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Abstract
The papilla number is one of the most economically important traits of sea cucumber in the China marketing trade. However, 
the genetic basis for papilla number diversity in holothurians is still scarce. In the present study, we conducted genome-
wide association studies (GWAS) for the trait papilla number of sea cucumbers utilizing a set of 400,186 high-quality SNPs 
derived from 200 sea cucumbers. Two significant trait-associated SNPs that passed Bonferroni correction (P < 1.25E−7) 
were located in the intergenic region near PATS1 and the genic region of EIF4G, which were reported to play a pivotal role in 
cell growth and proliferation. The fine-mapping regions around the top two lead SNPs provided precise causative loci/genes 
related to papilla formation and cellular activity, including PPP2R3C, GBP1, and BCAS3. Potential SNPs with P < 1E−4 
were acquired for the following GO and KEGG enrichment analysis. Moreover, the two lead SNPs were verified in another 
population of sea cucumber, and the expressive detection of three potential candidate genes PATS1, PPP2R3C, and EIF4G 
that near or cover the two lead SNPs was conducted in papilla tissue of TG (Top papilla number group) and BG (Bottom 
papilla number group) by qRT-PCR. We found the significantly higher expression profile of PATS1 (3.34-fold), PPP2R3C 
(4.90-fold), and EIF4G (4.23-fold) in TG, implying their potential function in papilla polymorphism. The present results 
provide valuable information to decipher the phenotype differences of the papilla trait and will provide a scientific basis for 
selective breeding in sea cucumbers.

Keywords Genome-wide association study · Apostichopus japonicus · Molecular breeding · Candidate genes · Papilla 
number

Introduction

The economical mariculture species sea cucumber Apos-
tichopus japonicus is subordinated to the phylum Echino-
dermata, primarily cultured in the coastal regions of Russia, 
Japan, and northern China due to its rich nutrient and con-
siderable medicinal value (Han et al. 2016; Lv et al. 2022; 
Toralgranda et al. 2008). The papilla of sea cucumber is not 
only a multifunctional organ that performs respiration and 
contact with the external environment, but also a commer-
cially important trait in marketing, i.e., the length and num-
ber (Ru et al. 2019). The sea cucumber individuals, which 
grew more papilla, were deemed as first quality and more 
valuable in China. To accord with the demands of the mar-
ket, two new strains of sea cucumber “Shuiyuan NO.1” and 
“Anyuan NO.1” with increased papilla numbers, i.e., 40.0% 
and 12.6%, were generated by morphology selection (Rural 
Economic Committee of Jinzhou 2014; Song and Wang 
2019). However, the molecular mechanism behind this trait 
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is still unclear. Genetic-based molecular breeding aiming 
at papilla number is of great significance to sea cucumber 
aquaculture.

To date, no comprehensive investigation of the candidate 
genes of papilla has been made, although previous research 
primarily focused on morphology, immunology, and tran-
scriptomics in A. japonicus (Chen et al. 2020a, b; Deng et al. 
2008; Purcell et al. 2012). Studies have shown that the Rus-
sian population has the largest total number of papilla than 
the other eight different A. japonicus populations (Chang 
et al. 2011). On the aspect of the immune response, the 
AjAIF1 (allograft inflammatory factor 1) was significantly 
up-regulated after the papilla injury experiment, and it may 
facilitate wound healing (Ji et al. 2014). Using RNA-seq 
technology, comparative transcriptome analysis between 
two important organs, i.e., skin and papilla, unveiled 288 
papilla-specific genes that mainly participate in collagen 
synthesis, ribosome pathway, and tight junction, in which 
the pinpointed PP2A (Serine/threonine protein phosphatase) 
could contribute to morphological differentiation (Zhou 
et al. 2016). Moreover, a similar result has been reported in 
transcriptomes and digital gene expression analysis of pen-
tactulas (without papillae) and juveniles (with papillae) of 
A. japonicus (Zhan et al. 2019). However, because of lack-
ing systematic screening throughout the genome, the piv-
otal loci/genes affecting the papilla number of A. japonicus 
remain obscure. Genome-wide association study (GWAS), 
which is deemed as a universal tool to determine genetic 
variants analyzing complex traits (Korte and Ashley 2013), 
has been extensively implemented for growth-related traits 
or tolerance-related traits in economically important marine 
animals, such as fish (Gutierrez et al. 2015), shrimp (Khor 
et al. 2018), crab (Hui et al. 2017), abalone (Yu et al. 2021) 
and scallop (Zhu et al. 2021; Zeng et al. 2022), using high-
density of markers. In A. japonicus, GWAS merely con-
ducted in identifying SNPs associated with various body 
colors (Ge et al. 2020); however, none have been reported 
to date for papilla number polymorphism.

In the present study, we focused on identifying SNP 
markers significantly associated with the papilla trait of 
sea cucumber by performing GWAS combined with the 
fine-mapping method (Fang and Georges 2016). Further 
verification of the lead SNPs was carried out in another 
population, followed by applying the Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
as complementary to the mini-effect genes that interacted 
with the papilla number trait. Moreover, the expressions of 
most-potential candidate genes were detected to investigate 
their critical roles involved in target traits. The SNP-based 
heritability of the papilla was estimated as one of the genetic 
parameters for economically important traits in selective 
breeding programs. The results of this study will provide 

candidate loci/genes for promoting the genetic and molecu-
lar breeding development of A. japonicus.

Results and discussion

Phenotypes and genotypes

Benefiting from its rich nutritional value, the echinoderm 
of sea cucumber (A. japonicus) had a significant share of 
aquaculture in northern China (Tian et al. 2017). Papilla 
number is a commercial target trait that varied from geo-
graphic sites and breeds (Song and Wang 2019). This 
study aims to perform GWAS analysis to unveil papilla 
number-related SNPs and to dredge up candidate genes. 
The phenotypic trait is the first analysis. As previous 
research documented in Asian populations, the largest total 
number of sea cucumber papilla was measured from the 
Russian population (66.25 ± 8.11), followed by the Japa-
nese population (53.64 ± 7.88) and two Chinese hybrid 
populations (Chinese–Russian: 54.65 ± 4.74 and Chi-
nese–Korean: 46.29 ± 6.91), whereas the lowest number 
was 29.57 ± 3.31 of Chinese wild population (Chang et al. 
2011). In this study, the 200 sea cumbers animals con-
sisted of two populations DYP (30) and DLP (170), and 
records showed the papilla number of DYP (36.85 ± 5.74) 
is significantly less (P < 0.01) than DLP (40.70 ± 6.36) 
(Fig. 1A) and satisfy the normality, which is regarded as 
pre-condition of GWAS (Supplementary Fig. S1). Unlike 
SNP-chip unguaranteed quality (Talouarn et  al. 2020) 
or restriction-site-associated DNA sequencing (RAD-
seq) limited coverage (Xu et al. 2019), we adopted the 
whole-genome sequencing method to obtain most SNPs 
to enhance the accuracy and power of GWAS (Wu et al. 
2019a, b). In a summary of sequenced data, each genomic 
library generated 37 million 350-bp paired-end reads 
(~ 10.42 X coverage) that were aligned to the A. japoni-
cus reference genome (Zhang et al. 2017). To assemble 
chromosome-scale scaffolds, we used the published link-
age maps (Tian et al. 2015) inferred from 2b-RAD markers 
(Wang et al. 2012) and the A. japonicus reference genome 
(Zhang et al. 2017) to linearly arrange contigs. Approxi-
mately 87% of the total reads were aligned to the reference 
genome and used for SNP calling. After rigid control (call 
rate > 90%, MAF < 0.05), a set of 400,186 high-quality 
SNPs were captured for downstream analysis.

Genetic structure and parameter analysis

The crucial factor in selective breeding is to determine the 
proportion of phenotypic variance explained by genetic 
variance (Falconer and Mackay 1996). First, we applied 
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the GCTA method to determine the potential correlation 
between genetic and phenotypic similarities, partitioning 
the total phenotypic variance into genetic and environmen-
tal factors (Yang et al. 2011). There are three algorithms 
of REML in GCTA: average information (AI) (Johnson 
and Thompson 1995), fisher scoring (FS) and expectation 
maximization (EM) (Searle et al. 1992). The estimates of 
SNP-based heritability ( h2

GCTA
 ) conducted using all SNPs 

(400,186 SNPs with MAF > 5%) were 0.66 (S.E. 0.07) by 
REML AI, 0.65 (S.E. 0.08) by REML FS, and 0.65 (S.E. 
0.09) by REML EM, respectively. This result is consist-
ent with the previous findings that SNP-based heritability 
for growth traits was at higher levels than adaptive traits 
(tolerance and resistance traits) in aquatic animals, such 
as shell width traits (0.54) in Zhikong scallop (Guo et al. 
2018a), soft tissue weight (0.72) in Pacific abalone (Peng 
et al. 2021), ammonia tolerance (0.36) in orange-spotted 
grouper (Shan et  al. 2021) and Vibrio harveyi resist-
ance (0.38) in yellow drum (Luo et al. 2021). Moreover, 
on account of Breeder’s equation, given as R = h2 S (R: 
response to selection, S: selection differential) (Roff 1997), 
higher heritability may result in a stronger response and 
more effective selection. Thus, identifying the trait-related 
markers is of great importance to accelerate the genetic 

improvement of this commercial trait and promote the 
development of new breeds. However, the major chal-
lenge for association analysis within 200 individuals is the 
population structure and familial relatedness. It is widely 
acknowledged that the ignorance of population stratifica-
tion and kinship may produce mass false positives, and 
therefore result in unreliable outcomes (Marigorta et al. 
2018). Regardless of plants (Müller et al. 2019; Zhong 
et al. 2021) and animals (Guo et al. 2018b; Higgins et al. 
2018), to identify the phenotype-linked causal variants, 
geographic populations with complex population struc-
tures and kinships (also known as Q + K) were collected 
to fit a mixed liner model. In our results, the lowest cross-
validation (CV) error value was K = 2 in the admixture 
analysis (Fig. 1C), which was subsequently exemplified by 
the PCA analysis (Supplementary Fig. S2), inferring two 
groups stratified among samples. Most of the kinship coef-
ficients between pairs of individuals were between 0 and 
0.2 (Supplementary Fig. S3), suggesting the weak relative 
kinship within two populations, which was optimized to 
improve the GWAS power. In addition, for linkage dis-
equilibrium analysis (Fig. 1A), both populations exhib-
ited rapid LD decay, which decreased to 0.2 beyond 62 bp 
(DLP) and 54 bp (DYP), respectively. The result showed 
a close genetic relatedness of these samples, indicating 

Fig. 1  The phenotypic and genetic analysis of papilla number trait. A 
Papilla number (left) and linkage disequilibrium (LD) decay analy-
sis (right). B Quantile–quantile (QQ) plots. C Genetic clustering 

analysis. D The Manhattan plots for papilla trait in the sea cucumber, 
where the red line indicates the Bonferroni cut-off (P < 1.25E−7) and 
the blue line indicates the conventional threshold (P < 1E−5)
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downstream association analysis needed a sufficient num-
ber of SNPs.

Genomic regions associated with papilla number

GWAS is widely acknowledged as a powerful approach to 
reveal the genetic variation linked to complex phenotypes 
and to identify the candidate hub genes of economic traits, 
hence providing valuable markers for a breeding program 
(Luo et al. 2012). Our GWAS results for the papilla num-
ber trait in sea cucumber are summarized in Table 1 and 
Fig. 1D. And the QQ plot (Fig. 1B) indicated a good correc-
tion of population stratification, for major SNPs following 
null hypothesis and only a few deviated significant SNPs. In 
total, the two strongest signals (AJAPscaffold1032_82852 
with P < 4.82E−8 and AJAPscaffold243_127089 with 
P < 7.81E−8) that passed the Bonferroni correction (0.05/
NSNP) were detected on chromosome 10 (~ 43.3 Mbp) and 
chromosome 9 (~ 4.2 Mbp); the MAF of the lead SNPs were 
0.16 and 0.27, each explaining 1.48% and 1.41% for pheno-
typic variance, respectively. The outcomes testified to a com-
mon assumption that quantitative traits are jointly affected 
by a large number of genes with minor impacts and a small 
quantity of genes with major impacts insofar as only two 
associations were obtained from the experiment (Lu et al. 
2013). Also, similar GWAS results were reported in quan-
titative traits analysis of marine mollusk species, namely 
two growth-related SNPs in scallops (Ning et al. 2019), 12 
and 13 Zn/Cu-accumulation-related SNPs in oysters (Meng 

et al. 2020) and 263 SNPs associated with 10 growth-related 
traits in abalone (Peng et al. 2021). However, Bonferroni 
correction was employed to reduce multiple hypothesis 
error rates, which has, in turn, increased the probability of 
false negatives (Armstrong 2014). At a conventional and 
less stringent threshold (P < 1E−5) (Coltell et al. 2020), 
there were 13 more SNPs in association with the target trait, 
which scattered into Chr. 2, 4, 5, 7, 8, 11, 17, 18. Among 
these potential causal loci, we focused on the two GWAS 
regions that were identified as 1–2 Mb regions around the 
lead SNPs. More precisely, near to the position of AJAPscaf-
fold1032_82852 located at 43,374,494 bp of chromosome 
10, marker AJAPscaffold1397_132507 at 12,916,805 bp and 
AJAPscaffold1414_194125 at 43,815,925 bp were strongly 
associated for the trait with P < 3.42E−6 and P < 5.27E−7, 
respectively. On chromosome 5, two strongly linked mark-
ers (AJAPscaffold859_228156 with P = 4.98E−6 and 
AJAPscaffold859_289475 with P = 2.95E−6) were on 
the same scaffold (scaffold859). Moreover, the trait had 
another three strong signals at 8,076,008 bp of chromo-
some 8 (AJAPscaffold1445_150535 with P = 3.87E−7), 
898,147 bp of chomesome18 (AJAPscaffold1100_225705 
with P = 2.03E−6), 12,740,233  bp of chomesome17 
(AJAPscaffold1136_369081 with P = 2.06E−6). On two 
regions at ~ 3.3 Mb and ~ 32.8 Mb of chromosome 2 and 
two regions at ~ 6.3 Mb and ~ 8.5 Mb of chromosome 7, 
the highly significant associations of two SNPs (AJAP-
scaffold4_890918 with P = 7.31E−6 and AJAPscaf-
fold1465_54665 with P = 6.15E−6) on chromosome 2 and 

Table 1  List of all significant SNPs identified in the GWAS analyses sorted by Pval (Pc1df)

SNP the name of the single-nucleotide polymorphism, CHR chromosome, Position position of the SNP on the chromosome in base pairs on the 
sea cucumber genome, Pc1df P values adjusted for genomic control, effB effect of the minor allele (B allele), VSNP variance explained by the 
SNP (calculated as 2pqa2, where p is the frequency of one allele, q = 1 − p is the frequency of the second allele and a is the additive genetic 
effect); VP phenotypic variance, VG additive genetic variance, VPSNP(%)percentage of phenotypic variance explained by each SPN, VGSNP 
(%)percentage of additive genetic variance explained by each SPN, MAF minor allele frequency

N SNP CHR Position Pc1df effB VSNP VP VG VPSNP (%) VGSNP (%) MAF

1 AJAPscaffold1032_82852 10 43374494 4.82E−08 − 1.88 0.95 90.51 64.16 1.04 1.48 0.16
2 AJAPscaffold243_127089 9 4265016 7.81E−08 1.52 0.49 90.51 64.16 0.91 1.41 0.27
3 AJAPscaffold1445_150535 8 8076008 3.87E−07 − 1.38 0.65 90.51 64.16 0.72 1.01 0.22
4 AJAPscaffold1414_194125 10 43815925 5.27E−07 − 1.81 0.83 90.51 64.16 0.92 1.30 0.15
5 AJAPscaffold1100_225705 18 898147 2.03E−06 1.67 0.78 90.51 64.16 0.86 1.22 0.17
6 AJAPscaffold1136_369081 17 12740233 2.06E−06 2.06 0.89 90.51 64.16 0.99 1.39 0.12
7 AJAPscaffold87_470660 11 4247077 2.16E−06 0.909 0.35 90.51 64.16 0.39 0.55 0.31
8 AJAPscaffold859_289475 5 34009584 2.95E−06 − 1.14 0.49 90.51 64.16 0.54 0.76 0.25
9 AJAPscaffold1397_132507 10 12916805 3.42E−06 − 1.56 0.68 90.51 64.16 0.75 1.07 0.17
10 AJAPscaffold2_603356 7 6304931 3.59E−06 0.75 0.26 90.51 64.16 0.29 0.41 0.39
11 AJAPscaffold859_228156 5 33948256 4.98E−06 0.67 0.21 90.51 64.16 0.23 0.33 0.41
12 AJAPscaffold517_23072 7 8596937 5.44E−06 − 1.01 0.41 90.51 64.16 0.45 0.64 0.28
13 AJAPscaffold41_1076509 4 10420026 5.77E−06 − 1.52 0.65 90.51 64.16 0.72 1.01 0.17
14 AJAPscaffold1465_54665 2 32856199 6.15E−06 1.98 0.76 90.51 64.16 0.84 1.19 0.11
15 AJAPscaffold4_890918 2 3387562 7.31E−06 1.45 0.64 90.51 64.16 0.71 1.01 0.19
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two SNPs (AJAPscaffold2_603356 with P = 3.59E−6 and 
AJAPscaffold517_23072 with P = 5.44E−6 on chromosome 
7 were detected for the trait, respectively. On chromosomes 
4 and 11, two SNPs were significant with the trait. Overall, 
15 SNPs were identified to be (P = 1E−5) associated signifi-
cantly with the papilla number trait, which could explain a 
total of 14.78% of phenotypic variation. Unlike papilla num-
ber trait-associated SNPs dispersed in 10 various linkage 
groups, some SNPs that significantly affected quantitative 
traits were found in a certain genomic region (Yoshida and 
Yáñez 2021). For example, the SNPs attributed to the carot-
enoid concentration trait of “Haida golden scallop” were 
uniquely identified in linkage group 7 (Wang et al. 2022). 
Through GWAS analysis of body weight in giant grouper, 
one causal SNP and with two suggestively associated SNPs 
were all located in chromosome 18 (Wu et al. 2019a, b). 
The present result was not consistent with previous stud-
ies obtained in previous GWASs of some quantitative traits, 
indicating that the polymorphism of papilla number may 
well be determined by a more complex mechanism.

Fine‑mapping and candidate genes

For further refinement of the regions containing causative 
genes and variants, we achieved fine-mapping of the GWAS 
region 2–3 Mb around the lead SNPs. The advantages of the 
fine-mapping are that (1) it narrows down potential causative 
variants by indicating causal variants in the SNP set; and 
(2) it efficiently identifies more than one variant if multiple 
variants control the investigated trait. Thus, the fine-map-
ping could increase the reliability for the GWAS to find the 
candidate genes (Schaid et al. 2018). To increase the accu-
racy of fine-mapping, we used as many SNPs as possible by 
utilizing re-sequenced SNPs with an average coverage of 
∼ 10.42×. Then, we narrowed down the clusters containing 
causative variants using BayesFM-MCMC software.

The software first clustered the SNPs within a GWAS 
region using a hierarchical clustering method based on the 
r2 among SNPs; then it searched multiple causal variants by 
conducting a Bayesian model selection across the cluster 
and generated the posterior probability for each SNP within 
the cluster, from which a credible set of SNPs with > 95% 
posterior probability was constructed.

Fig. 2  Fine-mapping result of the top two causative SNPs. A Fine-mapping the chromosome 10: region. B Fine-mapping in the chromosome 9: 
region
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To begin, a single variant association was conducted 
for the GWAS chromosome region, the scaffold AJAP-
scaffold1032, which included the significantly associ-
ated SNP AJAPscaffold1032_82852. BayesFM-MCMC 
was used to further refine the region, and three cluster 
signals were identified with posterior probabilities bigger 
than 0.8. Most SNPs had minuscule posterior probabili-
ties and three SNPs gave substantial posterior probability 
(f.i. greater than 0.5) in the identified cluster (Fig. 2A). 
Fine-mapping of the region on the scaffold AJAPscaf-
fold243, including the significantly associated marker 
AJAPscaffold243_127089, identified two cluster signals 
with a posterior probability equal to 1. Most SNPs had 
minuscule posterior probabilities, and two SNPs gave 
substantial posterior probability (f.i. greater than 0.5) in 
the identified cluster (Fig. 2B).

The 3 SNPs of interest on AJAPscaffold1032 are 
located in the intergenic region, which is approximately 
90 kb downstream of PATS1 (serine threonine protein 
kinase pats 1), over 20 kb downstream of PPP2R3C (ser-
ine threonine protein phosphatase 2A regulatory subunit 
B subunit gamma), and about 30 kb downstream of GBP1 
(guanylate binding protein 1). All three candidate genes 
have been demonstrated to be involved in the cell pro-
cess. Specifically, PATS1 serves as an essential regula-
tor of cytokinesis involved in the binding to actomyosin 
cytoskeleton. Moreover, disruption of the PATS1 locus 
could cause cytokinesis suspension, and therefore was 
large and multinucleate (Abysalh et al. 2003). PPP2R3C, 
is also known as G5PR. One of the members of the PP2A 
regulatory B subunits has been extensively reported as 
interacting directly with protein phosphatase PP2A and 
PP5 (Katayama et al. 2014). The latter are functions in 
cell cycle progression, cell division, development and cel-
lular signal transductions (Janssens and Goris 2001; Kono 
et al. 2002; Nolt et al. 2011). As for another candidate 
gene GBP1, substantial evidence exemplifies the associa-
tion with intestinal and vascular epithelial cell prolifera-
tion in humans (Capaldo et al. 2012; Guenzi et al. 2001). 
We assume that the variants possibly have regulatory 
effects on the three genes nearby. Therefore, alteration of 
cellular activities potentially affects the phenotypic trait, 
which is noticed as papilla number diversity. Further-
more, the two highly linked SNPs on AJAPscaffold243 
are located within two genes, EIF4G (eukaryotic initia-
tion factor 4G) and BCAS3 (breast carcinoma amplified 
sequence 3). EIF4G provides a docking site for Mnk1 
(mitogen-activated protein kinases 1) to phosphorylate 
EIF4E, which is an essential modulator of cell growth and 
proliferation (Pyronnet et al. 1999). Even though without 
a means to participate cell proliferation process, BCAS3 is 
more characterized by promoting directional cell migra-
tion (Shetty et al. 2018). Taken together, the functional 

genes were searched for near the tightly linked regions 
as candidate genes. Subsequently, function analysis of 
candidate genes was conducted, revealing most of the 
genes involved in cellular activities, which may lead to 
polymorphism of papilla number.

Gene‑set enrichment and pathway‑based analysis

At a less stringent significance level (P < 1E−4), there were 
254 SNPs annotated in 76 genes. After screening the 15 kb 
window up- or downstream of these significant SNPs, a 
set of 371 genes in association with papilla number diver-
sity were captured for GO function annotation and KEGG 
pathway enrichment analyses. This bioinformatic analysis 
was broadly employed in omics data to speculate potential 
gene phenotypes (Zhang et al. 2013) and uncover important 
molecular mechanisms (Feng et al. 2020). In the present 
study, GO analysis showed 109 genes were successfully 
mapped to the background (10,328 genes), and the first 5 GO 
terms with lower P value in each module were displayed in 
Fig. 3A. The most remarkable terms were phosphatidylino-
sitol binding (GO:0035091) in MF, Sm-like protein family 
complex (GO:0120114) in CC, and cleavage involved in 
rRNA processing (GO:0000469) in BP, which was similar 
to previous research on cell growth. For example, phosphati-
dylinositol 3-(PI3) kinase was proved to interact with trans-
forming growth factor (TGF) β receptors in epithelial cells 
(Jae et al. 2005). Some Sm and Sm‐like proteins bind to 
snRNPs (small nuclear ribonucleoprotein) and play a major 
role in snRNP biogenesis and transport, which mediated 
cell growth and development with corresponding transcrip-
tion factors (Séraphin 1995; Xue et al. 2010). Endonuclease 
cleavage initiated internal transcribed spacer 1 (ITS1) to sep-
arate rRNA components of ribosomal subunits, production 
of which is coupled to the cellular growth rate (Sloan et al. 
2013). This result is in line with the formation of papillae, 
which were composed of inner mesothelium, nerve plexus, 
the outer epidermis, and connective tissue layer (Vanden-
spiegel et al. 1995). This suggests that the higher expression 
of cell growth-related genes could result in greater papilla 
number of A. japonicus, especially for the genes functioned 
in skins cells. Besides, KEGG pathway enrichment analysis 
(Fig. 3B) was complementary to the process affecting the 
papilla number trait. Target genes were principally classified 
into three classes, amino acid, and nucleotide metabolism, 
endocrine system and human diseases, among which purine 
(KO00230) and pyrimidine (KO00240) metabolism was 
involved in fibroblast cell proliferation (Engström and Zetter-
berg 1984). Therefore, this may well influence the growth of 
connective tissue during papillae development (Mondain and 
Ryan 1993). Another two significantly enriched categories, 
PPAR (peroxisome proliferator-activated receptor) signal-
ing pathway (KO03320) and GnRH (gonadotropin-releasing 
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hormone receptor) signaling pathway (KO04912) were 
enrolled in the endocrine system. Activation of hepatic stel-
late cells could up-regulate platelet-derived growth factor-β 
receptor and epidermal growth factor receptor; meanwhile, 
down-regulating PPAR-γ expression, the latter of which was 
a crucial factor in fat cell differentiation (Zhou et al. 2007), 
with no exception to papilla components. The GnRH signal-
ing pathway, which was able to activate MAPKs to transfer 

signals from the cell surface to the nucleus and affected gon-
adotropin transcription (Kraus et al. 2001), suggested that 
GnRH may be responsible for the cell proliferation cycle. 
These results implicate that papilla number diversity in 
sea cucumber may be due to the activities involved in cell 
growth. Such biological processes were not only dominated 
by multiple loci/genes, but also modified by a great number 
of related minor loci/genes.

Fig. 3  The bioinformatic enrichment and expression analysis of can-
didate genes. A The summary of GO function annotation analysis 
and each term described the function of gene cluster and the length of 
colored bars represent the P value. B The summary of KEGG path-
way enrichment analysis and the bubble size and color represented 
gene numbers and Q values in certain pathway. C Relative expression 

levels of PATS1, PPP2R3C and EIF4G in papilla of TG and BG sea 
cucumbers. Three replicates were performed for each papillae tis-
sue, and three technical replicates were conducted for each PCR. The 
comparison of the expression levels as performed using an independ-
ent sample t test. ‘*’ indicates differences that are statistically signifi-
cant (P < 0.05)

Table 2  Sequences of primers 
in this study

SNP/gene Primers sequence Note

AJAPscaffold1032_82852 F:ATC CTT GCC AAC AAA CTT CT SNP verification
R:TGG GAC GAA TGA GGA GAG GT

AJAPscaffold243_127089 F:CTC CAC CCT TTT CTT TCC CTTA SNP verification
R:TCA AAA TGG GCA AAT TGC TATC 

AjPATS1 F:GCC GCT CAG GAT CAG GAT AT qRT-PCR
R:ATT CCT CGC TAC ACC CCT CC

AjPPP2R3C F:AAC AGG TAA AAT AAA GAT TCAGG qRT-PCR
R:ATT TAG ATA TTG ACC ATA GACCC 

AjEIF4G F:TGA TGC CGC CAG CAA TGT AT qRT-PCR
R:TTT GTG GTG GCT GCG TTT GC

β-actin F: AAG GTT ATG CTC TTC CTC ACGC Inter control gene
R: GAT GTC ACG GAC GAT TTC ACG 
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SNP verification and candidate genes evaluation

The top two SNPs (AJAPscaffold1032_82852 and AJAP-
scaffold243_127089) that respectively located in intergenic 
and intron regions, were identified by GWAS, and were 
successfully verified via Sanger sequencing based on the 
primers in Table 2 within the group TG (with more papilla 
number, 41.74 ± 2.57) and the group BG (29.13 ± 2.39, with 
less papilla number) from another sea cucumber popula-
tion. The allele and genotype frequency of the two SNPs are 
presented in Table 3. For SNP, AJAPscaffold1032_82852, 
genotype TT was only observed in the group TG, with geno-
types GT (66.67%) and GG (6.7%), whereas genotypes GG 
(80%) were mainly called in the group BG and genotypes 
GT for the remaining 20%. A similar result was found for 
SNP AJAPscaffold243_127089 (for AA, AG, GG; 0, 46.67, 
53.33% in the group TG and 20, 73.33, 6.67% in the group 
BG, respectively). Comparison between individuals in the 
group TG and BG showed significant differences (P < 0.05) 
in genotype frequencies of the top two SNP markers. Fur-
thermore, the gene expression patterns of the candidate 
genes were detected in the papilla tissue of 20 healthy indi-
viduals using the qRT-PCR method. As shown in Fig. 3C, 
PATS1, PPP2R3C and EIF4G of individuals in group TG 
consistently and significantly were expressed more so than 
in the group BG with approximately 3.34-, 4.90-, 4.23-fold, 
respectively. These results support the evidence that the can-
didate loci/genes may well be involved in the papilla number 
diverse of the individuals in groups TG and BG.

Although the top two SNPs did not locate in the coding 
region, they could affect trait-related functional genes by 
transcriptional regulation (Sturm et al. 2008; Visser et al. 
2014). The significant genotype differences (P < 0.01) were 
found in two comparative groups, TG and BG, based on 
papilla number. Meanwhile, the expressions of three candi-
date genes showed significant differences (P < 0.05), which 
validated the reliability of the two SNPs and in accord with 
the consensus that functional genes existed around the sig-
nificant SNP (Pharoah et al. 2013). Specifically, our result 

showed the mRNA expressional level of PATS1 in TG was 
over three times that in BG (P < 0.05), indicating PATS1 
might function in papilla formation. As reported, disrupted 
PATS1 locus resulted in cytokinesis-defective phenotype in 
Dictyostelium discoideum (Abysalh et al. 2003) indicating 
PATS1 might influence cytokinesis activity related to papilla 
formation. Recent research revealed variants in another ser-
ine threonine-related protein, PPP2R3C, may well enhance 
the catalytic activity of PP2A to impair SOX9 (SRY-related 
HMG-box) signaling and therefore regulate cell develop-
ment (Sandal et al. 2021). The extremely high expression 
(4.90-fold) of PPP2R3C detected in TG could promote the 
cell differentiation process during papilla formation to grow 
more papillae. As for candidate gene EIF4G, substantial evi-
dence proved the regulatory function of EIF4G/EIF4E com-
plex in cell proliferation and growth (Moerke et al. 2007). 
Besides, overexpression of EIF4G would induce malignant 
transformation of normal cells. Thus, we speculated that the 
higher expression of EIF4G (4.32-fold) in TG rather than 
BG could increase cell proliferation involved in papilla gen-
eration. Overall, these combined results may support that the 
verified two SNPs and their corresponding candidate genes 
might contribute to the diversity of papilla number of sea 
cucumber.

Conclusion

Two domestic populations of A. japonicus exhibited diverse 
papilla numbers with a relative-high SNP heritability 
(h2 = 0.65 ± 0.09). Using GWAS analysis, we found two 
SNPs significantly associated with the papilla number of 
sea cucumber. Subsequent fine-mapping regions of the two 
SNPs provided more precise causative loci/genes, PATS1, 
PPP2R3C and EIF4G, which could affect the papilla number 
trait. GO function annotation and KEGG pathway enrich-
ment analyses revealed the possible molecular mechanism 
of the diversified papilla number. The top two SNPs were 
successfully verified in another population of A. japonicus. 

Table 3  Comparison of 
genotype frequencies of the top 
two SNPs between group TG 
(N = 15) and group BG (N = 15) 
of sea cucumber

The top 15 and the bottom 15 sea cucumbers were selected based on their papilla number and tagged as TG 
(Top group) and BG (Bottom group)

SNP Location Locus Genotype Number of 
animals

Fisher’s 
exact test P 
value

TG BG

AJAPscaffold1032_82852 Intergenic T < G TT 4 0 0.0001124
GT 10 3
GG 1 12

AJAPscaffold243_127089 Intron A < G AA 0 3 0.00773
AG 7 11
GG 8 1
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Meanwhile, the expression levels of the three genes PATS1, 
PPP2R3C, and EIF4G of animals in the group TG (Top 
papilla number group) were found to have significantly 
higher expression profiles with 3.34-fold, 4.90-fold, and 
4.23-fold, respectively, compared to its expression levels in 
the group BG (Bottom papilla number group), suggested 
their underlying role in growing more papillae. The pre-
sent results provide valuable information to decipher the 
phenotype differences of the papilla trait and will provide 
important reference information and methodology basis for 
breeding in sea cucumbers.

Materials and methods

Animals, phenotypes, and genotypes

The 200 individual animals of sea cucumber used in the pre-
sent study were comprised of two domestic populations, the 
DLP (38° 53′ 27″ N, 121° 56′ 35″ E, Dalian, Liaoning Prov-
ince, China) and DYP (38° 13′ 8″ N, 118° 24′ 36″ E, Dongy-
ing, Shandong Province, China), and the number records 
of papilla number followed Chang’s methods (Chang et al. 
2011). Afterward, muscle tissue samples were collected 
and used for DNA extraction via the CTAB method. Pair-
end sequencing libraries with an insert size of 350 bp were 
constructed for each sample and sequenced on the NovaSeq 
platform. FastQC software (http:// www. bioin forma tics. 
babra ham. ac. uk/ proje cts/ fastqc/) was employed to sequenc-
ing reads control. High-quality reads were mapped to the 
reference genome sequence of A. japonicus (Zhang et al. 
2017) using Bowtie2 (version 2.3.4.1) with default param-
eters (Langmead and Salzberg 2012). Alignment data were 
processed with Samtools (version0.1.19) (Li et al. 2009) and 
Picard (http:// broad insti tute. github. io/ picard) to mark dupli-
cate reads and estimate the average insert size of the paired-
end reads. The Genome Analysis Toolkit (GATK) (McK-
enna et al. 2010) was used for indel realignment, base-score 
recalibration, and extraction of reads depth information. The 
BAM files were imported to Samtools to conduct reads sort-
ing and filtering, and SNP calling with high-quality bial-
lelic SNPs. The PLINK (version 1.9) software (Chang et al. 
2015) was then used for further quality control as follows: 
(1) individuals with missing rate (-mind) < 0.2; (2) SNPs 
with missing rate (-geno) < 0.1; (3) minor allele frequency 
(-maf) > 0.05.

Population structure and genetic parameters 
calculation

The population structure of the 200 animal samples was 
evaluated using Admixture software (version 1.3) (Alexander 
et al. 2009) and the number of subgroup (K) was set from 

1 to 5. To visualize familial relatedness more precisely, the 
result of Tassel software (version 5) (Bradbury et al. 2007) 
was delineated by TBtools (version 1.0) (Chen et al. 2020a, 
b), respectively. Besides, genome-wide Complex Trait Anal-
ysis (GCTA , version 1.93.2) (Yang et al. 2011) was used to 
estimate the SNP-based heritability of papilla number trait. 
First, population structure was considered in heritability esti-
mation, then we estimated univariate heritability of papilla 
number trait of sea cucumber by the restricted maximum 
likelihood method. Moreover, linkage disequilibrium (LD) 
statistics and LD decay analysis of both populations were 
performed using PopLDdecay software (version 3.41) with 
default parameters (Zhang et al. 2019), and the LD decay 
plot based on mean r2 was drawn using a Perl script embed-
ded in the software.

Genome‑wide association study and candidate gene 
exploring

GenABEL-package is R library for facilitating Genome-
Wide Association Study (GWAS) analysis of binary and 
quantitative traits (Aulchenko et al. 2007). We used the 
Genome-Wide Association using Mixed Model and Regres-
sion-Genomic Control (GRAMMAR-GC) approach, with 
the default function gamma (Amin et al. 2007; Svishcheva 
et al. 2012), to fit a single marker regression for GWAS.

where y is a vector containing a quantitative trait measured 
on individual i ; � is a vector of the fixed effects; X is a design 
matrix, which relates records to fixed effects � ; a is a vector 
of random additive genetic effects with the multi-normal 
distribution a ∼ N

(

0,G�2

a

)

, where G is the genomic relation-
ship matrix (VanRaden 2008) and �2

a
 is the additive genetic 

variance; g is the SNP additive effect; Z and M are the inci-
dence matrices for a and g, respectively; and � ∼ N(0, Iσ2

e
) , 

where �2

e
 is the residual variance and I is an identity matrix. 

The GRAMMAR-GC method incorporates the ideas under-
lying structured association and the genomic kinship matrix. 
Basically, it allows for structured association, using genomic 
data to identify strata and more subtle structure. Bonfer-
roni correction with a 0.05 cut-off (P < 1.25E−7) was set as 
a stringent threshold, and the conventional threshold of P 
value (1.00E−5) was also considered to declare significances 
(Coltell et al. 2020). Both Manhattan plots for GWAS results 
and QQ plot that expressing the expected and observed P 
values were obtained by the R package ‘QQman’ (Turner 
2014).

To identify weaker but related signals that were missed 
owing to the stringency in P value thresholds, we used path-
way enrichment analyses according to the GWAS results. 
In the enrichment analysis, the total SNPs tested in GWAS 

(1)y = X� + Za +Mg + �,

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://broadinstitute.github.io/picard
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represented the background SNP, whereas the background 
genes were the genes associated with those SNPs. The SNPs 
were assigned to genes if they were located within the gene 
or in a flanking region of 15 kb up- and downstream of 
the gene (Pickrell et al. 2010). The GO (Ashburner et al. 
2000) databases and the Kyoto Encyclopedia of Genes and 
Genomes (KEGG; Ogata et al. 1999) were queried to assign 
the genes to functional categories. The gene set enrichment 
analysis was carried out using the online software (http:// 
www. omics hare. com/ tools) and Enrichpipeline based on the 
hypergeometric distribution (Huang et al. 2009). GO terms 
with P < 0.05 were considered significantly enriched.

Fine‑mapping

Using the BayesFM-MCMC package (Fang and Georges 
2016) to finely map causative variants, more than one set 
of variant clusters could be detected in each region. The 
threshold for SNP clustering was set as r2 = 0.5; the Markov 
chain length was 600,000 with the first 20,000 discarded 
(burn-in period). The threshold to declare significance was 
set at P = 1.1E−5, determined by dividing 0.05 by the num-
ber of SNPs in the GWAS region. The software is applicable 
for either genotyped variant dataset or for imputed variant 
dataset and is also suitable for both case–control study and 
for continuous trait study.

SNP verification

To validate the association test result, two lead SNPs 
(P < 1E−8) were selected to verify in the 300 samples ran-
domly collected from another sea cucumber population in 
the sea area of Hekou District, Dongying, Shandong Prov-
ince in late Dec. 2021. Then, the top 15 and the bottom 15 
sea cucumbers were chosen hinged on their papilla number 
and tagged as TG (Top group) and BG (Bottom group), and 
preserved papillae tissue for subsequent verification. The 
top two SNPs were verified following the method delineated 
by Zhu et al. (2021) with some modifications (the anneal-
ing temperature was 58.3 °C and 54.2 °C for SNP AJAP-
scaffold1032-82852 and SNP AJAPscaffold243-127089, 
respectively) and then sequenced by Sangon Biotech (Shang-
hai, China). The genotypes of target loci were aligned by 
ClustalW2 multiple alignment program (http:// www. ebi. ac. 
uk/ Tools/ msa/ clust alw2/), and differences in alleles frequen-
cies between the TG and BG were conducted using Fisher’s 
exact test to confirm the variant. P values < 0.05 were con-
sidered statistically significant.

Candidate gene evaluation

To examine the expression profile of genes, which are the 
top two SNPs annotated or nearby influenced between TG 

and BG, 10 TG and 10 BG samples from another non-
breeding sea cucumber population (N > 300) were collected 
randomly, and the tissue of papillae was carefully sampled 
in the sea area of Hekou District, Dongying, Shandong 
Province. Total RNA extraction of papillae was carried out 
following the method described by Hu et al. (2006), and 
the Moloney murine leukemia virus (MMLV) reverse tran-
scriptase (Thermo, Wilmington, USA) was used to acquire 
cDNA. β-actin (ACTB) was selected as a reference for tissue 
samples (Wang et al. 2017). Once complete real-time quan-
titative reverse transcription PCR (qRT-PCR), the mRNA 
expression profile is calculated in relative quantity format, 
followed using an independent sample t test (SPSS software) 
to analyze the statistical difference. Differences were con-
sidered significant at P < 0.05.
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