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Abstract
Bacteria living in sediments play essential roles in marine ecosystems and deeper insights into the ecology and bio-
geochemistry of these largely unexplored organisms can be obtained from ‘omics’ approaches. Here, we characterized 
metagenome-assembled-genomes (MAGs) from the surface sediment microbes of the Venice Lagoon (northern Adriatic 
Sea) in distinct sub-basins exposed to various natural and anthropogenic pressures. MAGs were explored for biodiver-
sity, major marine metabolic processes, anthropogenic activity-related functions, adaptations at the microscale, and 
biosynthetic gene clusters. Starting from 126 MAGs, a non-redundant dataset of 58 was compiled, the majority of which 
(35) belonged to (Alpha- and Gamma-) Proteobacteria. Within the broad microbial metabolic repertoire (including C, 
N, and S metabolisms) the potential to live without oxygen emerged as one of the most important features. Mixotrophy 
was also found as a successful lifestyle. Cluster analysis showed that different MAGs encoded the same metabolic pat-
terns (e.g., C fixation, sulfate oxidation) thus suggesting metabolic redundancy. Antibiotic and toxic compounds resist-
ance genes were coupled, a condition that could promote the spreading of these genetic traits. MAGs showed a high 
biosynthetic potential related to antimicrobial and biotechnological classes and to organism defense and interactions 
as well as adaptive strategies for micronutrient uptake and cellular detoxification. Our results highlighted that bacteria 
living in an impacted environment, such as the surface sediments of the Venice Lagoon, may benefit from metabolic 
plasticity as well as from the synthesis of a wide array of secondary metabolites, promoting ecosystem resilience and 
stability toward environmental pressures.
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Introduction

Microorganisms living in sediments are key players in 
marine ecosystems at both biogeochemical and ecological 
levels. Their importance derives in part from the competitive 
mechanisms and strategies for space and resource utilization, 
fostered by their high abundance, which may reach 109 cells 
per cm3 (Petro et al. 2017). In upper oceanic sediments, it 
has been estimated that microbes represent 5 × 1028 cells 
(Flemming and Wuertz 2019). Surface sediments are also 
complex and dynamic habitats, especially in coastal and 
lagoon environments, where transport, mixing, deposition, 
and resuspension concur together with other abiotic (e.g., 
light, organic matter, oxygen) and biotic factors (Zinger et al. 
2011) in shaping microbial assemblages (Banchi et al. 2021; 
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Quero et al. 2017). Indeed, the functioning of these ecosys-
tems is highly dependent on microbial communities, which 
play essential roles in nutrient cycling, organic matter deg-
radation, and benthic food web dynamics (Schallenberg and 
Kalff 1993) and can interact and cope with environmental 
pressures via fundamental strategies. These include meta-
bolic plasticity and functional redundancy: the first refers 
to the capacity of a community to adapt to environmental 
changes by tuning the overall performance of the dominant 
and keystone taxa, the latter implies that different members 
can perform similar functional roles within the community 
(Comte et al 2013).

Since most microorganisms (up to 99%; Sharma et al. 
2005) are considered unculturable (Stewart 2012), infor-
mation about their taxonomy and potential functions can 
only be obtained through DNA-based, culture-independent 
approaches like metagenomics. These tools have enabled 
unprecedented exploration of the biodiversity, distribution, 
dynamics, and ecology of microorganisms in diverse envi-
ronments (Knight et al. 2017; Semenov 2021). They are 
also the gold standard in marine ecosystem research, from 
global- scale expeditions and surveys (Salazar et al. 2016; 
Sunagawa et al. 2015) to smaller-scale studies and long-term 
time series analysis (Miksch et al 2021; Yeh and Fuhrman 
2022) in both pelagic and benthic realms. Metagenomic 
reads from shotgun sequencing, in addition to the canoni-
cal "assembly-gene prediction-annotation" workflow at the 
community level (Thomas et al. 2012), have more recently 
been used for the construction of metagenome-assembled-
genomes (MAGs; Tully et al. 2018) (i.e., genome-resolved 
metagenomics). MAGs enable the linkage of taxonomy, 
metabolism, and functions, can lead to the discovery of 
novel species, and can also expand knowledge of microbial 
processes and interactions by shedding light on the microbial 
“dark matter” (Setubal 2021; Yang et al. 2021). Although 
different methods have been implemented for bioinformatic 
analysis of MAGs, complete (100%) genomes still represent 
a small fraction of the reconstructed genomes (Chen et al. 
2020) due to various issues in sequencing, assembly/bin-
ning processes and genome properties. Nevertheless, this 
approach is an invaluable resource for studying non-cultur-
able microorganisms, especially in under-sampled (Probandt 
et al. 2017), widespread environments, such as marine sedi-
ments. The microbial diversity and functions of the sedi-
ment microbes are generally less studied with respect to the 
pelagic ones, and more efforts are needed also in the frame-
work of ‘omics’ approaches, including genome-resolved 
metagenomics. For example, in the marine microbial ref-
erence databases (https://​mmp2.​sfb.​uit.​no; Klemetsen et al. 
2018), only 2 of 15 MAGs in MarRef and 1872 of 8,684 
MAGs in MARdb, have been reconstructed from sediment 
samples, whereas the others are related to the water column 
or host/plant-associated samples.

The Venice Lagoon (northern Adriatic Sea) is an 
extended and heterogeneous ecosystem subjected to a wide 
range of natural and anthropogenic pressures including sub-
sidence, tourism, and contaminations (e.g., heavy metals and 
toxins, accumulated in the sediments after being discharged 
in the water column) (Depinto et al. 2010; Solidoro et al. 
2010). Here, in 2019-2020, we conducted a study in which 
the sediment prokaryotic communities were character-
ized with DNA metabarcoding and metagenomics (Banchi 
et al. 2021). The surface sediment of five sites, distributed 
in sub-basins of the Lagoon according to the international 
risk analyses sediment quality guidelines (Apitz et al. 2007) 
were investigated: Chioggia, Marghera, Palude della Rosa, 
Sacca Sessola, and Tresse. The results highlighted that the 
microbial communities were significantly influenced by total 
organic carbon, salinity and grain size, differentiated among 
sub-basins (mostly due to the rare microbiome), and more 
stable compared to pelagic communities over time (Banchi 
et al. 2021).

To leverage from the previous knowledge, we performed 
a deep mining of metagenomic data of the surface sediment 
of the Venice Lagoon to reconstruct MAGs, with the aim 
of gaining new high-resolution insights on the ecological 
role of specific microbes. Within this framework, the objec-
tives of this study were to: (i) identify the major metabolic 
processes linked to the biogeochemical cycles, (ii) investi-
gate the adaptive strategies associated with anthropogenic 
related activities, biosynthetic gene clusters, and functional 
adaptation at the microscale, and (iii) evaluate the presence 
of microbial fundamental properties, such as metabolic plas-
ticity and functional redundancy.

Materials and methods

Sampling and metagenomic sequencing

Sampling and sequencing data were published in Banchi 
et al. (2021). In brief, sampling was conducted seasonally 
in 2019 at five sites in the Venice Lagoon, Italy (Supple-
mentary Table S1, Supplementary Fig. S1): Chioggia (C), 
Marghera (M), Palude della Rosa, (P), Sacca Sessola (S), 
and Tresse (T). Samples were taken in triplicates for each 
site, for a total of 60 samples. DNA was extracted using the 
DNeasy PowerSoil Pro kit (Qiagen). Libraries for the 60 
metagenomes were prepared according to the Illumina Nex-
tera DNA Flex Library Prep protocol and run on an Illumina 
NovaSeq 6000 System for a read length of 2 × 250 bp at the 
Genetic and Epigenetic ARGO Open Lab Platform, Area 
Science Park, Trieste, Italy.

https://mmp2.sfb.uit.no
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Metagenomic assembly and binning

The number and quality of metagenomic reads were 
checked with FastQC (Andrews 2010). Reads were 
cleaned with Trimmomatic (Bolger et  al. 2014) and 
assembled into contigs using MEGAHIT v1.2.9 (Li et al. 
2015). In order to maximize the output of the binning 
process, we co-assembled the metagenomes in two dif-
ferent ways for each site: using the three replicates of the 
same season (e.g., the three Spring metagenomes from 
Chioggia) or using one replicate for each season (e.g., one 
Spring, one Summer, one Autumn and one Winter from 
Chioggia). This procedure enabled the construction of 25 
assemblies, five for each sampling site.

Assemblies were performed combining either three 
replicates of each site for the same season or one replicate 
for each season for each site, for a total of 25 assemblies 
for the 5 sites. Reads were mapped back to assembled 
contigs > 1000 bp using Bowtie2 v.2.4.1 (Langmead and 
Salzberg 2012) with default parameters.

Genomic binning was performed with CONCOCT 
v1.1.0 (Alneberg et  al. 2014), MaxBin2 v.2.2.6 (Wu 
et al. 2014), and MetaBAT2 v2.14 (Kang et al. 2019). 
Bins obtained from the three algorithms were integrated 
using a consensus binning strategy with DAS_Tool v1.1.3 
(Sieber et al. 2018) and potentially contaminating contigs 
(presenting divergent GC content, tetranucleotide signa-
ture, coverage, taxonomy) were removed with RefineM 
v0.1.2 (Parks et al. 2017). Bins completeness and contam-
ination were assessed through single-copy marker gene 
analysis using CheckM v1.1.11 (Parks et al. 2015). Bins 
with > 90% completeness and < 5% contamination were 
considered high-quality MAGs, while bins with > 50% 
completeness and < 10% contamination were considered 
medium-quality MAGs (Bowers et al. 2017; Konstanti-
nidis et al. 2017).

MAGs taxonomic assignment and functional 
annotation

The taxonomy of each MAG was assigned with GTDB-
Tk v1.7.0 (Chaumeil et al. 2020) on the GTDB v.R06-
RS202 (Parks et al. 2018) database and with the microbial 
genome atlas (MiGA, NCBI-Prok Database; Rodriguez 
et  al. 2018). Taxonomic assignment was further com-
pared with 16S rRNA gene amplicon sequence data from 
the same samples (Banchi et  al. 2021) annotated with 
SILVA v. 138 (Quast et al. 2013). A phylogenetic tree was 
constructed based on 43 conserved single-copy, protein-
coding marker genes (Kato et al. 2018; Parks et al. 2015) 
using the maximum likelihood algorithm with MEGAX 
(Kumar et al. 2018) with default parameters. The tree was 

visualized and edited with Interactive Tree Of Life (iTOL) 
v5 (Letunic and Bork 2021).

Then, all reconstructed MAGs from the 25 assemblies 
(5 per sampling site) were pooled together and derep-
licated at the strain level using dRep (Olm et al. 2017) 
(v.3.2.2; parameters: -p 72 --ignoreGenomeQuality -pa 
0.95 -sa 0.99 -cm larger, following Xie et al. 2021). A 
Sankey diagram was constructed with the networkd3 pack-
age (https://​github.​com/​chris​tophe​rgand​rud/​netwo​rkD3) in 
the R environment (v. 4.2.1, R Core Team 2019).

The coverage percentage and relative abundance of the 
dereplicated MAGs in each assembly was computed by read 
mapping with CoverM v.0.6.1 (https://​github.​com/​wwood/​
CoverM). A MAG was considered present in a sample if the 
coverage was > 80% (Zhou et al. 2020). Significant differ-
ences of MAG abundance among sites were assessed with 
Kruskal-Wallis test and Wilcoxon non-paired. False discov-
ery rate (FDR) was used for p-value correction and results 
with q-value < 0.05 were considered significant.

Genes were predicted with Prodigal v.2.6.3 (Hyatt et al. 
2010) and functional annotations were performed with the 
SEED Subsystem (Overbeek et al. 2005) using RASTtk at 
default parameters (Aziz et al. 2008, Brettin et al. 2015) and 
with KAAS (KEGG Automatic Annotation Server; Moriya 
et al. 2007) with GHOSTX settings. SEED annotations were 
used to assess the presence and distribution of genes related 
to anthropogenic- and microscale-related functions. KEGG 
annotations were screened to infer potential metabolisms of 
the MAGs using key marker genes related to central, carbon, 
methane, nitrogen, hydrogen, and sulfur metabolism (Acinas 
et al. 2021; Dombrowski et al. 2018). A hierarchical cluster 
analysis with the Ward method (Ward.D2) was performed 
in R (v. 4.2.1, R Core Team 2019) at gene and metabolism 
level. The relative contribution of key genes and metabolism 
to the average Bray-Curtis dissimilarity between each cluster 
vs the other clusters was calculated using a one-way similar-
ity percentage procedure (SIMPER, cut-off: 50%) with the 
R package vegan (Oksanen et al. 2019). For high-quality 
MAGs, KEGG annotations were used to assess the com-
pleteness of the key metabolic pathway modules using the 
Reconstruction Tool of KEGG Mapper (Kanehisa and Sato 
2020). Biosynthetic gene clusters (BGCs) were detected and 
identified within each MAG using Antibiotics and Second-
ary Metabolite Analysis Shell (antiSMASH) v.7 (Blin et al. 
2021) at the default parameters. A hierarchical cluster analy-
sis with the Ward method (Ward.D2) was performed in R (v. 
4.2.1, R Core Team 2019) considering all the results from 
the different annotation approaches in terms of presence/
absence.

https://github.com/christophergandrud/networkD3
https://github.com/wwood/CoverM
https://github.com/wwood/CoverM
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Results and discussion

Metagenomic binning and MAG dataset

Shotgun sequencing produced ~120 millions of raw reads, 
with 14.8 ± 3.7 millions of paired-end reads of 35 ± 2 qual-
ity score for each metagenome on average. The number of 
contigs > 1000 bp derived from the three co-assembled 
metagenomes for each sample were 5,208,341 ± 376,210.

The binning procedure allowed reconstructing 339 bins 
from the 25 assemblies (5 per each sampling site), 126 
of which were considered MAGs (Fig. 1, Supplementary 
Table S2, Supplementary Table S3). The MAGs average size 
was 3.07 ± 1.06 Mbp, with 77.0 ± 12.8 % completeness, 
3.9 ± 2.3 % contamination, and 21.4 ± 19.1 % of strain 
heterogeneity (Fig. 1, Supplementary Table S3). Regard-
ing the binning algorithms, Metabat was the most success-
ful: 92 MAGs resulted from the selection/dereplication of 
the bins performed with Metabat, 34 with Concoct, and 
none with Maxbin (Supplementary Table S3). Of the 126 
MAGs, 14 were of high quality and 112 of medium quality 
(Supplementary Table S2, Supplementary Table S3). The 
dereplication procedure enabled constructing a dataset of 58 
non-redundant MAGs, 9 of which were of high quality (Sup-
plementary Table S4). These numbers are in line with other 
studies on marine sediment with a comparable set of samples 
and sequencing effort in both marine sediment (Zhang et al. 
2019; Zhao et al. 2020) and water (Haro-Moreno et al. 2018; 
Kimbrel et al. 2018; Trivedi et al. 2020).

Different factors may affect the number and quality of 
reconstructed genomes, which can be considered for an over-
view of the metagenome binning process. The reconstruc-
tion of MAGs is likely limited by strain heterogeneity (i.e., 
microdiversity), which reduces the assembly quality and thus 
the efficiency of binning (Meziti et al. 2021; Ramos-Barbero 
et al. 2019). In addition, the most abundant microorganisms 
in the community are often not resolved at genome level, 
which reduces the number of reconstructed MAGs; this phe-
nomenon is known as “The great metagenomic anomaly” 
(Okazaki et al. 2022; Ramos-Barbero et al. 2019). Dong and 
colleagues (2022), in an analysis of sand sediments associ-
ated with coral reefs, considered that the strain heterogeneity 
they calculated, 40% on average, could affect MAGs recov-
ery. In our dataset, this value averages 21% (Supplementary 
Table S2, Supplementary Table S3), thus not representing a 
limitation for genomes’ reconstruction.

The coverage of the non-redundant MAGs across the 
assemblies revealed that 98.4 ± 1.6 % of reads were mapped 
on average (Supplementary Table S5), indicating that all 
MAGs were present at all sites. The relative abundance of 
MAGs in each assembly ranged from 0.002 to 3.5 %, and 37 
MAGs presented a significant different relative abundance at 

site level (Supplementary Table S6). In particular, 16 MAGs 
were significantly higher in Sacca Sessola than in the other 
sites. As we mapped all MAGs at all five sites in the Venice 
Lagoon in all seasons (even if some presented significant dif-
ferences in terms of abundance), this implies that the same 
genomes were reconstructed in all the samples.

Based on the metagenomic data obtained from different 
Lagoon areas characterized by different anthropogenic pres-
sures and sediment features, one might expect some degree 
of differentiation in time and space. On the other hand, the 
environmental gradients present in our samples were not 
as high as in other studies (Acinas et al. 2021; Dong et al. 
2022). Moreover, in previous investigations (Banchi et al. 
2021), we saw that sites had no or minimal proportions of 
"private taxa" and that differences among sites were mainly 
due to differences in relative abundance. Knowing the tem-
poral stability of the microbial communities, the use of all 
co-assemblies from the different seasons and of the com-
bined seasons was considered to maximize the binning pro-
cess leading to a higher number of genomes of good quality, 
instead of increasing the genome diversity.

MAGs taxonomic composition

The high diversity of the benthic microbial communities 
(compared to their seawater counterpart) is well known and 
mostly attributed to the complexity and dynamics of this 
environment, that may be coupled with steep physicochemi-
cal gradients (Acosta-González and Marques 2016; Zinger 
et al. 2011). The non-redundant MAG dataset spanned a 
wide range of phyla and classes (11 and 17, respectively, 
Fig. 2). Of the 58 MAGs, 55 were identified at genus level, 
and 29 at species level. The majority (35) belonged to the 
phylum Proteobacteria (Fig. 2, Supplementary Table S4). 
At the class level, Gammaproteobacteria were the most 
abundant (20), followed by Alphaproteobacteria (11). The 
prevalence of Gammaproteobacteria agreed with the data 
we obtained through 16S metabarcoding for the same sites 
(Banchi et al. 2021) and is consistent with what is commonly 
found in marine sediments and in other studies in the Venice 
Lagoon (Borin et al. 2009, Quero et al. 2017). At the order 
and family level, Rhodobacterales and Rhodobacteraceae 
were the most abundant (6). Within genera, the most present 
(3 MAGs each) were BMS3Bbin11 (Arenicellales), JAB-
DQW01 (SZUA-229, uncultured Gammaproteobacteria), 
and Sulfitobacter.

The MAG belonging to the genus UBA1847, already 
found in coastal sediments (Seidel et al. 2021), belongs to 
the Woeseiaceae family, which are ubiquitous and abundant 
bacteria in coastal sediments (Mußmann et al. 2017). In rela-
tion to the low oxygen levels found in Venice Lagoon sedi-
ment (Borin et al. 2009), we reconstructed different genomes 
belonging to sulfur-reducing bacteria (Deltaproteobacteria, 



130	 Marine Life Science & Technology (2024) 6:126–142

1 3

Fig. 1   Phylogenetic tree of 
MAGs reconstructed from Ven-
ice Lagoon sediment, based on 
a concatenated alignment of 43 
conserved marker genes. Clade 
colours indicate taxonomic 
assignment at the phylum level. 
MAGs completeness (%), con-
tamination (%), and size (Mbp) 
are shown in the concentric 
rings outside the tree

Fig. 2   Sankey diagram showing the taxonomic assignment up to the genus level of the 58 non-redundant MAGs reconstructed from Venice 
Lagoon sediment
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Desulfobacterales). These included the Desulfobacteraceae 
BM002 sp. 002899795, SG8-13, Desulfosarcina, and the 
Desulfobulbaceae Desulfofustis. Other sulfur-related bacte-
ria in our dataset belonged to the genus Thiogranum (Thi-
ogranum sp.015494295), considered an obligately chemo-
lithoautotrophic, sulfur-oxidizing taxon (Mori et al. 2015), 
and Filomicrobium (Filomicrobium sp.00151606) a meth-
anesulfonate degrading bacteria (King 2018). We detected 
a member of the genus Methyloceanibacter, a taxon com-
monly found in sediment and that includes methylotrophs 
and methanotrophs (King 2018). Marine methylotrophs are 
key players in the biogeochemical carbon cycle, metaboliz-
ing reduced one-carbon compounds (e.g., methane) which 
in marine sediments (including Venice Lagoon; Zonta et al. 
2020) are usually present at high concentration (Vekeman 
et al. 2016).

The comparison of MAGs’ GTDB (Chaumeil et al. 2020)/
MiGA (Rodriguez et al. 2018) taxonomic assignment with 
16S rRNA-derived taxonomy, besides the difference in data 
production (shotgun sequencing vs amplicon) and processing 
(genome-level assignment vs barcode region), represents an 
additional resource to explore our data. At the genus level, 
all “defined” genera (Amylibacter, Boseongicola, Candida-
tus Microthrix, Candidatus Latescibacterota, Chroococcidi-
opsis, Chthonomonas, Desulfofustis, Desulfosarcina, Eudor-
aea, Filomicrobium, Halioglobus, Hyphomonas, Maribacter, 
Methyloceanibacter, Pelagibius, Phycisphaera, Robigini-
talea, Rubripirellula, Silicimonas, Sulfitobacter, Thiogra-
num) were present except for Pontiella and Miltoncostaea, 
which are not included in the SILVA database (Quast et al. 
2013). The majority of MAGs belonged to the most abun-
dant (> 0.1%, relative abundance, on average; with Candida-
tus Latescibacterota and Halioglobus in the top ten genera, 
> 1% on average) genera following 16S data (Banchi et al. 
2021) and may be considered members of the prokaryotic 
core community (Probandt et al. 2018).

Although Archaea were present in our sediment sam-
ples (i.e., they accounted for approximately 4% of the total 
16S rRNA reads; Banchi et al. 2021), we were unable to 
reconstruct any archaeal genome. Typically, due in part to 
their low abundance in the marine environment, the number 
of archaeal MAGs is a small fraction of the total MAGs, 
generally ranging from 0 to 6% (Acinas et al. 2021; Dong 
et al. 2022; Trivedi et al. 2020; Vavourakis et al. 2018; 
Zhang et al. 2019) of the whole dataset. Moreover, archaeal 
genomes are still poorly studied compared to their bacterial 
counterparts, and this is also reflected in genome-resolved 
bioinformatics analyses (e.g., fewer representatives in refer-
ence databases, higher divergence even at higher taxonomic 
levels), which may bias the binning process (Gribaldo and 
Brochier-Armanet 2006; Nasir et al. 2014; Vollmers et al. 
2022).

MAGs metabolic pathways, plasticity, 
and redundancy

Marine sediments microbial communities are hot spots of 
element cycling and represent the major carbon sink on our 
planet (Mußmann et al. 2017). Genome-resolved metagen-
omics has the capacity to provide significant insights into the 
benthic microbial community, as it allows discovering new 
metabolic pathways and a deeper understanding of the struc-
ture and function of microbial coupling (Ward et al. 2020).

The reconstructed genomes of this study were screened 
for metabolic potential and plasticity based on the presence 
and distribution of selected marker genes related to the main 
biogeochemical cycles and metabolisms (Acinas et al. 2021; 
Dombrowski et al. 2018). These included the KEGG catego-
ries of Central metabolisms, Carbon metabolism/autotrophic 
pathways, CO oxidation, H2 oxidation, Methane metabolism, 
Methane production, Nitrogen/Methene metabolism, Nitro-
gen metabolism, and Sulfur metabolism. Of the 103 marker 
genes, described in Acinas et al. (2021) and Dombrowski 
et al. (2018), 61 were found in the MAG dataset (Fig. 3, Sup-
plementary Table S7), revealing a wide metabolic repertoire.

Within Central metabolism, we identified marker genes 
related to three different pathways: fermentation, glycolysis, 
and gluconeogenesis. Central metabolism key genes were 
the most present within our dataset: fermentation and gly-
colysis key genes were present in every MAG (58), while 
Gluconeogenesis genes were found in 48 MAGs. Besides 
being able to process organic carbon and biomass via fer-
mentation, in 22 MAGs we detected key genes of Carbon 
metabolism/autotrophic pathways for Carbon fixation: Cal-
vin cycle, Dicarboxylate-hydroxybutyrate cycle/Hydroxy-
propionate-hydroxybutylate cycle, and Wood-Ljungdahl 
pathway. CO Oxidation key marker genes were present in 
22 MAGs, whereas the H2 Oxidation key gene was found in 
12 MAGs. Methane metabolism marker genes, related to C1 
metabolism/methanogenesis and Coenzyme M biosynthesis, 
were found in 27 MAGs. Within Nitrogen metabolism, in 
40 MAGs we identified key genes, related to Assimilatory 
nitrate reduction, Nitrification/Denitrification/Dissimilatory 
nitrate reduction, and Nitrogen fixation. Sulfur metabolism-
related genes, belonging to Dissimilatory sulfate reduction 
and Thiosulfate oxidation by SOX complex, were detected 
in 28 MAGs (Fig. 3).

Fermentation represented the microbial core function pre-
sent in all phyla of benthic communities (Dombrowski et al. 
2018), even in our dataset (Fig. 3). Fermentation, despite 
having a low yield of ATP in comparison to aerobic respi-
ration 2 vs 38 respectively (Buckel et al. 2021), occurs in 
anoxic conditions where there is a lack of oxygen and no 
need for external electron acceptors. This implies that all 
the genomes we have reconstructed are able to survive in the 
absence of oxygen, a frequent condition in lagoon sediments. 



132	 Marine Life Science & Technology (2024) 6:126–142

1 3

When computing all the contribution of the autotrophic 
metabolisms such as Carbon (PRK/prkB, rbcL, rbcS, enoyl-
CoA hydratase/3-hydroxyacyl-CoA dehydrogenase, cooS/
csA), CO (coxM/cutM and coxS) and H2 oxidation (hoxH), 
mixotrophy was revealed as a widespread successful strategy 
among the majority of the Proteobacteria members.

In our MAG dataset, within the methane metabolism, we 
detected the presence of the mttB gene in all (Alphaproteo-
bacteria) Rhodobacteraceae, the presence of mttB and hdrC 
in all (Deltaproteobacteria) Desulfobacteraceae, and the 
presence of hdrC in all (Deltaproteobacteria) Desulfobul-
baceae (Fig. 3). The gene mttB encodes for a trimethylamine 
methyltransferase, suggesting a capacity for anaerobic one-
carbon metabolism (Lin et al. 2021), and it is commonly 
found in pelagic and benthic marine Rhodobacteraceae 
(Kanukollu et al. 2016; Simon et al. 2017) and in Desul-
fobacteraceae (Lin et al. 2021). The gene hdrC encodes 
for a heterodisulfide reductase and is considered essential 
in oxidative sulfur metabolism, and therefore present in 

sulfur-oxidizing prokaryotes (Boughanemi et al. 2016). In 
the context of the sulfur cycle, we identified bacteria that 
encode genes related to sulfate reduction (aprA, aprB, 
dsrA, dsrB) and thiosulfate oxidation (soxA, soxB, soxX, 
soxY, soxZ) (Fig. 3). These include taxa already known to 
be involved in these processes such as Thiogranum sp. (Mori 
et al. 2015) and Filomicrobium sp. (King 2018), Amylibacter 
sp., HTTC2089 (González et al. 2019), BMS3Bbin11 sp. 
(Kato et al. 2018), SZUA-229 (Zhong et al. 2022), FEB-10 
(recently proposed to be included as Sulfomarinibacter in 
the new family Sulfomarinibacteraceae; Flieder et al. 2021), 
GCA-001735895 (Chen et al. 2021) as well as other bacte-
rial taxa not previously recognized as being involved in this 
metabolism (e.g., PWYM01).

The stability of an ecosystem can be enhanced by meta-
bolic plasticity, in which organisms can switch between dif-
ferent metabolisms and pathways to cope with environmen-
tal changes, the availability of nutrient and energy sources 
(Biggs et  al. 2020). In our dataset, metabolic plasticity 

Fig. 3   Heatmap showing the metabolic potential of the MAGs based 
on the presence of key genes and metabolic pathways. enoyl-Coa: 
enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase; Dicarbox-
ylate-hydroxybutyrate: dicarboxylate-hydroxybutyrate cycle/hydroxy-

propionate-hydroxybutylate cycle; Reductive acetyl-CoA pathway: 
reductive acetyl-CoA pathway (Wood-Ljungdahl pathway). Asterisks 
indicate high-quality MAGs
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was observed in several members of Alpha- and Gamma-
proteobacteria, which potentially can use diverse electron 
donors such as H2 and reduced species coupled with electron 
acceptors such as O2 and nitrate and nitrite. Such plasticity 
was reported for communities found in hydrothermal vent 
systems (Anantharaman et al. 2013).

The hierarchical clustering of MAGs based on key genes, 
grouped the genomes into 7 clusters (Fig. 3), indicating 
potential functional redundancy among specific taxa. We 
ran SIMPER (Supplementary Table S8) to identify the pres-
ence of characterizing genes of each cluster. Even if each of 
the identified clusters contains at least a high-quality MAG 
(i.e., >90 % completeness; Fig. 3) which showed representa-
tive sets of characterizing genes, we are aware that in some 
cases the lack of these genes may be the consequence of the 
lower genome completeness. For this reason, we focused the 
discussion of the ‘present’ genes with respect to the missing 
ones, considering the cluster analysis an efficient approach 
to highlight distinctive patterns. Cluster 1 included 10 
MAGs, Gammaproteobacteria belonging to Arenicellales, 
Chromatiales, SZUA-229, and Thiohalobacterales. Cluster 
1 characterizing genes were: porA (Fermentation; Central 
metabolism), PRK/prkB and rbcL (Calvin cycle; Carbon 
metabolism/autotrophic pathways), soxY and soxZ (Thio-
sulfate oxidation; Sulfate metabolism). Cluster 2 clustered 
7 Alphaproteobacteria (Rhodobacterales and Hyphomicro-
biales) and one Gammaproteobacteria (Pseudomonadales). 
The genes present in Cluster 2 that contributed significantly 
to the differentiation from the others were: mttB (Methano-
genesis; Methane metabolism), coxM/cutM and coxS (CO 
oxidation; C1 metabolism), nirS (Denitrification; Nitrogen 
metabolism), soxA, soxB and soxY (Thiosulfate oxidation; 
Sulfate metabolism). Cluster 3 grouped all the 6 Deltapro-
teobacteria (Desulfobacterales) and one Acidobacteria 
(Thermoanaerobaculales). The characterizing genes in Clus-
ter 3 were: hdrC (Methanogenesis; Methane metabolism), 
cooS/acsA (Wood-Ljungdahl pathway; Carbon metabolism/
autotrophic pathways), napA (Denitrification/Dissimilatory 
Nitrate reduction; Nitrogen metabolism), aprA, aprB, dsrA, 
dsrB (Dissimilatory sulfate reduction; Sulfur metabolism). 
Cluster 4 included 8 genomes: 6 Gammaproteobacteria, one 
Actinobacteria (Acidimicrobiales) and the Cyanobacteria 
(Pleurocapsales). Cluster 4 characterizing genes were: ureA 
and ureC (Urease; Nitrogen metabolism), exaA (Fermen-
tation/alcohol dehydrogenase; Central metabolism), PRK/
prkB (Calvin cycle; Carbon metabolism/autotrophic path-
ways), and mttB (Methanogenesis; Methane metabolism) 
(Fig. 3; Supplementary Table S8). Cluster 5 was formed 
by 6 genomes belonging to different phyla (Actinobacte-
ria, Armatimonadetes, Planctomycetes and Proteobacte-
ria). The cluster was characterized by the presence of genes 
related to Central Metabolism, and from the depletion of the 
other pathways. Accordingly, the SIMPER analysis (Fig. 3; 

Supplementary Table S8) did not identify any characteriz-
ing gene. Cluster 6 grouped 8 genomes belonging to non-
Proteobacteria phyla (Actinobacteria, Bacteroidetes, Gem-
matimonadetes, Latescibacterota and Myxococcota). The 
genes present in this cluster which significantly contributed 
to differentiate it from the others were: nosZ (Denitrification; 
Nitrogen metabolism), coxS (CO oxidation; C1 metabolism), 
and adhP, korA and korB (Fermentation; Central metabo-
lism) (Fig. 3; Supplementary Table S8). Finally, Cluster 7 
was formed by 12 genomes including all the MAGs belong-
ing to Verrucomicrobia. The characterizing genes of this 
cluster belonged to Central metabolism: ackA, aldB, pta 
(Fermentation) and pckA (Gluconeogenesis) (Fig. 3; Sup-
plementary Table S8).

Functional redundancy (i.e., taxa performing similar 
functions) is thought to promote the resilience of biologi-
cal communities by increasing the buffering capacity in 
response to the loss of individuals and therefore maintain-
ing the functioning of the ecosystem (Biggs et al. 2020; 
Pan et al. 2022). We detected different bacteria encoding 
the same metabolic pathways (Fig. 3), suggesting the pres-
ence of functionally redundant microbes. For instance, all 
the members of Cluster 1 were potentially capable of carbon 
fixation via the Calvin cycle, representatives of Cluster 2 
oxidized CO. Bacteria within Cluster 1 and Cluster 3 per-
formed dissimilarity sulfate reduction, while members of 
Cluster 1 and 2 were potentially capable of thiosulfate oxida-
tion. As previously noted for metabolic plasticity, functional 
redundancy features were also found primarily in Alpha- and 
Gamma-proteobacteria, supporting the hypothesis of key 
roles of these organisms in lagoon’s ecosystem functioning. 
The presence of multiple survival strategies could enhance 
microbial adaptation to environmental changes, as well as 
the exploitation of different ecological niches (Dombrowski 
et al. 2018; Pan et al. 2022) of the heterogeneous surface 
sediment habitat of the Venice Lagoon.

The assessment of the module completeness of the 
selected metabolic pathways in the 9 high-quality MAGs 
(Supplementary Table S9) could be determined for Central 
metabolism (Glycolysis, Gluconeogenesis), Carbon metab-
olism/autotrophic pathways (Calvin cycle, Dicarboxylate-
hydroxybutyrate cycle/Hydroxypropionate-hydroxybutylate 
cycle, and Wood-Ljungdahl pathway), Methane metabolism 
(Coenzyme M biosynthesis, C1 metabolism/Methanogen-
esis), Nitrogen metabolism (Assimilatory nitrate reduction, 
Denitrification, Dissimilatory nitrate reduction, Nitrogen 
fixation) and Sulfur metabolism (Dissimilatory sulfate 
reduction, Thiosulfate oxidation by SOX complex). The 
high-quality MAGs presented complete or almost complete 
(up to 2 missing blocks) modules related to Central metabo-
lism (Supplementary Table S9). While in four MAGs (MAG 
32,29,45,47) these were the only complete modules, four 
(MAG 11,33,36,50) presented complete modules relative to 
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the Nitrogen metabolism, and five (MAG 11,28,33,36,50) to 
the Sulfur Metabolism. Noteworthy, no high-quality MAG 
presented complete Methane-related modules (Fig. 3).

Anthropogenic activity‑related functions

The impact of human-related activities requires multidis-
ciplinary and integrated management strategies to assess, 
predict and mitigate their effect on valuable, productive, 
and vulnerable coastal and transitional ecosystems like the 
Venice Lagoon. The genomes we reconstructed were investi-
gated for the presence and abundance of genes related to the 
resistance to antibiotics, to the resistance to toxic compounds 
and to the degradation of aromatic compounds (Fig. 4).

Marine sediments are considered reservoirs of genes 
bearing resistance to antibiotics and toxic compounds (e.g., 
heavy metals), representing a pool that can contribute to 
their spreading, transfer, and evolution (Vignaroli et al. 
2018; Wu et al. 2021; Yang et al. 2013). Furthermore, resist-
ance genes from contaminated sediment can be mobilized 
and resuspended in the overlaying water, posing a health risk 
particularly in coastal areas (Heß et al. 2018). In our dataset, 

all MAGs presented genes related to the resistance to anti-
biotics or toxic compounds, indicating that Venice Lagoon 
sediments represent a long-standing impacted environment. 
Microbes are therefore constantly challenged and need to 
cope with human-derived compounds from runoff waters, 
sewage, farms, tourism, traffic and industry.

Antibiotic resistance is a major health issue at a global 
level, threatening humans, animals, and the environment 
(Kim and Cha 2021; Larsson and Flach 2022). It is a criti-
cal concern within the One Health framework, which high-
lights the interconnections and interdependencies among 
these three domains (Aslam et al. 2021). The most wide-
spread antibiotic resistance genes in the MAGs were the 
ones toward Fluoroquinolones (present in 51 MAGs), fol-
lowed by Beta-lactamase (39), and Multidrug (17) (Fig. 4). 
Following Currant and coauthors (2022), we underline that 
Fluoroquinolone resistance was identified by the detection 
of DNA gyrase (topoisomerases) genes, which are not con-
clusive of the presence but only of the potential of resistance 
variants. The genes of the MAG dataset that were associ-
ated with antibiotic resistance represented a subset of the 
categories annotated in metagenomes (Banchi et al. 2021), 

Fig. 4   Presence and abundance of genes coding for anthropogenic- and microscale-related functions identified in the MAG dataset. Asterisks 
indicate high-quality MAGs. PAH: polycyclic aromatic hydrocarbons
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suggesting that these genetic traits were not homogeneously 
distributed across prokaryotic communities, as previously 
reported (Wang et al. 2019; Yang et al. 2022). While Beta-
lactamase and Fluoroquinolones resistance were distributed 
across all phyla, Streptotricin resistance was recorded only 
within (Actinobacteria) Acidimiicrobia and Vancomycin 
resistance only in (Actinobacteria) Thermoleophilia (Fig. 4).

Heavy metal pollution is one of the most significant 
sources of environmental contamination (Roane and Kel-
logg 1996) and represents a long-term selection pressure on 
microbial communities (Stepanauskas et al. 2005). Moreo-
ver, toxic compounds, including heavy metals, can support 
and co-select antibiotic resistance through different mecha-
nisms, such as co-resistance, cross-resistance, and co-regu-
lation (Baker-Austin et al. 2006; Gupta et al. 2022; Vats et al. 
2022), which may lead to greater diversity and abundance of 
antibiotic resistance genes in the microbial communities (Qi 
et al. 2021). The genes related to toxic compounds detected 
in the MAGs included all categories previously found in 
the metagenomic dataset (Banchi et al. 2021), which may 
indicate a higher prevalence of these features compared to 
antibiotic resistance ones. Copper and Cobalt-zinc-cadmium 
resistance genes were the most widespread (detected in 56 
and 45 MAGs respectively) (Fig. 4), as also recently high-
lighted in another study on Venice Lagoon sediments (Cur-
ran et al. 2022). The high abundance of toxic compounds 
resistance genes was consistent with the high concentration 
of such elements (e.g., cadmium, copper, chromium, zinc) 
in the sediment of this area (Curran et al. 2022; Zonta et al. 
2020). Beside the general reduction trend in the Lagoon due 
to sanitation measures, cadmium, copper, chromium, zinc 
concentrations are still above the international sediment 
quality guideline limits (Apitz et al. 2007; Zonta et al. 2020). 
In our dataset, all antibiotic resistant bacteria also carried 
information for toxic compound resistance (Fig. 4), a condi-
tion that may promote and therefore worsen the resistance 
genes spreading issue, heightening the urgency to enhance 
the monitoring system in the Venice Lagoon.

Genes related to the degradation pathways of various 
aromatic compounds were also found (aromatic amines, 
benzoate, biphenyls, phenols). Genes related to polycyclic 
aromatic hydrocarbons (PAHs) were the most abundant and 
evenly distributed within the MAGs: Salicylate and genti-
sate catabolism (present in 44 MAGs), followed by Genti-
sate degradation (43) and Quinate degradation (18) (Fig. 4). 
PAHs are important anthropogenic pollutants (Tobiszewski 
and Namieśnik 2012), and the presence and abundance of 
genes responsible for their degradation in the reconstructed 
genomes indicates a general influence of these persistent 
organic pollutants on lagoon microbial communities (Fig. 4, 
Supplementary Fig. S2). Indeed, PAHs (e.g., naphthalene) 
that bind to particulate organic matter tend to deposit and 
accumulate in the sediment (Hussar et al. 2012), and their 

potential toxicity may pose a hazard to humans, animals, 
and to the environment. In the Venice Lagoon, surface sedi-
ments have been assessed for PAHs contamination, largely 
due to fossil fuel combustion and, to a lesser extent, petro-
leum spills (Cassin et al. 2018; Zonta et al. 2020). PAHs 
contamination was detected across the Lagoon at a wide 
range of concentrations, with higher levels near industrial 
areas, fishing farms, and in areas impacted by car and boat 
traffic and urban waste discharge (Cassin et al. 2018; Zonta 
et al. 2020).

Microscale microbial ecological dynamics

Marine sediment is a highly structured environment, char-
acterized by chemical and organic matter gradients (Zinger 
et al. 2011), in which Bacteria are competing within micro-
scale niches for resources and fighting for living. The suc-
cessful microbes thrive given the adaptive strategies present 
in their genomes. We operationally defined microscale-
related genes in our dataset belonged to DNA metabolism 
(DNA uptake and competence), Membrane transport (ABC 
transporters, Cation transporters, Ton and Tol systems, Type 
II, Type IV), Mobilome (Pathogenicity islands, Phages and 
Prophages), and Regulation and Cell Signaling (Osmotic 
stress, Stringent Response, Toxin-antitoxin Systems) 
(Banchi et al. 2021) categories (Fig. 4). Within the above-
mentioned categories, the most frequently found genes were 
belonged to DNA uptake and competence (present in 48 
MAGs), Cation transporters (57), Phages, Prophages (23), 
and Stringent response (48) respectively. We did not identify 
a clear relationship between the microscale category genes 
and taxonomy. The emerging pattern suggested a ‘must-
have’ toolkit composed by functions related to DNA uptake 
and competence, Cation transporters, Ton and Tol systems, 
ABC transporters, osmotic stress, and stringent response. 
This indicated that the microbes living in an ever-changing 
sediment habitat such as Venice Lagoon have developed suc-
cessful adaptive strategies to efficiently uptake micronutri-
ents such as cation important cofactors of enzymes (Waldron 
et al. 2009; Waldron and Robinson 2009) and/or to export 
toxic metals outside the cells (Hagström et al. 2021; Paulsen 
and Saier 1997). Given the high diversity of transporters, a 
wide range of molecules from amino acids, sugars, inorganic 
ions and informative molecules such as DNA (Davies et al. 
2021; Finkel and Kolter 2001; Mell and Redfield 2014) are 
traded in the microbial sediment ecosystem. In Gram-neg-
ative, Tol and Ton systems have been thoroughly studied in 
the context of virulence and pathogenesis (Hirakawa et al. 
2022). The Tol system, originally port of entry for toxins 
and bacteriophages in Escherichia coli (Szczepaniak et al. 
2020) is important in stabilizing the outer membrane during 
cell division and its homeostasis. The Tol system is a major 
antibiotic efflux channel while the Ton system plays a role in 
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transporting siderophores, vitamin B12, nickel complexes, 
and carbohydrates through the outer membrane (Noinaj 
et al. 2010). From the metabolic point of view, being able to 
counteract the osmotic changes by pumping solutes into the 
cells from the environment or producing small osmolytes is 
highly valuable in a lagoon system (Wood 2015 and refer-
ence therein). The presence of functions associated with the 
stringent response indicates that microbes regularly experi-
ence starvation due to lack of nutrients and in order to persist 
they need to re-wire their metabolism and slow down gene 
expression related to rRNA, tRNA and cell division that is 
not essential, thus allocating the limited energetic resources 
for amino acid biosynthetic and stress survival pathways 
(Irving et al. 2021; Milewska et al. 2020).

Important microscale-related genes, that presented nar-
rower distributions within the MAGs, were Secretion Sys-
tem Type II and IV, toxin-antitoxin module, Pathogenicity 
islands, and Phages and Prophages (Fig. 4). Type II and Type 
IV are nanomachines that span through the inner membrane-
peptidoglycan-outer membrane sandwich-like structure of 
the Gram-negative (Costa et al. 2015). These systems secrete 
a wide range of molecules from the cytoplasm to the exte-
rior such as proteases, lipases, adhesion factors, exotoxins 
and DNA, Type II and IV specifically (Costa et al. 2015). 
Furthermore, Type IV is structurally a pilus that can extend 
and retract to allow a non-flagellar based motility, thus also 
favouring adhesion and biofilm formation (Ligthart et al. 
2020). Mobile genetic elements are pervasive features of 
microbial life (Koonin et al. 2020), and they come in dif-
ferent shapes and are very heterogeneous. Phages, inser-
tion sequences, transposons and plasmids are part of the 
mobilome. Over evolutionary time, gene swapping has 
contributed to evolution and high diversity of structure and 
functions at the microbial level (Koonin et al. 2020). To per-
sist, the mobilome, being by definition not part of the regular 
cellular genes, needs to have some degree of selfishness such 
as the toxin-antitoxin system or the use of the lytic phage 
strategy (Van Melderen and Saavedra De Bast 2009). The 
picture that the MAGs describe is a dynamic genetic land-
scape that changes upon horizontal gene transfer, carrying 
diverse mobile genetic elements. Some of them, the phages, 
ultimately, also control the microbes at the population level 
to persist in the environment.

Biosynthetic gene clusters

Marine microorganisms are constantly interacting and com-
peting with other microbes for resources and nutrients. A 
key strategy to thrive within the highly competitive environ-
ment is the microbial production of bioactive compounds/
secondary metabolites (Gozari et al. 2021; Patin et al. 2017). 
Within this category, there are compounds with pharma-
ceutical and biotechnological applications, antimicrobial 

potential, antibiotics, drugs, and siderophores. Such metab-
olites are commonly produced by pathways in which the 
genes involved are clustered locally on the chromosome: 
the Biosynthetic Gene Clusters (BGCs) (Blin et al. 2021). 
For this reason, we examined our dataset for the presence 
of BGCs, important for future bioprospecting research of 
unexplored ecological niches (Paoli et al. 2022).

Biosynthetic gene clusters analysis in the MAG data-
set revealed that 53 out of 58 genomes contained at least 
one BGC belonging to 22 different classes (Fig. 5). Such 
array highlighted a wide range and a variable distribution 
pattern among genomes, including clusters related to (i) 
antimicrobial potential (e.g., ribosomally synthesized and 
post-translationally modified peptides, RiPPs, including 
Thipeptides and Ranthipeptide, beta-lactone, non-alpha 
poly-amino acids like e-polylysin), (ii) pharmaceutical and 
biotechnological potential (e.g., Thioamitide RiPPs, polyke-
tide synthases Type I and Type III), (iii) Quorum Sensing 
(e.g., Homoserine lactone), (iv) siderophore biosynthesis 
(e.g., NRPS-independent-siderophore), (v) osmotic stress 
response (e.g., ectoine).

The most widespread BGCs were terpenes (present in 
29 MAGs) (Fig. 5). Their prevalence is a common feature 
in benthic communities (Bruce et al. 2022), and sediments 
are considered the main source of terpene producing micro-
organisms within the marine environment (Gozari et al. 
2021). Terpenes are the largest group of natural products 
that play important roles in organism interactions, mecha-
nisms defense, and physiological functions (e.g., antioxi-
dant properties, membrane stabilization) (De Carvalho and 
Fernandez 2010; Gershenzon and Dudareva 2007). Several 
terpenes isolated from sediment bacteria have been found 
to have cytotoxic and antimicrobial properties, such as the 
meroterpenoid ctinoranone (Nam et al. 2013) and the bromo-
phenazinone meroterpenoids marinocyanins (Asolkar et al. 
2017). Marine Actinobacteria are commonly found as the 
largest source of these natural products (Gozari et al. 2021; 
Manivasagan et al. 2014), whereas in our BGC dataset Pro-
teobacteria scored as major producers (Fig. 5). The Venice 
Lagoon spectrum of BGCs showed a broad phylogenetic dis-
tribution. We believe that such microbial communities, with 
their high biosynthetic capacity, may be good candidates 
for exploring BGCs with more targeted approaches such as 
single-cell isolation and sequencing (Geers et al. 2021) and 
culture-based studies coupled with chemical identification 
by MALDI-based imaging mass spectrometry (Fang and 
Dorrestein 2014).

MAGs overview

To depict the comprehensive picture of the MAG microbial 
metabolic processes and adaptations in the surface sediment 
of the Venice Lagoon, we have performed a cluster analysis 
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based on presence/absence data of the functional annota-
tions (Supplementary Fig. S3). The clustering highlighted 
the most prevalent and relevant features of the reconstructed 
genomes, represented by traits spanning throughout all 
investigated categories.

It has emerged that top “must have” strategies were glyco-
lysis and fermentation, DNA competence, cation transport-
ers, thus including Copper, Cobalt, Zinc, Mercury, and Cad-
mium followed by the stringent response and the osmotic 
shock regulation, the antibiotic resistance (i.e., Beta-lacta-
mase, Fluoroquinolones), and the ability to degrade xeno-
biotic compounds (e.g., PAHs). Deltaproteobacteria and 
a group of Gammaproteobacteria (e.g., Thiogranum sp., 
BMS3Bbin11 sp.) were characterized by dissimilatory sul-
fate reduction and thiosulphate oxidation potential. Further-
more, Deltaproteobacteria were described by many annota-
tions within N cycle whereas the Gammaproteobacteria by 
CO2 transformation into biomass genes. Terpene and NRPS 
were enriched in Alphaproteobacteria, Bacteroidetes, and 
Verrucomicrobia.

Overall, the potential to live without oxygen emerged as 
one of the most important requirements to flourish in the 
recurrent conditions of oxygen depletion in these sediments. 

Mixotrophy was another widespread feature that allows 
microbes to flexibly use different energy sources. The com-
plex sediment environment influenced the presence of niches 
at the microscale level, where microbes can live and thrive 
with tailored strategies, such as micronutrient transport, 
DNA uptake and detoxification potential. The microscale 
local environment is intrinsically linked to the landscape 
of secondary metabolites. Most MAGs encoded for a broad 
range of biosynthetic gene clusters that may be useful in 
interacting with other microbes for energy and resource 
management and highlighted a great biotechnological 
potential of the sediment communities. The Venice Lagoon 
presents high levels of contamination (Cassin et al. 2018; 
Zonta et al. 2020), which affects the diversity, function, and 
structure of microbial communities in the surface sediment 
(Banchi et al. 2021; Lyautey et al. 2021). Our results showed 
that all anthropogenic activities (e.g., tourism, waste dis-
charge, industry, farms, transports) have impacts on genetic 
resistance potential to antibiotics and heavy metals, as well 
as on the capacity to degrade aromatic compounds, espe-
cially PAHs.

Fig. 5   Heatmap of the biosyn-
thetic gene clusters (BGCs) 
detected in the MAG dataset. 
Asterisks indicate high-quality 
MAGs. Betalactone: beta-lac-
tone containing protease inhibi-
tor; PKS: polyketide synthase; 
hglE-KS: heterocyst glycolipid 
synthase-like PKS; hserlactone: 
homoserine lactone cluster; 
NAGGN: N-acetylglutami-
nylglutamine amide; NAPAA: 
non-alpha poly-amino acids like 
e-Polylysin; NRPS: non-riboso-
mal peptide synthetase cluster; 
NRPS-ind-sid: NRPS-inde-
pendent-siderophore; RiPP-like: 
ribosomally synthesised and 
post-translationally modified 
peptide product cluster; RRE: 
RiPP recognition element
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Conclusion and future perspectives

The analysis of the reconstructed MAGs revealed that the 
surface sediment bacteria of the Venice Lagoon can cope 
with environmental pressures and may enhance the ecosys-
tem stability and resilience by integrating different strate-
gies: (i) metabolic plasticity as different bacteria may use 
multiple energy metabolic strategies, (ii) functional redun-
dancy with microbes capable of using the same metabolic 
pathways, and (iii) high biosynthetic potential with the pres-
ence of genes clusters encoding for a wide array of second-
ary metabolites production.

Our study represents the first effort to investigate genome-
resolved metagenomics in the sediments of the Venice 
Lagoon. ‘Omics’ technologies enable the detailed study of 
prokaryotic communities in terms of biodiversity, dynamics, 
ecological role, and identification of important functional 
traits that can improve existing environmental monitoring 
and management tools (Bourlat et al. 2013; Pinhassi et al. 
2022). In the perspective of increasing the number and the 
quality of MAGs, future experimental designs should expand 
both the sampling site coverage (e.g., including the Venice 
city canals) and the vertical stratification (e.g., deeper core 
layers), as well as the sequencing effort and approach (e.g., 
the coupling with third generation sequencing platforms). 
This study represents an advance in the knowledge of sur-
face sediment bacteria in the Venice Lagoon, allowing the 
definition of their ecological niches, their functional char-
acterization, the distribution of ecosystem services, and the 
impact of human activities, completing and integrating com-
munity-level assessment using metagenomic data (Banchi 
et al. 2021; Pinhassi et al. 2022).
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