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Abstract
Sex determination (SD) involves mechanisms that determine whether an individual will develop into a male, female, or in 
rare cases, hermaphrodite. Crustaceans harbor extremely diverse SD systems, including hermaphroditism, environmental 
sex determination (ESD), genetic sex determination (GSD), and cytoplasmic sex determination (e.g., Wolbachia controlled 
SD systems). Such diversity lays the groundwork for researching the evolution of SD in crustaceans, i.e., transitions among 
different SD systems. However, most previous research has focused on understanding the mechanism of SD within a sin-
gle lineage or species, overlooking the transition across different SD systems. To help bridge this gap, we summarize the 
understanding of SD in various clades of crustaceans, and discuss how different SD systems might evolve from one another. 
Furthermore, we review the genetic basis for transitions between different SD systems (i.e., Dmrt genes) and propose the 
microcrustacean Daphnia (clade Branchiopoda) as a model to study the transition from ESD to GSD.
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Introduction

Sex determination (SD) systems designate whether an indi-
vidual will develop into a male, female, or in rare cases 
hermaphrodite. One potential advantage of having separate 
sexes (male and female) is being able to bring beneficial 
alleles from both individuals together when sexual repro-
duction occurs (McDonald et al. 2016; Muller 1932; Otto 
2009). Of the two main types of SD systems, i.e., genetic 
sex determination (GSD) and environmental sex determi-
nation (ESD), the former is controlled by genetic factors 
as expansive as sex chromosomes, whereas the latter is 
driven by environmental cues (e.g., temperature and pho-
toperiod). GSD can be further divided into XY and ZW 
systems depending on whether the males or females are 
heterogametic. XY systems are found in many species, such 
as humans, Drosophila, and C. elegans, in which the Y 

chromosome is extremely degenerate or absent (Bachtrog 
2013; Blackmon et al. 2017). Contrary to the XY system, 
under the ZW system, females are heterogametic (ZW) and 
males are homogametic (ZZ). The ZW system is utilized 
by birds (Stevens 1997), reptiles (Ezaz et al. 2009), insects 
(Blackmon et al. 2017), and many crustaceans (Cui et al. 
2015; Jiang and Qiu 2013; Parnes et al. 2003).

Crustaceans originated ~ 500 million years ago dur-
ing the Precambrian period (Zhang et al. 2007), and now 
include ~ 67,000 species, such as crabs, lobsters, crayfish, 
shrimps, and water fleas. Although most crustaceans are 
aquatic and free-living, some are terrestrial (e.g., woodlice) 
or parasitic (e.g., fish lice). Crustaceans are phylogenetically 
close to insects, and together form the Pancrustacean clade 
(Budd and Telford 2009) (Fig. 1). Extant crustacean lineages 
can be classified into four primary clades: Branchiopoda 
(e.g., water fleas; and clams, fairy, and tadpole shrimps), 
Maxillopoda (e.g., barnacles and copepods), Malacostraca 
(e.g., shrimps, crabs, lobsters, and crayfish), and Ostracoda 
(e.g., sea firefly) (Fig. 1), with the number of species rang-
ing from 800 in Branchiopoda to 25,000 in Malacostraca 
(Schwentner et al. 2017). Also, crustaceans contain two 
minor clades, Remipedia and Cephalocarida (e.g., horseshoe 
shrimp), each of which contains 12–17 species (Schwentner 
et al. 2017).
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Crustaceans have diversified SD systems in each clade 
(Bauer 2000; Becking et al. 2017; Chandler et al. 2018; Hes-
sler et al. 1995; Toyota et al. 2021; Yager 1991). In Malacos-
traca and Ostracoda, sex is almost exclusively controlled by 
genetic factors (Becking et al. 2017; Fang et al. 2020; Parnes 
et al. 2003), whereas sex determination in Maxillopoda and 
Branchiopoda is largely by environmental factors (Blaxter 
et al. 1998; Michaud et al. 2004; Toyota et al. 2015a, b). The 
two most primitive groups, Cephalocarida and Remipedia, 
reproduce exclusively by simultaneous hermaphroditism 
(Hessler et al. 1995; Yager 1991).

These highly variable SD systems provide a basis for 
studying how SD evolves in the diversified crustacean taxa. 
Moreover, some crustaceans (e.g., Lysmat) have unique 
sexual systems, such as protandric simultaneous hermaph-
roditism (Bauer 2000), which is important for the study of 
sex-allocation theory. In addition, transitions from ESD 
to GSD have occurred in lineages such as Daphnia (clade 
Branchiopoda), providing a valuable model for studying the 
rapid transition between system types. In this review, we 
survey our understanding of the SD systems in crustaceans 
and further discuss their evolutionary paths.

Sex determination systems in crustaceans

In the largest clade of crustaceans, Malacostraca (> 40,000 
species), both ZW and XY SD systems are present. The ZW 

system is found in most shrimps and crayfishes (Jiang and 
Qiu 2013; Parnes et al. 2003), whereas the XY system is 
employed by groups, such as crabs and lobsters (Becking 
et al. 2017; Chandler et al. 2017; Fang et al. 2020; Mlinarec 
et al. 2016; Triño et al. 1999) (Table 1). The presence of both 
XY and ZW systems in species belonging to the same genera 
of Malacostraca implies the potential for rapid transitions 
between such systems (Becking et al. 2017). In addition, 
some species in the Malacostraca (e.g., Palaemon elegans) 
have been found to have multiple sex chromosomes: X1, X2, 
and Y, resulting in a SD system of X1X1X2X2♀/X1X2Y♂ (Tor-
recilla et al. 2017). Additionally, in Armadillidium vulgare 
(clade Malacostraca), SD is mediated by bacterial endos-
ymbionts (i.e., Wolbachia), which can convert ZZ genetic 
males to phenotypic females (Cordaux et al. 2011; Rigaud 
et al. 1997).

Ostracoda is the second-largest clade of crustacean with 
more than 13,000 living species. In Ostracoda, most stud-
ied species have X0 SD system, with sex dimorphism being 
controlled by the dosage effect of genes on chromosome X 
(Jeffery et al. 2017; Sajuthi et al. 2015; Turgeon and Hebert 
1995). Although a few Ostracoda species have a Y chromo-
some, it appears that the sex-determining locus is not located 
on the Y, and sex is determined by the number of X chromo-
somes (Dietz 1957; Havel et al. 1990).

In contrast to Malacostraca and Ostracoda, in which sex 
is nearly always determined by genetic factors, sex in Max-
illopoda and Branchiopoda species is often at least in part 
influenced by environmental factors (Blaxter et al. 1998; 
Michaud et al. 2004; Toyota et al. 2015a, b). For example, 
the copepod Tigriopus californicus (clade Maxillopoda) pro-
duces more males at higher temperatures (Voordouw and 
Anholt 2002). Similarly, food concentration and quality 
determines the percentage of males in other copepods (Iri-
goien et al. 2000; Michaud et al. 2004). Furthermore, some 
barnacles and shrimps (clade Maxillopoda) produce male 
and female gametes at distinct life stages (Chiba 2007; Fuku-
hara 1999; Subramoniam 2013), which is a system known 
as sequential hermaphroditism. In Daphnia (clade Bran-
chiopoda), females are generally produced under favorable 
conditions, whereas males are more likely to be produced 
in unfavorable conditions, such as crowding (Hebert 1978) 
or short photoperiod (Toyota et al. 2015a, b).

Although most crustaceans have separate sexes, Ceph-
alocarida and Remipedia species are exceptions. They 
reproduce exclusively by simultaneous hermaphroditism in 
which individuals have both male and female sex organs, and 
generate both types of gametes (Hessler et al. 1995; Yager 
1991). Simultaneous hermaphroditism has been observed 
also in a small number of decapod species (clade Malacos-
traca) (Bauer and Holt 1998; Fiedler 1998). Simultaneous 
hermaphroditism is not without disadvantages as each parent 
must grow and maintain two sets of reproductive machinery 

Fig. 1  Phylogeny of extant crustaceans and modes of sex determina-
tion for each clade. The original phylogenetic tree was generated by 
Schwentner et  al. (2017) based on the PhyloBayes analysis of 1077 
decisive orthogroups and 301,748 amino acid positions with the Site-
Heterogeneous CAT-GTR Model. We modified the tree to show only 
the major Pancrustacean clades. ESD environmental sex determina-
tion, GSD genetic sex determination; cytoplasmic (e.g., Wolbachia 
controlled SD system)
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(Heath 1977). It has been suggested that simultaneous her-
maphroditism evolved as a result of the scarcity of mating 
partners (Cabej 2013). Consistent with this, Remipedia have 
been reported to reside solely in submerged caves (Yager 
1991) and are slow movers (Regier et al. 2010), which may 
make finding mating partners more challenging.

Evolution of sex determination in crustaceans

Because Cephalocarida and Remipedia are the most basal 
crustacean clades (Fig. 1), it has been proposed that they 
represent ancestral SD system in crustaceans, i.e., simultane-
ous hermaphroditism (Legrand et al. 1987; Rigaud 1991). 
A different type of hermaphroditism known as sequential 
hermaphroditism is more prevalent in crustaceans particu-
larly in barnacles and shrimps (Chiba 2007; Fukuhara 1999; 
Subramoniam 2013). Species with sequential hermaphrodit-
ism create male and female gametes at distinct periods of 
development, and the two sexes are functionally and mor-
phologically different. In crustaceans, sequential hermaph-
roditism is an example of phenotypic flexibility in response 
to environmental changes, supporting the size advantage 
theory (Warner 1988). Individual crustacea develop in size 
as they age because they tend to grow continually through-
out their lives. According to the size advantage theory, sex 
change is preferable when the reproductive cost of one sex 
increases faster than that of the other as body size increases. 
Size change is employed to optimize the combined fitness 

of an individual’s male and female stages. Depending on 
which sex matures first, sequential hermaphroditism is 
classified as protandry or protogyny. The former is utilized 
by a vast majority of Malacostraca species (Bauer 1986) 
in which individuals mature first as males and later change 
sex to females (Bauer 2000). Females benefit from large 
size because egg formation demands a significant amount of 
energy, and the egg survival rate is closely associated with 
body size in crustaceans (Bauer 2020). Conversely, some 
isopods (clade Malacostraca) rely on protogyny in which 
larger males have a reproductive advantage over smaller 
ones, associated with protection of mates (Abe and Fukuhara 
1996). Consistent with the size advantage theory, Nakashima 
(1987) discovered that A. dorsalis competes for females dur-
ing the breeding season, with larger males being more suc-
cessful at copulating than smaller males.

Simultaneous hermaphroditism may develop into sequen-
tial hermaphroditism if oogenesis is not synchronized with 
spermatogenesis (Bauer 2000; Hoffman 1972). In some 
cases, reproductive resources are limited in brooding ani-
mals due to a lack of brooding space, and resources may be 
totally dedicated to sperm production, resulting in sequential 
hermaphrodites (Heath 1979). Conversely, sequential her-
maphrodites could evolve into simultaneous hermaphrodites 
if both male and female organs are generated concurrently 
during the female phase (Bauer 2000; Hoffman 1972). This 
typically happens when population density is low and dif-
ficult to find mating partners.

Table 1  Major modes of sex determination in crustaceans

GSD genetic sex determination, ESD environmental sex determination

Taxonomy Species Mechanism References

Branchiopoda Eulimnadia texana GSD: males and hermaphrodites Sassaman and Weeks (1993)
Daphnia pulex
Daphnia magna

ESD and GSD Toyota et al. (2015a, b); Reisser et al. (2017); Ye et al. (2019)
Hobaek and Larsson (1990; Reisser et al. (2017)

Maxillopoda Cirripedia thoracica GSD Gomez (1975)
Tigriopus californicus ESD and GSD Alexander et al. (2015); Voordouw and Anholt (2002)
Pandalus latirostris Sequential hermaphroditism Chiba (2007)

Malacostraca Armadillidium vulgare ZZ ♂/ZW ♀ and
ZZ ♂ + Wolbachia = ♀

Rigaud et al. (1997)

Macrobrachium rosenbergii
Cherax quadricarnatus

ZZ ♂/ZW ♀ Jiang and Qiu (2013); Parnes et al. (2003)

Porcellio dilatatus dilatatus
Sagmariasus verreauxi
Austropotamobius pallipes
Charybdis feriatus

XY ♂/XX ♀ Becking et al. (2017); Chandler et al. (2017); Fang et al. 
(2020); Mlinarec et al. (2016); Triño et al. (1999)

Palaemon elegans X1X1X2X2♀/X1X2Y♂ Torrecilla et al. (2017)
Ostracoda Pupilometers carcharodonta

Vargula tsuji
Euphilomedes sp.
Euphilomedes morini

XX ♀/X0 ♂ Jeffery et al. (2017); Sajuthi et al. (2015); Turgeon and Hebert 
(1995)

Cyprinotus incongruens
Heterocypris incongruens

X2n0 ♀/XnY ♂ Dietz (1957); Havel et al. (1990)
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ESD, which is utilized by a large number of crustaceans, 
shares similar characteristics with sequential hermaphro-
ditism (Breton et al. 2018). First, neither system requires 
genetic differentiation between the two sexes. Second, both 
ESD and sequential hermaphroditism typically result in a 
skewed sex ratio. Third, sex change is preferable in both 
systems when one sex has a greater reproductive fitness than 
the other. Fourth, both ESD and sequential hermaphrodit-
ism share a common sex determination mechanism—stress-
related pathways. Social structure could lead to situations 
in which individuals within a group experience varying 
degree of stress. It has been demonstrated that social factors 
within mating groups influence sex change in crustaceans, 
such as hippolytid shrimp (Bauer and Baeza 2004; Lin and 
Zhang 2001) and pandalid shrimp (Carpenter 1978; Charnov 
and Hannah 2002), both of which are hermaphrodites. Due 
to these similarities, it has been postulated that ESD may 
evolve from sequential hermaphroditism by a heterochronic 
shift (Straková et al. 2020).

GSD, which is the most prevalent form of SD in crusta-
ceans, may evolve from either hermaphroditism or ESD. In 
the case of hermaphroditism, distinct sexes could arise by 
male- or female-sterility mutations resulting in a system in 
which genetic females or males coexist with hermaphrodites 
(Charlesworth and Charlesworth 1978). Additional muta-
tions beneficial to each sex will be retained in such a system 
if they are linked to the respective sex-determining gene 
(Edwards 1998). The sex-determining locus and its associ-
ated sex-specific genes could then lead to the establishment 
of a “proto-sex chromosome”, which may be maintained by 
chromosomal inversion or located in the centromere region, 
as both structural features minimize or eliminate recombi-
nation (Natri et al. 2019). GSD may also emerge from ESD 
as a result of a male- or female-sterility mutation, in which 
some females or males are genetically determined whereas 
others are subject to ESD. A system of this type could be 
maintained if it restores the sex ratio or lowers the cost of 
inbreeding (Edwards 1998; Reisser et al. 2017; Ye et al. 
2019). It is believed that the shift from ESD to GSD is uni-
directional as the majority of the well-supported transitions 
have occurred in the direction of ESD to GSD (Straková 
et al. 2020), with rare instances of GSD to ESD when male 
heterogamety disappeared (Bull 1981). When the environ-
ment is unpredictable or very variable, evolution from ESD 
to GSD is favored as GSD can maintain balanced sex ratios 
(Bull 1983). For example, snow skinks used ESD at low ele-
vations, but shift to GSD at higher elevations where fluctua-
tions in temperature are more pronounced (Pen et al. 2010).

In summary, while direct evidence for transitions among 
different SD systems in crustaceans is currently scarce, we 
infer putative evolutionary routes based on the available 
research. It has been proposed that crustaceans exhibited 
ancestral hermaphroditism in the form of simultaneous 

hermaphroditism and/or sequential hermaphroditism (Hes-
sler et al. 1995; Yager 1991). ESD may have evolved from 
sequential hermaphroditism by a heterochronic shift of sex 
change during the early embryonic stage (Straková et al. 
2020) (Fig. 2). Both hermaphroditism and ESD have the 
potential to progress to GSD with rare instances of reversion 
from GSD to ESD. We summarize the possible evolutionary 
routes for the SD systems in crustaceans in Fig. 2.

The role of Dmrt genes in sex determination

As the SD systems in crustaceans are capable of transition-
ing among each other, it is critical to understand the genetic 
basis for those transitions. Although the mechanism of sex 
determination varies across species, the underlying sex 
regulator genes appear to have converged on the doublesex 
and male abnormal-3 (Mab-3)-related transcription factor 
(Dmrt) gene family (Kopp 2012; Zarkower 2001) (Fig. 3). In 
mammals, development of male embryos is regulated by the 
Y chromosome-linked Sry gene, with Sry depletion resulting 
in ovary development (Sekido and Lovell-Badge 2009; Wil-
helm et al. 2007). Sox9 (Sry-related box 9) is a downstream 
gene of Sry that is essential for testis development, and its 
absence results in male–female sex reversal (Foster et al. 
1994). Dmrt1 is thought to be a pioneer factor for opening 
chromatin and allowing binding of Sox9 (Lindeman et al. 
2021), and is expressed primarily in the testis following sex 
differentiation (Kim et al. 2007a, b). Loss of Dmrt1 func-
tion results in decreased Sox9 expression, which eventually 
results in sex reversal (Matson et al. 2011). The expression 
of Sox9 is maintained by a positive feedback loop with fibro-
blast growth factor 9 (Fgf9) (Piprek 2009), which together 
activates the male pathway (Kim et al. 2006a, b).

In C. elegans, sex is determined in a dose-dependent 
manner (males have a X chromosome and autosomes ratio of 
0.5 (XO), whereas hermaphrodites have a ratio of 1.0 (XX)) 
by a master switch gene called Xol-1 (Luz et al. 2003). Xol-1 
promotes male development, and loss-of-function mutations 
cause lethality in male animals (Miller et al. 1988). High 
levels of xol-1 expression in XO animals could repress the 
activity of sdc-1, sdc-2, and sdc-3 genes, whereas low xol-1 
levels in XX animals permits the activation of the three sdc 
genes (Luz et al. 2003) (Fig. 3). Proteins from all three sdc 
genes function in suppression of her-1 (Yonker and Meyer 
2003), which is a protein that promotes male development 
by inhibiting the function of Tra-2 (Perry et al. 1993; Pilgrim 
et al. 1995). Tra-2 inactivates the expression of the three fem 
(feminization) proteins (Gaudet et al. 1996; Pilgrim et al. 
1995), which further inhibits the tra-1 activity in XO ani-
mals (Hodgkin 1986; Kimble et al. 1984). Mab-3, which 
is a member of the Dmrt gene family, is a Tra1 target gene 
that controls male sexual development and behavior in C. 
elegans (Yi et al. 2000). Tra1 represses the transcription of 



5Marine Life Science & Technology (2023) 5:1–11 

1 3

Mab-3 in XX animals resulting in hermaphrodites, where 
in XO animals Tra-1 is inactivated and the male fate was 
determined (Yi et al. 2000).

In Drosophila, the ratio of X chromosomes to autosomes 
determines whether the Sex lethal (Sxl) gene is on (in XX 
females) or off (in XY males) (Fig. 3). Sxl regulates the pro-
duction of Tra protein in females (Salz and Erickson 2010). 
In males, due to the lack of Sxl, an mRNA with no long 
open reading frame is produced and functional protein is not 
generated (Fig. 3). Tra then controls sex-specific splicing of 
doublesex (Dsx) pre-mRNA (Bachtrog et al. 2014). Dsx was 
the first Dmrt gene discovered in insects, and its involve-
ment in sex determination has been established (Burtis et al. 
1991). The male and female-specific Dsx proteins then deter-
mine the unique somatic structures and external morphology 
in each sex (Baker et al. 2001; MacDougall et al. 1995).

Dmrt is also a critical sex determinant in crustaceans, 
such as D. magna (Kato et al. 2011a, b) and D. pulex (Xu 
et al. 2014). Male production is stimulated in D. magna by 
the hormone methyl farnesoate (MF) (Toyota et al. 2015a, 
b), which is then directly coupled to the methoprene-toler-
ant (Met) and steroid receptor coactivator (SRC) complex 
(Miyakawa et al. 2013). The binding sites of Met have been 
found in a bZIP transcription factor, Vrille (Mohamad Ishak 

et  al. 2017), suggesting that the MF–met complex may 
directly activate Vrille (Fig. 3). Vrille then regulates the 
expression of Dsx1 and doublesex1 alpha promoter-associ-
ated long non-coding RNA (DAPALR) (Kato and Watanabe 
2022) (Fig. 3). In addition, DAPALR could regulate Dsx1 
expression in trans (Kato et al. 2018). Dsx1 is exclusively 
expressed in male Daphnia where its transcripts are found 
largely in male-specific structures (Kato et al. 2011a, b). 
Reduced Dsx1 expression in D. magna causes testes to 
develop an ovary-like morphology, and ectopic Dsx1 expres-
sion in female embryos leads to the development of male-
like phenotypes (Kato et al. 2011a, b). Additionally, Dmrts 
have been identified in other crustaceans, such as Penaeidae 
(prawns), Palinuridae (lobsters), Palaemonidae (shrimp) and 
Portunidae (crabs) (Chandler et al. 2016). Moreover, their 
functional conservation has been demonstrated in crusta-
ceans, such as the eastern spiny lobster (S. verreauxi) (Chan-
dler et al. 2017).

The conservation of Dmrt genes in regulating SD allows 
for the study of SD evolution in crustaceans, particularly 
in species with little genetic background. First, Dmrt 
genes share a common function in sex determination and 
sex differentiation across taxa (Kopp 2012), which is to 
promote male-specific development and differentiation 

Fig. 2  Evolutionary routes of 
sex determination systems in 
crustaceans. The flash arrow 
indicates the trigger required for 
each transition. GSD genetic sex 
determination, ESD environ-
mental sex determination
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(Balciuniene et al. 2006; Kim et al. 2007a, b). This func-
tion is conserved in species with ESD (e.g., turtles) and 
GSD (e.g., Drosophila, mammals) systems (Kopp 2012). 
Second, Dmrt genes are expressed exclusively in develop-
ing gonads of all animals including mammals (Kim et al. 
2003; Raymond et al. 2000), flies (Hempel and Oliver 
2007), nematodes (Yi et al. 2000) and crustaceans (Far-
azmand et al. 2010; Kato et al. 2011a, b; Zhang and Qiu 
2010). Third, Dmrt genes share a common DNA-binding 
domain (DM domain) that is highly conserved across phyla 
(Chandler et  al. 2018; Raymond et al. 1998), whereas 
there is substantial sequence variation outside of the DM 
domain, sequences within the DM domain are extremely 
conserved (Chandler et al. 2018). The conserved nature 
of the DM domain enables the identification of genes that 
bind to it. Indeed, numerous genes associated with sex 
determination have been found in humans (Murphy et al. 
2010) and Drosophila (Luo et al. 2011) via their physical 

or structural association with the DM domain. However, 
such studies are currently scarce in crustaceans.

Regardless of the conservation, the mechanisms by which 
Dmrt influences sex determination in each species may vary. 
For example, in insects, different isoforms of Dsx derived 
by alternative splicing are expressed in males and females, 
whereas in Daphnia, Dsx is expressed exclusively during male 
development (Kato et al. 2011a, b). It is worth mentioning 
that whereas Dmrt genes are not necessarily the master sex-
determining genes, they often directly or indirectly interact 
with the master switch gene. Thus, identifying Dmrt genes will 
always be helpful in locating the SD locus and/or mechanisms 
in crustaceans.

Fig. 3  Sex switch and Dmrt genes in the sex determination pathways 
in diverse model species. DMRT doublesex and male abnormal-3-re-
lated transcription factors gene family, Sry sex-determining Region Y, 
Sox9 sry-related box  9, Xol-1 XO lethal protein 1, Tra transformer; 

Sxl sex lethal, MF methyl farnesoate, Dapalr doublesex1 alpha pro-
moter-associated long non-coding RNA, Mab-3 male abnormal-3. 
Wtn4 Wnt family member 4. Arrows indicate positive regulation, and 
crossbars indicate repressive regulation



7Marine Life Science & Technology (2023) 5:1–11 

1 3

Using Daphnia as a model to study the evolution 
of sex determination

Transitional species are of particular interest for shedding 
light on the evolution of sexual determination. Members 
of the genus Daphnia are now experiencing such a transi-
tion. Most Daphnia reproduce by cyclical parthenogenesis, 
with extended periods of parthenogenesis interspersed with 
sexual resting-egg production, generally on a yearly cycle 
(Hebert 1978). Parthenogenetic eggs may develop into 
females or males as sex determination is typically induced 
by environmental factors (e.g., short photoperiod). How-
ever, in some Daphnia populations, sex is also controlled 
by genetic factors (Reisser et al. 2017; Ye et al. 2019). 
Within such Daphnia populations, some females have lost 
the ability to produce males, resulting in the formation of 
non-male-producing (NMP) clones (Galimov et al. 2011; 
Tessier and Cáceres 2004). The coexistence of NMP clones 
and hermaphrodites (MP clones) in Daphnia creates a sys-
tem called gynodioecy in which only females are genetically 
determined.

Because crosses between NMP and MP clones consist-
ently produce a close to 1:1 ratio of NMP and MP offspring, 
whereas almost all offspring of MP × MP crosses exhibit MP 
phenotypes (Galimov et al. 2011; Innes and Dunbrack 1993), 
the presence of a dominant allele at a single locus underlying 
the NMP phenotype appears likely. To be more precise, all 
NMP clones are hypothesized to be WZ heterozygous at the 
locus conferring the NMP phenotype, whereas MP clones 
are thought to be ZZ homozygotes as is the case with classi-
cal W/Z sex determination systems. Additionally, it has been 
reported that the NMP phenotype is regulated by a single 
dominant allele contained within a 1.2 Mb non-recombining 
region in D. pulex (Ye et al. 2019) although it is largely 
unknown which genes within this region are involved in SD. 
The functional conservation of the Dmrt genes provides a 
good opportunity to connect genes in the 1.2 Mb region to 
the master sex switch gene (i.e., Dsx) in Daphnia.

To identify potential genes implicated in the shift from 
ESD to GSD, it is necessary to first understand the SD path-
way in Daphnia. Typically, SD in Daphnia is regulated via 
environmental cues, such as short photoperiod or by add-
ing exogenous juvenile hormone (JH). JH is an essential 
endocrine factor that regulates molting and metamorphosis 
in insects (Nijhout 1998). JH was found in Malacostraca 
(e.g., crab and crayfish) and Branchiopoda (e.g., Daphnia) 
species, but JH in those species lacks the epoxide group 
compared to that in insects (Laufer et al. 1987). It has been 
suggested that the JH in crustaceans, methyl farnesoate 
(MF), is important in molting and reproduction (Homola 
and Chang 1997). Additionally, JH has been shown to induce 
male production in Daphnia (Abe et al. 2015) and other 
cladoceran (clade Branchiopoda) species, such as Moina, 

Ceriodaphnia, and Bosmina (Kim et al. 2006a, b; Oda et al. 
2005). Thus, it has been postulated that JH plays a general 
role in SD throughout the clade Branchiopoda (Kim et al. 
2006a, b; Olmstead and Leblanc 2002).

In Daphnia, the SD pathway could be separated into two 
parts, namely the upstream and the downstream JH pathway 
(Fig. 4). The signal (e.g., short photoperiod) from the envi-
ronment activates protein kinase C (PKC) in the upstream JH 
pathway. Then, PKC promotes the opening of the N-methyl-
D-aspartic acid receptor (NMDAR) channel (Toyota et al. 
2017) (Fig. 4). NMDAR is a type of ionotropic glutamate 
receptor that is required for male reproduction, and is 
believed to act as an upstream regulator of juvenile hormone 
acid O-methyltransferase (JHAMT) (Toyota et al. 2015a, b). 
JHAMT is utilized to synthesize JH from farnesoic acid in 
Daphnia (Toyota et al. 2015a, b), and it expresses at a higher 
level in male-producing conditions than in female-producing 
ones (Toyota et al. 2015a, b). JH was directly coupled to the 
methoprene-tolerant (Met) and steroid receptor coactivator 
(SRC) complex following its synthesis, and mutations within 
Daphnia Met were found to significantly alter the receptor's 
responsiveness (Miyakawa et al. 2013). Met's immediate 
target in insects is Krüppel homolog 1 (kr-h1) (Cui et al. 
2014), but its function in Daphnia is still unknown (Toyota 
et al. 2018). In both D. magna and D. pulex, the sexual dif-
ferentiation is eventually mediated by the Dsx1 gene (Kato 
et al. 2011a, b; Xu et al. 2014). Kato et al. discovered that 
the expression pattern for Dsx1 is male-specific in Daphnia, 

Fig. 4  Signaling cascades of the sex determination pathway in Daph-
nia (Branchiopoda). JH juvenile hormone, PKC protein kinase C, 
NMDAR N-methyl-D-aspartic acid receptor, JHAMT juvenile hor-
mone acid O-methyltransferase, Met methoprene-tolerant, SRC ster-
oid receptor coactivator, DAPALR doublesex1 alpha promoter-associ-
ated long non-coding RNA, Dsx doublesex. Regulation of DAPALR, 
Vrille, Dsx1 happened in embryos
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and that knocking down Dsx1 in male embryos or ectopic 
expression of Dsx1 in female embryos led to sex reversed 
traits (Kato et al. 2011a, b; Toyota et al. 2013). Dsx1 has 
been shown to be directly regulated by a bZIP transcription 
factor, Vrille (Mohamad Ishak et al. 2017), as well as by 
the doublesex1 alpha promoter-associated long non-coding 
RNA (DAPALR) (Kato et al. 2018) (Fig. 4).

The transition from ESD to GSD in D. pulex is thought 
to be induced by a factor downstream of the JH signaling 
pathway as the phenotype cannot be recovered by exogenous 
JH (Ye et al. 2019). Notably, a 1.2 Mb region containing 87 
genes in NMP clones possesses NMP-specific substitutions, 
establishing the foundation for further investigation of the 
genetic components underlying the NMP trait. As a start, it 
is necessary to determine whether any of the 87 genes are 
direct targets of Met or Src. Additionally, the 1.2 Mb region 
in NMP clones may constitute a “proto-sex chromosome”, 
a hypothesis that may be validated by investigating whether 
the 87 genes in the NMP region express in a sex-specific 
manner. Additionally, if the SD transition involves the full 
1.2 Mb non-recombining region, it will be worthwhile to 
determine whether this region is preserved by genome inver-
sion. Finally, elucidating the SD pathway in Daphnia will 
provide an opportunity to investigate the transition from 
ESD to GSD in crustaceans.

Future perspectives

In this review, we summarize knowledge about the SD sys-
tems in crustaceans and discussed how these distinct systems 
might evolve from one another. However, due to the lack of 
research, genes in the SD pathway remain largely unknown 
in most crustaceans. Up till now, all ideas regarding SD tran-
sitions (e.g., from ESD to GSD) have been purely theoretical 
and require further validation. Daphnia could be an excellent 
model for studying the evolution of SD systems in crusta-
ceans (and more broadly, arthropods) given its high-quality 
reference genomes, extensive research on the SD pathway, 
and powerful genetic editing tools such as CRISPR/Cas9. 
To begin, we could use Chip-seq data to identify genes that 
interact with Dsx1; second, transcriptomic data could be 
used to validate sex-specific genes in the NMP region; and 
third, we could compare high-quality genome assemblies 
from MP and NMP Daphnia clones to determine if struc-
tural variation (e.g., genome inversion) underlies the transi-
tion from ESD to GSD. Along with transitions between SD 
systems, transitions within the same SD system (e.g., XY 
to ZW) are widespread among crustacean genera (Becking 
et al. 2017). These transitions are particularly interesting 
because they provide insight into the rapid turnover within 
the same SD system. As such, new investigations aimed at 
identifying Dmrt genes, their targets, and genes that interact 

with the DM domain in genera with such transitions would 
be particularly exciting.
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