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Abstract
The development of immunoassays enables more sophisticated studies of the associations between protein concentrations and
pregnancy outcomes, allowing early biomarker identification that can improve neonatal outcomes. The aim of this study was to
explore associations between selected mid-trimester amniotic fluid proteins and (1) overall gestational duration and (2) sponta-
neous preterm delivery. A prospective cohort study, including women undergoing mid-trimester transabdominal genetic amnio-
centesis, was performed in Gothenburg, Sweden, 2008–2016 (n = 1072). A panel of 27 proteins related to inflammation was
analyzed using Meso-Scale multiplex technology. Concentrations were adjusted for gestational age at sampling, experimental
factors, year of sampling, and covariates (maternal age at sampling, parity (nulliparous/multiparous), smoking at first prenatal
visit, and in vitro fertilization). Cox regression analysis of the entire cohort was performed to explore possible associations
between protein concentrations and gestational duration. This was followed by Cox regression analysis censored at 259 days or
longer, to investigate whether associations were detectable in women with spontaneous preterm delivery (n = 47). Finally, linear
regression models were performed to analyze associations between protein concentrations and gestational duration in women
with spontaneous onset of labor at term (n = 784). HMG-1, IGFBP-1, IL-18, MIP-1α, MIP-1β, S100A8, and thrombospondin-1
were significantly associated with gestational duration at term, but not preterm. Increased concentrations of thrombospondin-1,
MIP-1β, and S100A8, respectively, were significantly associated with decreased gestational duration after the Holm-Bonferroni
correction in women with spontaneous onset of labor at term. This adds to the concept of a pregnancy clock, where our findings
suggest that such a clock is also reflected in the amniotic fluid at early mid-trimester, but further research is needed to confirm
this.
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Introduction

Gestational duration has a significant impact on the short- and
long-term health of the neonate [1–3]. Data indicate that an
inflammatory process precedes the onset of labor in both term
and preterm pregnancies [4–6] and that endocrine, mechanical,
and genetic factors are involved [7–9]. However, the

mechanisms of pregnancy maintenance and timing of delivery
are not yet fully understood [10]. The concept of a pregnancy
clock, in which chronological and coordinated signals from the
fetus, fetal membranes, placenta, decidua, and myometrium
modulate the duration of pregnancy [11–13], has recently been
expanded with the concepts of a proteomic clock and an im-
mune clock [14, 15]. It has been suggested that recognition of
disruptive patterns in these chronological signals could enable
early detection of pregnancy complications [15].

Amniotic fluid is a biological surrogate for the dynamic
environment surrounding the developing fetus, and its origin
and composition changes as pregnancy progresses [16].
Previous studies have identified inflammatory biomarkers that
are associated with gestational duration in the amniotic fluid at

Felicia Viklund and Maria Hallingström should be considered joint first
authors

* Bo Jacobsson
bo.jacobsson@obgyn.gu.se

Extended author information available on the last page of the article

https://doi.org/10.1007/s43032-020-00229-z

/ Published online: 7 October 2020

Reproductive Sciences (2020) 27:2146–2157

http://crossmark.crossref.org/dialog/?doi=10.1007/s43032-020-00229-z&domain=pdf
https://orcid.org/0000-0001-9510-5865
https://orcid.org/0000-0001-7342-9260
https://orcid.org/0000-0001-9858-7900
https://orcid.org/0000-0003-3130-1829
https://orcid.org/0000-0002-0026-3711
https://orcid.org/0000-0002-1414-7279
https://orcid.org/0000-0002-1785-8535
https://orcid.org/0000-0003-4748-0446
https://orcid.org/0000-0001-5079-2374
mailto:bo.jacobsson@obgyn.gu.se


mid-trimester [17, 18]. However, these studies have mainly
focused on spontaneous preterm delivery (PTD, < 37 + 0 ges-
tational weeks) and have also been limited to one or a few
proteins. The statistical power to detect associations increases
when gestational duration is considered to be a continuous
variable instead of a dichotomous (term/preterm) trait [19].
A continuous gestational duration variable is also clinically
relevant as there is a gradient of increasing risk of adverse
neonatal outcome with decreasing gestational duration [1,
20]. Furthermore, the development of multiplex immunoas-
says, which allow simultaneous analysis of multiple analytes
from small sample volumes, has enabled a more explorative
approach to protein patterns in biological compartments in
relation to pregnancy outcome [21].

This study aimed at evaluating the concentrations of 27
selected proteins in the amniotic fluid of asymptomatic wom-
en at mid-trimester in relation to gestational duration and
spontaneous PTD, using multiplex technology. The assay
panel selected was designed to explore the inflammatory pro-
cess that precedes the onset of labor.

Methods

Study Design and Participants

In this prospective cohort study, pregnant women were recruited
at Sahlgrenska University Hospital/Östra, Gothenburg, Sweden,
between September 2008 and June 2016. The women were en-
rolled before the clinical introduction of noninvasive prenatal
testing (NIPT) in 2017. Inclusion criteria were maternal age
≥ 18 years with a viable singleton pregnancy and undergoing
genetic amniocentesis at 14–19 gestational weeks. Clinical indi-
cations for genetic amniocentesis were maternal age ≥ 35 years,
high risk found in the first-trimester combined screening, anxi-
ety, or family history of a chromosomal abnormality or genetic
disease. Multiple pregnancy, positive for HIV or hepatitis B, and
known or suspected fetal malformations were ineligibility
criteria, as were situations in which study samples could not be
collected. Women were excluded if they declined participation,
could not give informed consent in Swedish due to language
difficulties or if an insufficient amount of fluid was retrieved
during amniocentesis.

Demographics and pregnancy outcomes were obtained by
review of medical records. Gestational age was based on fetal
biometry at ultrasound, routinely performed at gestational weeks
17–20. Spontaneous PTD was defined as delivery < 37 gesta-
tional weeks, as a result of either preterm labor or preterm
prelabor rupture of membranes. Women with medically indicat-
ed (iatrogenic) PTD, where various complications affected the
duration of pregnancy, as well as womenwho had amiscarriage,
stillbirth, termination of pregnancy, incomplete data or whowere
lost to follow-up, were excluded from analysis.

Sample Collection and Processing

Amniocentesis was performed transabdominally with a 22-
gauge needle under sonographic guidance. An additional
3 ml of fluid was aspirated for research purposes. Samples
were stored at + 4–8 °C immediately after sampling and cod-
ed. Samples were centrifuged for 20 min at 12,000 g at 4 °C to
separate supernatant from the pellet. Aliquots were stored at −
80 °C until analysis. None of the aliquots used in this study
had been thawed or used in previous analyses.

Development of the Assay Panel

The assay panel was designed to explore the inflammatory
processes and mechanisms preceding the onset of labor, both
at term and at preterm. Selection was influenced by previous
studies reporting biomarkers associated with term and preterm
parturition [6, 22] as well as proteins previously analyzed in a
sub-cohort of this project [23]. The selection of DAMPs in the
panel was based on the hypothesis that these endogenous me-
diators trigger an inflammatory process, defined as sterile
intra-amniotic inflammation [24, 25], related to the onset of
labor both at term [26] and preterm [27].

The panel consisted of 27 cytokines, chemokines, damage-
associated molecular patterns (DAMPs), and other proteins,
distributed on two 10-plex analysis for analytes that had pre-
viously been developed and tested by the institute performing
the analyses (panels 1 and 2) and one 7-plex analysis with
analytes that had not previously been tested (panel 3).

Analysis of Samples

Analyte concentrations were analyzed at Statens Serum Institut
(SSI), Copenhagen, Denmark, using in-house multiplex sand-
wich immunoassays based onU-PLEXMeso-Scale technology.
Samples from spontaneous PTD cases were evenly distributed
on the plates by the researchers, to minimize the risk of con-
founding by the plate layout. Laboratory staff performing the
analyses were blinded to clinical information and outcome.

The analysis started with the different capture antibodies be-
ing biotinylated, after which they were bound to different linkers
(1–10), mixed to reach a concentration of 10μg/ml per antibody,
added to each of the U-PLEX plate (Meso-Scale, K15235) wells
(50 μl/well) in all plates in the respective panels and incubated
for 1 h. After washing with washing buffer (PBS, containing
0.05% Tween 20), the plates were stored at 4 °C until use.
Detection antibodies were sulfo-tagged using Meso-Scale
Discovery Gold Sulfo-Tag NHS-Ester (Meso-Scale, R91AO-
2). Monocyte chemotactic protein 1 (C-C motif chemokine 2;
MCP-1) antibody was purchased from BD Biosciences, while
the remaining antibodies came from R&D Systems. Calibrators,
consisting of eight samples with known concentrations, were
used to create calibration curves to translate readings into
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concentrations. High and low controls were used to calculate
assay variations. Both calibrators and high and low controls were
prepared by recombinant antigens and pipetted onto each plate,
together with 25μl of samples. The amniotic fluid samples were
measured undiluted in panel 1 and panel 3 and diluted 1:5 in
panel 2. The plates were sealed, simultaneously incubated and
shaken for 2 h and washed three times. The plates were then
simultaneously incubated and shaken for another 2 h after adding
the corresponding detection antibodies. The plates were washed
and 150 μl 2xRead buffer T (Meso-Scale R92TC) per well was
added. They were then immediately read on the QuickPlex
reader.

Statistical Analyses

Continuous data were presented using median and interquar-
tile range (IQR), while categorical data were presented as
frequency distribution. Concentrations were log-transformed
for statistical analysis. Amniotic fluid protein concentrations
were adjusted for gestational age at sampling, experimental
factors (plates), and year of sampling using linear regression.
In the following analysis, these adjusted concentrations were
used as predictors, together with covariates selected based on
previous studies (maternal age at sampling, parity (nullipa-
rous/multiparous), smoking at first prenatal visit, and in vitro
fertilization (IVF)) [28–31]. For each of the amniotic fluid
protein concentrations, separately, a Cox regression analysis

of the entire study cohort was used to explore possible asso-
ciations with gestational duration. Cox regression was then
censored at 259 days (37 + 0 gestational weeks) or longer to
examine whether associations could be detected in women
with spontaneous PTD. Linear regression models, followed
by a conservative Holm-Bonferroni correction, were used to
evaluate protein concentrations’ associations with gestational
duration as a continuous variable in women with spontaneous
onset of labor at term, as well as to obtain an effect estimate of
days/standard deviation (SD). A p value of < 0.05 using a two-
sided alternative hypothesis was considered significant.
Statistical analysis was performed in SPSS 25.0 for
Windows XP OS (SPSS Inc., USA) and R, version 3.3.1.

Results

Characteristics of the Study Population

Between September 2008 and June 2016, 2962 women
underwent mid-trimester genetic amniocentesis at the depart-
ment. After application of the exclusion and ineligibility
criteria described above, the study cohort consisted of 1072
women. The selection of study participants is displayed in
Fig. 1. Maternal and neonatal characteristics are presented in
Table 1.

Women undergoing amniocentesis between 
September 2008 - June 2016

(n=2 962)

Eligible
(n=1 134)

Excluded (n=1 098)
Ineligible (n=730)

Iatrogenic PTD (n=17)
Incomplete information (n=4)
Lost to follow-up (n=7)
Miscarriage (n=3)
Stillbirth (n=6)
Termination of pregnancy (n=23)
Shipping/analytical issues(n=2)

Study cohort
(n

Induced labor or planned 
cesarean section at term 
(n=241)

Spontaneous onset of labor at 
term

(n=784)

Spontaneous PTD
(n=47)

Term delivery
(n=1 025)

Step I

Step II

Step III

=1 072)

Fig. 1 Flow chart. This figure shows the selection process for the
different cohorts in the respective analytical steps. In step I, the entire
cohort was analyzed. Step II consists of women with spontaneous PTD,

compared with womenwith term delivery, and step III consists of women
with spontaneous onset of labor at term
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Candidate Protein Concentrations

The inter-assay coefficients of variation (CV), intra-assay CV,
and limits of detection (LOD) for the analytes measured are
presented in Table 2. The protein names and, in some cases,
the recommended names (in parentheses) and their short-form
abbreviations are assigned by the UniProt Consortium [32]. In
cases where the protein concentrations reported from SSI were
too low or too high to be fitted on the standard curve, values
were set at the LOD or at the highest concentration that could
be measured for that specific analyte. Triggering receptor
expressed on myeloid cells 1 (TREM-1) was one of the initial
proteins in panel 2. However, due to cross-reactions in the
preparation phase, this protein was not analyzed. A total of
26 analytes were thus measured, and panel 2 consisted of a 9-
plex analysis instead. The median concentrations of the 26
examined proteins are presented in Table 3. The majority of
the protein concentrations were not affected by storage time,
with the exception of IL-10, TNF-β, CRP, MIP-1α,
RANTES, and MMP-8.

Protein Concentrations and Gestational Age at
Sampling

Seventeen of the 26 proteins were significantly associated with
gestational age at sampling (Table 4). Thrombospondin-1 and

HMG-1 underwent the most substantial concentration changes,
a 3.4% increase and a 3.2% increase in concentration per day,
respectively.

Protein Concentrations and Gestational Duration

Step I: The Entire Study Cohort (n = 1072)

The median gestational duration in this cohort was 39 + 6
(IQR, 38 + 5–40 + 6) weeks. HMG-1, IGFBP-1, IL-18, MIP-
1α, MIP-1β, S100A8, and thrombospondin-1 concentrations
were significantly associated with gestational duration in the
Cox regression analysis (Table 5).

Step II: Women with Spontaneous Preterm Delivery (n = 47)

The incidence of spontaneous PTD in the entire study cohort
was 4.4% (47/1072). Women with spontaneous PTD were
more often nulliparous, had a higher BMI at the first prenatal
visit, and had a higher rate of IVF and previous PTD than
women with a term delivery (Table 1).

The median gestational duration among women with spon-
taneous PTD was 35 + 6 (IQR, 33 + 4–36 + 4) weeks, com-
pared with 39 + 6 (IQR, 38 + 6–40 + 6) weeks in women who
underwent term delivery.

Table 1 Maternal and neonatal characteristics

Variable Study cohort (n = 1072) Sub-analysis Spontaneous onset of
labor at term (n = 784)

Spontaneous preterm
delivery (n = 47)

Term delivery (n = 1025) p

Maternal age at sampling (years) 37 (34–39) 37 (35–39) 37 (34–39) 0.895 37 (34–39)
Nulliparous 294 (27.4%) 19 (40.4%) 275 (26.8%) 0.046 210 (26.8%)
Maternal BMI at first prenatal visit 23.5 (21.5–26.0) 25.1 (22.8–27.1) 23.4 (21.5–26.0) 0.024 23.4 (21.5–26.0)
Smoking at first prenatal visit 54 (5.0%) 5 (10.6%) 49 (4.8%) 0.082 32 (4.1%)
IVF 35 (3.3%) 6 (12.8%) 29 (2.8%) 0.003 16 (2.0%)
Previous preterm delivery 75 (7.0%) 7 (14.9%) 68 (6.6%) 0.040 48 (6.1%)
Gestational age at sampling

(weeks + days)
15 + 5 (15 + 3–16 + 1) 15 + 4 (15 + 1–16 + 0) 15 + 5 (15 + 3–16 + 1) 0.062 15 + 5 (15 + 2–16 + 1)

Gestational duration (weeks + days) 39 + 6 (38 + 5–40 + 6) 35 + 6 (33 + 4–36 + 4) 39 + 6 (38 + 6–40 + 6) < 0.001 40 + 0 (39 + 1–40 + 6)
Mode of delivery
Vaginal 762 (71.1%) 34 (72.3%) 728 (71.0%) 1.000 656 (83.7%)
Vacuum extraction/forceps 59 (5.6%) 1 (2.1%) 58 (5.7%) 0.511 50 (6.4%)
Cesarean section 251 (23.4%) 12 (25.5%) 239 (23.3%) 0.726 78 (9.9%)

Birth weight (grams) 3540 (3231–3885) 2645 (2240–2910) 3560 (3275–3900) < 0.001 3575 (3280–3905)
Gender
Male 544 (50.7%) 21 (44.7%) 523 (51.0%) 0.456 401 (51.1%)
Female 528 (49.3%) 26 (55.3%) 502 (49.0%) 383 (48.9%)

Apgar score < 7 at 5 min 14 (1.3%) 1 (2.1%) 13 (1.3%) 0.468 12 (1.5%)

This table presents the maternal and neonatal characteristics of the final study population, a comparison between women with spontaneous preterm
delivery and term delivery, as well as the group with spontaneous onset of labor at term. Continuous variables were analyzed using the nonparametric
Mann-WhitneyU test and presented as median (IQR). Categorical variables were analyzed using Fisher’s exact test and presented as number (%). Bold
values indicates statistical significance at p < 0.05 using a two-sided alternative hypothesis
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The selected proteins were not associated with spontaneous
PTD in the censored Cox regression model (Table 6), indicat-
ing that the associations found in step I were mainly derived
from women with term delivery. Women with spontaneous
PTD were therefore excluded from further analysis.

Step III: Women with Spontaneous Onset of Labor at Term
(n = 784)

Consequently, the subsequent analyses focused on women
with term delivery. Women with induced labor or planned
cesarean section at term (n = 241), for whom clinical decisions
determined the gestational duration, were excluded from anal-
ysis, leaving only women with spontaneous onset of labor at
term (n = 784). The median gestational duration in this cohort
was 40 + 0 (IQR, 39 + 1–40 + 6) weeks. There were

significant associations between thrombospondin-1, MIP-
1β, S100A8, IL-18, MIP-1α, IGFBP-1, HMG-1, and
TNF-α concentrations and gestational duration in this cohort
(Table 5). All but TNF-α remained significant at a false dis-
covery rate (FDR) of 0.1. Thrombospondin-1, MIP-1β, and
S100A8 remained significant (pc < 0.05) after a conservative
Holm-Bonferroni correction. Scatter plots of the association
between the concentrations of thrombospondin-1, MIP-1β,
and S100A8 and gestational duration are presented in Fig. 2.
For thrombospondin-1, an increase of one standard deviation
(SD) in log concentration (corresponding to a 104% increase
in concentration) was associated with a 1.1-day decrease in
gestational duration. For MIP-1β and S100A8, an increase of
one SD in log concentrations (corresponding to a 103% and
57% increase, respectively, in concentration) was associated
with a shortened gestational duration by 0.9 day.

Table 2 Analytical variability and limit of detection

Protein name Short protein name Inter-assay CV Intra-assay CV LOD Samples below
the LOD

Adiponectin Adiponectin 22.6 4.4 0.006 ng/ml 0

Brain-derived neurotrophic factor BDNF 24.7 15.0 31.4 pg/ml 0

C-reactive protein CRP 37.1 8.0 0.0002 μg/ml 0

Granulocyte-macrophage colony-stimulating factor GM-CSF 30.3 15.5 53.0 pg/ml 0

High mobility group protein B1 HMG-1 25.4 7.2 5.67 ng/ml 0

Heat shock protein 70 HSP70 35.9 29.3 0.44 ng/ml 0

Insulin-like growth factor-binding protein 1 IGFBP-1 15.5 3.9 0.035 ng/ml 0

Interleukin-1 beta IL-1β 20.6 8.9 0.26 pg/ml 0

Interleukin-6 IL-6 24.1 4.6 0.99 pg/ml 0

Interleukin-8 IL-8 9.4 9.1 0.25 pg/ml 0

Interleukin-10 IL-10 34.2 13.4 0.25 pg/ml 0

Interleukin-12 IL-12 39.4 11.7 0.57 pg/ml 0

Interleukin-17 IL-17 22.4 11.6 1.47 pg/ml 0

Interleukin-18 IL-18 21.5 9.2 2.54 pg/ml 0

Monocyte chemotactic protein 1
(C-C motif chemokine 2)

MCP-1 36.4 12.2 3.84 pg/ml 0

Macrophage inflammatory protein-1 alpha
(C-C motif chemokine 3)

MIP-1α 19.3 4.8 1.2 pg/ml 0

Macrophage inflammatory protein-1 beta
(C-C motif chemokine 4)

MIP-1β 37.6 3.2 25.7 pg/ml 5

Matrix metalloproteinase-8 (neutrophil collagenase) MMP-8 33.4 2.7 0.005 ng/ml 0

Matrix metalloproteinase-9 MMP-9 26.5 5.8 0.004 ng/ml 1

T cell-specific protein RANTES
(C-C motif chemokine 5)

RANTES 26.1 9.4 0.4 pg/ml 19

S100 calcium-binding protein A8 S100A8 (protein S100-A8) 33.4 5.5 10.7 ng/ml 1

Transforming growth factor beta-1 TGF-β1 44.6 5.1 2.03 ng/ml 0

Tumor necrosis factor alpha TNF-α 17.6 5.6 8.4 pg/ml 0

Tumor necrosis factor beta (lymphotoxin-alpha) TNF-β/LT-α 14.3 10.2 0.26 pg/ml 0

Soluble tumor necrosis factor receptor-1 sTNF-RI 13.7 9.8 9.36 pg/ml 0

Thrombospondin-1 Thrombospondin-1 27.6 3.5 0.85 ng/ml 0

This table presents inter-assay coefficient of variation (CV), intra-assay CV, limit of detection (LOD), and the number of samples below the LOD for the
measured proteins
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Discussion

The key findings were as follows: (i) gestational age at sam-
pling was significantly associated with concentrations of the
majority of the selected analytes; (ii) mid-trimester amniotic
fluid concentrations of thrombospondin-1, MIP-1β, and
S100A8 were significantly associated with gestational dura-
tion in womenwith spontaneous onset of labor at term; and iii)
mid-trimester amniotic fluid concentrations of the selected
proteins were not associated with spontaneous PTD in this
small cohort.

The concentrations of 17 of the 26 candidate proteins were
associated with gestational age at sampling despite the limited
sampling window of approximately 5 weeks. To our knowl-
edge, this association has not been described to this extent
previously, implying that the findings are an essential contri-
bution to the research field and indicating the need to adjust
for this variable.

In genetic studies, analyzing gestational duration has prov-
en more successful than dichotomizing this trait, suggesting
that a single biological pathway common to all preterm cases
is unlikely to be identified [9, 33]. Several of the examined
proteins in our study were associated with gestational dura-
tion, but these associations appeared to be driven by the term
delivery group rather than the spontaneous PTD group. These
findings are unique as only a few studies have examined am-
niotic fluid protein concentrations with gestational duration as
a continuous variable [17, 18]. These studies have found an
inverse relationship between IL-6 and IL-10 concentrations
and gestational duration using enzyme-linked immunosorbent
assay (ELISA), a singleplex assay. Their cohorts were small,

Table 4 Relationship between protein concentrations and gestational
age at sampling

Short protein name Percentage change per day p

Adiponectin 1.17 0.007

BDNF − 0.74 0.001

CRP − 1.97 2E-06

GM-CSF − 0.12 0.43

HMG-1 3.15 1E-10

HSP70 − 0.37 0.12

IGFBP-1 0.18 0.011

IL-1β − 0.30 0.24

IL-6 − 2.01 0.002

IL-8 − 2.78 0.0003

IL-10 0.19 0.38

IL-12 − 0.33 0.15

IL-17 − 0.02 0.95

IL-18 1.60 3E-15

MCP-1 1.31 3E-06

MIP-1α − 1.00 0.002

MIP-1β 1.60 5E-09

MMP-8 − 2.45 0.001

MMP-9 2.05 2E-06

RANTES − 0.28 0.49

S100A8 2.67 9E-10

TGF-β1 − 0.99 0.002

TNF-α 2.40 6E-10

TNF-β − 0.19 0.41

sTNF-RI 0.14 0.22

Thrombospondin-1 3.44 4E-15

This table presents the associations between protein concentrations in
mid-trimester amniotic fluid and gestational age at sampling in the study
cohort (n = 1072). The right-hand column presents the percentage change
per day that sampling was postponed, where negative values represent a
decreased concentration and positive values represent an increase. Bold
text indicates statistical significance at p < 0.05 using a two-sided alter-
native hypothesis. Log protein concentrations were regressed on gesta-
tional age at sampling, adjusting for experimental factors (plates) and year
of sampling

Table 3 Protein concentrations

Short protein name Protein concentration Unit Panel number

Adiponectin 11.98 (7.17–20.00) ng/ml 2

BDNF 1061.10 (767.40–1377.32) pg/ml 2

CRP 29.82 (18.03–35.24) μg/ml 2

GM-CSF 334.02 (257.27–449.52) pg/ml 1

HMG-1 380.26 (224.51–648.23) ng/ml 3

HSP70 78.38 (52.26–125.00) ng/ml 2

IGFBP-1 407.27 (364.70–448.01) ng/ml 2

IL-1β 2.00 (1.32–3.03) pg/ml 1

IL-6 708.33 (327.32–1605.70) pg/ml 3

IL-8 864.64 (336.23–2199.61) pg/ml 1

IL-10 2.32 (1.72–3.32) pg/ml 1

IL-12 34.04 (24.18–48.40) pg/ml 1

IL-17 46.17 (33.44–68.21) pg/ml 1

IL-18 21.51 (16.98–27.24) pg/ml 1

MCP-1 772.08 (561.14–1113.44) pg/ml 1

MIP-1α 365.38 (231.78–548.24) pg/ml 2

MIP-1β 204.13 (139.70–352.40) pg/ml 3

MMP-8 6.25 (2.83–15.92) ng/ml 3

MMP-9 3.82 (2.53–6.12) ng/ml 2

RANTES 87.36 (74.37–103.31) pg/ml 2

S100A8 177.88 (112.98–280.03) ng/ml 3

TGF-β1 168.45 (106.60–242.21) ng/ml 2

TNF-α 301.35 (194.78–468.20) pg/ml 3

TNF-β 2.50 (1.78–3.46) pg/ml 1

sTNF-RI 12.45 (10.72–14.45) pg/ml 1

Thrombospondin-1 329.90 (185.14–552.04) ng/ml 3

Protein concentrations were calculated from raw data and are presented as
median (IQR). The respective unit of each analyte and the panel in which
the analyte was included are also shown in the table
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with a spontaneous PTD rate of 7.2–15.6% and a substantially
higher proportion of early PTD. Different assays, cohort sizes,
and differences within study populations, such as maternal
age, ethnicity, or PTD etiologies, may explain the contradic-
tory results. Further, the risk of PTD in Sweden is generally
low [34]. Even in this high-risk cohort, only 4.4% had a spon-
taneous PTD, limiting the amount of cases to be studied.

Identifying markers specific to spontaneous PTD has proven
difficult. Several previous studies, including two by our group
[23, 35], have investigated whether mid-trimester amniotic fluid
proteins are associated with subsequent spontaneous PTD. The
results are conflicting, as some have found associations [36–39],
while others have not [23, 35, 40–42]. In this study, none of the
selected proteins were associated with spontaneous PTD.

However, spontaneous PTD cases of this study mainly occurred
late, and infection and inflammation were thus involved to a
lesser extent [43]. Our findings support spontaneous PTD as a
multifactorial condition with different sub-phenotypes, making
early identification of genetic or protein markers more challeng-
ing and complex. Furthermore, spontaneous PTD can also orig-
inate as a result of acute events which may not be detectable in
amniotic fluid as early as at mid-trimester.

Similar issues have been encountered in genetic studies of
gestational duration. Several genes associated with this trait
have been identified [9, 33, 44], and many of them appear
related to inflammatory processes. However, large sample
sizes were required to achieve this, and most of the “hits”
are still not consistent across cohorts.

Table 5 Associations between
protein concentrations and
gestational duration

Study cohort (n = 1072) Spontaneous onset of labor at term (n = 784)

Short protein name HR (SD) p Days per SD p FDR (q)

Thrombospondin-1 1.10 0.009 − 1.1 0.001* 0.003

MIP-1β 1.11 0.002 − 0.9 < 0.001* 0.008

S100A8 1.08 0.020 − 0.9 0.002* 0.013

IL-18 1.09 0.011 − 0.8 0.004 0.027

MIP-1α 1.08 0.020 − 0.7 0.015 0.06

IGFBP-1 1.12 0.002 − 0.7 0.010 0.045

HMG-1 1.08 0.023 − 0.7 0.010 0.045

TNF-α 1.06 0.09 − 0.6 0.031 0.10

Adiponectin 1.02 0.54 − 0.5 0.09 0.25

sTNF-RI 1.06 0.10 − 0.4 0.10 0.25

CRP 1.04 0.30 − 0.4 0.18 0.34

MMP-9 1.05 0.17 − 0.4 0.16 0.34

RANTES 1.03 0.34 − 0.4 0.10 0.25

TGF-β1 1.05 0.16 − 0.4 0.18 0.34

MCP-1 1.04 0.24 − 0.3 0.27 0.45

GM-CSF 0.98 0.58 0.3 0.25 0.43

BDNF 1.04 0.26 − 0.3 0.32 0.49

IL-1β 0.99 0.73 0.2 0.53 0.71

IL-12 1.00 0.95 − 0.2 0.58 0.72

IL-10 1.00 0.98 − 0.1 0.67 0.76

MMP-8 0.97 0.47 0.2 0.47 0.68

IL-6 0.99 0.77 0.2 0.55 0.71

TNF-β 1.01 0.86 − 0.1 0.63 0.74

HSP70 1.02 0.48 − 0.1 0.78 0.85

IL-8 1.00 0.97 − 0.04 0.89 0.89

IL-17 0.99 0.75 0.04 0.87 0.89

ACox regression analysis was performed on the logarithmically transformed protein concentrations that were pre-
adjusted for gestational age at sampling, experimental factors (plates), and year of sampling, using maternal age at
sampling, parity, smoking at first prenatal visit, and IVF as covariates. The results are presented as hazard ratios
(HR) per standard deviation (SD). A linear regression model was performed for the group with spontaneous onset
of labor at term, and the results are presented as days per SD. The table is sorted by p value for the group with
spontaneous onset of labor at term. Bold text indicates nominal statistical significance at p < 0.05 using a two-
sided alternative hypothesis. p values are additionally adjusted by false discovery rate (FDR) (q values) and by
Holm-Bonferroni. Remaining significance after Holm-Bonferroni correction is indicated by an asterisk
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Inflammation of non-infectious origin—or sterile
inflammation—mediated by DAMPs or alarmins [27], has
gained increasing attention. DAMPs are endogenous molecules
released in response to cellular injury and death, eliciting an
inflammatory response to defend the host through pathways
ultimately leading to the release of pro-inflammatory cytokines
[45]. This sterile inflammation has previously been described in
relation to several pregnancy complications [46], such as spon-
taneous PTD [27], but also related to the pathway leading to the
onset of labor at term [26]. Elevated concentrations of HMG-1,
considered the prototypic alarmin [47], have been demonstrated
in cases of preterm delivery with intra-amniotic inflammation

[48, 49] and in clinical chorioamnionitis at term [50]. We eval-
uated a few of the classical DAMPs such as HMG-1, HSP70,
S100A8, and thrombospondin-1, and three of them (HMG-1,

Table 6 Association
between protein
concentrations and
spontaneous preterm
delivery

Spontaneous preterm delivery (n = 47)

Short protein name HR (SD) p

Adiponectin 0.79 0.10

BDNF 1.00 0.98

CRP 1.08 0.63

GM-CSF 1.18 0.28

HMG-1 1.01 0.93

HSP70 0.94 0.64

IGFBP-1 0.85 0.21

IL-1β 1.06 0.70

IL-6 0.98 0.88

IL-8 0.98 0.87

IL-10 0.96 0.80

IL-12 0.95 0.70

IL-17 0.93 0.62

IL-18 1.17 0.27

MCP-1 1.24 0.10

MIP-1α 1.11 0.46

MIP-1β 0.98 0.90

MMP-8 0.77 0.10

MMP-9 1.08 0.60

RANTES 0.93 0.56

S100A8 0.90 0.46

TGF-β1 1.03 0.82

TNF-α 0.97 0.81

TNF-β 0.82 0.18

sTNF-RI 0.87 0.37

Thrombospondin-1 0.83 0.17

A Cox regression analysis, with 1025 de-
liveries censored at 37 weeks, was per-
formed on the logarithmically transformed
protein concentrations that were pre-ad-
justed for gestational age at sampling, ex-
perimental factors (plates), and year of
sampling, using maternal age at sampling,
parity, smoking at first prenatal visit, and
IVF as covariates. The results are present-
ed as hazard ratios (HR) per standard de-
viation (SD)

Fig. 2 Scatter plots. The figure depicts the association between
concentrations of a thrombospondin-1, b MIP-1β, and c S100A8 and
gestational duration
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S100A8, and thrombospondin-1) were associated with shorter
gestational duration. However, we did not find significant alter-
ations in the concentrations of any of the examined cytokines.
We theorize that the increase of DAMPs in early gestation is
reflective of trimester-specific, localized events such as the fu-
sion of the fetal membranes and establishment of the amniotic
cavity [51] or growth and remodeling of the feto-placental unit,
rather than an acute inflammatory process. Based on this, we
further hypothesize that there is a relationship between the de-
velopment of the uterine cavity and gestational duration. It
should, however, be emphasized that our results are solely based
on protein concentrations from amniotic fluid samples collected
between 14 and 19 gestational weeks. These associations may
not consist beyond this point.

In women with a spontaneous onset of labor at term, in-
creased concentrat ions of MIP-1β , S100A8, and
thrombospondin-1 were significantly associated with a decrease
in gestational duration. MIP-1β has previously been demon-
strated in cases of spontaneous PTD at < 34 weeks [52], as well
as in women with symptoms of preterm labor who delivered
within 7 days [6]. An upregulation of S100A8 is associated with
chorioamnionitis/deciduitis [53]. S100-alarmins have also been
described as essential immunoregulators in newborns,
preventing excessive inflammation [54]. S100A8/A9 have been
analyzed in breast milk; concentrations were significantly higher
after term delivery, compared with PTD, and after vaginal de-
livery, compared with cesarean section [55]. Thrombospondin-1
is expressed in the placenta and has previously been reported in
cases of small for gestational age (SGA) pregnancies and pre-
eclampsia [56, 57].

Understanding the physiological events preceding parturi-
tion in healthy term pregnancies is essential in order to under-
stand pathological pregnancies and, ultimately, possible pre-
vention strategies. Aghaeepour et al. [14, 15] suggest the pres-
ence of a proteomic and an immune clock in women deliver-
ing at term, where deviations from precisely timed and chro-
nological changes could potentially assist in the early predic-
tion of adverse outcomes. However, they analyzed maternal
sera and peripheral blood, repeatedly collected throughout
gestation, while this study analyzed the protein composition
of amniotic fluid collected at mid-trimester. The association
between protein concentrations and gestational duration in
this study though evokes the additional concept of a pregnan-
cy clock that may also comprise the amniotic fluid. While the
sample size was small, the lack of associations in the preterm
group suggests that the immunological response in women
with a spontaneous PTD may diverge from that of women
delivering at term. However, further research is needed to
confirm this.

The strengths of this study were particularly the robust
methodology, including meticulous selection criteria, the ex-
tensive panel of selected candidate proteins, and the analysis
of gestational duration as a continuous rather than a

dichotomous (preterm/term) variable. We used two different
statistical models and were able to show that the associations
are robust to modeling choices. While the Cox regression is
natural for modeling the survival outcome, a linear model can
be more suited for detecting markers that have time-varying
effects—this was previously shown to be likely based on
Swedish birth demographics [58].

Furthermore, the cohort is unique due to its size, with a
total loss-to-follow-up/missing information rate of only
0.97%. Another strength is that the results have been adjusted
for covariates and experimental factors (plates); the latter are
frequently neglected. Finally, we used a technology that offers
a broader dynamic range and better accuracy, with lower inter-
and intra-assay variation [59, 60], than other immunoassay
technologies such as LUMINEX. To the best of our knowl-
edge, this is the first study using a Meso-Scale Discovery
approach with a broad panel of inflammatory markers in this
context.

One limitation is that the study population of women un-
dergoing invasive genetic testing is of advanced age with high
risk or a history of chromosomal abnormalities. These circum-
stances, therefore, might not reflect the general low-risk preg-
nant population, limiting generalizability. The clinical transla-
tion value of our findings is also limited, and the results should
rather be seen as interesting biological associations that may
serve as a basis for future research. The results have been
adjusted for plate effects, but other analytical conditions might
have influenced the results. Researchers must be aware of the
limitations of new markers and techniques during this rapidly
expanding and developing era of biomarker research [60, 61].

Conclusion

Mid-trimester amniotic fluid concentrations of thrombospondin-
1, MIP-1β, and S100A8 were significantly associated with ges-
tational duration at term, but not at preterm. This adds to the
concept of a pregnancy clock, where our findings suggest that
such a clock is also reflected in mid-trimester amniotic fluid.
Further research is though needed to explore this. It is important
to adjust for gestational age at sampling when performing amni-
otic fluid biomarker studies.
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