Skip to main content

Advertisement

Log in

A Comprehensive Overview of Common Polymorphic Variants in Genes Related to Polycystic Ovary Syndrome

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Polycystic ovary syndrome (PCOS) is one of the most common endocrine-metabolic disorders in women of reproductive age. It is characterized by an increase in the biosynthesis of androgens, anovulation, and infertility. PCOS has been reported as a polygenic entity in which multiple single nucleotide polymorphisms (SNPs) are associated with the clinical features of the pathology. Herein, we describe the common polymorphic variants in genes related to PCOS, their role in its pathogenesis, and etiology. Whole-genome association studies have been focused on women from Asian and European populations. The most common genes associated with PCOS are DENND1A, THADA, FSHR, and LHCGR. However, other genes have been associated with PCOS such as AMH, AMHR2, ADIPOQ, FTO, HNF1A, CYP19, YAP1, HMGA2, RAB5B, SUOX, INSR, and TOX3. Nevertheless, the relationship between the biological functions of these genes and the development of the pathology is unclear. Studies in each gene in different populations do not always comply with a general pattern, so researching these variants is essential for better understanding of this polygenic syndrome. Future population studies should be carried out to evaluate biological processes, incidence rates, allelic and genotypic frequencies, and genetic susceptibility factors that predispose PCOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zou Y, Zhu FF, Fang CY, Xiong XY, Li HY. Identification of potential biomarkers for urine metabolomics of polycystic ovary syndrome based on gas chromatography-mass spectrometry. Chin Med J. 2018;131(8):945–9. https://doi.org/10.4103/0366-6999.229899.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Goodarzi MO, Jones MR, Li X, Chua AK, Garcia OA, Chen YDI, et al. Replication of association of DENND1A and THADA variants with polycystic ovary syndrome in European cohorts. J Med Genet. 2012;49(2):90–5. https://doi.org/10.1136/jmedgenet-2011-100427.

    Article  CAS  PubMed  Google Scholar 

  3. Louwers YV, Stolk L, Laven JSE. Cross-ethnic meta-analysis of genetic variants for polycystic ovary syndrome. 2013;98:2006–12. https://doi.org/10.1210/jc.2013-2495.

  4. Jones MR, Brower MA, Xu N, Cui J, Mengesha E. Systems genetics reveals the functional context of PCOS loci and identifies genetic and molecular mechanisms of disease heterogeneity. 2015:1–17. https://doi.org/10.1371/journal.pgen.1005455.

  5. Barbakadze L, Kristesashvili J, Khonelidze N, Tsagareishvili G. The correlations of anti-mullerian hormone, follicle-stimulating hormone and antral follicle count in different age groups of infertile women. Int J Fertil Steril. 2015;8(4):393–8. https://doi.org/10.22074/ijfs.2015.4179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stein IF, Leventhal ML. Amenorrhea associated with bilateral polycystic ovaries. Am J Obstet Gynecol. 1935;29(2):181–91. https://doi.org/10.1016/S0002-9378(15)30642-6.

    Article  Google Scholar 

  7. Fauser BCJM. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81(1):19–25. https://doi.org/10.1016/j.fertnstert.2003.10.004.

    Article  Google Scholar 

  8. Khadilkar SS. Can polycystic ovarian syndrome be cured? Unfolding the concept of secondary polycystic ovarian syndrome! J Obstet Gynecol India. 2019;69(4):297–302. https://doi.org/10.1007/s13224-019-01253-z.

    Article  Google Scholar 

  9. Sirmans SM, Pate KA. Epidemiology, diagnosis, and management of polycystic ovary syndrome. Clin Epidemiol. 2013;6:1–13. https://doi.org/10.2147/CLEP.S37559.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen ZJ, Zhao H, He L, Shi Y, Qin Y, Shi Y, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet. 2011;43(1):55–9. https://doi.org/10.1038/ng.732.

    Article  CAS  PubMed  Google Scholar 

  11. Belmont JW, et al. A haplotype map of the human genome. Nature. 2005;437(7063):1299–320. https://doi.org/10.1038/nature04226.

    Article  CAS  Google Scholar 

  12. Welt CK, Duran JM. Genetics of polycystic ovary syndrome. Semin Reprod Med. 2014;32(3):177–82. https://doi.org/10.1055/s-0034-1371089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McCarthy MI, Hirschhorn JN. Genome-wide association studies: potential next steps on a genetic journey. Hum Mol Genet. 2008;17(R2):156–65. https://doi.org/10.1093/hmg/ddn289.

    Article  CAS  Google Scholar 

  14. Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J, et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet. 2000;26(1):76–80. https://doi.org/10.1038/79216.

    Article  CAS  PubMed  Google Scholar 

  15. Pau C, Saxena R, Welt CK. Evaluating reported candidate gene associations with polycystic ovary syndrome. Fertil Steril. 2013;99(6):1774–8. https://doi.org/10.1016/j.fertnstert.2012.12.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ewens KG, Stewart DR, Ankener W, Urbanek M, McAllister JM, Chen C, et al. Family-based analysis of candidate genes for polycystic ovary syndrome. J Clin Endocrinol Metab. 2010;95(5):2306–15. https://doi.org/10.1210/jc.2009-2703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Roe AH, Dokras A. The diagnosis of polycystic ovary. Rev Obstet Gynecol. 2011;4(2):45–51. https://doi.org/10.3909/riog0151.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rama Raju G, et al. Luteinizing hormone and follicle stimulating hormone synergy: a review of role in controlled ovarian hyper-stimulation. J Hum Reprod Sci. 2013;6(4):227. https://doi.org/10.4103/0974-1208.126285.

    Article  CAS  Google Scholar 

  19. Krog MC, Nielsen HS, Christiansen OB, Kolte AM. Reproductive endocrinology in recurrent pregnancy loss. Clin Obstet Gynecol. 2016;59(3):474–86. https://doi.org/10.1097/GRF.0000000000000225.

    Article  PubMed  Google Scholar 

  20. Yang HL, Zhou WJ, Gu CJ, Meng YH, Shao J, Li DJ, et al. Pleiotropic roles of melatonin in endometriosis, recurrent spontaneous abortion, and polycystic ovary syndrome. Am J Reprod Immunol. 2018;80(1):1–16. https://doi.org/10.1111/aji.12839.

    Article  CAS  Google Scholar 

  21. Ferrero H, Díaz-Gimeno P, Sebastián-León P, Faus A, Gómez R, Pellicer A. Dysregulated genes and their functional pathways in luteinized granulosa cells from PCOS patients after cabergoline treatment. Reproduction. 2018;155(4):373–81. https://doi.org/10.1530/REP-18-0027.

    Article  CAS  PubMed  Google Scholar 

  22. Kumar TR, Wang Y, Lu N, Matzuk MM. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat Genet. 1997;15(2):201–4. https://doi.org/10.1038/ng0297-201.

    Article  CAS  PubMed  Google Scholar 

  23. Sir-Petermann T, Maliqueo M, Codner E, Echiburú B́, Crisosto Ń, Pérez V, et al. Early metabolic derangements in daughters of women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2007;92(12):4637–42. https://doi.org/10.1210/jc.2007-1036.

    Article  CAS  PubMed  Google Scholar 

  24. Moghetti P, Tosi F, Bonin C, di Sarra D, Fiers T, Kaufman JM, et al. Divergences in insulin resistance between the different phenotypes of the polycystic ovary syndrome. J Clin Endocrinol Metab. 2013;98(4):1–10. https://doi.org/10.1210/jc.2012-3908.

    Article  CAS  Google Scholar 

  25. Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev. 2012;33(6):981–1030. https://doi.org/10.1210/er.2011-1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shi Y, Zhao H, Shi Y, Cao Y, Yang D, Li Z, et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat Genet. 2012;44(9):1020–5. https://doi.org/10.1038/ng.2384.

    Article  CAS  PubMed  Google Scholar 

  27. Day FR, Hinds DA, Tung JY, Stolk L, Styrkarsdottir U, Saxena R, et al. Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. Nat Commun. 2015;6:1–7. https://doi.org/10.1038/ncomms9464.

    Article  CAS  Google Scholar 

  28. NCBI Genetic Home. DENND1A DENN domain containing 1A[ Homo sapiens (human)]. DENND1A gene. Gene ID: 57706. 2019. [Online]. Available: https://ghr.nlm.nih.gov/gene/DENND1A#conditions.

  29. Marat AL, Dokainish H, McPherson PS. DENN domain proteins: regulators of Rab GTPases. J Biol Chem. 2011;286(16):13791–800. https://doi.org/10.1074/jbc.R110.217067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Strauss JF, McAllister JM, Urbanek M. Persistence pays off for PCOS gene prospectors. J Clin Endocrinol Metab. 2012;97:2286–8.

    Article  CAS  Google Scholar 

  31. Kulkarni R, Teves ME, Han AX, McAllister JM, Strauss JF. Colocalization of polycystic ovary syndrome candidate gene products in Theca cells suggests novel signaling pathways. J Endocr Soc. 2019;3(12):2204–23. https://doi.org/10.1210/js.2019-00169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chaineau M, Ioannou MS, Mcpherson PS. Rab35: GEFs, GAPs and effectors. Traffic. 2013. https://doi.org/10.1111/tra.12096.

  33. Allaire PD, Marat AL, Dall’Armi C, Di Paolo G, McPherson PS, Ritter B. The connecdenn DENN domain: a GEF for Rab35 mediating cargo-specific exit from early endosomes. Mol Cell. 2010;37:370–82. https://doi.org/10.1016/j.molcel.2009.12.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McAllister JM, Modi B, Miller BA, Biegler J, Bruggeman R, Legro RS, et al. Overexpression of a DENND1A isoform produces a polycystic ovary syndrome theca phenotype. Proc Natl Acad Sci. 2014;111(15):E1519–27. https://doi.org/10.1073/pnas.1400574111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Welt CK, Styrkarsdottir U, Ehrmann DA, Thorleifsson G, Arason G, Gudmundsson JA, et al. Variants in DENND1A are associated with polycystic ovary syndrome in women of European ancestry. J Clin Endocrinol Metab. 2012;97(7):1342–7. https://doi.org/10.1210/jc.2011-3478.

    Article  CAS  Google Scholar 

  36. Pau CT, Mosbruger T, Saxena R, Welt CK. Phenotype and tissue expression as a function of genetic risk in polycystic ovary syndrome. PLoS One. 2017;12(1). https://doi.org/10.1371/journal.pone.0168870.

  37. Goodarzi MO. Replication of association of DENND1A and THADA variants with polycystic ovary syndrome in European Cohorts. BJOG Int J Obstet Gynaecol. 2010;117(6):756–60. https://doi.org/10.1136/jmedgenet-2011-100427.

    Article  CAS  Google Scholar 

  38. Wang Z, Li T, Zhang W, You L, Zhao Y, Xia M, et al. Variants in DENND1A and LHCGR are associated with endometrioid adenocarcinoma. Gynecol Oncol. 2012;127:403–5. https://doi.org/10.1016/j.ygyno.2012.08.007.

    Article  CAS  PubMed  Google Scholar 

  39. Cui L, Zhao H, Zhang B, Qu Z, Liu J, Liang X, et al. Genotype-phenotype correlations of PCOS susceptibility SNPs identified by GWAS in a large cohort of Han Chinese women. Hum Reprod. 2013;28:538–44. https://doi.org/10.1093/humrep/des424.

    Article  CAS  PubMed  Google Scholar 

  40. Kosova G, Urbanek M. Genetics of the polycystic ovary syndrome. Mol Cell Endocrinol. 2013;373(1–2):29–38. https://doi.org/10.1016/j.mce.2012.10.009.

    Article  CAS  PubMed  Google Scholar 

  41. Franks S, Webber LJ, Goh M, Valentine A, White DM, Conway GS, et al. Ovarian morphology is a marker of heritable biochemical traits in sisters with polycystic ovaries. J Clin Endocrinol Metab. 2008;93(9):3396–402. https://doi.org/10.1210/jc.2008-0369.

    Article  CAS  PubMed  Google Scholar 

  42. Rippe V, Drieschner N, Meiboom M, Escobar HM, Bonk U, Belge G, et al. Identification of a gene rearranged by 2p21 aberrations in thyroid adenomas. Oncogene. 2003;22:6111–4. https://doi.org/10.1038/sj.onc.1206867.

    Article  CAS  PubMed  Google Scholar 

  43. Chen Z, Zhao H, He L, Shi Y, Qin Y, Shi Y. Genome-wide association study identifies susceptibility loci for polycystic ovary. https://doi.org/10.1038/ng.732.

  44. Bakhashab S, Ahmed N. Genotype based risk predictors for polycystic ovary syndrome in Western Saudi Arabia. Bioinformation. 2019;15(11):806–11. https://doi.org/10.6026/97320630015806.

    Article  Google Scholar 

  45. Zeggini E, Scott LJ, Saxena R, Voight BF, Collins FS. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008;40:638–45. https://doi.org/10.1038/ng.120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zeggini E, et al. UKPMC funders group replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2009;40(5):638–45. https://doi.org/10.1038/ng.120.Meta-analysis.

    Article  Google Scholar 

  47. Dumesic DA, Abbott DH. Implications of polycystic ovary syndrome on oocyte development. Semin Reprod Med. 2008;26(1):53–61. https://doi.org/10.1055/s-2007-992925.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Stuebe AM, Lyon H, Herring AH, Ghosh J, Wise A, North KE, et al. Obesity and diabetes genetic variants associated with gestational weight gain. Am J Obstet Gynecol. 2010;203:283.e1–283.e17. https://doi.org/10.1016/j.ajog.2010.06.069.

    Article  Google Scholar 

  49. Gromoll J, Pekel E, Nieschlag E. The structure and organization of the human follicle-stimulating hormone receptor (FSHR) gene. Genomics. 1996;35(2):308–11. https://doi.org/10.1006/geno.1996.0361.

    Article  CAS  PubMed  Google Scholar 

  50. Shoham Z, Jacobs HS, Insler V. Luteinizing hormone: its role, mechanism of action, and detrimental effects when hypersecreted during the follicular phase. Fertil Steril. 1993;59(6):1153–61. https://doi.org/10.1016/S0015-0282(16)55968-8.

    Article  CAS  PubMed  Google Scholar 

  51. Layman LC, Amde S, Cohen DP, Jin M, Xie J. The Finnish follicle-stimulating hormone receptor gene mutation is rare in North American women with 46,XX ovarian failure. Fertil Steril. 1998;69:300–2. https://doi.org/10.1016/S0015-0282(97)00480-9.

    Article  CAS  PubMed  Google Scholar 

  52. Zheng W, Magid MS, Kramer EE, Chen YT. Follicle-stimulating hormone receptor is expressed in human ovarian surface epithelium and fallopian tube. Am J Pathol. 1996;148(1):47–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Du T, et al. Statistical genomic approach identifies association between FSHR polymorphisms and polycystic ovary morphology in women with polycystic ovary syndrome. Biomed Res Int. 2015;2015:1–7. https://doi.org/10.1155/2015/483726.

    Article  CAS  Google Scholar 

  54. Almawi WY, Hubail B, Arekat DZ, al-Farsi SM, al-Kindi SK, Arekat MR, et al. Leutinizing hormone/choriogonadotropin receptor and follicle stimulating hormone receptor gene variants in polycystic ovary syndrome. J Assist Reprod Genet. 2015;32(4):607–14. https://doi.org/10.1007/s10815-015-0427-0.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Motta AB. Metformin in the treatment of polycystic ovary syndrome. 2008:2121–5. https://doi.org/10.2174/138161208785294609.

  56. González-Fernández R, Peña Ó, Hernández J, Martín-Vasallo P, Palumbo A, Ávila J. Patients with endometriosis and patients with poor ovarian reserve have abnormal follicle-stimulating hormone receptor signaling pathways. Fertil Steril. 2011;95(7):2373–8. https://doi.org/10.1016/j.fertnstert.2011.03.030.

    Article  CAS  PubMed  Google Scholar 

  57. Mabuchi Y, Yamoto M, Minami S, Umesaki N. Immunohistochemical localization of inhibin and activin subunits, activin receptors, and Smads in ovarian clear cell adenocarcinoma. Oncol Rep. 2006;15(2):291–6. https://doi.org/10.3892/ijmm.

    Article  PubMed  Google Scholar 

  58. Catteau-Jonard S, Jamin SP, Leclerc A, Gonzalès J, Dewailly D, Di Clemente N. Anti-Mullerian hormone, its receptor, FSH receptor, and androgen receptor genes are overexpressed by granulosa cells from stimulated follicles in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2008;93:4456–61. https://doi.org/10.1210/jc.2008-1231.

    Article  CAS  PubMed  Google Scholar 

  59. Greb RR, Grieshaber K, Gromoll J, Sonntag B, Nieschlag E, Kiesel L, et al. A common single nucleotide polymorphism in exon 10 of the human follicle stimulating hormone receptor is a major determinant of length and hormonal dynamics of the menstrual cycle. J Clin Endocrinol Metab. 2005;90:4866–72. https://doi.org/10.1210/jc.2004-2268.

    Article  CAS  PubMed  Google Scholar 

  60. Simoni M, Gromoll J, Höppner W, Kamischke A, Krafft T, Stähle D, et al. Mutational analysis of the follicle-stimulating hormone (FSH) receptor in normal and infertile men: identification and characterization of two discrete FSH receptor isoforms. J Clin Endocrinol Metab. 1999;84(2):751–5. https://doi.org/10.1210/jc.84.2.751.

    Article  CAS  PubMed  Google Scholar 

  61. Mayorga MP. Ovarian response to follicle-stimulating hormone (FSH) stimulation depends on the FSH receptor genotype. J Clin Endocrinol Metab. 2000;85(9):3365–9. https://doi.org/10.1210/jc.85.9.3365.

    Article  CAS  Google Scholar 

  62. Zhang YJ, Li L, Wang ZJ, Zhang XJ, Zhao H, Zhao Y, et al. Association study between variants in LHCGR DENND1A and THADA with preeclampsia risk in Han Chinese populations. J Matern Neonatal Med. 2019;32(22):3801–5. https://doi.org/10.1080/14767058.2018.1472228.

    Article  CAS  Google Scholar 

  63. Wang P, Zhao H, Li T, Zhang W, Wu K, Li M, et al. Hypomethylation of the LH/choriogonadotropin receptor promoter region is a potential mechanism underlying susceptibility to polycystic ovary syndrome. Endocrinology. 2014;155:1445–52. https://doi.org/10.1210/en.2013-1764.

    Article  CAS  Google Scholar 

  64. Thathapudi S, Kodati V, Erukkambattu J, Addepally U, Qurratulain H. Association of luteinizing hormone chorionic gonadotropin receptor gene polymorphism (rs2293275) with polycystic ovarian syndrome. Genet Test Mol Biomarkers. 2015;19(3):128–32. https://doi.org/10.1089/gtmb.2014.0249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Themmen APN, Verhoef-Post M. LH receptor defects. Semin Reprod Med. 2002;20:199–204. https://doi.org/10.1055/s-2002-35384.

    Article  CAS  PubMed  Google Scholar 

  66. Ha L, Shi Y, Zhao J, Li T, Chen ZJ. Association study between polycystic ovarian syndrome and the susceptibility genes polymorphisms in Hui Chinese women. PLoS One. 2015;10. https://doi.org/10.1371/journal.pone.0126505.

  67. Robeva R, Andonova S, Tomova A, Kumanov P, Savov A. LHCG receptor polymorphisms in PCOS patients. Biotechnol Biotechnol Equip. 2018;32(2):427–32. https://doi.org/10.1080/13102818.2017.1423246.

    Article  CAS  Google Scholar 

  68. Barnes RB, Rosenfield RL, Burstein S, Ehrmann DA. Pituitary-ovarian responses to nafarelin testing in the polycystic ovary syndrome. N Engl J Med. 1989;320:559–65. https://doi.org/10.1056/NEJM198903023200904.

    Article  CAS  PubMed  Google Scholar 

  69. Nelson VL, Qin KN, Rosenfield RL, Wood JR, Penning TM, Legro RS, et al. The biochemical basis for increased testosterone production in theca cells propagated from patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2001;86:5925–33. https://doi.org/10.1210/jcem.86.12.8088.

    Article  CAS  PubMed  Google Scholar 

  70. Picard JY, Cate RL, Racine C, Josso N. The persistent Müllerian duct syndrome: an update based upon a personal experience of 157 cases. Sex Dev. 2017;11(3):109–25. https://doi.org/10.1159/000475516.

    Article  PubMed  Google Scholar 

  71. Cheng R, Xiong W, Luo X, Ma Y, Nie Y, Qiao X, et al. Association of gene polymorphisms in the anti-Müllerian hormone signalling pathway with ovarian function: a systematic review and meta-analysis. Reprod BioMed Online. 2019;39(3):513–21. https://doi.org/10.1016/j.rbmo.2019.04.010.

    Article  CAS  PubMed  Google Scholar 

  72. Rzeszowska M, Leszcz A, Putowski L, Hałabiś M, Tkaczuk-Włach J, Kotarski J, et al. Anti-Müllerian hormone: structure, properties and appliance. Ginekol Pol. 2016;87(9):669–74. https://doi.org/10.5603/GP.2016.0064.

    Article  PubMed  Google Scholar 

  73. Mullen RD, Ontiveros AE, Moses MM, Behringer RR. AMH and AMHR2 mutations: a spectrum of reproductive phenotypes across vertebrate species. Dev Biol. 2019;455(1):1–9. https://doi.org/10.1016/j.ydbio.2019.07.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jamin SP, Arango NA, Mishina Y, Hanks MC, Behringer RR. Requirement of Bmpr1a for Müllerian duct regression during male sexual development. Nat Genet. 2002;32(3):408–10. https://doi.org/10.1038/ng1003.

    Article  CAS  PubMed  Google Scholar 

  75. Zheng MX, Li Y, Hu R, Wang FM, Zhang XM, Guan B. Anti-Müllerian hormone gene polymorphism is associated with androgen levels in Chinese polycystic ovary syndrome patients with insulin resistance. J Assist Reprod Genet. 2016;33(2):199–205. https://doi.org/10.1007/s10815-015-0641-9.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Szafarowska M, Dziech E, Kaleta B, Kniotek M, Rogowski A, Segiet - Święcicka A, et al. Anti-Müllerian hormone level is associated with vitamin D receptor polymorphisms in women with polycystic ovary syndrome. J Assist Reprod Genet. 2019;36(6):1281–9. https://doi.org/10.1007/s10815-019-01472-3.

    Article  PubMed  PubMed Central  Google Scholar 

  77. De Vet A, Laven JSE, De Jong FH, Themmen APN, Fauser BCJM. Antimüllerian hormone serum levels: a putative marker for ovarian aging. Fertil Steril. 2002;77(2):357–62. https://doi.org/10.1016/S0015-0282(01)02993-4.

    Article  PubMed  Google Scholar 

  78. Asanidze E, Kristesashvili J, Pkhaladze L, Khomasuridze A. The value of anti-Mullerian hormone in the management of polycystic ovary syndrome in adolescents. Gynecol Endocrinol. 2019;35(11):974–7. https://doi.org/10.1080/09513590.2019.1616689.

    Article  CAS  PubMed  Google Scholar 

  79. Kevenaar ME, et al. A functional anti-Mullerian hormone gene polymorphism is associated with follicle number and androgen levels in polycystic ovary syndrome patients. 2008;93:1310–6. https://doi.org/10.1210/jc.2007-2205.

  80. De Conto E, et al. Endometriosis-associated infertility : GDF-9 , AMH , and AMHR2 genes polymorphisms. 2017:1667–72. https://doi.org/10.1007/s10815-017-1026-z.

  81. Georgopoulos NA, et al. Polymorphism in women with polycystic ovary syndrome : relationship to luteinizing hormone. 2013;98:1866–70. https://doi.org/10.1210/jc.2013-2458.

  82. Sproul K, Mathur R, Azziz R. Association study of four key folliculogenesis genes in polycystic ovary syndrome. 2010. https://doi.org/10.1111/j.1471-0528.2010.02527.x.

  83. Ghadge AA, Khaire AA, Kuvalekar AA. Adiponectin: a potential therapeutic target for metabolic syndrome. Cytokine Growth Factor Rev. 2018;39:151–8. https://doi.org/10.1016/j.cytogfr.2018.01.004.

    Article  CAS  PubMed  Google Scholar 

  84. Boyle MP. Strategies for identifying modifier genes in cystic fibrosis. Proc Am Thorac Soc. 2007;4(1):52–7. https://doi.org/10.1513/pats.200605-129JG.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002;8(11):1288–95. https://doi.org/10.1038/nm788.

    Article  CAS  PubMed  Google Scholar 

  86. Dobrzyn K, Smolinska N, Kiezun M, Szeszko K, Rytelewska E, Kisielewska K, et al. Adiponectin: a new regulator of female reproductive system. Int J Endocrinol. 2018;2018:1–12. https://doi.org/10.1155/2018/7965071.

    Article  CAS  Google Scholar 

  87. Achari AE, Jain SK. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci. 2017;18(6). https://doi.org/10.3390/ijms18061321.

  88. Al Hannan FA, O’Farrell PA, Morgan MP, Tighe O, Culligan KG. Associations between single-nucleotide polymorphisms of ADIPOQ, serum adiponectin and increased type 2 diabetes mellitus risk in Bahraini individuals. East Mediterr Health J. 2017;22(08):611–8. https://doi.org/10.26719/2016.22.8.611.

    Article  Google Scholar 

  89. Ranjzad F, Mahmoudi T, Irani Shemirani A, Mahban A, Nikzamir A, Vahedi M, et al. A common variant in the adiponectin gene and polycystic ovary syndrome risk. Mol Biol Rep. 2012;39(3):2313–9. https://doi.org/10.1007/s11033-011-0981-1.

    Article  CAS  PubMed  Google Scholar 

  90. Tehrani FR, Daneshpour M, Hashemi S, Zarkesh M, Azizi F. Relationship between polymorphism of insulin receptor gene, and adiponectin gene with PCOS. Iran J Reprod Med. 2013;11(3):185–94.

    CAS  Google Scholar 

  91. Demirci H, Yilmaz M, Ali Ergun M, Yurtcu E, Bukan N, Ayvaz G. Frequency of adiponectin gene polymorphisms in polycystic ovary syndrome and the association with serum adiponectin, androgen levels, insulin resistance and clinical parameters. Gynecol Endocrinol. 2010;26(5):348–55. https://doi.org/10.3109/09513590903367051.

    Article  CAS  PubMed  Google Scholar 

  92. Czeczuga-Semeniuk E, Galar M, Jarząbek K, Kozłowski P, Sarosiek NA, Wołczyński S. The preliminary association study of ADIPOQ, RBP4, and BCMO1 variants with polycystic ovary syndrome and with biochemical characteristics in a cohort of Polish women. Adv Med Sci. 2018;63(2):242–8. https://doi.org/10.1016/j.advms.2018.01.002.

    Article  PubMed  Google Scholar 

  93. Alfaqih MA, Khader YS, Al-Dwairi AN, Alzoubi A, Al-Shboul O, Hatim A. Lower levels of serum adiponectin and the T allele of rs1501299 of the ADIPOQ gene are protective against polycystic ovarian syndrome in Jordan. Korean J Fam Med. 2018;39(2):108–13. https://doi.org/10.4082/kjfm.2018.39.2.108.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Liu Z, Wang Z, Hao C, Tian Y, Fu J. Effects of ADIPOQ polymorphisms on PCOS risk: a meta-analysis. Reprod Biol Endocrinol. 2018;16(1):1–6. https://doi.org/10.1186/s12958-018-0439-6.

    Article  CAS  Google Scholar 

  95. Hubacek JA, Staněk V, Gebauerová M, Pilipčincová A, Dlouhá D, Poledne R, et al. A FTO variant and risk of acute coronary syndrome. Clin Chim Acta. 2010;411(1–16):1069–72. https://doi.org/10.1016/j.cca.2010.03.037.

    Article  CAS  PubMed  Google Scholar 

  96. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science (80-). 2007;316(5826):889–94. https://doi.org/10.1126/science.1141634.

    Article  CAS  Google Scholar 

  97. Liu AL, Xie HJ, Xie HY, Liu J, Yin J, Hu JS, et al. Association between fat mass and obesity associated (FTO) gene rs9939609 A/T polymorphism and polycystic ovary syndrome: a systematic review and meta-analysis. BMC Med Genet. 2017;18(1):1–7. https://doi.org/10.1186/s12881-017-0452-1.

    Article  CAS  Google Scholar 

  98. Kim JJ, et al. Gene dose effect between a fat mass and obesity-associated polymorphism and body mass index was observed in Korean women with polycystic ovary syndrome but not in control women. Fertil Steril. 2014;102(4):1143–1148.e2. https://doi.org/10.1016/j.fertnstert.2014.07.004.

    Article  PubMed  Google Scholar 

  99. Bach I, Pontoglio M, Yaniv M. Structure of the gene enconding hepatocyte nuclear factor 1 (HNF1). Nucleic Acids Res. 1992;20(16):4199–204. https://doi.org/10.1093/nar/20.16.4199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wakil SM, Muiya NP, Tahir AI, al-Najai M, Baz B, Andres E, et al. A new susceptibility locus for myocardial infarction, hypertension, type 2 diabetes mellitus, and dyslipidemia on chromosome 12q24. Dis Markers. 2014;2014:1–10. https://doi.org/10.1155/2014/291419.

    Article  CAS  Google Scholar 

  101. Voight BF, et al. Europe PMC funders group twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2011;42(7):579–89. https://doi.org/10.1038/ng.609.Twelve.

    Article  Google Scholar 

  102. Lv Y, Sun C, Tian Y, Zhao S, Bian Y, Cheng L, et al. Association study of HNF1A in women with polycystic ovary syndrome. J Assist Reprod Genet. 2017;34(5):677–82. https://doi.org/10.1007/s10815-017-0905-7.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Mehdizadeh A, Kalantar SM, Sheikhha MH, Aali BS, Ghanei A. Association of SNP rs.2414096 CYP19 gene with polycystic ovarian syndrome in Iranian women. Int J Reprod Biomed. 2017;15(8):491–6. https://doi.org/10.29252/ijrm.15.8.491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Khan MJ, Ullah A, Basit S. Genetic basis of polycystic ovary syndrome (PCOS): current perspectives. Appl Clin Genet. 2019;12:249–60. https://doi.org/10.2147/TACG.S200341.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Guo Y, Xiong DH, Yang TL, Guo YF, Recker RR, Deng HW. Polymorphisms of estrogen-biosynthesis genes CYP17 and CYP19 may influence age at menarche: a genetic association study in Caucasian females. Hum Mol Genet. 2006;15(16):2401–8. https://doi.org/10.1093/hmg/ddl155.

    Article  CAS  PubMed  Google Scholar 

  106. Barrett JC, et al. Genome-wide association study and meta-analysis finds over 40 loci affect risk of type 1 diabetes. Genetics. 2010;41(6):703–7. https://doi.org/10.1038/ng.381.

    Article  CAS  Google Scholar 

  107. Chen Z. The genetics of PCOS. Int J Gynecol Obstet. 2009;107(0):S17. https://doi.org/10.1016/j.mce.2012.10.009.GENETICS.

  108. Moller DE, Yokota A, White MF, Pazianos AG, Flier JS. A naturally occurring mutation of insulin receptor alanine 1134 impairs tyrosine kinase function and is associated with dominantly inherited insulin resistance. J Biol Chem. 1990;265(25):14979–85.

    Article  CAS  Google Scholar 

  109. O’Flaherty E, Kaye J. TOX defines a conserved subfamily of HMG-box proteins. BMC Genomics. 2003;4:1–10. https://doi.org/10.1186/1471-2164-4-13.

    Article  Google Scholar 

  110. Chen L, Hu LM, Wang YF, Yang HY, Huang XY, Zhou W, et al. Genome-wide association study for SNPs associated with PCOS in human patients. Exp Ther Med. 2017;14(5):4896–900. https://doi.org/10.3892/etm.2017.5113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was developed within the framework of the institutional agreement between the Research Group in Biomedical Sciences of the UPTC (GICBUPTC) and the Group of Public Health Research (HYGEA) at the Universidad de Boyacá.

Funding

This work was supported in part by a grant from the Vice-Rector for Research and Extension and Research direction of the Universidad Pedagógica y Tecnológica de Colombia (UPTC) and the Universidad de Boyacá, Tunja-Colombia, as part of the ID research project SGI 2386 and SGI 2677.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: TC-H, MCA-G, JM-S, and MF-C. Writing—original draft preparation: TC-H, MCA-G, and JM-S. Writing—review and editing: All authors. Project administration: All authors. Supervision: MF-C and GC-V. MF-C and GC-V approved the final version of the manuscript.

Corresponding author

Correspondence to Maribel Forero-Castro .

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 157 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castillo-Higuera , T., Alarcón-Granados , M.C., Marin-Suarez , J. et al. A Comprehensive Overview of Common Polymorphic Variants in Genes Related to Polycystic Ovary Syndrome. Reprod. Sci. 28, 2399–2412 (2021). https://doi.org/10.1007/s43032-020-00375-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00375-4

Keywords

Navigation