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Abstract

Culturing has been the cornerstone of microbiology since Robert Koch first successfully cultured bacteria in the late nine-
teenth century. However, even today, the majority of microorganisms in the marine environment remain uncultivated. There
are various explanations for the inability to culture bacteria in the laboratory, including lack of essential nutrients, osmotic
support or incubation conditions, low growth rate, development of micro-colonies, and the presence of senescent or viable
but nonculturable (VBNC) cells. In the marine environment, many bacteria have been associated with dormancy, as typified
by the VBNC state. VBNC refers to a state where bacteria are metabolically active, but are no longer culturable on routine
growth media. It is apparently a unique survival strategy that has been adopted by many microorganisms in response to harsh
environmental conditions and the bacterial cells in the VBNC state may regain culturability under favorable conditions. The
resuscitation of VBNC cells may well be an important way to cultivate the otherwise uncultured microorganisms in marine
environments. Many resuscitation stimuli that promote the restoration of culturability have so far been identified; these
include sodium pyruvate, quorum sensing autoinducers, resuscitation-promoting factors Rpfs and YeaZ, and catalase. In
this review, we focus on the issues associated with bacterial culturability, the diversity of bacteria entering the VBNC state,
mechanisms of induction into the VBNC state, resuscitation factors of VBNC cells and implications of VBNC resuscitation
stimuli for cultivating these otherwise uncultured microorganisms. Bringing important microorganisms into culture is still
important in the era of high-throughput sequencing as their ecological functions in the marine environment can often only
be known through isolation and cultivation.
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Introduction

Culturing has been an important feature of microbiology
since the landmark work of Robert Koch in the nineteenth
century. The dogma is that cultures are comprised of living
bacterial cells and therefore, their presence on laboratory
media is reflective of viability. However, the proviso is that
these organisms need to be able to grow on the available lab-
oratory media. Unfortunately, there is not a single medium
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that permits the growth of all microorganisms. Therefore,
recovery of culturable bacteria reflects the availability of
suitable nutrients and the adoption of appropriate incubation
regimes. The inevitable outcome is that only a small pro-
portion of marine bacteria are culturable in the laboratory.
Certainly, novel techniques have been developed, such as
dilution to extinction, involving the use of filtered autoclaved
seawater. This approach permitted the recovery of bacte-
ria that could grow only in oligotrophic (very low nutrient)
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media and did not initially produce visible colonies. These
organisms were truly obligate oligotrophs (Schut et al.
1993). However, many taxa have never been grown on artifi-
cial media (e.g. Fehr et al. 2013), for example “Candidatus”,
but they may still have great importance in ecology and as
the cause of disease in aquatic organisms. Multiple species
of “Candidatus” have been described on the basis of DNA
sequences and a few characteristics without the availability
of pure cultures. For example, “Candidatus Syngnamydia
venezia” has been reported as the causal agent of epithe-
liocystis in broad nosed pipefish (Syngnathus typhle; Fehr
et al. 2013). “Candidatus Halichondribacter symbioticus”
was reported as a sponge symbiont of Halichondria pani-
cea with unknown function (Knobloch et al. 2020). Other
organisms appear to cease culturability and the viable but
nonculturable (VBNC) state is a typical example.

The VBNC state was first described by Xu et al. (1982),
who found that an exponentially growing culture of Vibrio
cholerae or Escherichia coli, subjected to incubation in a
nutrient-free microcosm (e.g., sterile natural or artificial
seawater free of nutrient) at low temperature (4 °C), exhib-
ited a decline in culturability on conventional culture media
under normal culture conditions. However, a portion of the
non-culturable population remained viable when they were
detected by the direct viable count (DVC) procedure devel-
oped by Kogure et al. (1979). Specifically, these VBNC cells
were metabolically active and had the ability to elongate
in the presence of nutrients, namely yeast extract and an
inhibitor of cell division, i.e. nalidixic acid or cephalexin,
but could not develop into visible colonies on conventional
solid media (Fig. 1). This was the first attempt to distin-
guish viability from culturability, as cell viability was typi-
cally evaluated by the ability to produce visible colonies
on solid media or turbidity in broth, respectively (Colwell
and Grimes 2000; Pinto et al. 2015). Since then, the VBNC
state has been studied extensively and demonstrated to be

Fig. 1 The life cycle of VBNC
cells. VBNC refers to a physi-
ological state where bacteria
are metabolically active, but
are no longer culturable on
conventional growth media. It
is a survival strategy adopted
by many bacteria in response to
harsh environmental conditions,
and the VBNC cells may return
to culturable state under favora-
ble conditions

Active state

Culture
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a unique survival strategy occurring over a wide range of
Gram-negative bacteria, fewer Gram-positive bacteria, as
well as some fungal species (Oliver 2010; Pinto et al. 2015).
Cells enter the VBNC state in response to a variety of envi-
ronmental stresses, which initiate a complex series or cas-
cade of cellular events (Oliver 2016; Oruno et al. 2019). The
bacterial cells in the VBNC state may return to a metaboli-
cally active and culturable state under appropriate circum-
stances (Fig. 1; Colwell and Grimes 2000; Dong et al. 2019;
Pinto et al. 2015). However, care needs to be taken to ensure
that apparent resuscitation does not reflect the growth of a
low number of residual culturable cells that may have per-
sisted in the environment or experimental system.

In the natural environment, microorganisms are threat-
ened by a variety of stresses and therefore, certain strategies
need to be employed that allow tolerance against conditions
that are harmful to growth. The ability to enter the VBNC
state is advantageous for the long-term survival of bacteria
(Pinto et al. 2015), otherwise, these environmental stresses
could potentially kill entire populations. These apparently
dormant cells may later resuscitate when the stresses are
relieved or when cells receive signals exhibiting favorable
environmental conditions (Oliver 2016; Pinto et al. 2015).
The survival of the fish pathogen Streptococcus parauberis
was studied in seawater and sediments revealing culturability
for ~ 1 month and ~ 6 months, respectively. Slightly higher
survival occurred at 6 °C rather than 22 °C. During this
period of culturability, metabolism declined. However, direct
counts indicated that the total number of cells remained high
even after culturability could not be detected. Afterwards,
the addition of nutrients led to the return of culturable cells.
Thus, it was reasoned that Str. parauberis could enter the
VBNC state but this was reversible (Curras et al. 2002).

In this review, we focus on the issues correlated with
bacterial culturability, the diversity of bacteria that enter
into the VBNC state, environmental challenges that induce
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the VBNC state, conditions that help in resuscitation from
the VBNC state, and the implications of resuscitation
stimuli for cultivating the previously uncultured marine
microorganisms.

Issues associated with bacterial culturability

There are a number of explanations for the inability to cul-
ture bacteria in the laboratory, and they are listed below:

Lack or excess of essential nutrients

For example, Renibacterium salmoninarum, which is the
cause of bacterial kidney disease in salmonids, has an obli-
gate requirement for cysteine as L-cysteine hydrochloride.
Some essential nutrients may be provided by the growth of
other organisms, i.e. satellitism (Austin and Austin 2016;
Evelyn et al. 1989). Excessive quantities of nutrients inhibit
oligotrophs, which thrive in low nutrient environments
(Schut et al. 1993).

Lack of appropriate osmotic support

Osmotically-fragile cells, i.e. spheroplasts (Takayanagi et al.
2016) and L-forms, need specialized media, incorporating
sucrose and horse serum, to enable the development of very
small colonies, which could be buried into the surface of the
media. L-forms have been reported with Aeromonas salmo-
nicida, which is the causal agent of furunculosis and ulcer
disease in fish (McIntosh and Austin 1990) and possibly
Ren. salmoninarum (Hirvela-Koski et al. 2006). Moreover,
seawater systems, which were found to be devoid of cultur-
able Aer. salmonicida using conventional plating methods,
contained cells that passed through the pores of 0.22 ym
filters, and produced colonies on a specialized L-form
medium, i.e. L-F medium (Effendi and Austin 1991). It is
possible that more wild strains in natural environments are
sensitive to osmotic pressure.

The lack of appropriate incubation conditions

Along with appropriate media, it is essential for incubation
regimes to reflect the original ecological environment from
which the organisms have been recovered. Attention needs
to be given to the incubation temperature [psychrophilic
(Showalter and Deming 2018), mesophilic or thermophilic],
duration (many organisms are slow growing, and may need
several weeks to develop visible growth), atmosphere (aero-
bic, micro-aerophilic or anaerobic) and pressure (deep-sea
bacteria will inevitably require barophilic conditions if they
are to grow at all). In addition, there may be a need for an

appropriate surface on which the organisms can produce
biofilms.

Low growth rate

Slow-growing bacteria, such as Ren. salmoninarum, may
be outcompeted on laboratory media by faster-growing
aerobic heterotrophs unless active steps are taken to inhibit
the unwanted organisms; this includes the use of selective
isolation procedures involving disinfectants, including chlo-
rhexidine gluconate (Nakashima et al. 2007) or antibiotics
(Austin and Austin 2016). The ecological theory of “K-strat-
egy” and “r-strategy” could also explain the competition
between slow- and fast-growing bacteria; K-strategy slow
growers have a stable existence in their habitat, r-strategy
fast growers respond rapidly to nutrient flushing (Janssen
2009). Oligotrophic media could be used to culture the slow-
growing bacteria.

Development of micro-colonies

If culturability is akin to the development of visible colo-
nies then limited growth leading to micro-colonies poses a
dilemma for the study of VBNC. Such micro-colonies may
not be seen by the naked eye (Torrella and Morita 1981) and
the organism could be mistakenly thought to be uncultured.
The search for micro-colonies would require the use of spe-
cialist sensitive methods, for example on-chip microscopy
(Jung and Lee 2016). The reasons for the development of
micro-colonies could include the exhaustion of key nutri-
ents, the accumulation of potentially toxic metabolites or an
issue with overcrowding.

The existence of ultramicrobacteria

Many bacteria, which are often the dominant component
of the microbiota in the marine environment, exist as
or develop into extremely small cells, which are capable
of passing through the pores of 0.22 um pore size filters
(Boenigk et al. 2004; Mukhanov et al. 2016; Obayashi and
Suzuki 2019). These cells may be referred to as the ultra-
microbacteria (Schut et al. 1993) for which culturing is not
always possible. The cells may well be in a state of star-
vation (Fegatella and Cavicchioli 2000; Haller et al. 2000;
Obayashi and Suzuki 2019) and being actively grazed by
flagellates (Boenigk et al. 2004). Metabolic activity, includ-
ing protease activity, has been described, indicating that the
cells were viable (Obayashi and Suzuki 2019). These small
cells have been linked with multiple taxa by 16S rRNA gene
sequencing, and include Pseudoalteromonas, Vibrionaceae
representatives and Erythrobacter/ Erythromicrobium/Sphin-
gomonas (Vybiral et al. 1999).
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The presence of senescent cells

Cells which are senescent and/or damaged, may require spe-
cial techniques for their recovery. For example, pre-incu-
bation in liquid media may lead to improved culturability
rather than plating directly onto solid media (Olson 1978). It
is possible that the liquid medium enables the recovery and/
or repair of damaged cells, i.e. the cells need to adjust to the
new environment (Rolfe et al. 2012).

The presence of VBNC cells

Some cells in the natural environment may be dormant and
do not grow on laboratory media without a means of reac-
tivation. The best studied examples of dormancy involve
endospores, which are produced in some Gram-positive
bacteria and are regarded as important survival structures
particularly in marine sediments (Volpi et al. 2017; Wormer
et al. 2019). However, in the marine environment, many
Gram-negative cells have also been associated with dor-
mancy, i.e., in the VBNC state (Kaprelyants et al. 1993;
Xu et al. 1982). The VBNC state of bacteria is a classic
example regarding the influence of bacterial physiological
status on cultivation success (Roszak and Colwell 1987).
Since most marine microorganisms live in oligotrophic and
challenging natural environments surrounded by biological
competitors, it is hypothesized that a considerable propor-
tion of marine microbial communities may be in the VBNC
state (Bodor et al. 2020). Thus, VBNC cells could constitute
a huge reservoir of bacteria, which cannot be cultured easily
with ordinary cultivation methods. Therefore, the resusci-
tation of VBNC microorganisms may act as an important
means for cultivating previously uncultured (i.e. previously
unsuccessfully cultivated) microorganisms.

Diversity of bacteria entering the VBNC state

After the initial description for V. cholerae and Esc. coli
by Xu et al. (1982), VBNC cells were discovered among a
wide range of bacteria (at least 50 genera and 101 species of
bacteria; Table 1). The list includes a variety of important
human pathogens, including Burkholderia pseudomallei,
Campylobacter jejuni, pathogenic Esc. coli, Helicobacter
pylori, Klebsiella pneumoniae, Legionella pneumophila,
Listeria monocytogenes, Mycobacterium tuberculosis, Pseu-
domonas aeruginosa, Salmonella enterica, V. cholerae, and
Yersinia pestis (Table 1). This list also includes many marine
bacteria, including Vibrio species (i.e., V. alginolyticus, V.
anguillarum, V. cincinnatiensis, V. fischeri, V. harveyi, V.
parahaemolyticus and V. vulnificus) and Edwardsiella tarda
(Table 1; Fig. 2). Subsequently, the VBNC state has also
been found in a number of eukaryotes, most notably the
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yeasts Saccharomyces cerevisiae, Brettanomyces bruxel-
lensis and Cryptococcus neoformans (Table 1).

Bacterial species reported to enter the VBNC state are
phylogenetically distributed: Alphaproteobacteria (6 genera,
8 species), Betaproteobacteria (5 genera, 6 species), Gam-
maproteobacteria (23 genera, 53 species), Epsilonproteo-
bacteria (4 genera, 8 species), Bacteroidetes (1 genus, 1 spe-
cies), Actinobacteria (5 genera, 12 species) and Firmicutes
(6 genera, 13 species) (Table 1). Most of these (76 species)
are Gram-negative bacteria (affiliated to the phyla Proteo-
bacteria and Bacteroidetes), although 25 species comprised
Gram-positive non-sporulating bacteria (affiliated to phyla
Actinobacteria or Firmicutes). Some other Gram-positive
bacteria, notably Bacillus and Clostridium species, could
form endospores, which is the first reported bacterial sur-
vival state (Hutchison et al. 2014). In this connection, cysts
comprise another survival state that may be observed in
some Gram-negative bacteria (e.g. Azotobacter spp.).

The list of microbial species currently discovered to enter
the VBNC state mainly reflects the research interest of sci-
entists, which includes pathogen taxa (i.e., pathogens for
human, plants and aquatic animals), those associated with
food safety or environmental applications, rather than the
actual existence of this survival process in natural micro-
bial communities (Colwell and Grimes 2000). It may be
assumed that the VBNC response is a universal process for
microorganisms and may occur in a wide range of micro-
bial taxa. Moreover, the initial concept of VBNC was nar-
row and based on already cultivatable microorganisms. In
fact, VBNC may be a suitable term for defining the yet to
be cultured microorganisms, which were viable in natural
environments but non-culturable in routine growth media.
Considering the vast quantity of microorganisms in the
ocean, many of the uncultured microorganisms could be in
the VBNC state.

Physiological features and detection
of the VBNC bacteria

In the VBNC state, bacteria adopt lower growth rates and
reduced levels of metabolism, e.g., there is a slowing down
of the respiration rate, nutrient transport, and macromolecu-
lar synthesis. Many VBNC bacterial species decrease cell
size, such as forming coccoid-shaped cells with enlarged
periplasmic space (Fig. 3). The decreased surface/volume
ratio may help bacteria to reduce their energy requirement
(Bodor et al. 2020; Pinto et al. 2015). Often, VBNC bacte-
ria retain their cell integrity and potential replication capa-
bilities (Oliver 2016; Pinto et al. 2015). In addition, VBNC
cells usually contain reduced concentrations of cytoplasm,
total proteins and membrane fatty acids. However, VBNC
cells contain relatively high ATP levels, and exhibit high



Marine Life Science & Technology (2021) 3:189-203

193

Table 1 Bacterial and fungi species reported to enter into the VBNC state in different taxa (updated and modified from Oliver 2005, 2010 and

Pinto et al. 2015)

Bacteria (50 genera, 101 species)

Proteobacteria (38 genera, 75 species)
Alphaproteobacteria (6 genera, 8 species)
Acetobacter aceti (Pinto et al. 2015)
Agrobacterium tumefaciens (Oliver 2005)
Methylocella tundrae (Misra et al. 2012)
Methylocystis hirsuta (Misra et al. 2012)
Methylocystis parvus (Misra et al. 2012)
Rhizobium leguminosarum (Oliver 2005)
Rhizobium meliloti (Oliver 2005)

Sinorhizobium meliloti (Oliver 2005)
Betaproteobacteria (5 genera, 6 species)
Acidovorax citrulli (Kan et al. 2019)

Alcaligenes eutrophus (Oliver 2005)
Burkholderia cepacia (Oliver 2005)
Burkholderia pseudomallei (Oliver 2005)
Cupriavidus metallidurans (Giagnoni et al. 2018)
Ralstonia solanacearum (Oliver 2005)
Gammaproteobacteria (23 genera, 53 species)
Acinetobacter calcoaceticus (Pinto et al. 2015)
Aeromonas hydrophila (Oliver 2010)

Aeromonas salmonicida (Oliver 2005)
Citrobacter freundii (Pinto et al. 2015)
Edwardsiella tarda (Du et al. 2007a, b)
Enterobacter aerogenes (Oliver 2005)
Enterobacter agglomerans (Pinto et al. 2015)
Enterobacter cloacae (Oliver 2005)

Erwinia amylovora (Oliver 2010)

Escherichia coli (Oliver 2005)

Francisella tularensis (Oliver 2005)

Legionella pneumophila (Oliver 2005)
Methylocaldum gracile (Misra et al. 2012)
Methylococcus capsulatus (Misra et al. 2012)
Methylomicrobium alcaliphilum (Misra et al. 2012)
Methylomonas methanica (Misra et al. 2012)
Methylosarcina fibrata (Misra et al. 2012)
Methylosinus sporium (Misra et al. 2012)
Methylosinus trichosporium (Misra et al. 2012)
Pasteurella piscicida (Oliver 2005)
Pseudomonas aeruginosa (Oliver 2005)
Pseudomonas fluorescens (Oliver 2005)
Pseudomonas putida (Oliver 2005)
Pseudomonas syringae (Oliver 2005)

Salmonella bovismorbifican (Abdallah et al. 2007)
Salmonella enterica (Oliver 2005)

Salmonella enteritidis (Oliver 2005)

Salmonella montevideo (Davies and Evison 1991)
Salmonella oranienburg (Davies and Evison 1991)
Salmonella typhi (Cho and Kim 1999)
Salmonella typhimurium (Davies and Evison 1991)
Serratia marcescens (Oliver 2005)

Shigella dysenteriae (Oliver 2005)

Shigella flexneri (Oliver 2005)

Shigella sonneii (Oliver 2005)

Vibrio alginolyticus (Oliver 2010)

Gammaproteobacteria (continued)

Vibrio anguillarum (Oliver 2005)

Vibrio campbellii (Oliver, 2005)

Vibrio cholerae (Oliver 2005)

Vibrio cincinnatiensis (Zhong et al. 2009)
Vibrio fischeri (Oliver 2005)

Vibrio harveyi (Oliver 2005)

Vibrio mimicus (Oliver 2005)

Vibrio natriegens (Oliver 2005)

Vibrio parahaemolyticus (Oliver 2005)
Vibrio proteolytica (Oliver 2005)

Vibrio salmonicida (Hoff 1989)

Vibrio vulnificus (Oliver 2005)
Xanthomonas axonopodis (Oliver 2010)
Xanthomonas campestris (Oliver 2005)
Yersinia enterocolitica (Smith et al. 1994)
Yersinia pestis (Pinto et al. 2015)
Epsilonproteobacteria (4 genera, 8 species)
Arcobacter butzleri (Pinto et al. 2015)
Campylobacter coli (Oliver 2005)
Campylobacter jejuni (Oliver 2005)
Campylobacter lari (Oliver 2005)
Helicobacter pylori (Oliver 2005)

Klebsiella aerogenes (Oliver 2005)
Klebsiella planticola (Oliver 2005)
Klebsiella pneumoniae (Oliver 2005)
Actinobacteria (5 genera, 12 species)
Arthrobacter albidus (Su et al. 2011)
Arthrobacter crystallopoietes (Ensign 1970)
Bifidobacterium animalis (Pinto et al. 2015)
Bifidobacterium lactis (Pinto et al. 2015)
Bifidobacterium longum (Pinto et al. 2015)
Micrococcus flavus (Byrd et al. 1991)
Micrococcus luteus (Kaprelyants et al. 1994)
Mycobacterium bovis (Lim et al. 1999)
Mycobacterium smegmatis (Nikitushkin et al. 2012)
Mpycobacterium tuberculosis (Gample et al. 2019)
Rhodococcus biphenylivorans (Su et al. 2015)
Rhodococcus rhodochrous (Oliver 2005)
Bacteroidetes (1 genus, 1 species)
Cytophaga allerginae (Oliver 2005)
Firmicutes (6 genera, 13 species)
Enterococcus faecium (Oliver 2005)
Enterococcus faecalis (Oliver 2005)
Enterococcus hirae (Oliver 2005)
Lactobacillus brevis (Liu et al. 2018)
Lactobacillus lactis (Oliver 2005)
Lactobacillus lindneri (Pinto et al. 2015)
Lactobacillus paracollinoides (Pinto et al. 2015)
Lactobacillus plantarum (Oliver 2005)
Listeria monocytogenes (Oliver 2005)
Oenococcus oeni (Pinto et al. 2015)
Staphylococcus aureus (Pasquaroli et al. 2013)
Streptococcus faecalis (Byrd et al. 1991)
Streptococcus pyogenes (Trainor et al. 1999)

Fungi: Yeast (7 genera, 7 species)

Brettanomyces bruxellensis (Willenburg and Divol 2012; Capozzi et al. 2016)
Candida stellata (Divol and Lonvaud-Funel 2005)

Cryptococcus neoformans (Hommel et al. 2019)

Dekkera bruxellensis (Barata et al. 2008)

Rhodotorula mucilaginosa (Divol and Lonvaud-Funel 2005)

Saccharomyces cerevisiae (Divol and Lonvaud-Funel 2005; Salma et al. 2013)

Zygosaccharomyces bailii (Divol and Lonvaud-Funel 2005)
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Fig.2 Entry of Vibrio harveyi and Edwardsiella tarda into the
VBNC state at 4 °C as determined by AODC, DVC and plate count-
ing methods. a V. harveyi SF1 in a seawater microcosm (redrawn
from Sun et al. 2008); b Edw. tarda CW7 in an artificial seawater
microcosm (redrawn from Du et al. 2007a)

membrane potential and increased O-acetylation and cross-
linking in peptidoglycan cell walls (Oliver 2016; Pinto et al.
2015). Moreover, VBNC cells show decreased superoxide
dismutase activity, and increased oxidative damage. Because
of these changes, VBNC cells have enhanced resistance to
antibiotics and physical and chemical stresses than do cultur-
able cells. Furthermore, the potential for virulence among
VBNC pathogens is unclear. Some VBNC pathogens are
unable to cause diseases until they regain culturability. Con-
versely, others remain potentially pathogenic as they con-
tinue expressing toxins (Dong et al. 2019).

Detection in the absence of culturing initially focused on
microscopy (e.g. the DVC procedure developed by Kogure
et al. 1979), the LIVE/DEAD Baclight assay (evaluating cell
viability based on cytoplasmic membrane integrity, with two
fluorescent stains propidium iodide and SYTO 9; Boulos
et al. 1999) but has since progressed to molecular method-
ologies, including loop-mediated isothermal amplification
(LAMP) (Cao et al. 2019; Zhong et al. 2016). Both Cao
et al. (2019) and Zhong et al. (2016) compared real time

@ Springer

PCR (qPCR) and real time LAMP (QLAMP) in combination
with propidium monoazide to detect VBNC cells of V. para-
haemolyticus in seafood including shrimp, with the latter (in
combination with propidium monoazide) being quicker and
more sensitive.

Mechanism of induction into the VBNC state

Since the first report of the VBNC state, a variety of fac-
tors (e.g., physical, chemical and biotic environmental
parameters) that can initiate the cascade of cellular events
leading to the VBNC state have been reported. The physi-
cal factors include high/low temperature, high/low salinity
(osmotic stress), sub-optimal pH, sub-optimal redox condi-
tions, sunlight, irradiation, drying, pulsed electric field and
high-pressure stress. The chemical factors include nutrient
starvation, antibiotic pressure, food preservatives, disin-
fectants (i.e., chlorination), nitrite, heavy metals, organic
pollutants or exposure to other toxic compounds (Gample
et al. 2019; Oliver 2005, 2010, 2016; Pinto et al. 2015). In
addition, biotic factors may also be inducers of the VBNC
state. For example, the protozoan Acanthamoeba castel-
lanii was found to induce Aer. hydrophila into the VBNC
state (Rahman et al. 2008), whereas the VBNC cells of
the coral pathogen, V. shiloi, were reported to be associ-
ated with a marine fire worm (Hermodice carunculata;
Sussman et al. 2003). In another case, the culture super-
natant of the amoeba Hartmannella vermiformis induced
the VBNC state of Leg. pneumophila (Buse et al. 2013).
This was considered to be caused by nutrient depletion
resulting from the animal growth as well as the presence
of potentially harmful metabolic products in the medium.
However, the environmental stresses inducing the VBNC
state seem to vary between studies (Pinto et al. 2015). One
possible explanation may be that the culture conditions
investigated were always complicated, with several pos-
sible stresses interacting with each other. Many stresses,
such as sub-optimal temperature, nutrient, salinity, pH,
dissolved oxygen, and irradiation, may affect the viable
process and lead to the VBNC state of the cells.

Since the first report of VBNC, many studies have
focused on explaining the mechanism of VBNC forma-
tion (Oliver 2016; Pinto et al. 2015). However, there is still
very little information on the genetic mechanisms behind
the VBNC process (Trevors 2011). The environmental
stresses that can induce the VBNC state may give clues to
the underlying genetic regulation of VBNC cells.

One explanation of VBNC formation is that when
actively growing microorganisms face a sudden shock,
such as shortage of nutrients, change of pH, or the pres-
ence of harmful metabolites, it leads to the decoupling of
growth from metabolism. Consequently, cells may suffer a
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Fig. 3 Morphological characteristics of Vibrio harveyi SF1 analyzed with a scanning electron microscope. a Normal cells; b VBNC cells; ¢

Resuscitated cells

burst of oxidative metabolism, which will accumulate per-
oxides and other free radicals within cells (Munn 2020).
Microorganisms may avoid this occurrence if they are
induced to make changes to protect the DNA, proteins,
and other essential components in the cells. The shock
of the sudden transfer of cells into a rich medium when
they are still in the process of adaptation to life in the oli-
gotrophic aquatic environment could otherwise result in
sudden death (Munn 2020). The inability of VBNC cells
to detoxify lethal free radicals either induced by the cells
themselves or present in culture medium is one of the main
reasons for the non-culturability. This process may be due
to the repression of periplasmic catalase, which breaks
down toxic peroxide (Munn 2020). As a result, several
proteins have been shown to play a significant role in the
formation of VBNC cells; these include superoxide dis-
mutase (SodA), catalases KatA and KatG, RNA polymer-
ase sigma S (RpoS), alkyl hydroperoxide reductase subunit
C (AhpC), sensory histidine kinase (EnvZ), and a LysR-
type transcriptional regulator (OxyR) (Dong et al. 2019).

The resuscitation factors of VBNC cells

Despite VBNC cells typically having low levels of meta-
bolic activity, through specific treatments, many cells
are able to revert to a metabolically active and culturable
state when cultured on conventional bacteriological media.
The process of VBNC cells recovering to culturability is
termed resuscitation (Colwell and Grimes 2000; Oliver
2010). Since the VBNC state is triggered by the envi-
ronmental stresses mentioned above, eliminating these
stresses may help reversion to culturability. Nevertheless,
the resuscitation of some species through simply revers-
ing the adverse stress is not always successful. It should
be noted that the diversity of VBNC bacteria (50 gen-
era, 101 species) is much higher than that of resuscitation
(less than 20 species), mostly due to the lack of knowledge

on the underlying mechanisms of this process. However,
many conditions that promote the restoration of cultur-
ability have been identified, including physical stimuli
(e.g., upshifting of temperature), chemical stimuli (e.g.,
pyruvate, glutamate, amino acids, Tween 20, vitamins,
metal chelating agents or siderophore, and quorum sens-
ing signal molecules), active proteins (e.g., Rpfs, YeaZ
and catalase), or host associated stimuli (Table 2). The
resuscitation process differs among different bacterial taxa,
and may be initiated by several stimuli. The specific condi-
tions that help in resuscitation from the VBNC state are
described in more detail below.

Physical stimuli

The most common factor inducing the VBNC state for
bacteria (e.g., Vibrio species and many other genera) is
low temperature (Colwell and Grimes 2000; Oliver 2010).
Many studies have shown that a temperature upshift is suf-
ficient to allow resuscitation from the VBNC state induced
by the low temperature (e.g., Du et al. 2007a, b; Gupte
et al. 2003; Pinto et al. 2015; Wong et al. 2004). In this
regard, climate change may well be accelerating Vibrio
resuscitation rates (Oliver 2016). In addition, temperature
upshift in the presence of chemical stimuli, such as yeast
extract, Tween 20, vitamin B or catalase, were also useful
in resuscitating VBNC cells (e.g., Du et al. 2007a, b; Sun
et al. 2008; Zhong et al. 2009).

Chemical stimuli

Sodium pyruvate has been reported as one of the principal
promoters of resuscitating VBNC cells, with its function as
areactive oxygen scavenger, or so-called antioxidant, as well
as a carbon source (Ducret et al. 2014; Vilhena et al. 2019).
Sodium pyruvate can restore the biosynthesis of DNA, pro-
teins and other macromolecules, thus resuscitating VBNC
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Table 2 Resuscitation promoting factors for VBNC cells

Resuscitation promoting factors Bacterial species tested (References)

Physical stimuli

Temperature upshift Aeromonas hydrophila (Maalej et al. 2004)
Escherichia coli (Pinto et al. 2011)
Vibrio parahaemolyticus (Wong et al. 2004)
V. vulnificus (Oliver et al. 1995)
V. alginolyticus (Du et al. 2007b)

Temperature upshift in the presence of yeast extract, Tween 20, vitamin B or cata- Edwardsiella tarda (Du et al. 2007a)

lase V. alginolyticus (Du et al. 2007b)

V. cincinnatiensis (Zhong et al. 2009)
V. harveyi (Sun et al. 2008)

Heat shock in rich culture media Salmonella enterica (Gupte et al. 2003)

Chemical stimuli

Sodium pyruvate Salmonella enteritidis (Morishige et al. 2013)
Legionella pneumophila (Ducret et al. 2014)

Glutamate Leg. pneumophila (Ducret et al. 2014)

Gluconate Cupriavidus metallidurans (Giagnoni et al. 2018)

Amino acids Esc. coli (Pinto et al. 2011)

Rich culture media Arcobacter butzleri (Fera et al. 2008)

Enterococcus faecalis (Lleo et al. 1998, 2001)
Enterococcus hirae (Lleo et al. 2001)
Esc. coli (Ozkanca et al. 2009; Pinto et al. 2011)

Vitamins V. cincinnatiensis (Zhong et al. 2009)

V. harveyi (Sun et al. 2008)
Tween 20 Sal. enterica (Zeng et al. 2013)
Gas mixture Campylobacter jejuni (Bovill and Mackey 1997)
Chelator Pseudomonas aeruginosa (Dwidjosiswojo et al. 2011)
Siderophore Esc. coli (Lewis et al. 2010)

Micrococcus luteus (Lewis et al. 2010)
Quorum sensing molecules Esc. coli (Liu et al. 2009)

V. vulnificus (Ayrapetyan et al. 2014)
Active proteins

Resuscitation promoting factor Rpf Mic. luteus (Mukamolova et al. 2002)
Sal. enterica (Panutdaporn et al. 2006)
Resuscitation promoting factor like protein YeaZ V. parahaemolyticus (Aydin et al. 2011a, b)
V. harveyi (Li et al. 2017)
Catalase Esc. coli (Gourmelon et al. 1994)

Sal. enterica (Zeng et al. 2013)
Host associated stimuli

Protozoan Leg. pneumophila (Garcia et al. 2007; Steinert et al. 1997)
Rabbit ileal loop V. cholerae (Colwell et al. 1985)
Mouse model Vibrio vulnificus (Oliver and Bockian 1995)
Cam. jejuni (Cappelier et al. 1999)
Embryonated egg model Edw. tarda (Du et al. 2007a)

Listeria monocytogenes (Guillou et al. 2008)
Cam. jejuni (Cappelier et al. 2007)
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cells to a culturable state (Morishige et al. 2013; Vilhena
et al. 2019). The VBNC cells of the human pathogen Leg.
pneumophila could be resuscitated in culture media with
other reactive oxygen scavengers, such as glutamate (Ducret
et al. 2014). Also, gluconate could induce the resuscitation
of the soil-borne organism Cupriavidus metallidurans from
the VBNC state to a cultural state (Giagnoni et al. 2018).

Combinations of a variety of amino acids, such as aspara-
gine, glutamine, methionine, serine and threonine, in the
basal minimal medium were shown to effectively support
the transition of Esc. coli VBNC cells (Pinto et al. 2011).
Rich culture media and vitamins may resuscitate cells of
many bacterial species from the VBNC state (Fera et al.
2008; Lleo et al. 1998, 2001; Ozkanca et al. 2009; Pinto
et al. 2011; Sun et al. 2008; Zhong et al. 2009). However,
the exact substance in rich culture media that is vital to the
resuscitation process remains unclear.

The addition of 3% (v/v) Tween 20 allowed the VBNC
coccoid cells of Sal. enterica serovar Typhi to regain cul-
turability, again within 24-48 h, and the resuscitated cells
remained virulent as evidenced by animal infectivity experi-
ments (Zeng et al. 2013). Moreover, the dormancy of the
Cam. jejuni VBNC cells, caused by low oxygen availabil-
ity, could be restored in the presence of a microaerobic gas
mixture (Bovill and Mackey 1997). The dormancy of Pse.
aeruginosa VBNC cells, caused by the presence of toxic
concentrations of copper ions, could be resuscitated by the
addition of the copper-ion chelator diethyldithiocarbamate.
Then, the resuscitated cells showed cytotoxicity to the
eukaryotic Chinese Hamster Ovary cell line (Dwidjosiswojo
et al. 2011). Siderophores promote cell division. Further-
more, Lewis et al. (2010) showed that the siderophores from
Esc. coli and Micrococcus luteus could be used as growth
factors for uncultured bacterial strains.

Quorum sensing (QS) signal molecules have been
reported to correlate with the resuscitation of cells from
the VBNC state (Ayrapetyan et al. 2014; Liu et al. 2009),
probably correlated with the ability to increase antioxidative
capacity (Mesrop et al. 2014). QS is a cell-to-cell commu-
nication system in bacteria that works through the produc-
tion, release, detection and group-level response to signal-
ing molecules, called autoinducers (Papenfort and Bassler
2016). Esc. coli O157:H7 was reported to be resuscitated
by the autoinducer 2 (A1-2) that was produced during bio-
film formation process in a serum-based medium (Liu et al.
2009). In addition, A1-2 could reverse the VBNC state in
V. vulnificus (Ayrapetyan et al. 2014). Furthermore, it has
been reported that QS could trigger catalase expression lead-
ing to resuscitation of Salmonella typhimurium VBNC cells
independent of the OxyR regulon (Liao et al. 2019). These
phenomena suggest that QS exerts an important role in the
resuscitation process.

Active proteins

In Gram-positive bacteria, a group of extracellular bacterial
proteins, known as resuscitation-promoting factors (Rpfs),
were shown to have an important role in promoting resusci-
tation of VBNC cells (Mukamolova et al. 1998, 2002; Pinto
et al. 2015). Rpfs have been reported in a variety of Gram-
positive bacteria, including Mic. luteus, Corynebacterium
spp., Lis. monocytogenes, Mycobacterium spp., Streptomyces
spp., Tomitella biformata and Sal. enterica serovar Typhimu-
rium (Pinto et al. 2015). The Rpfs from different bacterial
species may have different structures and activities but all
share a conserved domain of ~ 70 amino acids and possess a
lysozyme-like activity (e.g., peptidoglycan lytic or muralytic
activity). The mechanism of Rpfs on resuscitating VBNC
cells probably centers on the ability to cleave cell wall com-
positions, thereby discharging the lysis products. These may
function as signaling molecules for growth initiation or modi-
fying the mechanical properties of the cell wall to enable cell
division (Kana and Mizrahi 2010; Keep et al. 2006).

In Gram-negative bacteria, the resuscitation-promoting
like factors belong to an obviously different protein class,
named YeaZ, which allows cells to survive in and exit from
the VBNC state. Panutdaporn et al. (2006) reported that
YeaZ from Sal. typhimurium could promote resuscitation
of VBNC cells of Sal. enterica serovar Oranienburg. In addi-
tion, the expression of a YeaZ homologue was essential for
the survival of Esc. coli cells (Handford et al. 2009). Fur-
thermore, YeaZ of V. parahaemolyticus acted as a classic
actin-like nucleotide-binding protein, and exerted an impor-
tant role in reverting the V. parahaemolyticus VBNC cells
(Aydin et al. 2011a, b). However, the underlying molecu-
lar mechanism of YeaZ in the resuscitation of VBNC cells
remains unknown.

Catalase is the hydrogen peroxide degradation protein
that may promote resuscitation of the VBNC state of Esc.
coli as induced by phototoxicity of visible light (Gour-
melon et al. 1994). Catalase is effective in reducing pho-
totoxicity by eliminating hydrogen peroxide, thiourea, a
hydroxyl radical scavenger and desferrioxamine B. The
addition of 1% (v/v) catalase allowed the VBNC cells of
Sal. enterica to return to culturability (Zeng et al. 2013).

Host associated stimuli

A variety of animal models (especially the natural host)
may be biological mediators for the resuscitation of some
bacteria from the VBNC state. For example, the VBNC
cells of Leg. pneumophila has been reported to be resus-
citated in the protozoa Acanthamoeba polyphaga (Gar-
cia et al. 2007) and Acanthamoeba castellanii (Steinert
et al. 1997). VBNC cells of V. cholerae were resuscitated
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to pathogenicity and culturability by their introduction
in a rabbit ileal loop model, which was the first animal
model to resuscitate VBNC cells (Colwell et al. 1985).
The original “four segment ligation of the intestine” rabbit
ileal loop model (Fig. 4a) was further modified to “dou-
ble segment ligation of the intestine” model (Fig. 4b) by
Huai-Shu Xu (late; who reported the VBNC state in 1982
for the first time) and Weishang Ji from the Ocean Uni-
versity of China. VBNC cells of V. cholerae could also be
resuscitated in the intestines of human volunteers (Colwell
et al. 1996). In addition, Cam. jejuni was resuscitated by
the inoculation of VBNC cells into mice (Cappelier et al.
1999). Moreover, the embryonated egg model (Fig. 4c)
was successfully used in the resuscitation of bacterial
pathogens, Lis. monocytogenes, Edw. tarda and Cam.
jejuni from the VBNC state (Cappelier et al. 2007; Du
et al. 2007a; Guillou et al. 2008), and this model was more
convenient to use than other animal models.

Implications of VBNC resuscitation
stimuli for cultivating uncultured marine
microorganisms

The application of molecular biology techniques, especially
16S rRNA gene and metagenomic sequencing, has revolu-
tionized knowledge of bacterial and archaeal diversity in
the oceans. This knowledge has helped us to recognize and
relate groups of organisms based solely on their genetic
sequences. It is well established that less than 1% of the
potentially 10''~10'2 microbial species in the natural envi-
ronment may be grown on laboratory culture media (Hahn

et al. 2019; Locey and Lennon 2016); the vast majority of
the microorganisms are viable in the environment but they
usually do not form visible colonies on agar plates (Kogure
et al. 1979; Rappe and Giovannoni 2003). This problem has
been described as “The Great Plate Count Anomaly”. Many
major divisions of Bacteria and Archaea contain no known
cultured species (Castelle and Banfifield 2018). This means
that some bacterial and archaeal phyla are known only from
sequence data of environmental DNA, and we do not have
the cultures of many widely distributed marine phyla.

Laboratory cultures are still immensely beneficial in the
era of molecular biology and high-throughput sequencing.
Microbial cultures enable detailed studies of cell physiology,
genetics and evolutionary relationships, knowing the mor-
phology of the microorganisms, isolation of bacteriophages,
and discovery of novel metabolic pathways. It is not always
possible to predict the activity of microorganisms and their
ecosystem function from genome sequence alone. Having
laboratory cultures is essential to understand community-
level processes and answering important questions regarding
the role of microorganisms in the sea. In addition, metagen-
omic analysis of microbial communities relies heavily on
data obtained from the sequencing of genomes of cultivated
species (Carini 2019). Moreover, laboratory cultures are
also important for commercially important research, such as
screening of natural products. Clearly, cultivation-dependent
and cultivation-independent approaches are complementary
to the microbial community studies. For the future, it is
important to develop new cultivation strategies.

In recent years, some resuscitation stimuli have been used
successfully to recover bacteria from natural environments.
Rpf protein (Mukamolova et al. 1998, 2002) is one of the

Fig.4 Rabbit ileal loop models and embryonated egg model for
resuscitation of the VBNC state. a The conventional “four segment
ligation of the intestine” rabbit ileal loop model (the rabbit survived
for 18-22 h) provided by Huai-Shu Xu (late) and Weishang Ji from
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most powerful resuscitation stimuli, and a picomole-level
concentration could promote the growth of culturable cells
by more than 100 times (Su et al. 2013). Ding and Yokota
(2010) reported that the addition of a Rpf-containing culture
supernatant from Mic. luteus could promote the growth of
Curvibacter fontanus (validation name in Int J Syst Evol
Microbiol, 2010, 60:2509-2510); a micro-aerobic organism
isolated from well water in Japan. Subsequently, the addi-
tion of Rpf-containing culture supernatant from Mic. luteus
enhanced the isolation of the biphenyl-degrading bacteria
from PCB-contaminated soils of e-waste recycling sites in
Taizhou, China (Su et al. 2013).

Beside the application of Rpf-containing culture super-
natant, the use of recombinant Rpf protein has attracted
attention. For example, Ding et al. (2012) demonstrated
that the recombinant Rpf protein from Mic. luteus had a
strong ability to promote the resuscitation of VBNC cells
of a high-G + C Gram-positive Rhodococcus sp. DS471,
which was isolated from soil. Moreover, the introduction
of recombinant Rpf protein from Mic. luteus enabled the
isolation of some unique bacterial species, which belonged
to the genera Arthrobacter, Bacillus, Bordetella, Mycobacte-
rium, Nocardiopsis, Novosphingobium and Pandoraea. Also,
Rpf treatment significantly enhanced cellulase activity of
the microbial community in mature compost produced from
household and agro-industrial wastes in China (Su et al.
2018). Furthermore, Luo et al. (2019) overexpressed and
purified the recombinant Rpf protein from an oil-degrading
organism, Rhodococcus erythropolis, and showed that Rpf
could promote the resuscitation of the VBNC cells of Rho.
erythropolis as well as efficiently improve the growth of nor-
mal Rho. erythropolis culture.

Sodium pyruvate was used successfully as a resusci-
tation stimulus, leading to the recovery of bacteria from
natural environments. In this connection, Mu et al. (2018)
developed an enrichment culture with a low-nutrient
medium containing 10 mmol/L sodium pyruvate for effi-
ciently isolating and culturing previously uncultured bac-
teria from coastal sediment of China. The work led to the
isolation of 97 potentially novel taxa, including one order,
one family, 16 genera and 79 species. In addition, it is
very common to facilitate the isolation of novel archaeal
species by supplementation of sodium pyruvate in the cul-
ture medium (Han et al. 2019). Certainly, more chemical
stimuli should be applied to recover uncultured bacteria
from natural environments in future studies.

Conclusions

Marine microorganisms exist in an ever-challenging envi-
ronment, and only a small proportion may be cultivated
using currently available techniques. There are a variety

of explanations for the inability to culture bacteria in the
laboratory, including the use of unsuitable cultivation meth-
ods, neglected slow-growing microorganisms, the inability
to communicate among microbial cells in pure culture, cell
damage induced by oxidative stress of fast-growing bacteria,
and the existence of VBNC bacteria. Many Gram-negative
bacteria and nonsporulating Gram-positive bacteria can
enter the VBNC state, which is a complicated metabolic
strategy of bacteria to survive for long-term under adverse
conditions. It is assumed that the VBNC response of bacteria
is a common process, which may occur in the wider scope
of bacterial taxa. In this regard, VBNC cells could consti-
tute a huge reservoir of natural bacteria, which cannot be
cultured easily with ordinary cultivation methods. Various
resuscitating stimuli, which are able to revert VBNC cells
to a metabolically active and culturable state on conven-
tional bacteriological media, have been identified, including
physical and chemical stimuli, active proteins, and biologi-
cal stimuli. However, most studies of VBNC bacteria have
focused on pure cultures in the laboratory rather than on
environmental bacteria. Stimuli that are currently used on
model or indicator strains may well be used to recover cells
from the VBNC state in natural environments. Indeed, some
resuscitation stimuli have recently been used successfully to
recover bacteria from natural environments. Resuscitating
indigenous microorganisms from environments may provide
a new approach to explore crucial populations, which may
play key roles in ecological processes or have great value
for industrial applications, and deserve more attention and
effort. In addition, different bacterial taxa may adopt dif-
ferent ways to resuscitate, and this point warrants further
investigation.
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