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Abstract
The large yellow croaker (Larimichthys crocea) is one of the most economically valuable marine fish in China and is a 
notable species in ecological studies owing to a serious collapse of wild germplasm in the past few decades. The stock divi-
sion and species distribution, which have important implications for ecological protection, germplasm recovery, and fishery 
resource management, have been debated since the 1960s. However, it is still uncertain even how many stocks exist in this 
species. To address this, we evaluated the fine-scale genetic structure of large yellow croaker populations distributed along 
the eastern and southern Chinese coastline based on 7.64 million SNP markers. Compared with the widely accepted stock 
boundaries proposed in the 1960s, our results revealed that a climate-driven habitat change probably occurred between the 
Naozhou (Nanhai) Stock and the Ming-Yuedong (Mindong) Stock. The boundary between these two stocks might have 
shifted northwards from the Pearl River Estuary to the northern area of the Taiwan Strait, accompanied by highly asymmetric 
introgression. In addition, we found divergent landscapes of natural selection between the stocks inhabiting northern and 
southern areas. The northern population exhibited highly agminated signatures of strong natural selection in genes related 
to developmental processes, whereas moderate and interspersed selective signatures were detected in many immune-related 
genes in the southern populations. These findings establish the stock status and genome-wide evolutionary landscapes of 
large yellow croaker, providing a basis for conservation, fisheries management and further evolutionary biology studies.
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Introduction

The large yellow croaker (Larimichthys crocea) is a 
marine fish that lives in the northwestern Pacific, gener-
ally in temperate nearshore seas and estuaries. The great 
abundance of fishery resources made it an economically 
important species in Northeast Asia, including China, 
Korea, and Japan. However, due to serious overfishing, 
wild populations of this species have suffered a serious 
collapse since the 1970s (Liu and De Mitcheson 2008; 
Orleans and Davidson 1980). Cultured fish rapidly took 
the place of ocean-caught fish in the market. The Chinese 
marine culture industry currently produces over 250,000 
tons of large yellow croaker, ranking first among mari-
culture fish species (China Fishery Statistical Yearbook 
2021). Despite rapid development in the past decades, 
the industry has faced considerable challenges related to 
germplasm recession, manifested as declines in growth 
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rate, feed conversion ratio, and disease resistance, which 
may be caused by low genetic diversity in cultured popula-
tions (Wang et al. 2012).

Owing to the important implications for ecological pro-
tection, germplasm recovery, and fishery resource manage-
ment, the population structure of large yellow croakers 
has been a highly controversial topic from the 1960s to 
the present. In the 1960s, some researchers proposed that 
there are three main large yellow croaker stocks along the 
Chinese coastline based on morphological data: Naozhou 
stock (NZ, distributed in the west South China Sea), Min-
Yuedong stock (MYD, distributed in the eastern South 
China Sea and Taiwan Strait), and Daiqu stock (DQ, dis-
tributed in the East China Sea) (Tian et al. 1962; Xu et al. 
1963). However, this proposition has been challenged. 
For example, there is evidence that large yellow croak-
ers throughout the South China Sea belong to the same 
stock (Chen and Xu 2012; Li et al. 2013; Xu and Chen 
2011). Despite the application of molecular genetic mark-
ers in recent years, the population structure of the large 
yellow croaker has not been clearly resolved. For example, 
an unweighted pair-group method with arithmetic mean 
(UPGMA) tree based on eight strictly selected simple 
sequence repeats (SSRs) supported the division of the spe-
cies into NZ, MY, and DQ stocks (Lin et al. 2012). How-
ever, another study based on SSR markers did not identify 
genetic differentiation among geographical populations 
of large yellow croakers (Wang et al. 2012). Wang et al. 
(2012) used ten SSR markers that were initially developed 
for the small yellow croaker. Although these two species 
are closely related, levels of polymorphism of these marks 
in large yellow croaker populations were lower than those 
reported by Lin et al. (2012), which might explain the lack 
of phylogenetic resolution.

Single nucleotide polymorphisms (SNPs), as a new 
generation of genetic markers, are plentiful in the genome 
and easy to access. Population structure has been assessed 
based on genome-wide SNPs in many fishes, such as 
sharks (Junge et al. 2019), coral reef fishes (Picq et al. 
2016), and sea bass (Zhao et al. 2018). In addition, high-
density and genome-wide SNPs can be used to scan for 
evidence of fine-scale local adaptation, which may facili-
tate studies of the genetic basis for long-term microevolu-
tion in populations inhabiting different sea areas.

Herein, we employed next-generation sequencing to 
detect genome-wide SNP markers in large yellow croaker 
populations distributed along the eastern and southern 
Chinese coastline. We evaluated the fine-scale genetic 
structure and patterns of introgression and isolation in the 
species. In addition, we detected signatures of selection 
across the genome to investigate the mechanism underly-
ing adaptive evolution in populations in different habitats.

Results

Sequencing and SNP discovery

We collected 104 large yellow croakers from 8 sites 
(Fig. 1A; Table S1 in Supplementary file 1), including 
Zhoushan (ZS), Fuding (FD), Fufa (FF), Dayushan (DY), 
Pingtan (PT), Dongshan (DS), Zhanjiang (ZJ) and Xuwen 
(XW). We conducted genome resequencing and initial 
variant discovery based on these samples. We obtained 
1191.42 Gbp of raw data (Table S2 in Supplementary file 
1) and 8.25 million high-quality SNPs. Since elevated 
levels of linkage disequilibrium (LD) could result in the 
overrepresentation of some regions in the analysis of pop-
ulation structure, we used LD-based SNP pruning and gen-
erated a subset of SNPs containing 7.64 million markers 
(Fig. S1 and Table S3 in Supplementary files). All popula-
tion genetic analyses were based on this pruned SNP set.

Genetic diversity and population structure

We estimated basic population genetic parameters to 
determine the status of each population (Table  S4 in 
Supplementary file 1). We first employed the K-means 
clustering method to partition values into two groups for 
each parameter. Then, we used one-way analysis of vari-
ance (ANOVA) to compare the two groups. For observed 
heterozygosity (HO) and the inbreeding coefficient (F), 
populations were partitioned into Zhoushan (ZS), Fuding 
(FD), and Zhanjiang (ZJ) vs. the other five populations. 
The ZS-FD-ZJ group had significantly lower HO values 
and higher F values than the other group (P = 0.00445 and 
0.00440, respectively), indicating higher levels of inbreed-
ing. Based on expected heterozygosity (HE) and nucleotide 
diversity (π), populations were partitioned into FD and 
ZJ vs. the other six populations. The FD and ZJ popula-
tions had significantly lower HE and π values than that of 
other populations (P = 0.00184 and 0.00384, respectively). 
These results suggest that large yellow croakers inhabit-
ing these areas (i.e., ZS, FD and ZJ) have relatively low 
genetic diversity.

We then investigated the genetic structure of these 
populations via multiple methods. A principal component 
analysis (PCA) revealed that the sampled large yellow 
croakers can be divided into three distinctive stocks, i.e., 
Nanhai (NH), Mindong (MD) and Daiqu (DQ) (Fig. 1C). 
The NH stock was distributed in the South China Sea and 
the Taiwan Strait. The MD stock included three popu-
lations distributed near the Taiwan Strait: FF, DY, and 
FD. The DQ stock was formed by the ZS population. 
The genetic structure of these populations was clearly 
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supported by ancestry proportions (Fig. 1D; Fig. S2 in 
Supplementary file 2). The K-value was set to 2 initially 
and updated by adding 1 for each repetition. When K = 
2, the DQ stock and MD stock shared the same ancestry, 
while the NH stock was assigned to a separate group. In 
the model with K = 3, each of the three stocks identified by 
PCA had a unique hereditary constitution. And no addi-
tional effective information can be provided when set K 
greater than 3. Mixed ancestry was less common in the 
NH stock than in the other stocks. Gene introgression was 
generally in the direction of southern to northern popula-
tions. A phylogenetic tree constructed based on polymor-
phic SNPs using the maximum likelihood (ML) algorithm 
also revealed a very clear population structure coinciding 

with the results of the PCA and ancestry proportion analy-
sis (Fig. S3 in Supplementary file 2).

Genome‑wide introgression pattern 
between the NH and DQ stocks

Shared haplotypes, also known as identity-by-descent seg-
ments, are valid indicators of introgression events among 
populations and stocks (Nagata et al. 2007). We identi-
fied 1.32 million shared haplotypes with a mean length 
of 19.659 kbp between all pairs of populations. The MD 
stock had much more inner-shared haplotypes than the NH 
stock, confirming their high level of inbreeding (Fig. S4 in 
Supplementary file 2). We identified a moderate-to-strong 
negative correlation (Spearman coefficient = − 0.706 and 

Fig. 1  Population genetic analyses reveal a putative habitat change 
between large yellow croaker stocks. Geographical overview of 
sample sites and distribution of different stocks in the 1960s (A) 
and 2010s (B). Stock distributions are indicated by translucent ellip-
ses covering sample sites. Colors indicate the annually averaged sea 
surface temperatures (SST). C Principal component analysis (PCA) 
based on SNP data reveals that large yellow croaker populations can 
be divided into three stocks. Confidence ellipses were drawn at 95% 
significance levels. D Ancestral admixture among geographical popu-
lations of large yellow croaker. The number of populations was set to 

2–4. E The relative shared haplotype frequency (rSHF) index reveals 
asymmetric introgression between NH and MD stocks. Positive 
rSHFs indicate stronger introgression from the NH stock to the MD 
stock. The dashed lines in the positions of |rSHF| = ± 2.5 indicate the 
threshold used to detect asymmetric introgression. The upper-left bar 
plot shows the total number segments associated with symmetric and 
asymmetric introgression. F Scatter plot shows a significant negative 
linear correlation between rSHF and Rsb. Colors of dots represent the 
three types of natural selection in the NH stock: nearly fixed (NF), 
recently selected (RS), and undetermined (UD)
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P = 2.691E−5) between the total length of shared haplo-
types and position along the coastline. Populations closer 
to the two ends of the habitats (ZS and XW), in general, 
showed longer shared haplotypes (apart from ZJ and FD).

After dividing the genome into 25 kbp sliding windows 
(matching the windows used for the detection of selec-
tion), 55,694 windows overlapped with shared haplotypes 
between the PT and FF populations (the two adjacent sam-
ple sites flanking the boundary between the NH and MD 
stocks, Table S5 in Supplementary file 1). The time since 
the habitat changed is insufficient for the spread of intro-
gressed segments to other sites in the new stock. Therefore, 
shared haplotypes in these segments should be more fre-
quent within the original stock. Based on this concept, we 
determined the direction of introgression events by compar-
ing the normalized shared haplotype frequencies (nSHFs) in 
the NH and MD stocks. The NH stock had an average nSHF 
that was 2.7 times higher than that of the MD stocks in the 
PT-FF shared haplotypes. Among these, 11,585 windows 
had  log2-transformed relative SHFs (rSHFs) higher than 2.5, 
implying a higher chance that they originated from the NH 
stock. However, only 1763 windows had rSHFs lower than 
− 2.5 (Fig. 1E).

Moreover, we found that the rSHF values had an appre-
ciable linear correlation with Rsb (R2 = 0.151) but not with 
Fst or Pi (Fig. 1F; Figs. S5, S6 in Supplementary file 2). 
In addition, both Pearson and Spearman coefficients indi-
cated that there is a moderate negative correlation (Pearson 
coef. = − 0.388 and Spearman coef. = − 0.362) between 
Rsb and rSHF (Fig. 1F). Among 173 windows identified 
as NH-RS PSRs and associated with introgression between 
PT and FF populations, only nine had rSHF values less 
than 2.5, whereas no DQ PSR was associated with such 
introgressions.

Isolation among large yellow croaker populations

Taking advantage of the high density of SNP markers, 
we calculated the genome-wide average fixation index 
(Fst), which indicates the degree of genetic differentiation 
between a pair of populations. Pairwise Fst values were 
0.0356 ± 0.0212 (range, 0.0023–0.0626; Fig. S7 in Supple-
mentary file 2).

Isolation-by-distance (IBD) and isolation-by-environment 
(IBE) are the two most common patterns explaining genetic 
distances in wild animal populations (Sexton et al. 2014), 
referring to the accrual of local genetic variation dispersed 
under geographical and environmental constraints, respec-
tively. We modeled genetic differences based on the distance 
along the coastline (Dcsl), the “as the crow flies” distance 
(Dcrf), the distance along latitudes (Dlat), and the difference 
by maximum, minimum, and mean SST  (SSTmax,  SSTmin, 
and  SSTmean) using ordinary least squares (OLS) to identify 

significant patterns among large yellow croaker populations 
(Table S7 in Supplementary file 1). The best IBD model was 
obtained using Dlat (P = 4.77E-04, R2 = 0.380) (Fig. 2A). The 
other two geographic factors, Dcrf (P = 0.040, R2 = 0.152) 
and Dcsl (P = 0.018, R2 = 0.197), did not show significant 
effects on the genetic differentiation of these populations 
(Table S8 in Supplementary file 1). Among climatic vari-
ables, both  SSTmean (P = 8.80E−05, R2 = 0.452) and  SSTmin 
(P = 5.25E−05, R2 = 0.473) were important determinants of 
genetic differentiation among large yellow croaker popu-
lations (Fig. 2A, B; Table S8 in Supplementary file 1), 
whereas  SSTmax was not a significant predictor.

Although the magnitude of the effects of predictors dif-
fered, a simple comparison among significant predictors 
(Dlat,  SSTmin, and  SSTmean) might be unreliable due to the 
high multicollinearity (VIF = 60.31, 71.59, and 220.64, 
respectively). Hence, we employed three additional meth-
ods robust to multicollinearity to decompose the variance 
explained by the multiple linear regression (MLR) model. 
We employed LASSO (least absolute shrinkage and selec-
tion operator) regression and elastic net regression to 
rebuild the MLR model and disentangle the unique con-
tributions of predictors in the MLR model by a weighting 
procedure (Nimon and Oswald 2013). The LASSO regres-
sion suggested that  SSTmin is the only meaningful predic-
tor of genetic distance, with a coefficient of 0.765 and an 
R2 value of 0.461. A model with a slightly higher R2 value 
was obtained by Elastic Net regression combining  SSTmin 
and  SSTmean (Table S9 in Supplementary file 1). These two 
predictors had positive coefficients (0.559 and 0.270, respec-
tively) in the model. All weighted MLR indices also sup-
ported the importance of  SSTmin and  SSTmean. The validity, 
structure, and commonality coefficient ranked  SSTmin as the 
most effective predictor.  SSTmean had the greatest impor-
tance among predictors by unique coefficients, general domi-
nance, and relative weights (Table 1).

Genomic landscape of signals of positive selection

We identified 636 and 304 windows as positively selected 
regions (PSRs) in the DQ and NH stocks, respectively 
(Fig. 2C; Fig. S8, Table S10 in Supplementary files). We 
grouped windows by the type of selective pressure: nearly 
fixed (NF), recently selected (RS), and undetermined (UD). 
The number of NF PSRs was nearly 8.5 times that of RS PSRs 
(727 vs. 86). The merged NF PSRs were only approximately 
five times longer than RS PSRs (5.16 Mb vs. 9.95 Mb). The 
Kolmogorov–Smirnov test also suggested that RS PSRs 
showed a more uniform distribution than that of NF PSRs 
(P = 6.00E−25 vs. P = 8.72E−189). Notably, 89.47% of DQ 
PSRs were near fixation, whereas only 0.16% of PSRs were 
under recent positive selection. In contrast, 51.97% of NH 
PSRs were near fixation and 27.96% of NH PSRs showed 
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Fig. 2  Isolation pattern and genome landscape of selective signatures 
of large yellow croaker stocks. A OLS regression shows a strong lin-
ear correlation between the genetic distance and the differences in 
annual mean SSTs  (SSTmean). Colors represent comparisons across or 
within different stocks. B OLS regression shows a strong linear cor-
relation between genetic distance and annual minimum SST  (SSTmin) 
differences. Colors represent comparisons across or within different 
stocks. C UpSet plot shows how PSRs were identified and classified. 
The combination matrix in the lower left shows all possible intersec-

tions of the five sets of outlier genomic regions. The horizontal bar 
plot on the lower right shows the sizes of these sets. The bars above 
the combination matrix indicate the numbers of outliers belonging to 
each intersection. D Bar graph shows the difference in the classifica-
tion of PSRs between the DQ and NH stocks. E Signatures of selec-
tion around the longest PSR (highlighted by a pair of black dashed 
lines). Colored dashed lines indicate the thresholds for outlier iden-
tification. Magnified view at the bottom shows positively selected 
genes (PSGs) located in this PSR

Table 1  Weighted multiple linear regression indices showing the dissection of the unique contributions of geographic and climatic predictors

Predictors Validity coefficient Structure coefficient Squared structure coefficient Unique coefficient

Dcsl 0.443 0.456 0.208 0.012
Dlat 0.616 0.633 0.401 0
Dcrf 0.390 0.400 0.160 0.035
SSTmax 0.358 0.367 0.135 0.036
SSTmin 0.688 0.707 0.499 0.132
SSTmean 0.673 0.691 0.478 0.136
Total NA NA 1.881 0.351

Predictors Commonality coefficient General dominance Relative weight

Dcsl 0.185 0.124 0.124
Dlat 0.380 0.173 0.184
Dcrf 0.116 0.126 0.111
SSTmax 0.091 0.097 0.107
SSTmin 0.341 0.203 0.205
SSTmean 0.317 0.223 0.216
Total 1.430 0.946 0.947
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evidence of recent positive selection (Fig. 2D). We further 
examined whether the five types of PSRs showed significant 
differences in other indicators of selection (excluding the 
DQ-RS PSR owing to the extremely small sample size). NF 
PSRs had significantly higher values than those of RS PSRs 
for all indices except Rsb, which is very sensitive to the onset 
time of selection (Fig. S9, Table S11 in Supplementary files).

Candidate genomic regions and functional genes 
under selection

We found that the degree of overlap of RS PSRs was 63% 
higher than that of NF PSRs (0.463 vs. 0.284). Moreover, NF 
PSRs overlapped with 153 functional genes with a total over-
lap length of 2.29 Mb and a generic sequence proportion of 
44.34%, whereas only 13 genes overlapped with RS PSRs, 
resulting in a generic sequence proportion of 27.80%. The 
largest PSR was a DQ-NF type PSR located between 17.97 
and 19.24 Mb on Chromosome 7 with a length of 1.27 Mb 
(Fig. 2E). This PSR also had the highest gene density (33.07 
gene/Mb) among all PSRs longer than 100 kb. These results 
suggest that stronger NF selective signatures are more une-
venly and non-randomly distributed in the large yellow croaker 
genome and tended to be gathered around generic regions that 
directly affect fitness. Signatures of relatively weak RS selec-
tion were dispersed around the nongenic regions, providing 
slight advantages.

We identified 162 positively selected genes (PSGs) and 
divided them into six categories based on the type of PSR with 
which they overlapped (Fig. S10, Table S12 in Supplementary 
files). These included 107 and 55 unique DQ and NH PSGs. 
We then performed an overrepresentation analysis (ORA) fol-
lowed by enrichment analyses to identify biological processes 
and clusters associated with climatic adaptation (Table S13 in 
Supplementary file 1). DQ PSGs were enriched in 16 func-
tional categories, including 12 GO Biological Processes, 2 
Reactome Gene Sets, and 2 KEGG pathways, involving 38 
unique functional genes. It is worth noting that 10 of 16 terms 
were closely linked to the developmental processes, such as 
"regulation of angiogenesis" (GO: 0,045,765), "ear develop-
ment" (GO: 0,043,583), and "pronephros development" (GO: 
0,048,793). The development-related terms involved 25 DQ 
PSGs. Nearly half of these (12) were located on the longest 
PSR on Chromosome 7. The NH PSGs were enriched in nine 
GO Biological Processes and one KEGG pathway, involv-
ing 29 unique PSGs. Among these, five terms were related 
to immune system processes or responses to stimuli, such as 
“leukocyte differentiation” (GO: 0002521), “lymphocyte dif-
ferentiation” (GO: 0030098), and "double-strand break repair" 
(GO: 0006302).

Discussion

Classification of wild large yellow croaker 
populations and recent habitat changes

Although the classification of wild large yellow croaker 
populations in coastal waters of China has been debated 
for a long time, this issue remains unresolved. By a 
detailed literature search, we identified two general views. 
The traditional division is the DQ-MYD-NZ three-stock 
system initially proposed by Tian and Xu in the 1960s 
(Tian et al. 1962; Xu et al. 1962, 1963) and confirmed by 
subsequent studies (Lin et al. 2012; Zhang et al. 2011). 
In contrast, many other researchers believe that only two 
stocks exist by combining the DQ and MYD stocks (Chen 
and Xu 2012; Chen et al. 2016; Li et al. 2013; Wang et al. 
2012; Xu and Chen 2011). Our genome-scale population 
genetic analysis revealed at least three wild large yellow 
croaker stocks. Fish inhabiting the East China Sea and the 
Yellow Sea were divided into two distinct stocks based on 
genetic differentiation (Fig. 1C, D; Figs. S2, S3 in Sup-
plementary file 2).

Most previous studies suggesting that large yellow 
croakers inhabiting the East China Sea and the Yellow 
Sea belong to the same stock are based on a very limited 
number of genetic markers, which may not be sufficiently 
powerful to evaluate genetic differentiation. Our results 
were not in complete agreement with the traditional divi-
sion. It was initially proposed that two stocks inhabit the 
South China Sea and waters near the Taiwan Strait with 
the Pearl River Estuary as a boundary (Tian et al. 1962; 
Xu et al. 1962, 1963), whereas our results suggest that the 
boundary between these two stocks is the Taiwan Strait. 
Hence, we rename these the Nanhai (NH) and Mindong 
(MD) stocks. This disagreement in the boundary between 
stocks may be explained by the variation in morphological 
traits used by Tian and Xu to divide the stocks. Alterna-
tively, it may be explained by a habitat shift over time. In 
the past few decades, the MYD wild germplasm resources 
collapsed after overexploitation in the coastal region of 
southeastern China, making the area between the Pearl 
River Estuary and Taiwan Strait an ecological space for 
large yellow croakers. In addition, global climate change 
resulted in a dramatic increase in sea surface temperature 
(SST) in China's coastal waters. In waters near the Taiwan 
Strait from the 1960s to 2010s, the mean monthly average 
SST increased by 0.5–0.9 °C (Fig. 1A, B). The large yel-
low croaker has a relatively limited tolerance to cold and 
hot environments, making it highly sensitive to climate 
change (Chen and Wu 2011; Gao et al. 2010; Liu et al. 
2019; Qian and Xue 2016; Zhang et al. 2002). Therefore, 
we suppose that climate change promoted the expansion 
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of the NH (NZ) stock habitat to the space left by the MD 
(MYD) stock. It is widely accepted that the population 
distribution and habitat range of fish species are very sen-
sitive to climate change (Jeppesen et al. 2010; Munday 
et al. 2012; Pinsky et al. 2019).

Local extinction events are common in fish. For example, 
the Aral Sea stock of ship sturgeon (Acipenser nudiventris) 
and the Adriatic Sea stock of beluga sturgeon (Huso huso) 
have become extinct (Birstein 1993; Birstein et al. 1997). 
The observed distribution of the MD stock is already very 
narrow. If the SST of adjacent waters north of the Taiwan 
Strait continues to increase at the present rate, the MD stock 
will either migrate to more northern areas or completely 
lose their habitat. Considering that the MD stock accounts 
for the vast majority of aquaculture production of large yel-
low croakers (China Fishery Statistical Yearbook 2021), the 
aquaculture industry will suffer considerable damage with-
out introducing germplasm from the NH stock or effective 
breeding for heat tolerance.

Asymmetric introgression between the NH and MD 
stocks provides evidence for recent habitat change

Our results revealed that genetic introgression across the 
boundary between the NH and MD stocks is highly direc-
tional (Fig. 1E, F). Over 6.5 times more segments intro-
gressed from the NH to the MD stock than the reverse. 
Asymmetric introgression is frequently reported and is con-
sidered a result of habitat changes in many species, includ-
ing mammalians (Levanen et al. 2018), birds (Peters et al. 
2017), amphibians (Sequeira et al. 2020), and fishes (Sefc 
et al. 2019). This finding supports our hypothesis that the 
NH stock expanded their habitat and invaded the territory 
of MD stock in the past few decades.

Asymmetric introgression is more likely to occur when 
the genomic segments confer a selective advantage (Jezkova 
et al. 2013; Melo-Ferreira et al. 2005). We identified a low-
to-moderate correlation between the rSHF and Rsb statistics 
(Fig. 1F). This finding demonstrated that the introgressed 
regions contain much stronger extended haplotype homozy-
gosity signals in the NH stock than in the DQ stock. Pos-
sibly due to genetic hitch-hiking and the short time since 
introgression, the RS regions had a significantly higher level 
of asymmetric introgression than that in the NF and UD 
regions (Fig. 1F). A similar association was also discovered 
in European pigs for an extremely long introgressed region 
and improved reproductive traits (Bosse et al. 2014). A pre-
vious genome-wide association study identified five SNPs 
significantly associated with acute heat tolerance in the 
MD stock (Wu et al. 2021). Among these, three were close 
(< 25 kbp) to windows with positive rSHF values, indicating 
that the asymmetric introgression from the NH stock may 
confer better heat tolerance in the MD stock (Table S6 in 

Supplementary file 1). This also presents a challenge for the 
maintenance of the unique MD stock germplasm, particu-
larly if introgression from the NH stock is further enhanced 
by global ocean warming.

Isolation‑by‑environment instead 
of isolation‑by‑distance impacted genetic 
differentiation

The relative roles and importance of drift and selection, two 
common drivers of genetic differentiation, is a longstand-
ing topic (Abdel-Haleem 2007; Nei 1987). This issue can 
be addressed by evaluating the correlation of the genetic 
distance with geographic distance and environmental dis-
similarity (Jiang et al. 2019). Significant correlations with 
geographic distance and environmental dissimilarity sug-
gest that genetic drift and natural selection, respectively, are 
important determinants of population structure (Barnes et al. 
2016; Kawecki and Ebert 2004). However, it is not clear 
whether gene flow in the large yellow croaker follows a pat-
tern of IBD or IBE. In this study, we modeled relationships 
between genetic distances and geographic distances in an 
IBD analysis, and with sea surface temperatures (SSTs) in 
an IBE analysis. Although a number of environmental fac-
tors, such as salinity, dissolved oxygen, and  pCO2, impact 
fish physiology, continuous long-term and broad-scale data 
are often lacking for these factors. Moreover, temperature is 
widely considered the most vital environmental factor for 
fish population dynamics and distributions (Campana et al. 
2020; Geraldi et al. 2019; Loeng 1989).

Although IBD has been identified as a very important 
pattern in many marine fishes, such as tupong (O'dwyer et al. 
2021), grayling (O'dwyer et al. 2021), and red drum (Hol-
lenbeck et al. 2019), the role of environmental heterogene-
ity in genetic differentiation was much greater than that of 
geographic distance in the large yellow croaker (Fig. 2A, B; 
Table S8 in Supplementary file 1). The only significant geo-
graphic factor, Dlat, was falsely positive due to its extremely 
strong correlation to SST based on further MLR analyses 
(Table 1; Table S9 in Supplementary file 1). The large yel-
low croaker produces pelagic eggs (Li et al. 2021), so indi-
viduals drift for a long distance in the early life stages (Wang 
et al. 2021). The excellent swimming ability of mature fish 
allows them to migrate across physical barriers for feeding, 
spawning, and overwintering (Xu and Chen 2011; Zhang 
2015). Since easy dispersal weakens the effect of IBD in 
some species (Crispo and Hendry 2005; Phillipsen et al. 
2015), we suggest that this is also the primary reason for 
the substantial genetic differentiation among large yellow 
croaker populations without an obvious IBD pattern.

These results also suggest that genetic differentiation in 
large yellow croakers was highly related to the annual mean 
and minimum SST. To some extent, this finding is consistent 
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with our previous hypothesis that temperature has driven 
the habitat alterations in different large yellow croaker 
stocks in the past few decades. Similar results supporting 
the greater role of IBE than IBD were obtained in other 
species, such as kelp bass (Paralabrax clathratus), Kellet's 
whelk (Kelletia kelletii), California spiny lobster (Panuli-
rus interruptus), and Pacific ridley (Lepidochelys olivacea) 
(Rodriguez-Zarate et al. 2018; Selkoe et al. 2010). Moreo-
ver, Sexton et al. (2014) summarized 70 studies of various 
species and determined that IBE is more closely related to 
genetic difference than is IBD in the natural environment. 
Our findings also revealed that lethal cold in the winter had 
a much greater impact on patterns of population differentia-
tion than that of hot weather in the summer. The DQ stock 
are located near the northmost end of the distribution of 
large yellow croaker, where the SST drops to 10 °C in the 
winter (Fig. 1A, B). Such a cold environment exerts intense 
stress in large yellow croakers (Qian and Xue 2016) and 
may drive the genetic divergence between the DQ stock and 
other populations.

Divergent landscapes of natural selection promote 
adaptation to different environmental conditions

Our genome scan of signatures of selection revealed that 
natural selection drove the evolution of the DQ and NH 
stocks in two distinct ways. In the high-latitude DQ stock, 
intense selection pressure was largely confined to limited 
gene-enriched genomic regions, directly impacting fitness. 
Alternatively, natural selection tended to act more moder-
ately and on more broadly distributed nongenic regions in 
the low-latitude NH stock. In addition, DQ PSRs had more 
SNPs that were close to fixation, whereas NH PSRs had 
more SNPs at intermediate frequencies due to positive selec-
tion (Fig. 2C, D; Figs. S9, S10 in Supplementary file 2).

Cold temperatures are naturally a more lethal challenge 
than hot temperatures for fish species (Beitinger et al. 2000) 
for various reasons, e.g., cold-induced lethargy, a gentler 
vertical temperature gradient in the winter (Lafond 1954), 
and more rapid changes of temperature introduced by cold 
currents (Zhu et al. 2015). Therefore, we can suppose that 
mortality in the winter exerts a strong selection pressure 
and effectively eliminates the near-neutral mutations in some 
specific genomic regions in high-latitude populations.

A review of insect studies revealed that cold resistance 
tends to evolve more readily than heat resistance (Addo-
Bediako et al. 2000). A very similar phenomenon has also 
been found in marine species, including fish (Stuart-Smith 
et al. 2017). In regions related to cold resistance, rapid 
changes in allele frequencies and high LD occur during 
rapid population size expansions after lethal cold selection. 
However, complex genetic mechanisms of heat resistance 

and relatively weak heat-related selection results in genetic 
variation that will be mutually neutralized during admixture.

Different biological processes and pathways 
involved in adaptive evolution

Apart from distinct patterns of selection, different biologi-
cal processes and pathways were involved in differentiation 
between the DQ and NH stocks (Table S13 in Supplemen-
tary file 1). Winter mortality is size-selective and can exert 
strong selective pressure on animals, especially ectotherms, 
such as fish, in temperate regions (Brodersen et al. 2011; 
Callahan et al. 2021; Hurst 2007; Takegaki and Takeshita 
2020). The DQ stock inhabits the coldest frontier of the 
distribution of the large yellow croaker, which almost cer-
tainly constrains its development and growth. Many studies 
have revealed that ectothermic species in cold environments 
evolve toward more rapid early development to exploit the 
rare periods suitable for development (Carbonell et al. 2021; 
Perkins 2012; Quinn et al. 2013; Shine et al. 2011). The 
enrichment of DQ PSGs highlights the wide range of devel-
opment-related biological processes that may have been 
important for escaping from size-selective winter mortal-
ity. Similar results have been obtained in studies of other 
fishes (Jensen et al. 2008; Kavanagh et al. 2010; Laugen 
et al. 2003).

Enrichment analysis of NH PSGs showed that immune 
system processes played the most important role in local 
adaptation to tropical environments. This finding may reflect 
high levels of immune stress due to increased pathogen 
virulence (Mitchell et al. 2005), diversity (Karvonen et al. 
2013; Luque and Poulin 2008), and abundances (Karvonen 
et al. 2013) in warm environments. The main pathogens in 
large yellow croakers include Cryptocaryon irritans, Vibrio 
alginolyticus, Large yellow croaker iridovirus, and Ichthyo-
dinium chabelardi (Gleason et al. 2019), which have high 
incidences at high temperatures (Abdullah et al. 2017; Yang 
et al. 2021). Adaptative microevolution in immune system-
related genes might improve fitness in the NH stock in tropi-
cal conditions.

Conclusion

This study generated millions of genome-wide SNP loci to 
evaluate the genetic structure and evolutionary history of 
large yellow croaker stocks. Our results generally supported 
one of two widely accepted stock divisions, the DQ-MYD-
NZ (DQ-MD-NH) three-stock system. However, the genetic 
structure and asymmetric introgression indicated that the 
boundary between the NH and MD stocks may have moved 
from the estuary of the Pearl River to the Taiwan Strait. 
Based on our IBE analysis, we deduced that this habitat 
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change was closely associated with climate change in the 
past few decades. The substantially different landscapes of 
selective signatures from the northernmost and southern-
most stocks presumably arose from differences in responses 
to long-term cold and heat stress.

Materials and methods

Sampling and sequencing

We collected 104 large yellow croakers from eight sites 
in eastern and southern Chinese coastal waters (Fig. 1A; 
Table S1 in Supplementary file 1). White muscles or fin rays 
were collected from fish anesthetized by 100 mg/L tricaine 
methanesulfonate (MS222) solution. Samples were lysed in 
SDS digestion buffer with proteinase K. DNA was extracted 
using a standard phenol–chloroform protocol. Whole-
genome shotgun libraries with 350 bp insert sizes were 
constructed according to the manufacturer's instructions 
(Illumina, San Diego, CA, USA) and paired-end sequencing 
was performed using the Illumina NovaSeq 6000 platform 
with a read length of 2 × 150 bp. Read filtering was con-
ducted using SolexaQA++ (version 3.1) (Cox et al. 2010). 
Reads with adaptor sequences or proportions of unknown/
low-quality bases greater than 10% were removed. By high-
throughput sequencing, 7.97 billion pairs of raw reads were 
generated with a total length of 1.19 trillion bases and an 
average read depth of 19.49 × per sample. After quality con-
trol, 1.17 T bases (98.36%) were retained for downstream 
analyses (Table S2 in Supplementary file 1).

Variant discovery, genotyping, and filtering

Clean reads were aligned using BWA-MEM (version 0.7.17-
r1188) (Li and Durbin 2009) with default parameters to the 
reference genome of large yellow croaker (Chen et al. 2019). 
Then, GATK (version 4.1.9) was used for base quality score 
recalibration, indel realignment, and duplicate removal. SNP 
discovery and genotyping were performed across all 104 
samples simultaneously according to GATK Best Practices 
recommendations (Van Der Auwera and O'connor 2020). 
Since there were no verified SNP loci or genotyping data 
for the large yellow croaker genome, we applied hard filter-
ing on the variant callset (De Summa et al. 2017). SNPs 
with low quality were marked using VariantFiltration with 
a compound filtering expression “QD < 2.0 || QUAL < 30.0 || 
SOR > 3.0 || FS > 60.0 || MQ < 40.0 || MQRankSum < − 12.5 
|| ReadPosRankSum < − 8.0” and were then removed using 
SelectVariants. An additional filtering step was performed 
using VCFtools (version 0.1.15) (Danecek et al. 2011) to 
remove multiallelic SNPs, with minor allele counts less than 
2, missing genotype counts greater than 2, or minor allele 

frequency less than 0.05. The final SNP set was annotated 
using SnpEff (version 4.3t) (Cingolani et al. 2012).

Population structure analysis

We firstly reduced the redundancy of the final SNP set using 
plink (version 1.90b6.16) (Purcell et al. 2007) with the 
parameter “–indep-pairwise 10 2 0.8”. We calculated basic 
statistics, including observed heterozygosity (HO), expected 
heterozygosity (HE), and F values, for each population using 
the R package hierfstat (version 0.5–7) (Goudet 2005). 
Nucleotide diversity (π) was calculated using VCFtools (ver-
sion 0.1.15) (Danecek et al. 2011). The K-means method 
was used to partition the values into two groups for each 
statistic. Then, one-way ANOVA was used to assess the sig-
nificance of differences between the two groups. Statistical 
analyses were conducted using the “SciPy” and “sklearn” 
Python modules. A PCA was performed using the R pack-
age "SNPrelate" (version 1.16.0) (Zheng et al. 2012) after 
transformation of the data from variant call format (VCF) to 
CoreArray Genomic Data Structure (GDS) format using the 
R package "gdsfmt" (version 1.22.0). Additionally, frappe 
(version 1.1) (Tang et al. 2005) was used to estimate the 
genetic ancestry of each sample, which is highly efficient 
when using high-density SNP genotype data. The maxi-
mum iterations of expectation maximization (EM) were 
set to 100,000 and the number of populations (K) was set 
from two to ten for each calculation. A ML phylogenetic 
tree was constructed based on all samples. Firstly, RAxML 
(version 8.2.12) (Stamatakis 2014) was used to build the 
initial tree with a nucleotide substitution model GTR CAT . 
Then RAxML-Light (version 1.1.1) (Stamatakis et al. 2012) 
was used for the final ML tree construction. A ML search 
convergence criterion was used in this step. Finally, the tree 
file in Newick format was fed into the iTOL (version 6.5.4) 
(Letunic and Bork 2019) webtool for visualization.

Detection of shared haplotypes and direction 
of introgression

All SNP loci were phased using beagle (version 5.2) with 
default parameters, except for a window length of 4.0 cM 
and a window overlap of 0.5 cM. Then, pairwise shared 
haplotypes were extracted from each chromosome using 
RefinedIBD (version 17Jan20.120) with a window size of 
10 cM, minimum reported LOD score of 3.0, minimum 
reported haplotype length of 0.025 cM, and trimmed length 
when calculating LOD score of 0.0025 cM. All shared hap-
lotypes between individuals sampled from the same site 
were filtered.

The direction of introgression between the NH and MD 
stocks is determined based on a basic concept; given the 
short time since the habitat change, introgressed segments 
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cannot yet spread to other sites in the new stock. Therefore, 
shared haplotypes on these segments should be more fre-
quent within the original stock. The frequency of shared 
haplotypes (SHF) was estimated as described previously 
(Bosse et al. 2014), with minor modifications.

We divided the genome into 25 kbp windows with a 
step size of 5 kbp. If a window overlapped with a shared 
haplotype longer than 10 kbp, it was regarded an introgres-
sion event. The number of introgressions between all pairs 
of populations (sites) was calculated per window. As the 
total number of pairwise comparisons differed between the 
groups, these numbers were normalized, ranging from zero 
(no shared haplotype tract detected) to one (haplotype shared 
by all individuals within the group). Then, the direction of 
gene introgression across the boundary between the NH and 
MD stocks was determined by the relative shared haplotype 
frequency (rSHF) of introgression, which was calculated 
using the following equation:

where  cSHFNH and  cSHFMD are the counts of all shared hap-
lotypes within the NH and MD stocks, respectively.  tSHFNH 
and  tSHFMD are the total pairwise comparisons within the 
NH stock and MD stock, respectively. The ratio between 
cSHF and tSHF was also called the normalized shared hap-
lotype frequency (nSHF).

Differences between  nSHFNH and  nSHFMD were evalu-
ated by a parametric test (ANOVA) and two non-parametric 
tests (Kruskal–Wallis and Alexander–Govern approximation 
tests). All tests were carried out using the “stats” module of 
the "scipy" Python package (version 1.7.1) (Virtanen et al. 
2020). The same module was used to calculate the Pear-
son and Spearman correlation coefficients for relationships 
between rSHF and natural selection parameters. The "ols" 
module in the "statsmodels" Python package (version 0.12.1) 
(Seabold and Perktold 2010) was used to build the ordinary 
least squares linear models with rSHF and natural selection 
parameters.

Isolation‑by‑distance and environment analysis

The genetic distance Fst/(1 − Fst) was calculated using 
VCFtools (Danecek et al. 2011) (version 0.1.15). The “as 
the crow flies” distance between each sample pair was calcu-
lated directly from the longitude and latitude coordinates. To 
calculate the  Dcsl, pre-processed OpenStreetMap data were 
obtained from Planet OSM (https:// osmda ta. opens treet map. 
de) and transformed into "Mercator" projections using the R 
package "sf" (version 0.9.7).  Dcsl was modeled as the total 
length of diagonal lines of all 0.1 km grids passed through 
the coastline between two sites. SST values were obtained 

rSHF = log2
cSHFNH∕tSHFNH

cSHFMD∕tSHFMD

,

from the Kaplan Extended SST V2 dataset available at 
https:// psl. noaa. gov/ (provided by the NOAA/OAR/ESRL 
PSL, Boulder, Colorado, USA). An in-house Python script 
was used to parse the NetCDF4 file under the "netCDF4" 
Python library (version 1.5.5.1). The annual  SSTmax,  SSTmin, 
and  SSTmean were calculated after removing the first five 
outliers.

Ordinary least regression models between genetic dis-
tances and exogenous variables were built using Python 
libraries "statsmodels" (version 0.12.1). Regularized least 
squares (RLS) models were built using the "linear_model" 
module imported from the Python library "sklearn" (version 
0.24.0) to deal with multicollinearity among variables when 
decomposing their contribution to genetic differentiation. 
RLS is a family of relatively new linear regression tech-
niques with high tolerance to multicollinearity among varia-
bles. It has been widely used for variable selection by setting 
coefficients of less important variables to zero in machine 
learning, data mining, and bioinformatic approaches (Tib-
shirani 2011). It was recently introduced to solve problems 
of confounding and causality plaguing genome-environment 
association studies (Frichot et al. 2015). In addition, we also 
employed the R package "yhat" (version 2.0-3) (Nimon and 
Oswald 2013) to perform a weighting procedure to disen-
tangle the unique contributions of predictors. The "boot-
eval.yhat" function in this package was used to generate 
confidence intervals of all weighting MLR indices with 
5000 bootstrap replicates. All R functions and scripts were 
executed under a Python interface embedded in R using the 
"rpy2" Python library (version 3.4.2).

Scanning for genome‑wide signatures of selection

Signatures of selection in the large yellow croaker genome 
were detected by comparing the DQ and NH stocks. The 
genome was divided into 25 kbp windows with a slid-
ing length of 5 kbp. Various indices of positive selection 
were calculated within each window, including the fixa-
tion index (Fst), nucleotide diversity (π), extent of hap-
lotype homozygosity (Rsb), Tajima's D, and composite 
selection score (CSS). The fixation index (Fst) and raw 
nucleotide diversity (π) were calculated using VCFtools 
(version 0.1.15) (Danecek et al. 2011). The logarithm of 
ratio between π values for the two populations (denoted 
Pi) between the DQ and NH stocks was subsequently 
calculated within each window as an index of positive 
selection. The extent of haplotype homozygosity (Rsb) 
was calculated for each SNP using the R package "rehh" 
(version 3.0.1) (Gautier et al. 2017) and then averaged 
in each window. Tajima's D index was calculated using 
plink (version 1.90b6.16) (Purcell et al. 2007). The CSS 
index was calculated based on Fst, Pi, and Rsb following a 
previously described method (Avalos et al. 2017). Fst, Pi, 

https://osmdata.openstreetmap.de
https://osmdata.openstreetmap.de
https://psl.noaa.gov/
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and Rsb were used to identify positively selected regions 
(PSRs) after applying the 95th percentile of each index 
as thresholds. The Rsb values are inflated when an allele 
extends the length of homozygosity in either population in 
the comparison. In this way, the Rsb index is very sensitive 
to recent positive selection. The Pi index, which indicates 
the difference in nucleotide diversity between two stocks, 
has similar sensitivities to selection. Therefore, we defined 
the overlap of outliers based on Pi and one of the other 
two indices as near-fixation (NF) and recently selected 
(RS) regions. However, we could not classify the PSRs 
identified by Fst and Rsb indices; accordingly, these were 
classified as undetermined (UD) PSRs. In addition, the 
CSS and Tajima's D, as unbiased indices, were used to 
compare the strength of natural selection among different 
types of PSRs. The mean and standard deviation of each 
index were compared among various types of PSRs by 
ANOVA followed by least significant difference (LSD) 
tests at a significance level of P < 0.05.

Identification and classification of PSGs were performed 
based on the type of PSRs overlapping genes. Gene Ontol-
ogy, KEGG pathway, and Reactome Gene Set enrichment 
analyses were performed for each type of PSG using Metas-
cape webtool (version 3.5) (Zhou et al. 2019).
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