Skip to main content

Advertisement

Log in

The Potential Relationship Between Different Human Female Reproductive Disorders and Sperm Quality in Female Genital Tract

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Spermatozoa should travel throughout the female reproductive tract to reach its ultimate goal, fertilization of the oocyte. At the ejaculation moment, millions of sperm within a few milliliters of the ejaculate are deposited at the cranial segment of vagina and make their journey to the fertilization site. This is done by means of various factors, such as sperm motility, the uterine and fallopian tubes contractility, and the ciliary movement of the lining cells. During this migration, spermatozoa interact with the female microenvironment both physically and molecularly. In this regard, the quality of the environmental conditions may affect this interaction. Therefore, some alterations in women’s genital tract microenvironment, such as conditions that occur in female reproductive disorders, may have detrimental effects on sperm reproductive function. In this review, human sperm migration through the female tract is described, and the potential effects of different reproductive disorders at reproductive organs, such as vagina, uterine cervix, uterus, fallopian tubes, and ovary on sperm survival and quality, are also argued. The understanding of those conditions that may impair sperm fertility in the female genital tract can provide a more accurate diagnosis of the causes of infertility in couples. This can ultimately lead to the discovery of effective treatment approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Carlson BM (2014) Transport of gametes and fertilization. In: Hum. Embryol. Dev. Biol., Fifth Edit. Elsevier, pp 24–36

  2. Suarez SS. Mammalian sperm interactions with the female reproductive tract. Cell Tissue Res. 2016;363:185–94.

    Article  PubMed  Google Scholar 

  3. Wilcox AJ, Weinberg CR, Baird DD. Timing of sexual intercourse in relation to ovulation – effects on the probability of conception, survival of the pregnancy, and sex of the baby. N Engl J Med. 1995;333:1517–21.

    Article  CAS  PubMed  Google Scholar 

  4. Jõ Ao Freitas M, Vijayaraghavan S, Fardilha M. Signaling mechanisms in mammalian sperm motility †. Biol Reprod. 2017;96:2–12.

    Google Scholar 

  5. Smith SB, Ravel J. The vaginal microbiota, host defence and reproductive physiology. J Physiol. 2017;595:451–63.

    Article  CAS  PubMed  Google Scholar 

  6. Paavonen J. Physiology and ecology of the vagina. Scand J Infect Dis. 1983;15:31–5.

    Google Scholar 

  7. Spear GT, French AL, Gilbert D, et al. Human α-amylase present in lower-genital-tract mucosal fluid processes glycogen to support vaginal colonization by Lactobacillus. 2014. https://doi.org/10.1093/infdis/jiu231.

  8. Amabebe E, Anumba DOC. The vaginal microenvironment: the physiologic role of Lactobacilli. Front Med. 2018;5:181.

    Article  Google Scholar 

  9. Reid G, McGroarty JA, Angotti R, Cook RL. Lactobacillus inhibitor production against Escherichia coli and coaggregation ability with uropathogens. Can J Microbiol. 1988;34:344–51.

    Article  CAS  PubMed  Google Scholar 

  10. Velraeds MMC, Van Der Mei HC, Reid G, Busscher HJ. Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates. Appl Environ Microbiol. 1996;62:1958–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cohen L. Influence of pH on vaginal discharges. Br J Vener Dis. 1969;45:241–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Brannigan, R, Lipshultz L (2008) Sperm transport and capacitation - Global Library of Women’s Medicine. 10.3843/GLOWM.10316

  13. Makler A, David R, Blumenfeld Z, Better OS. Factors affecting sperm motility. VII. Sperm viability as affected by change of pH and osmolarity of semen and urine specimens. Fertil Steril. 1981;36:507–11.

    Article  CAS  PubMed  Google Scholar 

  14. Zavos PM, Cohen MR. The pH of cervical mucus and the postcoital test. Fertil Steril. 1980;34:234–8.

    Article  CAS  PubMed  Google Scholar 

  15. Fox CA, Meldrum SJ, Watson BW. Continuous measurement by radio-telemetry of vaginal pH during human coitus. J Reprod Fertil. 1973;33:69–75.

    Article  CAS  PubMed  Google Scholar 

  16. Masters WH, Johnson VE. The physiology of the vaginal reproductive function. West J Surg Obstet Gynecol. 1961;69:105–20.

    CAS  PubMed  Google Scholar 

  17. Leyva-Gómez G, Del Prado-Audelo ML, Ortega-Peña S, Mendoza-Muñoz N, Urbán-Morlán Z, González-Torres M, et al. Modifications in vaginal microbiota and their influence on drug release: challenges and opportunities. Pharmaceutics. 2019. https://doi.org/10.3390/pharmaceutics11050217.

  18. Sobel JD. Is there a protective role for vaginal flora? Curr Infect Dis Rep. 1999;1:379–83.

    Article  CAS  PubMed  Google Scholar 

  19. Donders GGG, Caeyers T, Tydhof P, Riphagen I, van den Bosch T, Bellen G. Comparison of two types of dipsticks to measure vaginal pH in clinical practice. Eur J Obstet Gynecol Reprod Biol. 2007;134:220–4.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou J, Chen L, Li J, Li H, Hong Z, Xie M, et al. The semen pH affects sperm motility and capacitation. 2015. https://doi.org/10.1371/journal.pone.0132974.

  21. Avilés AGP, Zaragoza MCO, Coria AI. Bacterial vaginosis a ‘broad overview’. Rev Latinoam Microbiol. 1999;41:25–34.

    Google Scholar 

  22. Donders GGG, Bosmans E, Dekeersmaecker A, Vereecken A, Van Bulck B, Spitz B. Pathogenesis of abnormal vaginal bacterial flora. Am J Obstet Gynecol. 2000;182:872–8.

    Article  CAS  PubMed  Google Scholar 

  23. Speroff L, Fritz MA. Clinical gynecologic endocrinology and infertility, Sperm and egg transport, fertilization, and implantation. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2005.

    Google Scholar 

  24. Eggert-Kruse W, Kohler A, Rohr G, Runnebaum B. The pH as an important determinant of sperm-mucus interaction. Fertil Steril. 1993;59:617–28.

    Article  CAS  PubMed  Google Scholar 

  25. Gorodeski GI, Hopfer U, Liu CC, Margles E. Estrogen acidifies vaginal pH by up-regulation of proton secretion via the apical membrane of vaginal-ectocervical epithelial cells. Endocrinology. 2005;146:816–24.

    Article  CAS  PubMed  Google Scholar 

  26. Srinivasan S, Liu C, Mitchell CM, Fiedler TL, Thomas KK, Agnew KJ, et al. Temporal variability of human vaginal bacteria and relationship with bacterial vaginosis. PLoS One. 2010. https://doi.org/10.1371/journal.pone.0010197.

  27. Padgett DA, Glaser R. How stress influences the immune response. Trends Immunol. 2003;24:444–8.

    Article  CAS  PubMed  Google Scholar 

  28. Wrenn TR, Wood JR, Bitman J, Brinsfield TH. Vaginal glycogen assay for oestrogen: specificity and application to blood and urine. J Reprod Fertil. 1968;16:301–4.

    Article  CAS  PubMed  Google Scholar 

  29. Amabebe E, Anumba DOC. The vaginal microenvironment: the physiologic role of lactobacilli. Front Med. 2018. https://doi.org/10.3389/fmed.2018.00181.

  30. Witkin SS. The vaginal microbiome, vaginal anti-microbial defence mechanisms and the clinical challenge of reducing infection-related preterm birth. BJOG An Int J Obstet Gynaecol. 2015;122:213–8.

    Article  CAS  Google Scholar 

  31. Juyena NS, Stelletta C. Seminal plasma: an essential attribute to spermatozoa. J Androl. 2012;33:536–51.

    Article  PubMed  Google Scholar 

  32. Zhou J, Chen L, Li J, Li H, Hong Z, Xie M, et al. The semen pH affects sperm motility and capacitation. PLoS One. 2015. https://doi.org/10.1371/journal.pone.0132974.

  33. Wolters-Everhardt E, Dony JMJ, Lemmens WAJG, Doesburg WH, De Pont JJ. Buffering capacity of human semen. Fertil Steril. 1986;46:114–9.

    Article  CAS  PubMed  Google Scholar 

  34. Esteves SC, Miyaoka R, Agarwal A. An update on the clinical assessment of the infertile male. Clinics. 2011;66:691–700.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Du Plessis SS, Gokul S, Agarwal A. Semen hyperviscosity: causes, consequences, and cures. Front Biosci - Elit. 2013;5(E):224–31.

    Google Scholar 

  36. Katz DF, Morales P, Samuels SJ, Overstreet JW. Mechanisms of filtration of morphologically abnormal human sperm by cervical mucus*†*Supported by research grants HD 12971 and HD 15149 from the National Institutes of Health, Bethesda, Maryland.†Poster Prize Co-winner at the 45th Annual Meeting of The American Fertility Society, San Francisco, California, November 13 to 16, 1989. Fertil Steril. 1990;54:513–6.

    Article  CAS  PubMed  Google Scholar 

  37. Moghissi K. Evaluation and management of cervical hostility. Semin Reprod Med. 1986;4:343–55.

    Article  Google Scholar 

  38. Jequier AM (2009) Sperm transport in the human and mammalian cervix and genital tract: its relation to fertility. In: Cervix Second Ed. John Wiley and Sons, pp 169–180

  39. Katz DF, Drobnis EZ, Overstreet JW. Factors regulating mammalian sperm migration through the female reproductive tract and oocyte vestments. Gamete Res. 1989;22:443–69.

    Article  CAS  PubMed  Google Scholar 

  40. Wolf DP, Blasco L, Khan MA, Litt M. Human cervical mucus. IV. Viscoelasticity and sperm penetrability during the ovulatory menstrual cycle. Fertil Steril. 1978;30:163–9.

    Article  CAS  PubMed  Google Scholar 

  41. Wolf DP, Blasco L, Mohammad MD, Khan A, Litt M. Human cervical mucus. iv. Viscoelasticity and sperm penetrability during the ovulatory menstrual cycle*. Fertil Steril. 1978. https://doi.org/10.1016/S0015-0282(16)43454-0.

  42. Yoshida K, Kashimura M, Matsuura Y, Seki M, Inoue Y, Ishikawa K. Rheology of human cervical mucus - with special reference to measurement of viscoelasticity using various rheometers. J UOEH. 2003;25:317–24.

    Article  PubMed  Google Scholar 

  43. Katz DF, Slade DA, Nakajima ST (1997) Analysis of pre-ovulatory changes in cervical mucus hydration and sperm penetrability. In: Adv. Contracept. pp 143–151

  44. Morales P, Roco M, Vigil P. Human cervical mucus: relationship between biochemical characteristics and ability to allow migration of spermatozoa. Hum Reprod. 1993;8:78–83.

    Article  CAS  PubMed  Google Scholar 

  45. Nakano FY, de BF LR, Esteves SC. Insights into the role of cervical mucus and vaginal pH in unexplained infertility. Med Express. 2015. https://doi.org/10.5935/medicalexpress.2015.02.07.

  46. Pommerenke WT. Cyclic changes in the physical and chemical properties of cervical mucus. Am J Obstet Gynecol. 1946;52:1023–31.

    Article  CAS  PubMed  Google Scholar 

  47. Odeblad E. The functional structure of human cervical mucus. Acta Obstet Gynecol Scand. 1968;47:57–79.

    Article  CAS  PubMed  Google Scholar 

  48. de MP e PI, Britto RL. Diagnosis and treatment of müllerian malformations. Taiwan J Obstet Gynecol. 2020;59:183–8.

    Article  Google Scholar 

  49. Rock JA, Roberts CP, Jones HW. Congenital anomalies of the uterine cervix: lessons from 30 cases managed clinically by a common protocol. Fertil Steril. 2010;94:1858–63.

    Article  PubMed  Google Scholar 

  50. Pabuccu R, Ceyhan ST, Onalan G, Goktolga U, Ercan CM, Selam B. Successful treatment of cervical stenosis with hysteroscopic canalization before embryo transfer in patients undergoing IVF: a case series. J Minim Invasive Gynecol. 2005;12:436–8.

    Article  PubMed  Google Scholar 

  51. Hammond RH, Edmonds DK. Does treatment for cervical intraepithelial neoplasia affect fertility and pregnancy? BMJ. 1990;301:1344–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Callahan TL, Caughey AB (2013) Blueprints obstetrics & gynecology, 6th ed. Lippincott Williams & Wilkins

  53. Caspi E, Schneider D, Sadovsky G, Weinraub Z, Bukovsky I. Diameter of cervical internal os after induction of early abortion by laminaria or rigid dilatation. Am J Obstet Gynecol. 1983;146:106–8.

    Article  CAS  PubMed  Google Scholar 

  54. Daunter B, Khoo SK. Role of cervical mucus in human infertility. Aust New Zeal J Obstet Gynaecol. 1984;24:271–5.

    Article  CAS  Google Scholar 

  55. Elstein M, Macdonald RR. The relation of cervical mucus proteins to sperm penetrability. BJOG An Int J Obstet Gynaecol. 1970;77:1123–6.

    Article  CAS  Google Scholar 

  56. Koskimies AI, Paavonen J, Meyer B, Kajanoja P. Cervicitis and infertility. Am J Reprod Immunol. 1981;1:299–302.

    Article  Google Scholar 

  57. Sharif K, Olufowobi O (2009) The structure, chemistry and physics of human cervical mucus. In: Cervix Second Ed. John Wiley and Sons, pp 155–168

  58. JK MK. The pH in the lower third of the genital tract. Uter Cervix Reprod. 1977:109–1.

  59. Naz RK, Menge AC. Antisperm antibodies: origin, regulation, and sperm reactivity in human infertility**Supported in part by the National Institutes of Health grant HD24425 (R.K.N.), Bethesda, Maryland. Fertil Steril. 1994;61:1001–13.

    Article  CAS  PubMed  Google Scholar 

  60. Davis PB, Drumm M, Konstan MW. Cystic fibrosis. Am J Respir Crit Care Med. 1996;154:1229–56.

    Article  CAS  PubMed  Google Scholar 

  61. Anthony E, Oppenheimer CAL, Esterly JR, Rothberg RM. Cervical mucus in cystic fibrosis: a possible cause of infertility. Am J Obstet Gynecol. 1970;108:673–4.

    Article  Google Scholar 

  62. Gervais R. Hypofertility with thick cervical mucus: another mild form of cystic fibrosis? JAMA J Am Med Assoc. 1996;276:1638.

    Article  CAS  Google Scholar 

  63. Katz DF, Berger SA (1980) Flagellar propulsion of human sperm in cervical mucus. In: Biorheology. IOS Press, pp 169–175

  64. Lyons EA, Taylor PJ, Zheng XH, Ballard G, Levi CS, Kredentser JV. Characterization of subendometrial myometrial contractions throughout the menstrual cycle in normal fertile women. Fertil Steril. 1991;55:771–4.

    Article  CAS  PubMed  Google Scholar 

  65. Asaad M, Abdulla U, Hipkin L, Diver M. The effect of clomiphene citrate treatment on cervical mucus and plasma estradiol and progesterone levels. Fertil Steril. 1993;59:539–43.

    Article  CAS  PubMed  Google Scholar 

  66. Massai MR, De Ziegler D, Lesobre V, Bergeron C, Frydman R, Bouchard P. Clomiphene citrate affects cervical mucus and endometrial morphology independently of the changes in plasma hormonal levels induced by multiple follicular recruitment. Fertil Steril. 1993;59:1179–86.

    Article  CAS  PubMed  Google Scholar 

  67. Roumen FJ. Decreased quality of cervix mucus under the influence of clomiphene: a meta-analysis. Ned Tijdschr Geneeskd. 1997;141:2401–5.

    CAS  PubMed  Google Scholar 

  68. Annapurna VDLGS. Effect of two anti-estrogens, clomiphene citrate and tamoxifen, on cervical mucus and sperm-cervical mucus interaction. Int J Fertil Womens Med. 1997:215–8.

  69. Turner P. Recent observations on drugs and human fertility. Postgrad Med J. 1988;64:578–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Peterson RN, Freund M. Effects of (H+), (Na+), (K+) and certain membrane-active drugs on glycolysis, motility, and atp synthesis by human spermatozoa. Biol Reprod. 1973;8:350–7.

    Article  CAS  PubMed  Google Scholar 

  71. Hong C, Saintonge C d D, Turner P. The inhibitory action of procaine, (+)-propranolol and (+/-)- propranolol on human sperm motility: antagonism by caffeine [letter]. Br J Clin Pharmacol. 1981;12:751–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hellberg D, Nilsson S, Haley NJ, Hoffman D, Wynder E. Smoking and cervical intraepithelial neoplasia: nicotine and cotinine in serum and cervical mucus in smokers and nonsmokers. Am J Obstet Gynecol. 1988;158:910–3.

    Article  CAS  PubMed  Google Scholar 

  73. Moramazi F, Roohipoor M, Najafian M. Association between internal cervical os stenosis and other female infertility risk factors. Middle East Fertil Soc J. 2018;23:297–9.

    Article  Google Scholar 

  74. Tankó LB, Christiansen C. An update on the antiestrogenic effect of smoking: a literature review with implications for researchers and practitioners. Menopause. 2004;11:104–9.

    Article  PubMed  Google Scholar 

  75. Condorelli RA, Vignera S La, Giacone F, Iacoviello L, Vicari E, Mongioi’ L, Calogero AE, Vignera S La (2013) In vitro effects of nicotine on sperm motility and bio-functional flow cytometry sperm parameters 739 0394-739 6320.

  76. Oyeyipo IP, Raji Y, Emikpe BO, Bolarinwa AF. Effects of nicotine on sperm characteristics and fertility profile in adult male rats: a possible role of cessation. J Reprod Infertil. 2011;12:201–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Budin SB, Kho JH, Lee JH, Ramalingam A, Jubaidi FF, Latif ES, et al. Low-dose nicotine exposure induced the oxidative damage of reproductive organs and altered the sperm characteristics of adolescent male rats. Malaysian J Med Sci. 2017;24:50–7.

    Article  Google Scholar 

  78. Mortimer ST, Swan MA. Variable kinematics of capacitating human spermatozoa. Hum Reprod. 1995;10:3178–82.

    Article  CAS  PubMed  Google Scholar 

  79. Kunz G, Beil D, Deininger H, Wildt L, Leyendecker G. The dynamics of rapid sperm transport through the female genital tract: evidence from vaginal sonography of uterine peristalsis and hysterosalpingoscintigraphy. Hum Reprod. 1996;11:627–32.

    Article  CAS  PubMed  Google Scholar 

  80. Di Spiezio SA, Di Carlo C, Minozzi S, Spinelli M, Pistotti V, Alviggi C, et al. Efficacy of hysteroscopy in improving reproductive outcomes of infertile couples: a systematic review and meta-analysis. Hum Reprod Update. 2016;22:479–96.

    Article  Google Scholar 

  81. Bosteels J, Weyers S, Puttemans P, Panayotidis C, Van Herendael B, Gomel V, et al. The effectiveness of hysteroscopy in improving pregnancy rates in subfertile women without other gynaecological symptoms: a systematic review. Hum Reprod Update. 2009;16:1–11.

    Article  Google Scholar 

  82. Ben-Nagi J, Miell J, Yazbek J, Holland T, Jurkovic D. The effect of hysteroscopic polypectomy on the concentrations of endometrial implantation factors in uterine flushings. Reprod Biomed Online. 2009;19:737–44.

    Article  CAS  PubMed  Google Scholar 

  83. Hinckley MD, Milki AA. 1000 office-based hysteroscopies prior to in vitro fertilization: feasibility and findings. JSLS. 2004;8:103–7.

    PubMed  PubMed Central  Google Scholar 

  84. Rackow BW, Jorgensen E, Taylor HS. Endometrial polyps affect uterine receptivity. Fertil Steril. 2011;95:2690–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Al Chami A, Saridogan E. Endometrial polyps and subfertility. J Obstet Gynecol India. 2017;67:9–14.

    Article  Google Scholar 

  86. Venturini NTCBG, et al. Hysteroscopy for evaluation of tubal ostium pathology. Acta Eur Fertil. 1987:61–2.

  87. Shokeir TA, Shalan HM, El-Shafei MM. Significance of endometrial polyps detected hysteroscopically in eumenorrheic infertile women. J Obstet Gynaecol Res. 2004;30:84–9.

    Article  PubMed  Google Scholar 

  88. Fritz M, Speroff L (2012) Clinical gynecologic endocrinology and infertility.

  89. Richlin SS, Ramachandran S, Kavtaradze N, Parthasarathy S, Murphy AA. Glycodelin levels in uterine flushings and plasma of patients with leiomyoma and polyps: implications for implantation. Fertil Steril. 2002;78:S271.

    Article  Google Scholar 

  90. Julkunen M, Apter D, Seppala M, Stenman U-H, Md HB. Serum levels of placental protein 14 reflect ovulation in nonconceptional menstrual cycles*. Fertil Steril. 1986. https://doi.org/10.1016/S0015-0282(16)49095-3.

  91. Okamoto N, Uchida A, Takakura K, Kariya Y, Kanzaki H, Riittinen L, et al. Suppression by human placental protein 14 of natural killer cell activity. Am J Reprod Immunol. 1991;26:137–42.

    Article  CAS  PubMed  Google Scholar 

  92. Oehninger S, Coddington CC, Hodgen GD, Seppala M. Factors affecting fertilization: endometrial placental protein 14 reduces the capacity of human spermatozoa to bind to the human zona pellucida. Fertil Steril. 1995;63:377–83.

    Article  CAS  PubMed  Google Scholar 

  93. Afifi K, Anand S, Nallapeta S, Gelbaya TA. Management of endometrial polyps in subfertile women: a systematic review. Eur J Obstet Gynecol Reprod Biol. 2010;151:117–21.

    Article  PubMed  Google Scholar 

  94. Wallach EE. The uterine factor in infertility. Fertil Steril. 1972;23:138–58.

    Article  CAS  PubMed  Google Scholar 

  95. Pritts EA, Parker WH, Olive DL. Fibroids and infertility: an updated systematic review of the evidence. Fertil Steril. 2009;91:1215–23.

    Article  PubMed  Google Scholar 

  96. Hur C, Rehmer J, Flyckt R, Falcone T. Uterine factor infertility: a clinical review. Clin Obstet Gynecol. 2019;62:257–70.

    Article  PubMed  Google Scholar 

  97. Vlahos NF TTPG (2017) Myomas and adenomyosis: impact on reproductive outcome. Biomed Res Int

    Google Scholar 

  98. Silva ACJS R e, Silva JC R e, FJC R, Nogueira AA, Ferriani RA. Routine office hysteroscopy in the investigation of infertile couples prior to assisted reproduction. Int Congr Ser. 2004;1271:255–8.

    Article  Google Scholar 

  99. Vercellini PCDDDBBFMSE. Uterine adenomyosis and in vitro fertilization outcome: a systematic review and meta-analysis - PubMed. Hum Reprod. 2014:964–77.

  100. Leyendecker G, Kunz G, Wildt L, Beil D, Deininger H. Uterine hyperperistalsis and dysperistalsis as dysfunctions of the mechanism of rapid sperm transport in patients with endometriosis and infertility. Hum Reprod. 1996;11:1542–51.

    Article  CAS  PubMed  Google Scholar 

  101. Mehasseb MK, Bell SC, Pringle JH, Habiba MA. Uterine adenomyosis is associated with ultrastructural features of altered contractility in the inner myometrium. Fertil Steril. 2010;93:2130–6.

    Article  PubMed  Google Scholar 

  102. Fischer CP, Kayisili U, Taylor HS. HOXA10 expression is decreased in endometrium of women with adenomyosis. Fertil Steril. 2011;95:1133–6.

    Article  CAS  PubMed  Google Scholar 

  103. Vannuccini S, Tosti C, Carmona F, Huang SJ, Chapron C, Guo SW, et al. Pathogenesis of adenomyosis: an update on molecular mechanisms. Reprod Biomed Online. 2017;35:592–601.

    Article  CAS  PubMed  Google Scholar 

  104. Zhihong N, Yun F, Pinggui Z, Sulian Z, Zhang A. Cytokine profiling in the eutopic endometrium of adenomyosis during the implantation window after ovarian stimulation. Reprod Sci. 2016;23:124–33.

    Article  CAS  PubMed  Google Scholar 

  105. Feng T, Wei S, Wang Y, Fu X, Shi L, Qu L, et al. Rhein ameliorates adenomyosis by inhibiting NF-κB and β-Catenin signaling pathway. Biomed Pharmacother. 2017;94:231–7.

    Article  CAS  PubMed  Google Scholar 

  106. Lai TH, Chang FW, Lin JJ, Ling QD. Endometrial L-selectin ligand is downregulated in the mid-secretory phase during the menstrual cycle in women with adenomyosis. Taiwan J Obstet Gynecol. 2018;57:507–16.

    Article  PubMed  Google Scholar 

  107. Tremellen KP, Russell P. The distribution of immune cells and macrophages in the endometrium of women with recurrent reproductive failure. II: Adenomyosis and macrophages. J Reprod Immunol. 2012;93:58–63.

    CAS  PubMed  Google Scholar 

  108. Xiao Y, Li T, Xia E, Yang X, Sun X, Zhou Y. Expression of integrin β3 and osteopontin in the eutopic endometrium of adenomyosis during the implantation window. Eur J Obstet Gynecol Reprod Biol. 2013;170:419–22.

    Article  PubMed  Google Scholar 

  109. Lampiao F, du Plessis SS. TNF-α and IL-6 affect human sperm function by elevating nitric oxide production. Reprod Biomed Online. 2008;17:628–31.

    Article  CAS  PubMed  Google Scholar 

  110. Yoshida S, Harada T, Iwabe T, Taniguchi F, Mitsunari M, Yamauchi N, et al. A combination of interleukin-6 and its soluble receptor impairs sperm motility: implications in infertility associated with endometriosis. Hum Reprod. 2004;19:1821–5.

    Article  CAS  PubMed  Google Scholar 

  111. Hooker AB, de Leeuw R, van de Ven PM, et al. Prevalence of intrauterine adhesions after the application of hyaluronic acid gel after dilatation and curettage in women with at least one previous curettage: short-term outcomes of a multicenter, prospective randomized controlled trial. Fertil Steril. 2017;107:1223–1231.e3.

    Article  CAS  PubMed  Google Scholar 

  112. Schenker JG, Margalioth EJ. Intrauterine adhesions: an updated appraisal. Fertil Steril. 1982;37:593–610.

    Article  CAS  PubMed  Google Scholar 

  113. Valle RF, Sciarra JJ. Intrauterine adhesions: hysteroscopic diagnosis, classification, treatment, and reproductive outcome. Am J Obstet Gynecol. 1988;158:1459–70.

    Article  CAS  PubMed  Google Scholar 

  114. Klein SM, Garcia C-R. Asherman’s syndrome: a critique and current review. Fertil Steril. 1973. https://doi.org/10.1016/S0015-0282(16)39918-6.

  115. Hooker ABLMTA, et al. Systematic review and meta-analysis of intrauterine adhesions after miscarriage: prevalence, risk factors and long-term reproductive outcome - PubMed. Hum Reprod Updat. 2014:262–78.

  116. Deans R, Abbott J. Review of intrauterine adhesions. J Minim Invasive Gynecol. 2010;17:555–69.

    Article  PubMed  Google Scholar 

  117. Renier D, Bellato P, Bellini D, Pavesio A, Pressato D, Borrione A. Pharmacokinetic behaviour of ACP gel, an autocrosslinked hyaluronan derivative, after intraperitoneal administration. Biomaterials. 2005;26:5368–74.

    Article  CAS  PubMed  Google Scholar 

  118. Kodarahmian M, Amidi F, Moini A, Kashani L, Shabani Nashtaei M, Pazhohan A, et al. The modulating effects of Resveratrol on the expression of MMP-2 and MMP-9 in endometriosis women: a randomized exploratory trial. Gynecol Endocrinol. 2019;35:719–26.

    Article  CAS  PubMed  Google Scholar 

  119. Stilley JAW, Birt JA, Sharpe-Timms KL. Cellular and molecular basis for endometriosis-associated infertility. Cell Tissue Res. 2012;349:849–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pazhohan A, Amidi F, Akbari-Asbagh F, Seyedrezazadeh E, Farzadi L, Khodarahmin M, et al. The Wnt/β-catenin signaling in endometriosis, the expression of total and active forms of β-catenin, total and inactive forms of glycogen synthase kinase-3β, WNT7a and DICKKOPF-1. Eur J Obstet Gynecol Reprod Biol. 2018;220:1–5.

    Article  CAS  PubMed  Google Scholar 

  121. Allaire C. Endometriosis and infertility: a review. J Reprod Med. 2006;51:164–8.

    PubMed  Google Scholar 

  122. Bulletti C, Coccia ME, Battistoni S, Borini A. Endometriosis and infertility. J Assist Reprod Genet. 2010;27:441–7.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Bergendal A, Naffah S, Nagy C, Bergqvist A, Sjöblom P, Hillensjö T. Outcome of IVF in patients with endometriosis in comparison with tubal- factor infertility. J Assist Reprod Genet. 1998;15:530–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hull MGR, Williams JAC, Ray B, McLaughlin EA, Akande VA, Ford WCL. The contribution of subtle oocyte or sperm dysfunction affecting fertilization in endometriosis-associated or unexplained infertility: a controlled comparison with tubal infertility and use of donor spermatozoa. Hum Reprod. 1998;13:1825–30.

    Article  CAS  PubMed  Google Scholar 

  125. Nesbitt-Hawes EM, Ledger W (2015) Endometriosis and infertility. In: Reprod. Surg. Assist. Concept. Springer-Verlag London Ltd, pp 29–35

  126. Mansour G, Aziz N, Sharma R, Falcone T, Goldberg J, Agarwal A. The impact of peritoneal fluid from healthy women and from women with endometriosis on sperm DNA and its relationship to the sperm deformity index. Fertil Steril. 2009;92:61–7.

    Article  CAS  PubMed  Google Scholar 

  127. Sáez-Espinosa P, Velasco I, Lorca P, Acién MI, Romero A, Gómez-Torres MJ. Peritoneal fluid from women with endometriosis impairs human spermatozoa functionality. Reprod Biol. 2020;20:81–7.

    Article  PubMed  Google Scholar 

  128. Pazhohan A, Amidi F, Akbari-Asbagh F, Seyedrezazadeh E, Aftabi Y, Abdolalizadeh J, et al. Expression and shedding of CD44 in the endometrium of women with endometriosis and modulating effects of vitamin D: a randomized exploratory trial. J Steroid Biochem Mol Biol. 2018;178:150–8.

    Article  CAS  PubMed  Google Scholar 

  129. Wu MY, Ho HN. The role of cytokines in endometriosis. Am J Reprod Immunol. 2003;49:285–96.

    Article  PubMed  Google Scholar 

  130. Carlberg M, Nejaty J, Fröysa B, Guan Y, Söder O, Bergqvist A (2000) Elevated expression of tumour necrosis factor α in cultured granulosa cells from women with endometriosis Cytokines are proteins with pleiotrophic regulatory effects.

  131. Bedaiwy MA. Prediction of endometriosis with serum and peritoneal fluid markers: a prospective controlled trial. Hum Reprod. 2002;17:426–31.

    Article  CAS  PubMed  Google Scholar 

  132. Said TM, Sharma RK, Bedaiwy MA, Agarwal A, Falcone T. Toxicity of tumor necrosis factor (TNF)-α on human spermatozoa − possible role in endometriosis associated infertility. Fertil Steril. 2004;82:S158–9.

    Article  Google Scholar 

  133. Said TM, Agarwal A, Falcone T, Sharma RK, Bedaiwy MA, Li L. Infliximab may reverse the toxic effects induced by tumor necrosis factor alpha in human spermatozoa: an in vitro model. Fertil Steril. 2005;83:1665–73.

    Article  CAS  PubMed  Google Scholar 

  134. Carli C, Leclerc P, Metz CN, Akoum A. Direct effect of macrophage migration inhibitory factor on sperm function: possible involvement in endometriosis-associated infertility. Fertil Steril. 2007;88:1240–7.

    Article  CAS  PubMed  Google Scholar 

  135. Muscato JJ, Haney AF, Weinberg JB. Sperm phagocytosis by human peritoneal macrophages: a possible cause of infertility in endometriosis. Am J Obstet Gynecol. 1982;144:503–10.

    Article  CAS  PubMed  Google Scholar 

  136. Osborn BH, Haney AF, Misukonis MA, Weinberg JB. Inducible nitric oxide synthase expression by peritoneal macrophages in endometriosis-associated infertility. Fertil Steril. 2002;77:46–51.

    Article  PubMed  Google Scholar 

  137. Mathur SP, Holt VL, Lee JH, Jiang H, Rust PF. Levels of antibodies to transferrin and alpha 2-HS glycoprotein in women with and without endometriosis. Am J Reprod Immunol. 1998;40:69–73.

    Article  CAS  PubMed  Google Scholar 

  138. Pillai S, Rust PF, Howard L. Effects of antibodies to transferrin and alpha 2-HS glycoprotein on in vitro sperm motion: implications in infertility associated with endometriosis. Am J Reprod Immunol. 1998;39:235–42.

    Article  CAS  PubMed  Google Scholar 

  139. Kissler S, Hamscho N, Zangos S, et al. Uterotubal transport disorder in adenomyosis and endometriosis - a cause for infertility. BJOG An Int J Obstet Gynaecol. 2006;113:902–8.

    Article  CAS  Google Scholar 

  140. Kissler S, Zangos S, Wiegratz I, et al (2007) Utero-tubal sperm transport and its impairment in endometriosis and adenomyosis. In: Ann. N. Y. Acad. Sci. Blackwell Publishing Inc., pp 38–48

  141. Kissler S, Hamscho N, Zangos S, et al. Diminished pregnancy rates in endometriosis due to impaired uterotubal transport assessed by hysterosalpingoscintigraphy. BJOG An Int J Obstet Gynaecol. 2005;112:1391–6.

    Article  CAS  Google Scholar 

  142. Coddington CC, Oehninger S, Cunningham DS, Hansen K, Sueldo CE, Hodgen GD (1992) Peritoneal fluid from patients with endometriosis decreases sperm binding to the zona pellucida in the hemizona assay: a preliminary report. In: Fertil. Steril. pp 783–786

  143. Grande G, Vincenzoni F, Milardi D, Pompa G, Ricciardi D, Fruscella E, et al. Cervical mucus proteome in endometriosis. Clin Proteomics. 2017;14:7.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Gerhard I, Roth B, Eggert-Kruse W, Runnebaum B. Effects of kallikrein on sperm motility, capillary tube test, and pregnancy rate in an AIH program. Syst Biol Reprod Med. 1990;24:129–45.

    CAS  Google Scholar 

  145. Wang XF, Zhou CX, Shi QX, et al. Involvement of CFTR in uterine bicarbonate secretion and the fertilizing capacity of sperm. Nat Cell Biol. 2003;5:902–6.

    Article  CAS  PubMed  Google Scholar 

  146. Simpson WL, Beitia LG, Mester J. Hysterosalpingography: a reemerging study. Radiographics. 2006;26:419–31.

    Article  PubMed  Google Scholar 

  147. Pacey AA, Hill CJ, Scudamore IW, Warren MA, Barratt CLR, Cooke ID. Andrology: the interaction in vitro of human spermatozoa with epithelial cells from the human uterine (Fallopian) tube. Hum Reprod. 1995;10:360–6.

    Article  CAS  PubMed  Google Scholar 

  148. Fortier KJ, Haney AF. The pathologic spectrum of uterotubal junction obstruction. Obstet Gynecol. 1985;65:93–8.

    CAS  PubMed  Google Scholar 

  149. Suarez SS (2006) Gamete and zygote transport. In: Knobil Neill’s Physiol. Reprod. Elsevier Inc., pp 113–145

  150. Jansen RPS. Cyclic changes in the human fallopian tube isthmus and their functional importance. Am J Obstet Gynecol. 1980;136:292–308.

    Article  CAS  PubMed  Google Scholar 

  151. Sun F, Bahat A, Gakamsky A, Girsh E, Katz N, Giojalas LC, et al. Human sperm chemotaxis: both the oocyte and its surrounding cumulus cells secrete sperm chemoattractants. Hum Reprod. 2005;20:761–7.

    Article  CAS  PubMed  Google Scholar 

  152. Lottero-Leconte R, Isidro Alonso CA, Castellano L, Perez Martinez S. Mechanisms of the sperm guidance, an essential aid for meeting the oocyte. Transl Cancer Res. 2017;6:S427–30.

    Article  Google Scholar 

  153. Boryshpolets S, Pérez-Cerezales S, Eisenbach M. Behavioral mechanism of human sperm in thermotaxis: a role for hyperactivation. Hum Reprod. 2015;30:884–92.

    Article  PubMed  Google Scholar 

  154. Cerezales S, Boryshpolets S, Eisenbach M (2015) Behavioral mechanisms of mammalian sperm guidance. In: Asian J. Androl. Medknow Publications, pp 628–632

  155. Morales P, Palma V, Salgado AM, Villal6n M (1996) Sperm interaction with human oviductal cells in vitro.

  156. García-Ulloa AC, Arrieta O. Tubal occlusion causing infertility due to an excessive inflammatory response in patients with predisposition for keloid formation. Med Hypotheses. 2005;65:908–14.

    Article  PubMed  Google Scholar 

  157. Malhotra M, Sood S, Mukherjee A, Muralidhar S, Bala M. Genital Chlamydia trachomatis: an update. Indian J Med Res. 2013;138:303–16.

    PubMed  PubMed Central  Google Scholar 

  158. Singh N, Lata K, Naha M, Malhotra N, Tiwari A, Vanamail P. Effect of endometriosis on implantation rates when compared to tubal factor in fresh non donor in vitro fertilization cycles. J Hum Reprod Sci. 2014;7:143–7.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Elito J, Han KK, Camano L. Tubal patency following surgical and clinical treatment of ectopic pregnancy. Sao Paulo Med J. 2006;124:264–6.

    Article  Google Scholar 

  160. Khanum S, Ahmed J, Rahim M, Sultana N, Begum R. Evidence based diagnostic approach to tubal factor infertility. BIRDEM Med J. 2014;4:33–7.

    Article  Google Scholar 

  161. Serafini P, Batzofin J. Diagnosis of female infertility. A comprehensive approach. J Reprod Med Obstet Gynecol. 1989;34:29–40.

    CAS  Google Scholar 

  162. Grant A. Infertility surgery of the oviduct. Fertil Steril. 1971;22:496–503.

    Article  CAS  PubMed  Google Scholar 

  163. Honoré GM, Holden AEC, Schenken RS. Pathophysiology and management of proximal tubal blockage. Fertil Steril. 1999;71:785–95.

    Article  PubMed  Google Scholar 

  164. Eniola W, Adetola A, Abayomi T (2012) A review of female infertility; important etiological factors and management.

  165. Reeve L, Lashen H, Pacey AA. Endometriosis affects sperm-endosalpingeal interactions. Hum Reprod. 2005;20:448–51.

    Article  CAS  PubMed  Google Scholar 

  166. Lyons RA, Djahanbakhch O, Saridogan E, Naftalin AA, Mahmood T, Weekes A, et al. Peritoneal fluid, endometriosis, and ciliary beat frequency in the human fallopian tube. Lancet. 2002;360:1221–2.

    Article  PubMed  Google Scholar 

  167. Sun Y, Zhang J, Bai W. Higher prevalence of endometrial polyps in patients with fallopian tube obstruction: a case-control study. J Minim Invasive Gynecol. 2019;26:935–40.

    Article  PubMed  Google Scholar 

  168. Knoll M, Shaoulian R, Magers T, Talbot P. Ciliary beat frequency of hamster oviducts is decreased in vitro by exposure to solutions of mainstream and sidestream cigarette smoke1. Biol Reprod. 1995;53:29–37.

    Article  CAS  PubMed  Google Scholar 

  169. Knoll M, Talbot P. Cigarette smoke inhibits oocyte cumulus complex pick-up by the oviduct in vitro independent of ciliary beat frequency. Reprod Toxicol. 1998;12:57–68.

    Article  CAS  PubMed  Google Scholar 

  170. Wen MX, Qi XS, Wen YC, et al. Cystic fibrosis transmembrane conductance regulator is vital to sperm fertilizing capacity and male fertility. Proc Natl Acad Sci U S A. 2007;104:9816–21.

    Article  Google Scholar 

  171. Diao R, Fok KL, Zhao L, et al. Decreased expression of cystic fibrosis transmembrane conductance regulator impairs sperm quality in aged men. Reproduction. 2013;146:637–45.

    Article  CAS  PubMed  Google Scholar 

  172. Ehrmann DA. Polycystic ovary syndrome. N Engl J Med. 2005. https://doi.org/10.1056/NEJMra041536.

  173. Naji M, Nekoonam S, Aleyasin A, Arefian E, Mahdian R, Azizi E, et al. Expression of miR-15a, miR-145, and miR-182 in granulosa-lutein cells, follicular fluid, and serum of women with polycystic ovary syndrome (PCOS). Arch Gynecol Obstet. 2018;297:221–31.

    Article  CAS  PubMed  Google Scholar 

  174. Weiss RVCR. Female infertility of endocrine origin. Arq Bras Endocrinol Metab. 2014:144–52.

  175. Sathyapalan T, Atkin SL. Mediators of inflammation in polycystic ovary syndrome in relation to adiposity. Mediators Inflamm. 2010. https://doi.org/10.1155/2010/758656.

  176. Nekoonam S, Naji M, Nashtaei MS, Mortezaee K, Koruji M, Safdarian L, et al. Expression of AKT1 along with AKT2 in granulosa-lutein cells of hyperandrogenic PCOS patients. Arch Gynecol Obstet. 2017;295:1041–50.

    Article  CAS  PubMed  Google Scholar 

  177. Bakhshalizadeh S, Rabiee F, Shirazi R, Ghaedi K, Amidi F, Nasr-Esfahani MH. Assessment of PGC1α-FNDC5 axis in granulosa cells of PCOS mouse model. J Reprod Infertil. 2018;19:89–94.

    PubMed  PubMed Central  Google Scholar 

  178. Barreca A, Del Monte P, Ponzani P, Artini PG, Genazzani AR, Minuto F. Intrafollicular insulin-like growth factor-II levels in normally ovulating women and in patients with polycystic ovary syndrome*. Fertil Steril. 1996. https://doi.org/10.1016/S0015-0282(16)58206-5.

  179. Dumesic DA, Abbott DH. Implications of polycystic ovary syndrome on oocyte development. Semin Reprod Med. 2008;26:53–61.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Franks S, Roberts R, Hardy K. Gonadotrophine regimens and oocyte quality in women with polycystic ovaries. Reprod Biomed Online. 2003;6:181–4.

    Article  CAS  PubMed  Google Scholar 

  181. Balen AH, Tan S-L, Jacobs HS. Hypersecretion of luteinising hormone: a significant cause of infertility and miscarriage. BJOG An Int J Obstet Gynaecol. 1993;100:1082–9.

    Article  CAS  Google Scholar 

  182. van der Spuy ZM, Dyer SJ. The pathogenesis of infertility and early pregnancy loss in polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol. 2004;18:755–71.

    Article  PubMed  Google Scholar 

  183. Hillier SG. Current concepts of the roles of follicle stimulating hormone and luteinizing hormone in folliculogenesis. Hum Reprod. 1994;9:188–91.

    Article  CAS  PubMed  Google Scholar 

  184. Nisenblat V, Norman RJ. Androgens and polycystic ovary syndrome. Curr Opin Endocrinol Diabetes Obes. 2009;16:224–31.

    Article  CAS  PubMed  Google Scholar 

  185. Balen AH, Conway GS, Kaltsas G, Techatraisak K, Manning PJ, West C, et al. Andrology: Polycystic ovary syndrome: the spectrum of the disorder in 1741 patients. Hum Reprod. 1995;10:2107–11.

    Article  CAS  PubMed  Google Scholar 

  186. Anifandis G, Koutselini E, Stefanidis I, Liakopoulos V, Leivaditis C, Mantzavinos T, et al. Serum and follicular fluid leptin levels are correlated with human embryo quality. Reproduction. 2005;130:917–21.

    Article  PubMed  Google Scholar 

  187. Mantzoros CS, Cramer DW, Israel B (2000) Predictive value of serum and follicular fluid leptin concentrations during assisted reproductive cycles in normal women and in women with the polycystic ovarian syndrome.

  188. Tian L, Shen H, Lu Q, Norman RJ, Wang J. Brief report: insulin resistance increases the risk of spontaneous abortion after assisted reproduction technology treatment. J Clin Endocrinol Metab. 2007;92:1430–3.

    Article  CAS  PubMed  Google Scholar 

  189. Hamilton-Fairley D, Kiddy D, Watson H, Paterson C, Franks S. Association of moderate obesity with a poor pregnancy outcome in women with polycystic ovary syndrome treated with low dose gonadotrophin. BJOG An Int J Obstet Gynaecol. 1992;99:128–31.

    Article  CAS  Google Scholar 

  190. Craig LTB, Ke RW, Kutteh WH. Increased prevalence of insulin resistance in women with a history of recurrent pregnancy loss. Fertil Steril. 2002;78:487–90.

    Article  PubMed  Google Scholar 

  191. Artini PG, Monteleone P, Toldin MRP, Matteucci C, Ruggiero M, Cela V, et al. Growth factors and folliculogenesis in polycystic ovary patients. Expert Rev Endocrinol Metab. 2007;2:215–23.

    Article  Google Scholar 

  192. Yen SSC, Laughlin GA, Morales AJ. Interface between extra- and intraovarian factors in polycystic ovarian syndrome. Ann N Y Acad Sci. 1993;687:98–111.

    Article  CAS  PubMed  Google Scholar 

  193. Buyuk E, Seifer DB. Infertility follicular-fluid neurotrophin levels in women undergoing assisted reproductive technology for different etiologies of infertility. Fertil Steril. 90:1611–5.

  194. Dissen GA, Garcia-Rudaz C, Paredes A, Mayer C, Mayerhofer A, Ojeda SR. Excessive ovarian production of nerve growth factor facilitates development of cystic ovarian morphology in mice and is a feature of polycystic ovarian syndrome in humans. Endocrinology. 2009;150:2906–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Desforges-Bullet V, Gallo C, Lefebvre C, Pigny P, Dewailly D, Catteau-Jonard S. Increased anti-Müllerian hormone and decreased FSH levels in follicular fluid obtained in women with polycystic ovaries at the time of follicle puncture for in vitro fertilization. Fertil Steril. 2010;94:198–204.

    Article  CAS  PubMed  Google Scholar 

  196. Artini PG, Monti M, Matteucci C, Valentino V, Cristello F, Genazzani AR. Vascular endothelial growth factor and basic fibroblast growth factor in polycystic ovary syndrome during controlled ovarian hyperstimulation. Gynecol Endocrinol. 2006;22:465–70.

    Article  CAS  PubMed  Google Scholar 

  197. Repaci A, Gambineri A, Pasquali R. The role of low-grade inflammation in the polycystic ovary syndrome. Mol Cell Endocrinol. 2011;335:30–41.

    Article  CAS  PubMed  Google Scholar 

  198. Kelly CCJ, Lyall H, Petrie JR, Gould GW, Connell JMC, Sattar N. Low grade chronic inflammation in women with polycystic ovarian syndrome. J Clin Endocrinol Metab. 2001;86:2453–5.

    Article  CAS  PubMed  Google Scholar 

  199. Yang Y, Qiao J, Li R, Li MZ. Is interleukin-18 associated with polycystic ovary syndrome? Reprod Biol Endocrinol. 2011. https://doi.org/10.1186/1477-7827-9-7.

  200. Zangeneh FZ, Naghizadeh MM, Masoumi M. Polycystic ovary syndrome and circulating inflammatory markers. Int J Reprod Biomed. 2017;15:375–82.

    CAS  Google Scholar 

  201. Gallinelli A, Ciaccio I, Giannella L, Salvatori M, Marsella T, Volpe A. Correlations between concentrations of interleukin-12 and interleukin-13 and lymphocyte subsets in the follicular fluid of women with and without polycystic ovary syndrome. Fertil Steril. 2003;79:1365–72.

    Article  PubMed  Google Scholar 

  202. Ebisch IM, Peters WH, Thomas CM, Wetzels AM. Peer PG S-TR (2006) Homocysteine, glutathione and related thiols affect fertility parameters in the (sub)fertile couple - PubMed. Hum Reprod. 1725–1733.

  203. Steegers-Theunissen RPM, Boers GHJ, Blom HJ, Trijbels FJM, Eskes TKAB. Hyperhomocysteinaemia and recurrent spontaneous abortion or abruptio placentae. Lancet. 1992;339:1122–3.

    Article  CAS  PubMed  Google Scholar 

  204. Nafiye Y, Sevtap K, Muammer D, Emre O, Senol K, Leyla M. The effect of serum and intrafollicular insulin resistance parameters and homocysteine levels of nonobese, nonhyperandrogenemic polycystic ovary syndrome patients on in vitro fertilization outcome. Fertil Steril. 2010;93:1864–9.

    Article  CAS  PubMed  Google Scholar 

  205. Syriou V, Papanikolaou D, Kozyraki A, Goulis DG. Cytokines and male infertility. Eur Cytokine Netw. 2018;29:73–82.

    Article  CAS  PubMed  Google Scholar 

  206. Camejo MI, Segnini A, Proverbio F. Interleukin-6 (IL-6) in seminal plasma of infertile men, and lipid peroxidation of their sperm. Arch Androl. 2001;47:97–101.

    Article  CAS  PubMed  Google Scholar 

  207. Matalliotakis IM, Cakmak H, Fragouli Y, Kourtis A, Arici A, Huszar G. Increased IL-18 levels in seminal plasma of infertile men with genital tract infections. Am J Reprod Immunol. 2006;55:428–33.

    Article  CAS  PubMed  Google Scholar 

  208. Ridley A, Blasco L. Testosterone and gossypol effects on human sperm motility. Fertil Steril. 1981;35:244.

    Google Scholar 

  209. Leisegang K, Bouic PJD, Menkveld R, Henkel RR. Obesity is associated with increased seminal insulin and leptin alongside reduced fertility parameters in a controlled male cohort. Reprod Biol Endocrinol. 2014. https://doi.org/10.1186/1477-7827-12-34.

  210. Agarwal A, Makker K, Sharma R. Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol. 2008;59:2–11.

    Article  CAS  PubMed  Google Scholar 

  211. Aitken RJ, Smith TB, Jobling MS, Baker MA, De Iuliis GN. Oxidative stress and male reproductive health. Asian J Androl. 2014;16:31–8.

    Article  CAS  PubMed  Google Scholar 

  212. Tremellen K. Oxidative stress and male infertility--a clinical perspective - PubMed. Hum Reprod Updat. 2008:243–58.

  213. Ghaleno LR, Valojerdi MR, Hassani F, Chehrazi M, Janzamin E. High level of intracellular sperm oxidative stress negatively influences embryo pronuclear formation after intracytoplasmic sperm injection treatment. Andrologia. 2014;46:1118–27.

    Article  CAS  PubMed  Google Scholar 

  214. Ebisch IMW, Peters WHM, Thomas CMG, Wetzels AMM, Peer PGM, Steegers-Theunissen RPM. Homocysteine, glutathione and related thiols affect fertility parameters in the (sub)fertile couple. 2006. https://doi.org/10.1093/humrep/del081.

  215. Forges T, Monnier-Barbarino P, Alberto JM, Guéant-Rodriguez RM, Daval JL, Guéant JL. Impact of folate and homocysteine metabolism on human reproductive health. Hum Reprod Update. 2007;13:225–38.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Mr. Saeed Taghavi for his critical revision and grammar comments during the preparation of this article.

Author information

Authors and Affiliations

Authors

Contributions

F M and F A designed and wrote the manuscript. A F and R GH took part in designing the figures for the manuscript. F H and M K edited the manuscript in terms of content.

Corresponding author

Correspondence to Fardin Amidi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdavinezhad, F., Gharaei, R., Farmani, A.R. et al. The Potential Relationship Between Different Human Female Reproductive Disorders and Sperm Quality in Female Genital Tract. Reprod. Sci. 29, 695–710 (2022). https://doi.org/10.1007/s43032-021-00520-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00520-7

Keywords

Navigation