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Abstract
Cluster of differentiation (CD) antigens are cell surface molecules expressed on leukocytes and other cells associated with 
the immune system. Antibodies that react with CD antigens are known to be one of the most essential tools for identifying 
leukocyte subpopulations. T lymphocytes, as an important population of leukocytes, play essential roles in the adaptive 
immune system. Many of the CD antigens expressed on T lymphocytes are used as surface markers for T lymphocyte clas-
sification, including CD3, CD4 and CD8 molecules. In this review, we summarize the recent advances in the identification 
of CD molecules on T lymphocytes in teleosts, with emphasis on the functions of CD markers in the classification of T 
lymphocyte subsets. We notice that genes encoding CD3, co-receptors CD4 and CD8 have been cloned in several fish species 
and antibodies have been developed to study protein expression in morphological and functional contexts. T lymphocytes 
can be divided into  CD4+ and  CD8+ cells discriminated by the expression of CD4 and CD8 molecules in teleost, which 
are functionally similar to mammalian helper T cells (Th) and cytotoxic T cells (Tc), respectively. Further studies are still 
needed on the particular characteristics of teleost T cell repertoires and adaptive responses, and results will facilitate the 
health management and development of vaccines for fish.
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Introduction

Leukocytes express distinct assortments of molecules on 
their cell surfaces. These surface molecules play critical 
roles in signaling and many reflect different stages of leu-
kocytes lineage-specific differentiation (Cruse et al. 2004). 
Antibodies that react with cell surface antigens are known to 
be one of the most essential tools for identifying leukocyte 
subpopulations. Therefore, in the early years, large numbers 
of monoclonal antibodies (mAbs) that react to these cell 
surface molecules were developed by immunologists, each 

with different associated nomenclatures (Zola et al. 2005). 
In the absence of a unified nomenclatural system for mAbs, 
it was very difficult to tell if more than one antibody was 
specific for the same molecule (Zola et al. 2003). In the 
1980s, the establishment of the human leukocyte differentia-
tion antigens (HLDA) workshop brought order to the chaos 
(Bernard and Boumsell 1984; Boumsell 1996). A standard 
nomenclature for several mAbs that react with a specific 
antigen has been implemented, which provides consistency 
and uniformity when referring to the same molecules (Engel 
et al. 2015). Clusters of antigens on the surface of leukocytes 
can be clearly designated by their reactions with mAbs. This 
designation of antigens is called clusters of differentiation 
(CDs), and this common nomenclature has been applied not 
only to human, but also to other vertebrates, including tel-
eost fish. To date, more than 400 human proteins have been 
designated as CD markers, and the HLDA workshops con-
tinue to be held on a 4-year cycle with the main purpose of 
updating newly characterized molecules (Zola et al. 2005).

T lymphocytes, as an important population of leukocytes, 
play essential roles in the adaptive immune system. Many of 
the CD antigens expressed on T lymphocytes are involved in 
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signal transduction and activation, and several CD antigens 
can be used as cell surface markers of T lymphocyte clas-
sification, including CD3, CD4, CD8, CD28 and CTLA4 
(CD152) (Nakanishi et al. 2015). For example, CD3 and 
TCR molecules coexist on the surface of T cells, forming 
the basic structure of T cell antigen-specific recognition and 
cell activation signal transmission (Ashwell and Klausner 
1990; Klausner et al. 1990). T lymphocytes can be divided 
into T helper (Th) and T cytotoxic (Tc) cells, which are dis-
tinguished by the expression of CD4 and CD8 glycopro-
teins, respectively (Kato et al. 2013). The counter-receptors 
of CD28 and CTLA4 are important T cell costimulatory 
receptors and involved in the activation or inactivation of T 
cells (Chen and Flies 2013). Teleost fish, the oldest verte-
brate group, exhibit all the major features of the mammalian 
immune system and have both innate and adaptive immunity. 
T lymphocytes and their subsets have been found and identi-
fied in fish. According to the definition and nomenclature of 
CD antigens in mammals, many of CD molecules expressed 
on T lymphocytes also have been cloned and identified in 
multiple fish species (Castro et al. 2011). Together with the 
development of mAbs that recognize surface molecules on 
T lymphocytes, the phenotypes and properties of T cells 
have become important issues for fish immunologists. Two 
subpopulations,  CD4+ and  CD8+ T lymphocytes (function-
ally identified as Th and Tc cells in mammals) have also 
been found and characterized in fish (Nakanishi et al. 2015). 
Furthermore, CD2, CD28, CTLA4 and other cluster differ-
entiation antigens have also been characterized in teleost fish 
(Bernard et al. 2007; Cho et al. 2017; Hu et al. 2012; Jeswin 
et al. 2017; Shao et al. 2018). However, the precise roles of 
fish CD antigens in the classification, signal transduction and 
activation of T cells are still unclear.

In this review, we summarize recent progress in the 
identification of CD molecules on T cells in teleost fish, 
with emphasis on the functions of CD markers in the clas-
sification of fish T lymphocyte subsets. The main aims are 
to deepen our understanding of the precise role of fish T 
lymphocyte subpopulations in adaptive immunity, and to 
facilitate the health management and development of vac-
cines for fish.

CD3 subunits as specific markers for T 
lymphocytes in fish

Molecular characterization of the CD3 complex

CD3 molecules coexist in the form of TCR-CD3 complex 
on T lymphocytes, and this complex is made up of an αβ 
or γδ heterodimer of TCR and the subunits (γ, δ, ɛ and ζ 

chains) of CD3 (Kim and Park 2005; Park et al. 2001). The 
TCR-CD3 complex plays essential roles in specific antigen 
recognition, cell activation and signal transmission in T 
cells (Jung et al. 2017; Kuhns et al. 2006). Structurally, 
the γ, δ and ɛ chains of CD3 are members of the immuno-
globulin (Ig) superfamily and consist of an extracellular 
Ig-like domain, a transmembrane helix and a cytoplasmic 
tail, whereas the CD3ζ chain has a short extracellular pep-
tide, a transmembrane part and a long cytoplasmic tail 
(Liu et al. 2008). All the CD3 subunits contain immuno-
receptor tyrosine-based activation motifs (ITAMs) in the 
intracellular domains that connect with tyrosine kinases 
during the signal transduction (Kuhns et al. 2006; Ran-
delli et al. 2011). Similar to mammals, four T cell receptor 
genes, which encode the TCR α-, β-, γ- and δ-chains, and 
three CD3 chains (CD3γ/δ, -ɛ and -ζ), have been cloned 
in teleost fish (Fig. 1), thereby displaying the conserva-
tion of functional characteristics (Langenau and Zon 2005; 
Maisey et al. 2011). The CD3γ/δ gene that corresponds 
to the forerunner of mammalian CD3γ and CD3δ genes 
has been reported in multiple fish species, as well as from 
birds and amphibians, suggesting a common ancestor of 
mammalian CD3γ and CD3δ (Araki et al. 2005; Kim and 

Fig. 1  Cluster of differentiation antigens expressed on T lymphocytes 
in teleost fish. According to the definition and nomenclature of CD 
antigens in mammals, many of CD molecules expressed on T lym-
phocytes have also been cloned and identified in multiple fish species. 
For example, CD3 and TCR molecules coexist on T cells, forming the 
basic structure of T cell antigen-specific recognition and cell activa-
tion signal transmission. T lymphocytes can be divided into T helper 
(Th) and T cytotoxic (Tc) cells, distinguished by the expression of 
CD4 and CD8 glycoprotein, respectively. The counter-receptors of 
CD28 and CTLA4, as important T cell costimulatory receptors, are 
involved in activation or inactivation of T cells. CD2, CD40L and 
other cluster differentiation antigens are also characterized in teleost 
fish
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Park 2005; Liu et al. 2008; Park et al. 2001; Randelli et al. 
2011; Shang et al. 2008).

Antibodies used to identify  CD3+ T 
lymphocytes

In mammals, the TCR-CD3 complex has been the focus of 
intense research covering aspect of biosynthesis, assem-
bly, structure  and signaling, which has given insights 
into the roles of T cells in immunity (Göbel and Dangy 
2000). Although the CD3 subunits have been reported in 
multiple fish species, the research was focused on gene 
cloning rather than structure or signaling (Kim and Park 
2005). However, CD3 molecules are essential cell surface 
markers of T lymphocytes, and the antibodies against 
these molecules are powerful tools to identify T lympho-
cytes and study their immune properties in fish. In ear-
lier studies, anti-human CD3 antibodies have been used 
to react with CD3 molecules in different mammalian, 
avian  and even fish species, when the sequence informa-
tion of non-mammalian CD3 proteins were not available 
(Bertram et al. 1996; Cook et al. 2001; Keresztes et al. 
1996; Wilkinson et al. 1995). ZAP70, a tyrosine kinase 
protein (70 kDa), expressed in T cells and crucial for their 

selective activation, has also been used to label fixed T 
cells in fish by using anti-human ZAP70 mAbs (Yoon 
et al. 2015). With the need of research and development 
of sequencing, mAbs that specifically recognized fish T 
cells have been developed (Fig. 2). The mAbs of DLT15 
were developed that recognize thymocytes and T lympho-
cytes in peripheral tissues of sea bass (Dicentrarchus lab-
rax), and the mAbs of WCL38 were produced to recognize 
intestinal T cells in the common carp (Cyprinus carpio) 
(Rombout et al. 1998; Scapigliati et al. 2000). The anti-
bodies or RNA probes against TCR molecules were also 
used to label T lymphocytes in fish (Picchietti et al. 2008; 
Romano et al. 2011; Timmusk et al. 2003). In addition, 
the CD3 subunit complex is specifically expressed on the 
surface of T cells, and the generation of antisera or mAbs 
against fish CD3 chains are powerful tools for identifying 
T cells (Table 1). In salmon, plenty of CD3ɛ+ T cells in the 
thymus, intestine and gill were identified using the antisera 
against a synthetic peptide of the CD3ɛ chain (Koppang 
et al. 2010). Subsequent morphological analysis revealed 
that T cells aggregated in the thymus, spleen, and even in 
the interbranchial lymphoid tissue of salmon. The results 
suggest that the interbranchial lymphoid tissue in fish is an 
important location of T cell aggregation and for facilitat-
ing the encounter of antigens (Koppang et al. 2010).

Fig. 2  Development of 
monoclonal antibodies against 
CD marker molecules in fish. 
For the selection of immuno-
gens, the eukaryotic plasmids, 
purified recombinant proteins 
or peptide-KLH complexes 
are used as antigens. After 
immunization of mouse, 
splenocytes and myeloma 
cells are fused and then the 
positive hybridoma cells are 
immunologically screened. The 
positive hybridoma cells were 
expanded and cultured, and the 
cell supernatant was collected 
as monoclonal antibody. The 
monoclonal antibodies against 
CD molecules are important 
tools for the identification of T 
cell subsets in fish
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Boardman et al. (2012) prepared a monoclonal antibody 
against the peptide in the cytoplasmic tail region of CD3ɛ 
protein in trout (Oncorhynchus mykiss) and found that 
CD3ɛ+ cells were most abundant in the thymus and skin but 
did not co-locate with  IgM+ cells (Boardman et al. 2012). 
The antibodies against the intracellular sequences of CD3ɛ 
chain have been used to identify salmon and trout  CD3+ 
T cells in fixed or permeabilized cells (Boardman et al. 
2012; Koppang et al. 2010). Furthermore, the extracellular 
peptides of CD3 molecules were also selected for antibody 
production in Atlantic salmon and flounder (Paralichthys 
olivaceus), respectively (Jung et al. 2017; Maisey et al. 2016; 
Tang et al. 2017). In a previously study, flounder  CD3+ T 
cells were observed in tissues and no cross-reaction with 
 mIgM+ B cells were found. Furthermore, the percentages of 
 CD3+ T lymphocytes sharply increased after immunization 
with inactivated Edwardsiella tarda (Tang et al. 2017). Jung 
et al. (2017) also produced a monoclonal antibody against 

the CD3ɛ chain in flounder, and the isolated  CD3+ T cells 
detected the expression of related genes on T cells, such as 
TCR, CD4 and CD8 (Jung et al. 2017).  CD3+ T cells have 
also been targeted directly with in situ hybridization in fish, 
and the results showed that fugu CD3 positive cells were 
detected in kidney, spleen and thymus (Araki et al. 2005).

αβ and γδ T cells are included in  CD3+ T 
lymphocytes

According to the composition of TCR chains,  CD3+ T lym-
phocytes can be subdivided into αβ and γδ T cells (Wan et al. 
2017). Conventional αβ T cells are the more plentiful T cell 
type (90–95%), circulating in lymphoid organs and blood, 
and can be classified as  CD4+ and  CD8+ T cells depending 
on the surface glycoproteins (Hayday 2000; Prinz et al. 2013; 
Silva-Santos et al. 2015).  CD4+ and  CD8+ T cells in teleost 

Table 1  The antibodies against to teleost fish CD3, CD4 and CD8 molecules, respectively

Co-IP Co-immunoprecipitation, WB Western blotting, FCM Flow cytometry, IFA Immunofluorescence assay, IHC Immunohistochemistry, 
FACS Fluorescence activated cell sorting

Marker molecules Fish species Type of antibody Application References

CD3ɛ Salmon pAb WB, FCM, IHC, IFA Koppang et al. (2010)
Trout mAb Co-IP, FCM, IFA Boardman et al. (2012)
Salmon pAb WB, FCM, IFA Maisey et al. (2016)
Flounder pAb Co-IP, FCM, IFA, IHC Tang et al. (2017)
Flounder mAb WB, FCM, IFA, FACS Jung et al. (2017)

CD4-1 Spotted green pufferfish pAb WB Wen et al. (2011)
Ginbuna crucian carp mAb WB, FCM, IFA, FACS Toda et al. (2011)
Japanese pufferfish pAb WB, FCM, IFA, FACS Kono and Korenaga  

(2013)
Zebrafish pAb WB, IFA, IHC, FCM, FACS Yoon et al. (2015)
Trout mAb WB, FCM, IFA, FACS Takizawa et al. (2016)
Trout pAb WB, FCM, IFA, FACS Maisey et al. (2016)
Flounder pAb

mAb
WB, FCM, IFA, IHC, FACS
WB, FCM, IFA, FACS

Xing et al. (2017a, b)
Xing et al. (2020)

Ginbuna crucian carp pAb IFA Kato et al. (2019)
Flounder mAb WB, FCM, IFA, FACS Jung et al. (2020a)

CD4-2 Spotted green pufferfish pAb WB, FCM, IHC, FACS Wen et al. (2011)
Trout mAb WB, FCM, IFA, FACS Takizawa et al. (2016)
Flounder pAb

mAb
WB, FCM, IFA, IHC, FACS
WB, FCM, IFA, FACS

Xing et al. (2017a, b)
Xing et al. (2020)

Flounder mAb WB, FCM, IFA, FACS Jung et al. (2020b)
CD8α Torafugu pAb WB, Co-IP, FCM, FACS Araki et al. (2008)

Ginbuna crucian carp mAb WB, FCM, IFA, FACS Toda et al. (2009)
Salmon mAb IHC Hetland et al. (2010)
Orange-spotted grouper pAb WB, FCM, IFA Chang et al. (2011)
Trout mAb WB, Co-IP, FCM, IFA, IHC, FACS Takizawa et al. (2011)
Flounder mAb WB, FCM, IFA, FACS Jung et al. (2021)

CD8β Flounder pAb WB, FCM, IFA, IHC, FACS Xing et al. (2017a, b)
Flounder mAb WB, FCM, IFA, FACS Jung et al. (2021)
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fish will be the main focus of attention in the following sec-
tions. Among this small group of cells, which represent only 
5–10% of T cells, mammalian γδ T cells are the most primitive 
immune cells and are mainly found in epithelial and mucosal 
tissues. γδ T cells have been identified and functionally charac-
terized only in zebrafish (Wan et al. 2017). Therefore, further 
studies on the immune properties of fish γδ T cells and their 
functional differences with αβ T cells are needed.

Diversity of CD4 molecules and  CD4+ T 
lymphocytes in fish

Molecular characterization of CD4 molecules

CD4, a co-receptor of T cells belonging to the immuno-
globulin superfamily (IgSF), has been cloned in many fish 
species (Ashfaq et al. 2020; Buonocore et al. 2008; Edholm 
et al. 2007; Kato et al. 2013; Laing et al. 2006; Maisey et al. 
2011; Mao et al. 2017; Patel et al. 2009; Sun et al. 2007; 
Tran et al. 2020). In mammals, a single CD4 gene with four 
extracellular Ig-like domains (D1–D4) was characterized, 
whereas two CD4 molecules (CD4-1 and CD4-2) were 
found in teleost fish (Fig. 3). CD4-1 contains four extracel-
lular Ig-like domains (D1–D4), similar to single CD4 gene 
in mammals, and a distinct CD4-2 gene that contains two 
or three Ig-like domains (D1–D2 or D1–D3) (Kato et al. 
2013; Takizawa et al. 2016). CD4-1 is present in all teleost 
fish species studied to date. CD4-like molecules with two 
Ig-like domains have been identified in rainbow trout, Atlan-
tic salmon, fugu, Atlantic halibut and flounder, whereas 

CD4-like molecule with three Ig-like domains has only been 
reported in catfish (Ashfaq et al. 2020; Castro et al. 2011). 
CD4 molecules show low amino acid identity between fish 
and higher vertebrates; however, the characteristics of gene 
structure, splicing patterns, binding motifs and key residues 
are conserved, and the gene features of CD4 in teleosts have 
been well documented (reviewed by Ashfaq et al. 2019; Cas-
tro et al. 2011). Based on the organization of Ig-like domains 
in CD4-1 (V-C-V-C) and CD4-2 (V-C or V-C-V), it has been 
hypothesized that the four-domain CD4 molecule could have 
arisen by the duplication of an ancestral two-domain (V-C) 
receptor (Baixeras et al. 1992; Laing and Hansen 2011; 
Laing et al. 2006; Triebel et al. 1990; Williams et al. 1989). 
Furthermore, a lamprey CD4-like gene with only two Ig-
like domains (V-C) has been reported and thought to be the 
primordial two Ig-like domain CD4 molecule in vertebrates 
(Pancer et al. 2004).

Except a long extracellular region, CD4 in mammals con-
tains a transmembrane domain and a critical cytoplasmic 
tail with a conserved motif (CXC) that interacts with the 
tyrosine kinase Lck (Kim et al. 2003; Moore et al. 2009; 
Turner et al. 1990). During antigen recognition, the extracel-
lular D1 and D2 region of CD4 binds to the MHC class II 
complex expressed on antigen-presenting cells (APCs), and 
then the cytoplasmic tail of CD4 noncovalently connects 
with the Lck protein tyrosine kinase, initiating T cell activa-
tion (Maisey et al. 2016; Merwe and Davis 2002; Salmond 
et al. 2010). The cytoplasmic motif was also found in both 
fish CD4-1 and CD4-2 molecules, and is thought to par-
ticipate in the activation of T lymphocytes after association 
with Lck (Moore et al. 2009). This phenomenon suggests 
that both teleost CD4 coreceptors have a similar function to 
mammalian CD4 molecules and engage in the development 
and activation of T cells. Interestingly, the genes encoding 
CD4 were not found in the Atlantic cod (Gadus morhua) and 
other gadiform species, showing a unique immune system 
(Malmstrøm et al. 2016; Star et al. 2011). In cobia (Rachy-
centron canadum), the transmembrane domain and CXC 
motif are not present in the deduced CD4-2b protein, which 
suggests a difference in CD4-2b activity (Tran et al. 2020). 
It is noteworthy that this was the first record of soluble 
CD4 molecules in fish. In conclusion, although CD4 genes 
have been cloned in multiple fish species, further studies 
are needed to determine the details of their expression and 
function in signaling.

CD4+ T lymphocyte subsets in fish

In addition to being a co-receptor in T cells involved in 
signal transduction, CD4 is also considered as an impor-
tant surface antigen for identifying Th cells (Wan and Fla-
vell 2009). In fish, recombinant proteins or synthetic pep-
tides were selected and generated as immunogens for the 

Fig. 3  Classification of T cell subsets in mammals and teleost fish. In 
mammals, there is only one CD4 gene, so based on the expression of 
CD4 and CD8 co-receptors, T cells can be classified into  CD4+ and 
 CD8+ T cell subsets, where  CD4+ T cells are functionally known as 
T helper cells (Th) and  CD8+ T cells are called cytotoxic T cells (Tc 
or CTL).  CD4+ and  CD8+ T cells were also identified in teleost fish. 
In contrast, two CD4 genes (CD4-1 and CD4-2) were cloned in fish, 
and  CD4+ T cells can be classified into CD4-1 single positive (CD4-1 
SP), CD4-1 and CD4-2 double positive (CD4DP) and CD4-2 single 
positive (CD4-2 SP) cells
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development of monoclonal antibodies or polyclonal anti-
bodies recognizing CD4 molecules (Xing et al. 2017a; Yoon 
et al. 2015). The function of CD4 in signal transduction has 
not been elucidated, but there are many studies on the use 
of CD4 as T cell surface markers to identify  CD4+ Th cells 
(Table 1).  CD4+ T cells were identified in spotted green 
pufferfish (Tetraodon nigroviridis) at the cellular level (Wen 
et al. 2011). Furthermore, a CD4-2+CD25-like+Foxp3-like+ 
Treg-like cell population was first identified and function-
ally characterized in a pufferfish (Wen et al. 2011). Conse-
quently, after the depletion of Treg-like cells, the nonspecific 
cytotoxic cell (NCC) activity, mixed lymphocyte reaction 
(MLR)  and inflammation in the intestine are all enhanced 
in pufferfish (Wen et al. 2011). The mAbs (6D1, 9F1 and 
2C1) against CD4-1 have been produced in carp (Caras-
sius auratus langsdorfii) to trace  CD4+ T cells (Toda et al. 
2011). In addition, many functional studies have been car-
ried out using the mAbs in carp (reviewed by Nakanishi 
et al. 2015), and it was suggested that  CD4+ T lymphocytes 
in carp function as Th cells in mammals (Nayak and Nakan-
ishi 2013; Shibasaki et al. 2010; Somamoto et al. 2014a, 
b; Yamasaki et al. 2014). In Japanese pufferfish (Takifugu 
rubripes), high-purity  CD4+ cells were isolated using a spe-
cific anti-CD4 antibody, and T cell surface markers, not B 
cell or macrophage marker genes, were expressed on sorted 
 CD4+ T cells (Kono and Korenaga 2013). In addition, the 
expression of Th1, Th17, and Treg cytokines in Japanese 
pufferfish  CD4+ T cells is up-regulated by stimulation after 
Lipopolysaccharides (LPS) and Polyinosinic-polycytidylic 
acid (Poly(I:C)), while Th2 cytokines are down-regulated, 
indicating that these  CD4+ cells have a similar profile of 
Th-type cytokine secretion like in mammals (Kono and 
Korenaga 2013). Similarly, CD4-1+ T lymphocytes were 
identified by using a polyclonal antibody against CD4 mol-
ecules in zebrafish (Danio rerio) and the results showed that 
the expression of master transcription factors and cytokines 
related to Th1 or Th2-type responses were increased after 
antigen specific stimulation (Yoon et al. 2015). Takizawa 
et al. (2016) generated mAbs against trout (Oncorhynchus 
mykiss) CD4-1 and CD4-2 molecules and characterized three 
 CD4+ leukocytes (CD4-1/CD4-2 double-positive, CD4-2 
single-positive T cells and CD4-1 single-positive monocyte/
macrophage populations). In the same study, after infection 
with Yersinia ruckeri,  CD4+ T lymphocytes generated equiv-
alent levels of cytokines relevant to Th1, Th17, and regula-
tory T cells, and  CD4+ monocyte/macrophage populations 
had high phagocytic capacity. CD4-1+ subpopulations of T 
cells in trout were also reported in another study by using 
polyclonal antibodies against a peptide from the trout CD4-1 
sequence (Maisey et al. 2016). Additionally, a long-term 
CD4-1+ T lymphocyte line was established and assessed in 
trout using IL-15 as a growth factor (Maisey et al. 2016). 
In a previous study, we identified  CD4+ T lymphocytes in 

peripheral blood, spleen and head kidney from flounder, 
and CD4-1+/CD4-2+ T lymphocytes were identified in the 
majority populations among three of  CD4+ T lymphocyte 
subsets (Xing et al. 2017a). Flounder  CD4+ T cells were also 
found to respond to specific immunostimulants, up-regulated 
cytokines, and transcription factors of Th subsets (Xing et al. 
2020). Similarly, Jung et al. (2020a, b) investigated the cel-
lular immune response of CD4-1+ and CD4-2+ T cells after 
infection with viral hemorrhagic septicemia virus (VHSV) 
and nervous necrosis virus (NNV) in flounder. A polyclonal 
antibody anti-CD4-1 was also developed in ginbuna crucian 
carp (Carassius auratus langsdorfii) to analyse the immunity 
of CD4-1+ cell in the granulomatous inflammation against 
mycobacterial infections (Kato et al. 2019).

Function of  CD4+ T lymphocyte subsets

Although  CD4+ T lymphocytes have been extensively 
characterized in several teleost fish, their precise func-
tions have been only superficially studied. In mammals, 
 CD4+ T lymphocytes can differentiate into one of sev-
eral lineages of Th cell subsets that produce multiple 
cytokines, which participate in the regulation of inflam-
mation and responses against different pathogens (Zhou 
et  al. 2009; Zhu and Paul 2010; Zhu et  al. 2010). In 
 CD4+ T cell subsets, there is increasing evidence that 
the function of Th cell subsets in teleosts is the same as 
that in mammals (reviewed by Ashfaq et al. 2019; Castro 
et al. 2011; Fischer et al. 2013; Nakanishi et al. 2015; 
Tafalla et al. 2016). In a previous study, we found that 
after the suppression of T lymphocytes, especially  CD4+ 
T lymphocytes, the immune responses of B lymphocytes 
were distinctly inhibited, which suggests that  CD4+ T 
lymphocytes regulate the immune response of  mIgM+ 
B cells in flounder (Xing et al. 2017b, 2019b). In other 
fish species,  CD4+ T cells were also involved in a variety 
of immune functions, such as stimulating macrophages 
to increase microbicidal activity, B lymphocytes to pro-
duce antibodies and enhancing cell-mediated immunity 
(Nakanishi et al. 2015). In addition, the genes that encode 
unique transcription factors and hallmark cytokines of 
helper T cell subsets are represented in most teleost 
genomes (Wang et al. 2010). There are ample evidences 
that  CD4+ T lymphocytes up-regulate the expression of 
master transcription factors and cytokines relevant to Th-
type responses following antigen specific stimulation in 
fish (Kono and Korenaga 2013; Takizawa et al. 2016; 
Tian et al. 2021; Xing et al. 2020; Yoon et al. 2015). 
These studies support the potential existence of effector 
T cell subsets in fish (Fig. 4). However, functional studies 
on  CD4+ T lymphocytes are far from sufficient and it is 
difficult to detect  CD4+ T lymphocytes biased toward a 
specific Th phenotype in fish. In mammals, CD4 is also 
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found on the surface of other leukocytes, for example, 
human and rat monocytes/macrophages, but not on mono-
cytes/macrophages from mice and birds (Chan et al. 1988; 
Gordon and Taylor 2005). Similarly, CD4-1+ myeloid 
cell populations with the highest recorded phagocytic 
activity and capacity were described in trout (Takizawa 
et al. 2016), CD4-1 and CD4-2 genes in zebrafish were 
found not only in lymphocytes but also in monocytes/
macrophages and even precursor cells (Yoon et al. 2015). 
In a previous study, we also found that sorted flounder 
 CD4+ cells express CSF-1R, a surface marker of mono-
cytes/macrophages (Xing et al. 2020). In salmon, it has 
not been well explained that cd8α, cd8β and IgM genes 
were expressed in sorted  CD4+ cells (Maisey et al. 2016). 
Furthermore, it has been shown that the  CD4+ T cells in 
carp (Carassius auratus langsdorfii) have strong direct 
antibacterial activity (Nayak and Nakanishi 2013). In 
mammals,  CD4+ Tc cells have also been investigated, 
and they were found to function using the same cytolytic 
pathways as those in  CD8+ Tc cells (Appay et al. 2002; 
Hashimoto et al. 2019; Stalder et al. 1994; Williams and 

Engelhard 1996). However, the precise roles of  CD4+ Tc 
cells remain unclear. Interestingly, studies on the expres-
sion characteristics of catfish CD4 molecules showed 
that two CD4 genes were found on the cytotoxic cell line 
TS32.17, indicating that in addition to the conventional 
 CD8+ Tc cells and  CD4+ Th cells,  CD4+ Tc cells may 
be present in teleost fish (Edholm et al. 2007). These 
findings show that the characteristics and functions of 
 CD4+ cells in different fish species need to be further 
investigated.

CD8 function as surface marker of cytotoxic 
T cells in fish

Molecular characterization of CD8 molecules

CD8 is a membrane-bound extracellular receptor consist-
ing of an αα homodimer or an αβ heterodimer (Janeway 
1992; Zamoyska 1994). CD8α and CD8β consist of an 
IgV-like extracellular domain, a transmembrane domain 
and a short cytoplasmic tail, with the α and β peptides 
linked by disulfide bonds (Veilette et al. 1988). The heter-
odimer of CD8 is mostly found on mature cytotoxic T cells 
and thymocytes, while the homodimer is expressed on NK 
cells, dendritic cells (DCs) and γδ T cells (Lin et al. 1994; 
Terabe et al. 2008). Two of the CD8 chains have been 
cloned in multiple teleost species, such as rainbow trout, 
ginbuna crucian carp, fugu, sea bass, Atlantic salmon and 
flounder (Hansen and Strassburger 2000; Kato et al. 2013; 
Maisey et al. 2011; Moore et al. 2005; Picchietti et al. 
2009; Somamoto et al. 2005; Suetake et al. 2007).  CD8+ 
cells have been functionally identified as Tc cells in tel-
eosts and express a heterodimer of CD8 consisting of α 
and β chains, as occurs in mammals (Fischer et al. 2006; 
Nakanishi et al. 2002, 2011; Somamoto et al. 2014a, b). In 
mammals, a conserved binding motif  p56Lck is present in 
the cytoplasmic tail of CD8α, whereas it is not found in the 
CD8β chain. In contrast, both CD8α and CD8β genes in 
fish contain the binding motifs, suggesting that CD8 mol-
ecules may have signaling functions in the heterodimers 
and homodimers of teleosts (Quiniou et al. 2011; Tafalla 
et al. 2016). To date, nothing is known about the differ-
ences between homodimers and heterodimers of fish CD8 
molecules and their functions as co-receptors of T cells.

Identification of  CD8+ T lymphocytes

T cytotoxic (Tc) cells express CD8 chains involved in the 
interaction with peptide-MHC class I, and Tc cells were 
thus identified by detecting CD8 anitgens using specific 
antibodies (Araki et al. 2008). Currently, several antibodies 

Fig. 4  Activation and differentiation of  CD4+ T lymphocytes. After 
stimulation by different antigens, signal 1 (binding of the T-cell 
receptor (TCR) to the peptide-MHCII complex on the antigen-pre-
senting cell (APC) surface) and signal 2 (binding of the T-cell co-
receptor CD28 to CD80/CD86 on the APC surface) are required for 
T-cell activation. The binding of polarizing cytokines to their respec-
tive receptor on the T cell surface represents signal 3. Different com-
binations of these cytokines influence T cell differentiation into dis-
tinct effector T cell subtypes (Th1, Th2, Th17, and Treg cells) that 
produce signature cytokines
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recognizing fish CD8 molecules have been generated 
(Table 1), and the functions of T cytotoxic cells in fish 
are outlined in some reviews (Fischer et al. 2006; Nakani-
shi et al. 2002, 2011; Somamoto et al. 2014a, b). CD8α+ 
leukocytes from fugu (Takifugu rubripes) were character-
ized by using anti-CD8α antiserum generated in mouse 
by DNA-immunization (Araki et al. 2008). The CD8α and 
CD8β genes were expressed in sorted fugu CD8α+ leu-
kocytes, whereas CD4 and immunoglobulin light chain 
(IgL) genes were detected only in CD8α− cells. In addi-
tion, fugu CD8α+ leukocytes gave a response to PHA but 
not to LPS, suggesting that teleost  CD8+ cells have char-
acteristics similar to mammalian  CD8+ T lymphocytes. 
In ginbuna crucian carp, it was demonstrated for the first 
time that  CD8+ lymphocytes were the principal cells par-
ticipating in specific cell-mediated cytotoxicity against 
allogeneic targets in fish, as reported in higher vertebrates 
(Toda et al. 2009). Shibasaki et al. (2010) claimed that 
donor-derived CD8α+ T lymphocytes in carp play critical 
roles in the response to acute graft-versus-host reaction as 
in mammals. Furthermore, the protective immunity against 
intracellular pathogen infection and direct antibacterial 
activity of CD8α+ T cells have been demonstrated in carp 
(Nayak and Nakanishi 2013; Yamasaki et al. 2014). After 
challenge with infectious salmon anaemia virus (ISAV), 
salmon CD8-labeled cells participated in the early activa-
tion of cellular immunity in the defense against ISAV (Het-
land et al. 2010). In orange spotted grouper (Epinephelus 
coioides), the effector or target cells were obtained from, 
and the MHC class I restriction and specific cytotoxicity 
of  CD8+ cells were measured in, the same individual fish 
(Chang et al. 2011). The results showed that grouper cyto-
toxic  CD8+ cells have heterogeneous features in terms of 
specific antigen recognition and MHC I restriction (Chang 
et al. 2011). CD8α+ T cells have also been detected in trout 
by using mAbs and it was found that high abundances of 
 CD8+ cells are present in the thymus, intestine and gills, 
but low abundances in the spleen, pronephros and blood 
(Takizawa et al. 2011). After stimulation with PHA, trout 
 CD8+ cells up-regulated the Tc cells effector genes, such 
as perforin, granzyme and IFN-γ, which suggests the 
functions of teleost  CD8+ T lymphocytes are similar to 
those in mammals (Takizawa et al. 2011). In a previous 
study, where flounder  CD8+ lymphocytes were identified 
in the peripheral blood, spleen and head kidney by using 
an antiserum reaction to the CD8β chain, it was found 
that there is no cross-reaction between CD8β+ and  CD4+ 
lymphocytes (Xing et al. 2017a). After hirame novirhab-
dovirus (HIRRV) infection or immunization, the ratios of 
 CD8+ T cells increased more rapidly than  CD4+ T cells, 
which indicates that  CD8+ T cells play main roles in the 
response to HIRRV (Xing et al. 2018a). Similarly, Jung 
et al. (2021) also found that flounder  CD8+ T cells were 

mainly involved in the adaptive immune response against 
viruses. The antiviral functions of  CD8+ T cells in teleost 
fish were reviewed by Somamoto et al. (2014a, b).

CD8α+ DC‑like cells in fish

It has been shown that flounder  CD8+ T lymphocytes pro-
liferate after immunization with a DNA vaccine (Xing et al. 
2019a). Furthermore, studies in mammals have shown that 
 CD8+ T lymphocytes can enhance the protective effect of 
vaccines after immunization with DNA plasmids (Ulmer and 
Otten 2000). These results suggest that the immune response 
of fish  CD8+ T cells can also be an important evaluation 
indicator of the efficacy of DNA vaccines. Interestingly, 
mammalian CD8α can be expressed as CD8αα homodimers 
on different leukocytes, such as αβ or γδ T cells, NK cells, 
DCs, regulatory T cells and even macrophages (Addison 
et al. 2005; Bonneville and Lang 2002). In fugu, the expres-
sion of CD8α has also been detected in monocytes/mac-
rophages (Araki et al. 2008). Recent studies have shown that 
a DC-like subpopulation co-expressing CD8α and MHC II 
on the surface of cells in the skin, gills, gut and olfactory 
organs of rainbow trout (Oncorhynchus mykiss) (Granja et al. 
2015; Sepahi et al. 2016; Soleto et al. 2018, 2019). These 
results provide the evidence for the existence of CD8α+ 
DCs in non-immune tissue of teleost fish, and support the 
hypothesis that all mammalian cross-presenting DCs have a 
common origin. Due to the lack of sufficient mAbs against 
the CD8β chain in many fish species, it remains unknown 
whether CD8αα+ and CD8αβ+ lymphocyte subpopulations 
have different functions. Hence, further studies are needed 
to produce specific antibodies against both CD8α and CD8β 
chains in different teleost fish.

Other CD antigens expressed on T cells

CD28 and CTLA‑4

There are several other pivotal surface-associated molecules 
involved in the activation, proliferation and differentiation 
of T cells, such as CD28, cytotoxic T lymphocyte antigen 4 
(CTLA-4/CD152), CD40L (CD154) and CD2. According to 
the mammalian paradigm, activation of T cells requires the 
following two sets of signals: The first signal is the deliv-
ery of processed antigen to the TCR via MHC molecules; 
the second is known as the costimulatory signal, which is 
delivered to receptors on T cells via costimulatory molecules 
(Hu et al. 2012; Paterson et al. 2009; Rudd et al. 2009). 
The co-stimulatory receptors CD28 and CTLA-4 of T cells 
are known to play essential roles in transmitting the second 
signal. CD28 and CTLA-4 have reverse effects on T cell 
stimulation, the activation of TCR is enhanced by CD28 
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but inhibited by CTLA-4 (Chen and Flies 2013). In mam-
mals, CD28 and CTLA-4 are transmembrane protein mem-
bers belonging to the IgSF, and they both interact with the 
same ligands, i.e., members of the B7 family, CD80 (B7-1) 
and CD86 (B7-2) expressed on APCs (Esensten et al. 2016; 
Sansom 2010). Studies have shown that both CD28 and 
CTLA-4 homologs are conserved in fish and the pathway of 
CD28-CD80/86 may present in teleosts (Bernard et al. 2006, 
2007; Fang et al. 2018; González-Fernández et al. 2021; Hu 
et al. 2012; Huang et al. 2018; Jeswin et al. 2017; Sugamata 
et al. 2009; Zhang et al. 2009, 2018). The features of CD28/
CTLA-4 in teleosts were discussed in depth in two reviews 
(Castro et al. 2011; Laing and Hansen 2011).

CD40L

CD40L (also known as CD154) is a 39-kDa glycoprotein 
of the TNF family that is initially found on activated  CD4+ 
T cells (Graf et al. 1992; Kooten and Banchereau 2000). 
The natural receptor for CD40L is the type I membrane-
bound protein CD40, which was originally identified as a 
surface antigen expressed on mature and activated B lym-
phocytes (Clark 1990). In mammals, it has been shown that 
the CD40-CD40L mediated contact-dependent signal is 
essential for Th-dependent B lymphocyte proliferation, Ig 
production and type switching, and even memory responses 
(Castigli et al. 1994; Foy et al. 1993; Kawabe et al. 1994; 
Renshaw et al. 1994; Xu et al. 1994). CD40-CD40L inter-
actions also play an important role in the functional com-
munication between T lymphocytes and DCs (Caux et al. 
1994; Cella et al. 1996). Furthermore, in mammals, CD40L-
CD40 interactions direct T lymphocyte maturation towards 
the Th1 phenotype through the induction of proinflamma-
tory cytokines (Mackey et al. 1998; Pinchuk et al. 1994). 
In fish, CD40 and CD40L genes were cloned in various of 
fish species, such as flounder (Paralichthys olivaceus), trout 
(Oncorhynchus mykiss), zebrafish (Danio rerio), Atlantic 
salmon (Salmo salar) and humphead snapper (Lutjanus san-
guineus) (Cai et al. 2017; Glenney and Wiens 2007; Gong 
et al. 2009; Lagos et al. 2012; Park et al. 2005). In zebrafish, 
the expression of CD40L was inhibited by cyclosporin A, 
and the production of IgM was affected by the supplement 
of anti-CD40L or soluble CD40 (Gong et al. 2009). These 
results provide evidence for the existence of a CD40-CD40L 
mediated costimulatory pathway in fish. Interestingly, Xing 
et al. (2018b) showed that CD40 was not only expressed on 
 sIgM+ B lymphocytes, but also on  CD4+ and  CD8+ T sub-
sets. In mammals, increasing evidence confirms the presence 
of CD40 molecules on T cells, and CD40 may act on both 
CD4 and CD8 T lymphocytes (Munroe and Bishop 2007; 
Munroe 2009). However, further studies are needed to elu-
cidate the exact role of CD40 in fish T cells.

CD2

CD2 (lymphocyte function-associated antigen-2) is a cell 
adhesion molecule expressed on all mature peripheral blood 
T cells, thymocytes and natural killer (NK) cells (Davis and 
van der Merwe 1996; Seed and Aruffo 1987; Springer et al. 
1987). Its ligand, CD58, which is also an adhesion molecule, 
is expressed on hemopoietic and non-hemopoietic lineages 
such as DCs, macrophages, erythrocytes, and endothelial 
cells (Dengler et al. 1992; Karmann et al. 1996; Moingeon 
et al. 1989; Ocklind et al. 1992). Functionally, the interaction 
of CD58 with CD2 plays an important role in the adhesion 
between the T cells and APCs and also provides the optimal 
spacing for the antigen recognition of TCR (Cheadle et al. 
2012; Zhu et al. 2006). CD2 was identified in channel cat-
fish and zebrafish, and the interaction of CD58 with CD2 
has been well demonstrated in zebrafish where it provides 
a primary costimulatory signal for the complete activation 
of  CD4+ T cells in adaptive humoral immunity (Shao et al. 
2018; Taylor et al. 2015).

Summary and perspectives

In conclusion, a variety of CD molecules exist on T cells in 
fish, and in this review, we described the role of CD mol-
ecules as surface markers in the identification of teleost T 
lymphocyte subpopulations. It is undeniable that some CD 
antigens, which are the surface markers of T cells, are also 
expressed on other cell lineages in fish. At present, identifi-
cation and characterization of CD molecules on fish T cells 
are far from sufficient, and antibodies for the clear discrimi-
nation of Th and Tc subsets according to the CD antigens 
of mammals are urgently needed for multiple fish species. 
There is a lack of direct evidence about the precise role of 
CD molecules in T cell activation and signaling from fish, 
and more studies are needed to support these hypotheses. 
In addition, the effectors of Tc (perforin and granzyme) 
should be well characterized, which can give insights into 
the killing mechanism of  CD8+ Tc in fish. The definition of 
different phenotypical  CD4+ Th subsets in fish still needs 
more evidences, and multiple cytokines and transcription 
factors involved in Th-type immunity should be function-
ally characterized. Furthermore, the mechanisms by which 
fish  CD4+ Th cells activate B cells,  CD8+ T cells and mac-
rophages need to be elucidated. The antibodies against criti-
cal cytokines, such as IFN-γ, IL-2, IL-4 and IL-17, should 
be produced as they will be powerful tools to detect the pref-
erence of cytokine secretion by  CD4+ T cells, and meaning-
ful for the differentiation of  CD4+ T cells in fish. Thus, there 
is still an urgent need to accurately delineate the pathways 
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of T cell response to vaccination as well as how the fish T 
cell subsets are able to regulate a protective response. In 
combination, such knowledge would deepen our understand-
ing about the role of fish T lymphocyte subsets in adaptive 
immunity and facilitate the health management and develop-
ment of vaccines in aquaculture.
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