrophages

Macrophages are a type of immune cell crucial for human
pregnancy, present significant plasticity in response to various
environmental signals, and regulate a series of reproductive
events including implantation, placentation, fetal develop-
ment, parturition, and, in particular, vascular remodeling at
the maternal-fetal interface [69]. In the early stages of gesta-
tion, macrophages tend to invade trophoblasts and the spiral
arteries [46], thus promoting embryo implantation, tropho-
blast invasion, and vascular remodeling, in addition to remov-
ing apoptotic cells and cellular debris [70–73]. The polarity
and activity of decidual macrophages contributes to the
above-mentioned functions. Decidual macrophages have been
differentiated into classically activated macrophages (M1) and
alternatively activated macrophages (M2). The former are
characterized by higher antigen presentation, dominant proin-
flammatory responses, and the promotion of inflammation
and tissue damage. On the contrary, M2 cells are responsible
for the anti-inflammatory profile, and fuel tissue remodeling
and repair. Decidual macrophages lean toward M1 polariza-
tion before blastocyst peri-implantation [74]. After implanta-
tion, particularly when trophoblasts begin to invade the uter-
ine myometrium, a mixed M1/M2 profile state would account
for a major part of the cell population [75]. Until the end of
placental development, decidual macrophages transform into
a predominantly M2 phenotype in order to protect the fetus
and placenta until parturition [76].

An appropriate proportion of M1/M2 has a vital impact on
successful pregnancy. An imbalance in this proportion inevi-
tably leads to reproductive complications including RSA,
Preeclampsia (PE), and intrauterine growth restriction
(IUGR) [70, 77]. There is evidence that M2 macrophages
are present in high numbers in the endometrium during the
luteal phase and normal pregnancy [70].M2 polarization has a
significant function in the early stage of a successful pregnan-
cy, and a decrease in theM2macrophage population is closely
associated with RSA [70]. Peroxisome proliferator–activated
receptor γ (PPARγ), which is expressed by maternal macro-
phages [78], is involved in cell proliferation, cell differentia-
tion, and organogenesis [79]. A previous study has suggested
that this receptor is closely associated with M2 polarization. A
recent study [80] has also been reported that decidua basalis
macrophages are practically PPARγ-negative, and the

reduction of PPARγ in decidual macrophages appears to have
a poor impact on M2 polarization [81]. This then leads to
functional defects in immune regulation and the disorder of
homeostatic properties. PPARγ downregulation may be asso-
ciated with a specific inflammatory response against the fetus,
both of which finally cause recurrent miscarriage.

On the other hand, as aforementioned, M1 macrophages
mediate inflammatory responses by producing copious
amounts of proinflammatory cytokines such as TNF-α, IL-6,
and IL-1β [82]. Among these, TNF-α participates in the
mechanism of RSA by regulating stathmin-1 (STMN1) ex-
pression [83]. STMN1 is a microtubule regulatory protein
involved in trophoblast proliferation and invasion. The pre-
sentation of STMN1 is regulated by TNF-α, which is secreted
by M1 macrophages in a negative feedback loop. In women
with RSA, M1 macrophages are abundant in the deciduae of
RSA (M1) [70]. An abnormally elevated level of TNF-α
causes STMN1 downregulation, which may promote RSA
and decrease trophoblast proliferation and invasion by regu-
lating the E-cadherin/β-catenin pathway[84].

Recently, miRNAs have attracted much attention in the
context of RSA development [85–87]. miRNAs have been
associated with a succession of cellular biological behavior,
including cell differentiation, proliferation, migration, inva-
sion, and apoptosis [88, 89], and they contribute to RSA by
inducing macrophage polarization to the M1 subtype. A re-
cent study showed that miR-103 expression is significantly
downregulated in patients with RSA, with an increased trend
in the expression of signal transducer and activator of tran-
scription 1 (STAT1), which is a key factor in M1 polarization
[90]. The downregulated miR103 enhances M1 polarization
by the STAT1/IRF1 pathway, which aggravates RSA. miR-
103 may therefore be a diagnostic marker and promising ther-
apeutic target for RSA [91]. and miR-103 may therefore be a
diagnostic marker and promising therapeutic target for RSA.

Macrophages also induce Fas ligand (FasL)–mediated ap-
optosis, and it is known that apoptotic deregulation is associ-
ated with recurrent miscarriage (RM) [92]. The Fas/FasL sys-
tem is a typical apoptotic pathway in cells and tissues [93].
Among the current researchers, CD68 (a marker for macro-
phages), CD163 (M2 marker), and CD86 (M1 marker) were
used to characterize macrophage populations in the decidua;
in the RSA patients, the population of CD68+ macrophage in
the decidual tissues of patients with RSA was remarkably
increased, followed by an increased population of CD86+

macrophage and a reduced population of CD163+ macro-
phage, compared with the control subject [92]. A previous
study suggested that FasL expression is significantly upregu-
lated on the surface of CD68+ and CD86+ macrophages [94].
The binding of the Fas receptor by FasL activates a cascade of
intracellular proteolytic enzymes, leading to Fas-bearing cell
apoptosis. This may, therefore, be closely associated with the
mechanism of RSA. In addition, at the maternal-fetal
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interface, macrophages interacting with other immune cells
constitute a huge network of cellular connections and partici-
pate in RSA development. For instance, it has been suggested
that CD14+ decidual macrophages enhance fetal tolerance by
reducing the cytolysis of dNK cells and adjusting adaptive T
cell responses [95].

A key study has demonstrated that an appropriate level of
histone deacetylase 8 (HDAC8) has a positive effect on mac-
rophage polarization and apoptosis [96]. This maintains suc-
cessful pregnancy by elevating the presentation of M2 marker
genes and inhibiting macrophage apoptosis at the maternal-
fetal interface [97, 98]. The results of this study also suggested
that HDAC8 mRNA and protein expression was downregu-
lated in decidual macrophages in RSA patients [99]. This may
lead to a decrease in M2 polarization and an increase in de-
cidual macrophage apoptosis, which further contributes to
RSA development.

T cells

T cells have a significant role in the human immune system,
and are present in most organs, particularly at the maternal-
fetal interface. These cells play an irreplaceable role in main-
taining normal pregnancy. When aberrations occur in the
number or differentiation of T cells, this is closely associated
with serious dysfunction of the reproductive system, including
RSA [100]. A large amount of research on T cells has been
performed over the last century. Researchers have divided T
cells into three groups based on the different markers present-
ed on T cell surfaces: CD4+ T helper cells, CD8+ T cytotoxic
cells, and CD4+ CD25+ T regulatory cells [101]. These three
categories of cells present different functions in the human
immune system. CD8+ T cytotoxic cells can directly cause
cell death [102]. In the decidua, CD8+ T cells can also produce
effector cytokines and regulatory molecules. A significant el-
evation in the proportion of decidual CD8+ cells was observed
in RSA patients, which may also be related to the poor balance
between maternal-fetal immune tolerance [103]. Human
CD4+ T helper cells assist in regulating the immune response,
particularly in pregnancy and delivery [104], by releasing a
large amount of cytokines.

Recently, with the further study of CD4+ T helper cells, we
know that functionally distinct Th cells, including Th1, Th2,
and Th17 cells, will be induced when naive T cells are stim-
ulated via T cell receptor engagement in conjunction with co-
stimulatory molecules and cytokines produced by innate im-
mune cells [105]. These usually have a distinctive impact on
the human immune response. For instance, Th1 cells are re-
sponsible for cell-mediated immunity [106]. They are able to
regulate the development of NK cells, lymphocyte activated
killer (LAK) cells, cytotoxic T lymphocyte (CTL) cells, and
kill trophoblasts [107]. Recently, much attention has been

paid to T cell immunoglobulin domain and mucin domain-3
(Tim-3) in the field of reproductive immunity. Tim-3 is
expressed in differentiated Th1 cells, and a recent report
showed that the intensity of Tim-3 expression was higher in
RSA patients [108]. This is consistent with a previous study,
which reported that Tim-3 regulated the Th1 cell-mediated
immune response and is associated with autoimmune diseases
[109]. Th2 cells participate in humoral immunity [110], and
Th17 cells are associated with both the maintenance of muco-
sal barriers and autoimmune anomalies [111]. There is evi-
dence that Th17 cell differentiation is related to the suppres-
sion of Th1 development by means of a considerable number
of cytokines. This includes TGF-β [112], which is usually
associated with the pathogenesis of autoimmune diseases such
as RSA [105]. One study demonstrated that minimal skew
toward a Th2 population improves the outcome of normal
pregnancy [106]. However, other researchers strongly believe
that an extreme shift toward Th2 polarization leads to a higher
abortion rate [113]. Thus, a precise balance may be involved
in the polarization of Th1 and Th2 cells. Most scientists be-
lieve that maintaining an appropriate increase of Th2 is nec-
essary for a successful pregnancy [107, 114]. Moreover, vita-
min D may have an integral role in changes in the T cell
subsets [115, 116]; the positive impact of vitamin D on
shifting the cell population to Th2 predominance and enhanc-
ing fetal-maternal tolerance has been demonstrated [117].
Consistently, a recent study showed that the levels of vitamin
D receptor in the villi and decidual cells of RSA patients, and
even in the serum, were significantly lower than in control
women [118].

In normal pregnancies, the reactions of both Th1 and Th2
cells against paternally derived antigens are suppressed by
CD4+ CD25+ Treg cells [119]. Treg cells have important func-
tions in self-tolerance, allograft tolerance, and the establish-
ment of immune tolerance at the maternal-fetal interface [120,
121], and a decrease in the level of Treg cells causes unfavor-
able pregnancy outcomes [122]. The mechanisms by which
Tregs contribute to RSA primarily involve an imbalance in the
Th1/Th2/Th17/Treg cell paradigm, in addition to abnormal
Treg cell proportion and activity [123]. In recent years, the
role of Treg cells in the maternal-fetal interface has become
a primary focus of research in the field of reproductive immu-
nity [123–127]. The accumulation of Treg cells at the
maternal-fetal interface during early gestation has been asso-
ciated with the interactions between many cells. In the early
pregnant uterus, for settling in the decidua, Treg cell expan-
sion and movement are induced by human chorionic gonado-
tropin (hCG) [128]. Human chorionic gonadotropin also in-
creases the restrictive capability of Treg cells [129].
Reproductive hormones in females are likely to play predom-
inant roles in driving these dynamic Treg cell shifts [130].
Interestingly, a previous meta-analysis also indicated a statis-
tically significant reduction in miscarriage rate using hCG
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[131]. Treg cell alteration is not only associated with female
reproductive hormones but also with the BMI of pregnant
women. An interesting study reported a negative correlation
between BMI and levels of activated Treg cells in the periph-
eral blood. [130]. Obesity is a growing public health problem
associated with a significant increase in the risk of miscarriage
[132]. In addition, Treg differentiation was also achieved by
endovascular extravillous trophoblasts (enEVTs), which are
capable of establishing placental-maternal circulation during
human pregnancy [133]. However, a recent study observed
that a significant decrease in the percentage of enEVTs was
associated with the failure of Treg cell differentiation, leading
to insufficient spiral artery remodeling in RSA patients [134].

Tregs are associated with the downregulation of an exces-
sive inflammatory response for the implanting embryo and
fetus [135]. Although Treg cell dysfunction has been con-
firmed to be associated with RSA, the key mechanisms in-
volved have not been elucidated yet. [136]. Foxp3+ Tregs
have been identified as a primary focus in the pathobiology
of RSA. This is based on evidence that the average intensity of
Forkhead box transcription factor P3 (FOXP3) and FOXP3
mRNA expression in Tregs were dramatically lower in pa-
tients with unexpected recurrent spontaneous miscarriage (P
< 0.01) [137]. Downregulated FOXP3 expression in Tregs
was concomitant with autoimmune diseases [138].
Upregulated FOXP3 expression can facilitate the transforma-
tion of naïve T cells into Tregs [139], while FOXP3 downreg-
ulation was associated with immunorestrictive Treg dysfunc-
tion [140]. However, in a recent review, Li et al. instead fo-
cused on the FoxP3-negative Treg subtype and demonstrated
its possible role in RSA [141]. Furthermore, STAT proteins
play a conspicuous role in the epigenetic control of T cell
differentiation [142]. For instance, it has been reported
STAT3 had a crucial impact on the function of decidual
Treg cells in RSA patients [143]. This stimulation state re-
pressed Treg cell function, leading to a reduction in Treg cell
maturation and restraint [136]. Moreover, STAT5 deficiency
leads to loss of Foxp3+ Tregs [144]. The balance between
Tregs and Th17 cell differentiation appears to be regulated
by STAT5 and STAT3 [145]. In addition, researchers have
found that impaired adaptive immune responses in patients
with COVID-19, as a result of infection with SARS-CoV-2,
lead to immune system dysregulation [146]. This involves
increased levels of Th17 cells and a decrease in the number
of Treg cells [127]. The immune imbalance of Th17 and Treg
cells may therefore play an essential role in RSA [147].

A number of complex interactions and equilibrium among
various cell types contribute to the establishment of an
immunotolerant environment at the maternal-fetal interface
[148]. For example, it has been suggested that ILC2s, which
modulate T cell function by inducing Th2 cell activation, are
correlated with Treg function and RSA [149]. Moreover, as
mentioned previously, unbalanced immune responses and

deregulated function of T cell subtypes cause RSA [147],
and this is usually associated with a discrepancy in T cell
expression and the miRNA profile [150]. A significantly re-
duced level of T cells may be associated with insufficient
decidualization of the endometrium, which is a crucial factor
in the mechanism of RSA [151]. However, there is no clear
and immediate relationship between RSA and other T cell
subtypes, including peripheral blood CD3 T cells. A recent
study reported that a nonlinear relationship has been observed
between the proportion of CD3 T cells and risk of RSA [152].
If a successful pregnancy cannot achieve equilibrium between
proinflammatory and anti-inflammatory immune responses
from the maternal-fetal interface, this will inevitably lead to
poor pregnancy outcomes [153].

Treatment of Recurrent Spontaneous
Abortion

Vast studies on unexplained RSA (URSA) suggested potential
immunologic modification, containing underlying autoim-
mune inflammation [154]. Aspirin, lowmolecular weight hep-
arin (LMWH), and an association of them have been
applicated in research for URSA as treatments. [155, 156].
There is an evident case of an autoimmune progress result in
RSA that combination therapy with low-dose aspirin and pro-
phylactic heparin or LMWH could bring better pregnancy
outcomes in patients with antiphospholipid syndrome, which
has been taken as a standard therapeutic method for female
meeting standard for obstetric antiphospholipid syndrome
[157]. Furthermore, an existing evidence suggested that im-
munological therapeutic method had a positive role in RSA
[154]. A variety of immunotherapies have become available,
covering intravenous immune globulin (IVIG), immunosup-
pressant, and granulocyte colony-stimulating factor [158,
159]. Besides, other therapies which can affect the body im-
mune status include progesterone and vitamin D supplemen-
tation [160, 161]. Lymphocyte immunotherapy (LIT) and in-
travenous immunoglobulin (IVIG) are widely used in the
treatment of URSA patients [162]. And studies have sug-
gested that the application of LIT7 and IVIG could increase
the pregnancy rate. In IVF-ET patients who suffer repeated
implantation failure, LIT7, and IVIG can enhance embryo
implantation via balancing the Th1/Th2 [163]. They can also
promote the percentage of T regulatory cells (Tregs) [164],
and restrain the activity of natural killer cell (NK cell) [165].
Mo r eov e r , Cy c l o s po r i n e A con f i rm l y h ad an
immunosuppressing role that reduces the percentage of Th17
cells and promotes Treg-cell dominance through altering the
expression of co-inhibitory molecules in patients with RSA
[166]. Moreover, progesterone is critical for the maintenance
of pregnancy. Previous researches have proposed that supple-
mentation of progesterone may decrease the risk of
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miscarriage in patients suffering recurrent or threatened abor-
tion [167]. This may be related to the mechanism of proges-
terone. Progesterone plays a critical role in maintaining a suc-
cessful pregnancy mediated by inducing secretory changes in
the lining of the uterus, inhibiting the contraction of the uter-
ine, enhancing the perfusion of the circulation in untero-pla-
centa, and regulating mother immune responses [168]. The
progesterone takes its physiologic effects by interacting with
its receptors, progesterone receptors (PRs)[169], including nu-
clear progesterone receptors (NPRs) and membrane proges-
terone receptors (mPRs) [170, 171]. One supporting study
proved that in the RSA patients, the expression of mPR-β in
the endometrium was remarkably lower than the normal con-
trol subject. During pregnancy, extravillous trophoblasts
(EVTs) establish blood supplyment for the growing fetus by
invading the maternal decidua with remodeling the local vas-
culature [172]. The expression of HSD3β1, the key enzyme in
the generation pathway of progesterone, was found to be de-
clined in EVTs of patients suffering RSA, which implies the
metabolism of progesterone is impaired in EVTs of female
with miscarriages[160]. It was determined that progesterone
had certain immunomodulatory effect via recovering the
levels of different co-inhibitory molecules, containing T cell
immunoglobulin mucin family member-3, cytotoxic T
lymphocyte–associated protein-4, in the management of
RSA [166]. Of cause, the present researches are limited with
studies being small, and lots of further experiments are
needed.

Conclusions

Unexpected recurrent spontaneous miscarriage is a major and
complex complication of female reproductive imperfection,
and affects numerous women of childbearing age. Based on
previous research, immunodeficiency accounts for an over-
whelming portion of the multiple factors leading to unexpect-
ed recurrent spontaneous miscarriage. The multiple interac-
tions among various immune cells may affect the balance
between immune activation and embryonic antigen tolerance
via many possible mechanisms, thus causing the development
of RSA. In this review, we summarized and discussed existing
research on immune cells related to RSA to enhance our un-
derstanding of this condition. Improving our knowledge on
RSA will facilitate the development of new preventative or
treatment measures.
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