Skip to main content

Advertisement

Log in

Is It Possible to Treat Infertility with Stem Cells?

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Infertility is a major health problem, and despite improved treatments over the years, there are still some conditions that cannot be treated successfully using a conventional approach. Therefore, new options are being considered and one of them is cell therapy using stem cells. Stem cell treatments for infertility can be divided into two major groups, the first one being direct transplantation of stem cells or their paracrine factors into reproductive organs and the second one being in vitro differentiation into germ cells or gametes. In animal models, all of these approaches were able to improve the reproductive potential of tested animals, although in humans there is still too little evidence to suggest successful use. The reasons for lack of evidence are unavailability of proper material, the complexity of explored biological processes, and ethical considerations. Despite all of the above-mentioned hurdles, researchers were able to show that in women, it seems to be possible to improve some conditions, but in men, no similar clinically important improvement was achieved. To conclude, the data presented in this review suggest that the treatment of infertility with stem cells seems plausible, because some types of treatments have already been tested in humans, achieving live births, while others show great potential only in animal studies, for now.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Material

Not applicable.

References

  1. Zegers-Hochschild F, Adamson GD, Dyer S, Racowsky C, de Mouzon J, Sokol R, et al. The international glossary on infertility and fertility care. Fertil Steril. 2017;108(3):393–406.

    PubMed  Google Scholar 

  2. Beke A. Genetic causes of female infertility. Exp Suppl. 2019;111:367–83.

    CAS  PubMed  Google Scholar 

  3. Deroux A, Dumestre-Perard C, Dunand-Faure C, Bouillet L, Female HP. Infertility and serum auto-antibodies: a systematic review. Clin Rev Allergy Immunol. 2017;53(1):78–86.

    CAS  PubMed  Google Scholar 

  4. Zhao YX, Chen SR, Su PP, Huang FH, Shi YC, Shi QY, et al. Using mesenchymal stem cells to treat female infertility: an update on female reproductive diseases. Stem Cells Int. 2019;2019:9071720.

    PubMed  PubMed Central  Google Scholar 

  5. Jahanbani Y, Davaran S, Ghahremani-Nasab M, Aghebati-Maleki L, Yousefi M. Scaffold-based tissue engineering approaches in treating infertility. Life Sci. 2020;240:117066.

    CAS  PubMed  Google Scholar 

  6. Vander Borght M, Wyns C. Fertility and infertility: definition and epidemiology. Clin Biochem. 2018;62:2–10.

    PubMed  Google Scholar 

  7. Watt FM, Driskell RR. The therapeutic potential of stem cells. Philos Trans R Soc Lond B Biol Sci. 2010;365(1537):155–63.

    PubMed  PubMed Central  Google Scholar 

  8. Odorico JS, Kaufman DS, Thomson JA. Multilineage differentiation from human embryonic stem cell lines. Stem Cells. 2001;19(3):193–204.

    CAS  PubMed  Google Scholar 

  9. Lazarini F, Gabellec MM, Moigneu C, de Chaumont F, Olivo-Marin JC, Lledo PM. Adult neurogenesis restores dopaminergic neuronal loss in the olfactory bulb. J Neurosci. 2014;34(43):14430–42.

    PubMed  PubMed Central  Google Scholar 

  10. Ozakpinar OB, Maurer AM, Ozsavci D. Ovarian stem cells: from basic to clinical applications. World J Stem Cells. 2015;7(4):757–68.

    PubMed  PubMed Central  Google Scholar 

  11. Bao R, Xu P, Wang Y, Wang J, Xiao L, Li G, et al. Bone marrow derived mesenchymal stem cells transplantation rescues premature ovarian insufficiency induced by chemotherapy. Gynecol Endocrinol. 2018;34(4):320–6.

    CAS  PubMed  Google Scholar 

  12. Song D, Zhong Y, Qian C, Zou Q, Ou J, Shi Y, et al. Human umbilical cord mesenchymal stem cells therapy in cyclophosphamide-induced premature ovarian failure rat model. Biomed Res Int. 2016;2016:2517514.

    PubMed  PubMed Central  Google Scholar 

  13. Liu R, Zhang X, Fan Z, Wang Y, Yao G, Wan X, et al. Human amniotic mesenchymal stem cells improve the follicular microenvironment to recover ovarian function in premature ovarian failure mice. Stem Cell Res Ther. 2019;10(1):299.

    PubMed  PubMed Central  Google Scholar 

  14. Herraiz S, Pellicer N, Romeu M, Pellicer A. Treatment potential of bone marrow-derived stem cells in women with diminished ovarian reserves and premature ovarian failure. Curr Opin Obstet Gynecol. 2019;31(3):156–62.

    PubMed  Google Scholar 

  15. Yang Z, Du X, Wang C, Zhang J, Liu C, Li Y, et al. Therapeutic effects of human umbilical cord mesenchymal stem cell-derived microvesicles on premature ovarian insufficiency in mice. Stem Cell Res Ther. 2019;10(1):250.

    PubMed  PubMed Central  Google Scholar 

  16. Li J, Mao Q, He J, She H, Zhang Z, Yin C. Human umbilical cord mesenchymal stem cells improve the reserve function of perimenopausal ovary via a paracrine mechanism. Stem Cell Res Ther. 2017;8(1):55.

    PubMed  PubMed Central  Google Scholar 

  17. Shen J, Cao D, Sun JL. Ability of human umbilical cord mesenchymal stem cells to repair chemotherapy-induced premature ovarian failure. World J Stem Cells. 2020;12(4):277–87.

    PubMed  PubMed Central  Google Scholar 

  18. Zhang X, Zhang L, Li Y, Yin Z, Feng Y, Ji Y. Human umbilical cord mesenchymal stem cells (hUCMSCs) promotes the recovery of ovarian function in a rat model of premature ovarian failure (POF). Gynecol Endocrinol. 2021:1–5. https://doi.org/10.1080/09513590.2021.1878133 Epub ahead of print.

  19. Zheng Q, Fu X, Jiang J, Zhang N, Zou L, Wang W, et al. Umbilical cord mesenchymal stem cell transplantation prevents chemotherapy-induced ovarian failure via the NGF/TrkA pathway in rats. Biomed Res Int. 2019;2019:6539294.

    PubMed  PubMed Central  Google Scholar 

  20. Cui L, Bao H, Liu Z, Man X, Liu H, Hou Y, et al. hUMSCs regulate the differentiation of ovarian stromal cells via TGF-β1/Smad3 signaling pathway to inhibit ovarian fibrosis to repair ovarian function in POI rats. Stem Cell Res Ther. 2020;11(1):386.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang Z, Wei Q, Wang H, Han L, Dai H, Qian X, et al. Mesenchymal stem cell therapy using human umbilical cord in a rat model of autoimmune-induced premature ovarian failure. Stem Cells Int. 2020;2020:3249495.

    PubMed  PubMed Central  Google Scholar 

  22. Sun L, Li D, Song K, Wei J, Yao S, Li Z, et al. Exosomes derived from human umbilical cord mesenchymal stem cells protect against cisplatin-induced ovarian granulosa cell stress and apoptosis in vitro. Sci Rep. 2017;7(1):2552.

    PubMed  PubMed Central  Google Scholar 

  23. Hong L, Yan L, Xin Z, Hao J, Liu W, Wang S, et al. Protective effects of human umbilical cord mesenchymal stem cell-derived conditioned medium on ovarian damage. J Mol Cell Biol. 2020;12(5):372–85.

    CAS  PubMed  Google Scholar 

  24. Zhang Q, Bu S, Sun J, Xu M, Yao X, He K, et al. Paracrine effects of human amniotic epithelial cells protect against chemotherapy-induced ovarian damage. Stem Cell Res Ther. 2017;8(1):270.

    PubMed  PubMed Central  Google Scholar 

  25. Ding C, Zou Q, Wang F, Wu H, Chen R, Lv J, et al. Human amniotic mesenchymal stem cells improve ovarian function in natural aging through secreting hepatocyte growth factor and epidermal growth factor. Stem Cell Res Ther. 2018;9(1):55.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ling L, Feng X, Wei T, Wang Y, Wang Y, Wang Z, et al. Human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation improves ovarian function in rats with premature ovarian insufficiency (POI) at least partly through a paracrine mechanism. Stem Cell Res Ther. 2019;10(1):46.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Feng X, Ling L, Zhang W, Liu X, Wang Y, Luo Y, et al. Effects of human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation in situ on primary ovarian insufficiency in SD rats. Reprod Sci. 2020;27(7):1502–12.

    CAS  PubMed  Google Scholar 

  28. Cho J, Kim TH, Seok J, Jun JH, Park H, Kweon M, et al. Vascular remodeling by placenta-derived mesenchymal stem cells restores ovarian function in ovariectomized rat model via the VEGF pathway. Lab Invest. 2021;101(3):304–17.

    CAS  PubMed  Google Scholar 

  29. Seok J, Park H, Choi JH, Lim JY, Kim KG, Kim GJ. Placenta-derived mesenchymal stem cells restore the ovary function in an ovariectomized rat model via an antioxidant effect. Antioxidants (Basel). 2020;9(7):591.

    CAS  Google Scholar 

  30. Li H, Zhao W, Wang L, Luo Q, Yin N, Lu X, et al. Human placenta-derived mesenchymal stem cells inhibit apoptosis of granulosa cells induced by IRE1α pathway in autoimmune POF mice. Cell Biol Int. 2019;43(8):899–909.

    CAS  PubMed  Google Scholar 

  31. Kim KH, Kim EY, Kim GJ, Ko JJ, Cha KY, Koong MK, et al. Human placenta-derived mesenchymal stem cells stimulate ovarian function via miR-145 and bone morphogenetic protein signaling in aged rats. Stem Cell Res Ther. 2020;11(1):472.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Choi JH, Seok J, Lim SM, Kim TH, Kim GJ. Microenvironmental changes induced by placenta-derived mesenchymal stem cells restore ovarian function in ovariectomized rats via activation of the PI3K-FOXO3 pathway. Stem Cell Res Ther. 2020;11(1):486.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ding C, Zou Q, Wang F, Wu H, Wang W, Li H, et al. HGF and BFGF secretion by human adipose-derived stem cells improves ovarian function during natural aging via activation of the SIRT1/FOXO1 signaling pathway. Cell Physiol Biochem. 2018;45(4):1316–32.

    CAS  PubMed  Google Scholar 

  34. Terraciano P, Garcez T, Ayres L, Durli I, Baggio M, Kuhl CP, et al. Cell therapy for chemically induced ovarian failure in mice. Stem Cells Int. 2014;2014:720753.

    PubMed  PubMed Central  Google Scholar 

  35. Sun M, Wang S, Li Y, Yu L, Gu F, Wang C, et al. Adipose-derived stem cells improved mouse ovary function after chemotherapy-induced ovary failure. Stem Cell Res Ther. 2013;4(4):80.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Takehara Y, Yabuuchi A, Ezoe K, Kuroda T, Yamadera R, Sano C, et al. The restorative effects of adipose-derived mesenchymal stem cells on damaged ovarian function. Lab Invest. 2013;93(2):181–93.

    CAS  PubMed  Google Scholar 

  37. Su J, Ding L, Cheng J, Yang J, Li X, Yan G, et al. Transplantation of adipose-derived stem cells combined with collagen scaffolds restores ovarian function in a rat model of premature ovarian insufficiency. Hum Reprod. 2016;31(5):1075–86.

    CAS  PubMed  Google Scholar 

  38. Shojafar E, Soleimani Mehranjani M, Shariatzadeh SMA. Adipose derived mesenchymal stem cells improve the structure and function of autografted mice ovaries through reducing oxidative stress and inflammation: a stereological and biochemical analysis. Tissue Cell. 2019;56:23–30.

    CAS  PubMed  Google Scholar 

  39. Manavella DD, Cacciottola L, Payen VL, Amorim CA, Donnez J, Dolmans MM. Adipose tissue-derived stem cells boost vascularization in grafted ovarian tissue by growth factor secretion and differentiation into endothelial cell lineages. Mol Hum Reprod. 2019;25(4):184–93.

    CAS  PubMed  Google Scholar 

  40. Mehdinia Z, Ashrafi M, Fathi R, Taheri P, Valojerdi MR. Restoration of estrous cycles by co-transplantation of mouse ovarian tissue with MSCs. Cell Tissue Res. 2020;381(3):509–25.

    CAS  PubMed  Google Scholar 

  41. Gabr H, Rateb MA, El Sissy MH, Ahmed Seddiek H, Ali Abdelhameed Gouda S. The effect of bone marrow-derived mesenchymal stem cells on chemotherapy induced ovarian failure in albino rats. Microsc Res Tech. 2016;79(10):938–47.

    CAS  PubMed  Google Scholar 

  42. Badawy A, Sobh MA, Ahdy M, Abdelhafez MS. Bone marrow mesenchymal stem cell repair of cyclophosphamide-induced ovarian insufficiency in a mouse model. Int J Womens Health. 2017;9:441–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mohamed SA, Shalaby SM, Abdelaziz M, Brakta S, Hill WD, Ismail N, et al. Human mesenchymal stem cells partially reverse infertility in chemotherapy-induced ovarian failure. Reprod Sci. 2018;25(1):51–63.

    CAS  PubMed  Google Scholar 

  44. Wang Z, Yang T, Liu S, Chen Y. Effects of bone marrow mesenchymal stem cells on ovarian and testicular function in aging Sprague-Dawley rats induced by D-galactose. Cell Cycle. 2020;20:1–11.

    Google Scholar 

  45. Grady ST, Watts AE, Thompson JA, Penedo MCT, Konganti K, Hinrichs K. Effect of intra-ovarian injection of mesenchymal stem cells in aged mares. J Assist Reprod Genet. 2019;36(3):543–56.

    PubMed  Google Scholar 

  46. Zarbakhsh S, Safari R, Sameni HR, Yousefi B, Safari M, Khanmohammadi N, et al. Effects of co-administration of bone marrow stromal cells and L-carnitine on the recovery of damaged ovaries by performing chemotherapy model in rat. Int J Fertil Steril. 2019;13(3):196–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sameni HR, Seiri M, Safari M, Tabrizi Amjad MH, Khanmohammadi N, Zarbakhsh S. Bone marrow stromal cells with the granulocyte colony-stimulating factor in the management of chemotherapy-induced ovarian failure in a rat model. Iran J Med Sci. 2019;44(2):135–45.

    PubMed  Google Scholar 

  48. Volkova N, Yukhta M, Goltsev A. Mesenchymal stem cells in restoration of fertility at experimental pelvic inflammatory disease. Stem Cells Int. 2017;2017:2014132.

    PubMed  PubMed Central  Google Scholar 

  49. Kalhori Z, Azadbakht M, Soleimani Mehranjani M, Shariatzadeh MA. Improvement of the folliculogenesis by transplantation of bone marrow mesenchymal stromal cells in mice with induced polycystic ovary syndrome. Cytotherapy. 2018;20(12):1445–58.

    CAS  PubMed  Google Scholar 

  50. Edessy M, Hosni HN, Shady Y, Waf Y, Bakr S, Kamel M. Autologous stem cells therapy, the first baby of idiopathic premature ovarian failure. Acta Med Int. 2016;3:19–23.

    Google Scholar 

  51. Gupta S, Lodha P, Karthick MS, Tandulwadkar SR. Role of autologous bone marrow-derived stem cell therapy for follicular recruitment in premature ovarian insufficiency: review of literature and a case report of world’s first baby with ovarian autologous stem cell therapy in a perimenopausal woman of age 45 year. J Hum Reprod Sci. 2018;11(2):125–30.

    PubMed  PubMed Central  Google Scholar 

  52. Igboeli P, El Andaloussi A, Sheikh U, Takala H, ElSharoud A, McHugh A, et al. Intraovarian injection of autologous human mesenchymal stem cells increases estrogen production and reduces menopausal symptoms in women with premature ovarian failure: two case reports and a review of the literature. J Med Case Rep. 2020;14(1):108.

    PubMed  PubMed Central  Google Scholar 

  53. Herraiz S, Romeu M, Buigues A, Martínez S, Díaz-García C, Gómez-Seguí I, et al. Autologous stem cell ovarian transplantation to increase reproductive potential in patients who are poor responders. Fertil Steril. 2018;110(3):496–505.

    PubMed  Google Scholar 

  54. Shin DM, Liu R, Klich I, Wu W, Ratajczak J, Kucia M, et al. Molecular signature of adult bone marrow-purified very small embryonic-like stem cells supports their developmental epiblast/germ line origin. Leukemia. 2010;24(8):1450–61.

    CAS  PubMed  Google Scholar 

  55. Magnúsdóttir E, Surani MA. How to make a primordial germ cell. Development. 2014;141(2):245–52.

    PubMed  Google Scholar 

  56. Hackett JA, Zylicz JJ, Surani MA. Parallel mechanisms of epigenetic reprogramming in the germline. Trends Genet. 2012;28(4):164–74.

    CAS  PubMed  Google Scholar 

  57. Morohaku K, Tanimoto R, Sasaki K, Kawahara-Miki R, Kono T, Hayashi K, et al. Complete in vitro generation of fertile oocytes from mouse primordial germ cells. Proc Natl Acad Sci U S A. 2016;113(32):9021–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H, Saitou M. Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science. 2012;338(6109):971–5.

    CAS  PubMed  Google Scholar 

  59. Hikabe O, Hamazaki N, Nagamatsu G, Obata Y, Hirao Y, Hamada N, et al. Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature. 2016;539(7628):299–303.

    PubMed  Google Scholar 

  60. Ohta H, Kurimoto K, Okamoto I, Nakamura T, Yabuta Y, Miyauchi H, et al. In vitro expansion of mouse primordial germ cell-like cells recapitulates an epigenetic blank slate. EMBO J. 2017;36(13):1888–907.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Irie N, Weinberger L, Tang WW, Kobayashi T, Viukov S, Manor YS, et al. SOX17 is a critical specifier of human primordial germ cell fate. Cell. 2015;160(1-2):253–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sasaki K, Yokobayashi S, Nakamura T, Okamoto I, Yabuta Y, Kurimoto K, et al. Robust in vitro induction of human germ cell fate from pluripotent stem cells. Cell Stem Cell. 2015;17(2):178–94.

    CAS  PubMed  Google Scholar 

  63. White YA, Woods DC, Takai Y, Ishihara O, Seki H, Tilly JL. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med. 2012;18(3):413–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang H, Panula S, Petropoulos S, Edsgärd D, Busayavalasa K, Liu L, et al. Adult human and mouse ovaries lack DDX4-expressing functional oogonial stem cells. Nat Med. 2015;21(10):1116–8.

    CAS  PubMed  Google Scholar 

  65. Silvestris E, Cafforio P, D’Oronzo S, Felici C, Silvestris F, Loverro G. In vitro differentiation of human oocyte-like cells from oogonial stem cells: single-cell isolation and molecular characterization. Hum Reprod. 2018;33(3):464–73.

    CAS  PubMed  Google Scholar 

  66. Virant-Klun I, Rozman P, Cvjeticanin B, Vrtacnik-Bokal E, Novakovic S, Rülicke T, et al. Parthenogenetic embryo-like structures in the human ovarian surface epithelium cell culture in postmenopausal women with no naturally present follicles and oocytes. Stem Cells Dev. 2009;18(1):137–49.

    CAS  PubMed  Google Scholar 

  67. Esmaeilian Y, Atalay A, Erdemli E. Putative germline and pluripotent stem cells in adult mouse ovary and their in vitro differentiation potential into oocyte-like and somatic cells. Zygote. 2017;25(3):358–75.

    CAS  PubMed  Google Scholar 

  68. Bhartiya D, Sharma D. Ovary does harbor stem cells - size of the cells matter! J Ovarian Res. 2020;13(1):39.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bharti D, Jang SJ, Lee SY, Lee SL, Rho GJ. In vitro generation of oocyte like cells and their in vivo efficacy: how far we have been succeeded. Cells. 2020;9(3):557.

    CAS  PubMed Central  Google Scholar 

  70. Zuo W, Xie B, Li C, Yan Y, Zhang Y, Liu W, et al. The clinical applications of endometrial mesenchymal stem cells. Biopreserv Biobank. 2018;16(2):158–64 29265881.

    PubMed  PubMed Central  Google Scholar 

  71. Cervelló I, Mas A, Gil-Sanchis C, Peris L, Faus A, Saunders PT, et al. Reconstruction of endometrium from human endometrial side population cell lines. PLoS One. 2011;6(6):e21221.

    PubMed  PubMed Central  Google Scholar 

  72. Gargett CE, Schwab KE, Zillwood RM, Nguyen HP, Wu D. Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod. 2009;80(6):1136–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Gargett CE, Nguyen HP, Ye L. Endometrial regeneration and endometrial stem/progenitor cells. Rev Endocr Metab Disord. 2012;13(4):235–51.

    CAS  PubMed  Google Scholar 

  74. Liu Y, Zhang Z, Yang F, Wang H, Liang S, Wang H, et al. The role of endometrial stem cells in the pathogenesis of endometriosis and their application to its early diagnosis†. Biol Reprod. 2020;102(6):1153–9.

    PubMed  Google Scholar 

  75. Simoni M, Taylor HS. Therapeutic strategies involving uterine stem cells in reproductive medicine. Curr Opin Obstet Gynecol. 2018;30(3):209–16.

    PubMed  Google Scholar 

  76. Aghajanova L, Horcajadas JA, Esteban FJ, Giudice LC. The bone marrow-derived human mesenchymal stem cell: potential progenitor of the endometrial stromal fibroblast. Biol Reprod. 2010;82(6):1076–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Nagori CB, Panchal SY, Patel H. Endometrial regeneration using autologous adult stem cells followed by conception by in vitro fertilization in a patient of severe Asherman’s syndrome. J Hum Reprod Sci. 2011;4(1):43–8.

    PubMed  PubMed Central  Google Scholar 

  78. Singh N, Mohanty S, Seth T, Shankar M, Bhaskaran S, Dharmendra S. Autologous stem cell transplantation in refractory Asherman’s syndrome: a novel cell based therapy. J Hum Reprod Sci. 2014;7(2):93–8.

    PubMed  PubMed Central  Google Scholar 

  79. Santamaria X, Cabanillas S, Cervelló I, Arbona C, Raga F, Ferro J, et al. Autologous cell therapy with CD133+ bone marrow-derived stem cells for refractory Asherman’s syndrome and endometrial atrophy: a pilot cohort study. Hum Reprod. 2016;31(5):1087–96.

    CAS  PubMed  Google Scholar 

  80. Cao Y, Sun H, Zhu H, Zhu X, Tang X, Yan G, et al. Allogeneic cell therapy using umbilical cord MSCs on collagen scaffolds for patients with recurrent uterine adhesion: a phase I clinical trial. Stem Cell Res Ther. 2018;9(1):192.

    PubMed  PubMed Central  Google Scholar 

  81. Tan J, Li P, Wang Q, Li Y, Li X, Zhao D, et al. Autologous menstrual blood-derived stromal cells transplantation for severe Asherman’s syndrome. Hum Reprod. 2016;31(12):2723–9.

    PubMed  Google Scholar 

  82. Sudoma I, Pylyp L, Kremenska Y, Goncharova Y. Application of autologous adipose-derived stem cells for thin endometrium treatment in patients with failed ART programs. J Stem Cell Ther Transplant. 2019;3:001–8.

    Google Scholar 

  83. Lee SY, Shin JE, Kwon H, Choi DH, Kim JH. Effect of autologous adipose-derived stromal vascular fraction transplantation on endometrial regeneration in patients of Asherman’s syndrome: a pilot study. Reprod Sci. 2020;27(2):561–8.

    PubMed  Google Scholar 

  84. Jazedje T, Perin PM, Czeresnia CE, Maluf M, Halpern S, Secco M, et al. Human fallopian tube: a new source of multipotent adult mesenchymal stem cells discarded in surgical procedures. J Transl Med. 2009;7:46.

    PubMed  PubMed Central  Google Scholar 

  85. Snegovskikh V, Mutlu L, Massasa E, Taylor HS. Identification of putative fallopian tube stem cells. Reprod Sci. 2014;21(12):1460–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Chang YH, Chu TY, Ding DC. Human fallopian tube epithelial cells exhibit stemness features, self-renewal capacity, and Wnt-related organoid formation. J Biomed Sci. 2020;27(1):32.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhu M, Iwano T, Takeda S. Fallopian tube basal stem cells reproducing the epithelial sheets in vitro-stem cell of fallopian epithelium. Biomolecules. 2020;10(9):1270.

    CAS  PubMed Central  Google Scholar 

  88. Kessler M, Hoffmann K, Brinkmann V, Thieck O, Jackisch S, Toelle B, et al. The notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat Commun. 2015;6:8989.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Yucer N, Holzapfel M, Jenkins Vogel T, Lenaeus L, Ornelas L, Laury A, et al. Directed differentiation of human induced pluripotent stem cells into fallopian tube epithelium. Sci Rep. 2017;7(1):10741.

    PubMed  PubMed Central  Google Scholar 

  90. Li Z, Zhang Z, Chen X, Zhou J, Xiao XM. Treatment evaluation of Wharton’s jelly-derived mesenchymal stem cells using a chronic salpingitis model: an animal experiment. Stem Cell Res Ther. 2017;8(1):232.

    PubMed  PubMed Central  Google Scholar 

  91. Liao W, Tang X, Li X, Li T. Therapeutic effect of human umbilical cord mesenchymal stem cells on tubal factor infertility using a chronic salpingitis murine model. Arch Gynecol Obstet. 2019;300(2):421–9.

    CAS  PubMed  Google Scholar 

  92. Li Z, Zhang Z, Ming WK, Chen X, Xiao XM. Tracing GFP-labeled WJMSCs in vivo using a chronic salpingitis model: an animal experiment. Stem Cell Res Ther. 2017;8(1):272.

    PubMed  PubMed Central  Google Scholar 

  93. Almasry SM, Elfayomy AK, El-Sherbiny MH. Regeneration of the fallopian tube mucosa using bone marrow mesenchymal stem cell transplantation after induced chemical injury in a rat model. Reprod Sci. 2018;25(5):773–81.

    CAS  PubMed  Google Scholar 

  94. Labarta E, de Los Santos MJ, Escribá MJ, Pellicer A, Herraiz S. Mitochondria as a tool for oocyte rejuvenation. Fertil Steril. 2019;111(2):219–26.

    CAS  PubMed  Google Scholar 

  95. Barritt JA, Brenner CA, Malter HE, Cohen J. Mitochondria in human offspring derived from ooplasmic transplantation. Hum Reprod. 2001;16(3):513–6.

    CAS  PubMed  Google Scholar 

  96. Cohen J, Scott R, Alikani M, Schimmel T, Munné S, Levron J, et al. Ooplasmic transfer in mature human oocytes. Mol Hum Reprod. 1998;4(3):269–80.

    CAS  PubMed  Google Scholar 

  97. Lanzendorf SE, Mayer JF, Toner J, Oehninger S, Saffan DS, Muasher S. Pregnancy following transfer of ooplasm from cryopreserved-thawed donor oocytes into recipient oocytes. Fertil Steril. 1999;71(3):575–7.

    CAS  PubMed  Google Scholar 

  98. Woods DC, Tilly JL. Autologous germline mitochondrial energy transfer (AUGMENT) in human assisted reproduction. Semin Reprod Med. 2015;33(6):410–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Labarta E, de Los Santos MJ, Herraiz S, Escribá MJ, Marzal A, Buigues A, Pellicer A (2019) Autologous mitochondrial transfer as a complementary technique to intracytoplasmic sperm injection to improve embryo quality in patients undergoing in vitro fertilization-a randomized pilot study. Fertil Steril 111(1):86-96

  100. Fakih MH, El Shmoury M, Szeptycki J, dela Cruz DB, Lux C, Verjee S, et al. The AUGMENTSM treatment: physician reported outcomes of the initial global patient experience. JFIV Reprod Med Genet. 2015;3:154.

    Google Scholar 

  101. Oktay K, Baltaci V, Sonmezer M, Turan V, Unsal E, Baltaci A, et al. Oogonial precursor cell-derived autologous mitochondria injection to improve outcomes in women with multiple IVF failures due to low oocyte quality: a clinical translation. Reprod Sci. 2015;22(12):1612–7.

    PubMed  Google Scholar 

  102. Amann RP, Howards SS. Daily spermatozoal production and epididymal spermatozoal reserves of the human male. J Urol. 1980;124(2):211–5.

    CAS  PubMed  Google Scholar 

  103. Cocuzza M, Alvarenga C, Pagani R. The epidemiology and etiology of azoospermia. Clinics (Sao Paulo) 68 Suppl. 2013;1(Suppl 1):15–26.

    Google Scholar 

  104. Mehmood S, Aldaweesh S, Junejo NN, Altaweel WM, Kattan SA, Alhathal N. Microdissection testicular sperm extraction: overall results and impact of preoperative testosterone level on sperm retrieval rate in patients with nonobstructive azoospermia. Urol Ann. 2019;11(3):287–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Taitson PF, Filho MA, Radaelli MRM. Testicular sperm extraction in men with Sertoli cell-only testicular histology - 1680 cases. JBRA Assist Reprod. 2019;23(3):246–9.

    PubMed  PubMed Central  Google Scholar 

  106. von Eckardstein S, Simoni M, Bergmann M, Weinbauer GF, Gassner P, Schepers AG, et al. Serum inhibin B in combination with serum follicle-stimulating hormone (FSH)is a more sensitive marker than serum FSH alone for impaired spermatogenesis in men, but cannot predict the presence of sperm in testicular tissue samples. J Clin Endocrinol Metab. 1999;84(7):2496–501.

    Google Scholar 

  107. Hung AJ, King P, Schlegel PN. Uniform testicular maturation arrest: a unique subset of men with nonobstructive azoospermia. J Urol. 2007;178(2):608–12.

    PubMed  Google Scholar 

  108. Brinster RL, Avarbock MR. Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci U S A. 1994;91(24):11303–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Jafarian A, Lakpour N, Sadeghi MR, Salehkhou S, Akhondi MM. Transplantation of spermatogonial stem cells suspension into rete testis of azoospermia mouse model. Urol J. 2018;15(1):40–7.

    PubMed  Google Scholar 

  110. Kanatsu-Shinohara M, Ogonuki N, Matoba S, Ogura A, Shinohara T. Autologous transplantation of spermatogonial stem cells restores fertility in congenitally infertile mice. Proc Natl Acad Sci U S A. 2020;117(14):7837–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Nagano M, Patrizio P, Brinster RL. Long-term survival of human spermatogonial stem cells in mouse testes. Fertil Steril. 2002;78(6):1225–33.

    PubMed  Google Scholar 

  112. Mulder CL, Catsburg LAE, Zheng Y, de Winter-Korver CM, van Daalen SKM, van Wely M, et al. Long-term health in recipients of transplanted in vitro propagated spermatogonial stem cells. Hum Reprod. 2018;33(1):81–90.

    CAS  PubMed  Google Scholar 

  113. Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S, et al. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod. 2003;69(2):612–6.

    CAS  PubMed  Google Scholar 

  114. Sadri-Ardekani H, Mizrak SC, van Daalen SK, Korver CM, Roepers-Gajadien HL, Koruji M, et al. Propagation of human spermatogonial stem cells in vitro. JAMA. 2009;302(19):2127–34.

    CAS  PubMed  Google Scholar 

  115. Liu S, Tang Z, Xiong T, Tang W. Isolation and characterization of human spermatogonial stem cells. Reprod Biol Endocrinol. 2011;9:141.

    PubMed  PubMed Central  Google Scholar 

  116. Dong L, Gul M, Hildorf S, Pors SE, Kristensen SG, Hoffmann ER, et al. Xeno-free propagation of spermatogonial stem cells from infant boys. Int J Mol Sci. 2019;20(21):5390.

    CAS  PubMed Central  Google Scholar 

  117. Goharbakhsh L, Mohazzab A, Salehkhou S, Heidari M, Zarnani AH, Parivar K, et al. Isolation and culture of human spermatogonial stem cells derived from testis biopsy. Avicenna J Med Biotechnol. 2013;5(1):54–61.

    PubMed  PubMed Central  Google Scholar 

  118. Valli H, Sukhwani M, Dovey SL, Peters KA, Donohue J, Castro CA, et al. Fluorescence- and magnetic-activated cell sorting strategies to isolate and enrich human spermatogonial stem cells. Fertil Steril. 2014;102(2):566-580.e7.

    PubMed  PubMed Central  Google Scholar 

  119. Cai Y, Wang J, Zou K. The progresses of spermatogonial stem cells sorting using fluorescence-activated cell sorting. Stem Cell Rev Rep. 2020;16(1):94–102.

    PubMed  Google Scholar 

  120. Sadri-Ardekani H, Akhondi MA, van der Veen F, Repping S, van Pelt AM. In vitro propagation of human prepubertal spermatogonial stem cells. JAMA. 2011;305(23):2416–8.

    CAS  PubMed  Google Scholar 

  121. Shetty G, Mitchell JM, Meyer JM, Wu Z, Lam TNA, Phan TT, et al. Restoration of functional sperm production in irradiated pubertal rhesus monkeys by spermatogonial stem cell transplantation. Andrology https://doi. 2020;8:1428–41. https://doi.org/10.1111/andr.12807.

    Article  CAS  Google Scholar 

  122. Forbes CM, Flannigan R, Schlegel PN. Spermatogonial stem cell transplantation and male infertility: current status and future directions. Arab J Urol. 2017;16(1):171–80.

    PubMed  PubMed Central  Google Scholar 

  123. Sato T, Katagiri K, Gohbara A, Inoue K, Ogonuki N, Ogura A, et al. In vitro production of functional sperm in cultured neonatal mouse testes. Nature. 2011;471(7339):504–7.

    CAS  PubMed  Google Scholar 

  124. Oblette A, Rives N, Dumont L, Rives A, Verhaeghe F, Jumeau F, et al. Assessment of sperm nuclear quality after in vitro maturation of fresh or frozen/thawed mouse pre-pubertal testes. Mol Hum Reprod. 2017;23(10):674–84.

    CAS  PubMed  Google Scholar 

  125. Abu Elhija M, Lunenfeld E, Schlatt S, Huleihel M. Differentiation of murine male germ cells to spermatozoa in a soft agar culture system. Asian J Androl. 2012;14(2):285–93.

    CAS  PubMed  Google Scholar 

  126. Huleihel M, Nourashrafeddin S, Plant TM. Application of three-dimensional culture systems to study mammalian spermatogenesis, with an emphasis on the rhesus monkey (Macaca mulatta). Asian J Androl. 2015;17(6):972–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Ishikura Y, Yabuta Y, Ohta H, Hayashi K, Nakamura T, Okamoto I, et al. In vitro derivation and propagation of spermatogonial stem cell activity from mouse pluripotent stem cells. Cell Rep. 2016;17(10):2789–804.

    CAS  PubMed  Google Scholar 

  128. de Michele F, Poels J, Weerens L, Petit C, Evrard Z, Ambroise J, et al. Preserved seminiferous tubule integrity with spermatogonial survival and induction of Sertoli and Leydig cell maturation after long-term organotypic culture of prepubertal human testicular tissue. Hum Reprod. 2016;32(1):32–45.

    PubMed  Google Scholar 

  129. Sun M, Yuan Q, Niu M, Wang H, Wen L, Yao C, et al. Efficient generation of functional haploid spermatids from human germline stem cells by three-dimensional-induced system. Cell Death Differ. 2018;25(4):749–66.

    PubMed  Google Scholar 

  130. Cremades N, Bernabeu R, Barros A, Sousa M. In-vitro maturation of round spermatids using co-culture on Vero cells. Hum Reprod. 1999;14(5):1287–93.

    CAS  PubMed  Google Scholar 

  131. Tanaka A, Nagayoshi M, Awata S, Tanaka I, Kusunoki H. Differentiation of human round spermatids into motile spermatozoa through in vitro coculture with Vero cells. Reprod Med Biol. 2009;8(4):169–75.

    PubMed  PubMed Central  Google Scholar 

  132. Kadam P, Ntemou E, Onofre J, Van Saen D, Goossens E. Does co-transplantation of mesenchymal and spermatogonial stem cells improve reproductive efficiency and safety in mice? Stem Cell Res Ther. 2019;10(1):310.

    PubMed  PubMed Central  Google Scholar 

  133. Karimaghai N, Tamadon A, Rahmanifar F, Mehrabani D, Raayat Jahromi A, Zare S, et al. Spermatogenesis after transplantation of adipose tissue-derived mesenchymal stem cells in busulfan-induced azoospermic hamster. Iran J Basic Med Sci. 2018;21(7):660–7.

    PubMed  PubMed Central  Google Scholar 

  134. Li X, Xu A, Li K, Zhang J, Li Q, Zhao G, et al. CXCR4-SF1 bifunctional adipose-derived stem cells benefit for the treatment of Leydig cell dysfunction-related diseases. J Cell Mol Med. 2020;24(8):4633–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Curley M, Gonzalez ZN, Milne L, Hadoke P, Handel I, Péault B, et al. Human adipose-derived pericytes display steroidogenic lineage potential in vitro and influence Leydig cell regeneration in vivo in rats. Sci Rep. 2019;9(1):15037.

    PubMed  PubMed Central  Google Scholar 

  136. Badawy AA, El-Magd MA, AlSadrah SA, Alruwaili MM. Altered expression of some miRNAs and their target genes following mesenchymal stem cell treatment in busulfan-induced azoospermic rats. Gene. 2020;737:14448.

    Google Scholar 

  137. Abdelaziz MH, Salah El-Din EY, El-Dakdoky MH, Ahmed TA. The impact of mesenchymal stem cells on doxorubicin-induced testicular toxicity and progeny outcome of male prepubertal rats. Birth Defects Res. 2019;111(13):906–19.

    CAS  PubMed  Google Scholar 

  138. Meligy FY, Abo Elgheed AT, Alghareeb SM. Therapeutic effect of adipose-derived mesenchymal stem cells on Cisplatin induced testicular damage in adult male albino rat. Ultrastruct Pathol. 2019;43(1):28–55.

    PubMed  Google Scholar 

  139. Cakici C, Buyrukcu B, Duruksu G, Haliloglu AH, Aksoy A, Isık A, et al. Recovery of fertility in azoospermia rats after injection of adipose-tissue-derived mesenchymal stem cells: the sperm generation. Biomed Res Int. 2013;2013:529589.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Petric, P., and Stimpfel, M.: Writing, editing, and data collection

Vrtacnik-Bokal, E.: Writing and editing

Corresponding author

Correspondence to M. Stimpfel.

Ethics declarations

Ethics Approval

This is a review; therefore, no ethical consents were needed.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petric, P., Vrtacnik-Bokal, E. & Stimpfel, M. Is It Possible to Treat Infertility with Stem Cells?. Reprod. Sci. 28, 1733–1745 (2021). https://doi.org/10.1007/s43032-021-00566-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00566-7

Keywords

Navigation