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Abstract Plants absorb light energy for photosynthesis via photosystem complexes in their chloroplasts. How-
ever, excess light can damage the photosystems and decrease photosynthetic output, thereby inhibiting
plant growth and development. Plants have developed a series of light acclimation strategies that allow
them to withstand high light. In the first line of defense against excess light, leaves and chloroplasts
move away from the light and the plant accumulates compounds that filter and reflect the light. In the
second line of defense, known as photoprotection, plants dissipate excess light energy through non-
photochemical quenching, cyclic electron transport, photorespiration, and scavenging of excess reactive
oxygen species. In the third line of defense, which occurs after photodamage, plants initiate a cycle of
photosystem (mainly photosystem II) repair. In addition to being the site of photosynthesis, chloro-
plasts sense stress, especially light stress, and transduce the stress signal to the nucleus, where it
modulates the expression of genes involved in the stress response. In this review, we discuss current
progress in our understanding of the strategies and mechanisms employed by plants to withstand high
light at the whole-plant, cellular, physiological, and molecular levels across the three lines of defense.
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INTRODUCTION

During their growth and development, plants are
affected by many environmental factors, including light,
which is an important environmental cue (Yadav et al.
2020). Plants absorb light energy via their photosys-
tems in chloroplasts to initiate photosynthesis. However,
excess light energy can damage the photosynthetic
apparatus and diminish photosynthetic efficiency.

Absorption of excess light leads to increased production
of excited, highly active photosynthetic intermediates,
which puts plants at risk of severe photodamage (Pin-
nola and Bassi 2018; Shi et al. 2022). Therefore, it is
particularly important to study how plants withstand
high light.

When plants are subjected to high light, the energy
distribution between photosystem I (PSI) and PSII
becomes unbalanced, leading to a sharp drop in pho-
tosynthetic efficiency. As a result, the plant may even-
tually wither and die. In response to this type of stress,
plants employ a variety of self-protection mechanisms& Correspondence: wanghongbin@gzucm.edu.cn (H.-B. Wang),
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that form three lines of defense. When a plant is
exposed to high light, the first line of defense is initiated,
in which leaves and chloroplasts move away from the
light and the plant accumulates compounds that filter
and reflect the light to limit the absorption of excessive
light energy. The second line of defense protects the
photosystems by dissipating excess light energy and
thereby limiting the oxidative damage caused by reac-
tive oxygen species (ROS). If the coordinated effects of
the first two lines of defense do not protect the plant
from a certain degree of damage, the plant must activate
the third line of defense: repair of PSII. Although a rel-
atively low level of repair occurs even under normal
light conditions, the speed of the repair cycle greatly
increases after photodamage (Bassi and Dall’Osto 2021;
Moejes et al. 2017; Pinnola and Bassi 2018; Shi et al.
2022; Takahashi and Badger 2011). In this review, we
discuss the current knowledge of these three main lines
of photoprotective defense used by plants (Fig. 1).

FIRST LINE OF DEFENSE: LIMITING
THE ABSORPTION OF EXCESS LIGHT

Leaf and chloroplast movement

Many plants respond to external light intensity by
altering leaf angle. Under low-light conditions, leaves
move toward the light source, forming a perpendicular
angle to the incident light, which maximizes light energy
absorption. Under high-light conditions, plants adjust
the position and angle of their leaves to be parallel to
the direction of light, decreasing their absorption of
light energy and lowering leaf temperature (Murchie
and Niyogi 2011; Takahashi and Badger 2011). For
example, exposure to higher light intensity decreases
the abaxial leaf petiole angle and increases the light
absorption area and photosynthetic activity of soybean
(Glycine max) plants (Feng et al. 2019). Parahe-
liotropism, the orientation of leaves parallel to light
rays, appears to be an important mechanism by which
the common bean (Phaseolus vulgaris) avoids photoin-
hibition (Pastenes et al. 2005). At midday, vertically
oriented leaves in rice (Oryza sativa) undergo less
photoinhibition than horizontal leaves (Murchie et al.
1999). Other environmental conditions also affect leaf

Fig. 1 Photoprotection mechanisms in plants. Plants have developed three main lines of defense to respond to excess light. The first line
of defense, avoidance, includes avoiding exposure to light through leaf and chloroplast movement and shielding excess radiation via the
production of secondary metabolites. The second line of defense, photoprotection, involves ROS scavenging, dissipation of excessive
energy as heat, CET, and photorespiration. The last line of defense, PSII repair, repairs the damage caused by high light. CBB Calvin-
Benson-Bassham cycle, 3-PGA 3-phosphoglyceric acid, 2-PG 2-phosphoglycolate
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movement, such as temperature, humidity, and nutrient
availability.

At the cellular level, chloroplasts optimize the cap-
ture of light used for photosynthesis by changing their
positions within the cell. Under low-light conditions,
chloroplasts absorb more light energy by aggregating at
the cell surface. In high-light environments, chloroplasts
avoid absorbing excess light energy by moving to the
anticlinal cell wall, thus increasing the amount of light
transmitted through the leaf. Photosynthesis occurs at
the individual chloroplast level; therefore, the subtle
subcellular movement of these organelles can accu-
rately respond to small changes in light intensity
(Murchie and Niyogi 2011). The photoreceptors pho-
totropin1 (phot1) and phot2 function in chloroplast
movement, playing important roles in phototaxis in
Arabidopsis (Arabidopsis thaliana). The high-light-
avoidance response is mainly regulated by phot2 (Ish-
ishita et al. 2020).

Actin filaments along the chloroplast periphery on
the plasma membrane side provide the motive force
needed for chloroplast movement (Kadota et al. 2009).
Several actin filament regulators participate in actin-
regulated chloroplast movement. Chloroplast unusual
positioning1 (CHUP1) anchors chloroplasts to the
plasma membrane in Arabidopsis; the chloroplasts of
chup1 mutants do not move in response to light and
instead aggregate at the bottom of the cell irrespective
of light conditions (Suetsugu and Wada 2008; Oikawa
et al. 2003). Kinesin-like protein for actin-based
chloroplast movement (KAC) family proteins play vital
roles in the movement of chloroplasts and their
attachment to the plasma membrane. Chloroplast pho-
torelocation is disrupted in the Arabidopsis kac1 kac2
double mutant, and the chloroplasts are detached from
the plasma membrane (Suetsugu et al. 2010). Other
factors are also critical for chloroplast movement, such
as THRUMIN1 and Plastid movement impaired1 (Dwyer
and Hangarter 2022).

Shielding plant cells from excess light radiation

During their long-term adaptation to light, plants have
evolved a photodamage defense mechanism: When
exposed to strong light or ultraviolet (UV) radiation,
plants quickly accumulate phenolic compounds,
including phenolic acids, flavonols, flavones, and
anthocyanins, inside leaf cells. These compounds act as
sunscreens that filter and reflect excessive radiation
(Araguirang and Richter 2022). Phenolic compounds
most commonly occur in vacuoles of epidermal or
outermost mesophyll cells. Some flavonols and flavones,
such as quercetin, kaempferol, and apigenin, have an

absorption peak in the UV region (Ferreyra et al. 2021).
Anthocyanins, one of the most widely distributed fla-
vonoids in plants, not only give plants their bright colors
but also play important roles in plant adaptation to
abiotic stress, especially in high-light adaptation.
Anthocyanins absorb visible light as well as some UV
light in the solar spectrum (Takahashi and Badger
2011). Following their acetylation with phenyl-
propanoid acids, the acylated derivatives of antho-
cyanins have enhanced UV light absorbance (Ferreyra
et al. 2021). Carotenoids and alkaloids (betalains) in
higher plants, as well as mycosporine-like amino acids
in lower plants, are also photoprotective pigments that
attenuate radiation in the visible and UV spectra
(Solovchenko and Merzlyak 2008).

High light and UV radiation induce the biosynthesis of
phenolic compounds in plants (Araguirang and Richter
2022; Lingwan et al. 2023). PSII is one of the main
targets of high light– and UV radiation–induced damage.
The light-shielding effect of phenolic compounds helps
protect PSII from photodamage (Agati et al. 2013; Fer-
reyra et al. 2021). Indeed, high-altitude plants activate
flavonoid biosynthesis pathways and accumulate more
flavonoids to adapt to high light and increased UV
radiation compared with low-altitude plants (Sharma
et al. 2019). Red poinsettia leaves (containing high
levels of anthocyanins) had significantly higher PSII
quantum efficiency with less photoinhibition than green
leaves under excessive light irradiation (Moustaka et al.
2018). Upregulating the biosynthesis of flavonoids
enhanced the tolerance to UV light and high light com-
pared to wild-type plants (Peng et al. 2017; Righini et al.
2019; Zhang et al. 2022a). Furthermore, double pal1
pal2 mutants impaired in the early steps of phenolic
compound biosynthesis show enhanced sensitivity to
UV light, the reduced capacity of PSII photochemistry,
and compromised photoprotection under UV light
treatment compared to wild-type plants (Huang et al.
2010). In addition to being activated under high light
and UV light, phenolic compounds, as an important class
of plant secondary metabolites, also help plants accli-
matize to a wide range of unfavorable environments
such as drought, salinity, and high/low-temperature
stresses, and they play crucial roles throughout the
plant life cycle (Sharma et al. 2019). Therefore,
enhancing the biosynthesis of phenolic compounds can
be strategically utilized to enhance plant stress toler-
ance (Lingwan et al. 2023).
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SECOND LINE OF DEFENSE: PHOTOPROTECTION

Thermal energy dissipation

Under normal illumination, the light-harvesting complex
captures light energy and transitions chlorophyll mole-
cules from the ground state to the singlet excited state.
The resulting excitation energy is transferred to the
photosystem reaction centers to drive photochemical
reactions, and the singlet chlorophyll molecule then
returns to the ground state. When plants are exposed to
light levels that exceed energy demands, chlorophyll
molecules are overexcited and accumulate excess exci-
tation energy in photosynthetic membranes, which can
be harmful to PSII. Return of excited chlorophyll mole-
cules to the ground state occurs mainly via three
mechanisms: (1) photochemical quenching, which
drives photochemical reactions (e.g., photosynthesis);
(2) fluorescence quenching, which dissipates excess
excitation as chlorophyll fluorescence; and (3) non-
photochemical energy quenching (NPQ), which harm-
lessly dissipates excess excitation energy in the PSII
antenna complexes as heat (Baker 2008). NPQ is the
fastest response of photosynthetic membranes to excess
light (Demmig-Adams et al. 2014; Ruban 2016).

NPQ involves several components that can be dis-
tinguished by their recovery kinetics: the state transi-
tion (qT), photoinhibition-dependent quenching (qI),
zeaxanthin-dependent quenching (qZ), sustained
quenching (qH), and DpH or energy-dependent non-
photochemical quenching (qE). The state transition (qT)
displaces the light-harvesting complex II (LHCII)
antenna between PSII and PSI to redistribute the exci-
tation energy between the two photosystems (Bellafiore
et al. 2005). This step is important in algae but is rather
negligible in most plants during exposure to excess light
(Allorent et al. 2013; Müller et al. 2001). Photoinhibi-
tion-dependent quenching (qI) is caused by photoinhi-
bition and shows very slow relaxation kinetics in the
range of hours (Müller et al. 2001).

Zeaxanthin-dependent quenching (qZ) relies on
zeaxanthin and is activated within tens of minutes; this
process likely forms in the antenna of PSII at those
xanthophyll binding sites, which are slowly converted to
zeaxanthin (Nilkens et al. 2010). Sustained quenching
(qH) is a very slow component of NPQ (Brooks et al.
2013) that is independent of known components
required for other types of NPQ, such as DpH, PsbS,
zeaxanthin, or the kinase state transition7 (STN7). qH
occurs in the antenna, specifically in the peripheral
antenna of PSII (Malnoë et al. 2018). The photoprotec-
tive mechanism of qH requires lipocalin in the plastid
(LCNP) and is prevented by the suppressor of

quenching1 (SOQ1). Relaxation of QH1 (ROQH1) func-
tions as a qH relaxation factor. LCNP and ROQH1 are
proposed to play dosage-dependent, antagonistic func-
tions in protecting the photosynthetic apparatus and
maintaining light-harvesting efficiency in plants
(Amstutz et al. 2020). Hypersensitive to high light1
(HHL1), a damage repair factor for PSII (Jin et al. 2014),
was recently shown to interact with SOQ1 and syner-
gistically regulate qH (Duan et al. 2023).

DpH or energy-dependent non-photochemical
quenching (qE) is the main form of heat dissipation that
plays a photoprotective role in plants and algae (Buck
et al. 2019; Goss and Lepetit 2015; Niyogi and Truong
2013). Excess light leads to increased DpH in the thy-
lakoids produced by photosynthetic electron transfer. A
decrease in pH in the thylakoids serves as an immediate
signal of excessive light, triggering feedback regulation
of light capture by qE. qE is rapidly reversible and can
be induced or eliminated within a few seconds, thereby
quickly responding to fluctuations in light intensity in
the natural environment (Goss and Lepetit 2015). Low
pH in the thylakoid lumen activates violaxanthin de-
epoxidase (VDE), which converts violaxanthin to
antheraxanthin and zeaxanthin; these compounds are
required for qE formation. In addition to requiring
zeaxanthin, qE requires the presence of the protein
PsbS. PsbS serves as a pH sensor that detects thylakoid
lumen acidification and transduces signals to the
antenna, playing an important role in regulating the
rapid induction and relaxation of qE (Correa-Galvis et al.
2016; Krishnan-Schmieden et al. 2021; Li et al. 2004).
The response of PsbS to pH has been revealed to be a
functional conformational switch (Chiariello et al. 2023;
Krishnan-Schmieden et al. 2021). The transcription
factors OsbZIP72 and OsMYBS2 play reversible roles in
synergistically regulating OsPsbS1 transcription in rice
(Fu et al. 2021). PsbS-dependent NPQ primarily occurs
in LHCII, as an Arabidopsis mutant lacking LHCII exhi-
bits approximately 60% lower NPQ than the wild type
(Nicol et al. 2019). Accelerating the xanthophyll cycle
and increasing PsbS levels lead to faster induction and
relaxation of NPQ, which increases the photosynthetic
efficiency of plants under fluctuating light conditions
and ultimately improves crop yield (De Souza et al.
2022; Kromdijk et al. 2016).

Cyclic electron transport

Photosynthetic electron transport comprises two major
pathways: linear electron transport (LET) and cyclic
electron transport (CET) (Munekage et al. 2004). LET
mediates electron transport through PSII, cytochrome
b6f (Cyt b6f), and PSI to NADP? to produce NADPH while
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forming the proton gradient across the thylakoid
membrane needed to drive ATP synthase to produce
ATP. CET around PSI does not involve PSII. The electrons
transferred to PSI are ultimately returned to Cyt b6-
f without generating NADPH; only the DpH across the
thylakoid membrane is generated for ATP biosynthesis
(Yamori and Shikanai 2016).

Angiosperms typically employ two distinct CET
pathways: a major pathway that depends on proton
gradient regulation5 (PGR5) and PGR5-like photosyn-
thetic phenotype1 (PGRL1) and a minor pathway, the
chloroplast NADH dehydrogenase-like (NDH) complex-
dependent electron transport pathway. Indeed, the pgr5
and pgrl1 mutants in Arabidopsis exhibit hypersensi-
tivity to high light (DalCorso et al. 2008; Munekage et al.
2002). CET has important physiological significance, as
it adjusts the ATP/NADPH ratio in chloroplasts to meet
the demands of the Calvin-Benson-Bassham cycle. CET
also plays a vital role in photoprotection: CET-induced
acidification of the chloroplast lumen regulates photo-
synthetic electron transport, inducing the qE compo-
nent of NPQ to dissipate excess absorbed light energy,
thereby protecting PSII and PSI (Murchie and Niyogi
2011; Niu et al. 2023; Yamori and Shikanai 2016) and
helping photosynthetic organisms respond quickly to
environmental changes.

PGR5 plays crucial roles in PSI photoprotection
under fluctuating light conditions (Suorsa et al. 2012;
Yamamoto and Shikanai 2019). In the pgr5 mutant,
photodamage occurs in PSI before it occurs in PSII, and
the mutant cannot survive under naturally or artificially
fluctuating light conditions (Suorsa et al. 2012). PGR5
can operate in CET on its own, but its activity must be
modulated by PGRL1. PGRL2 can interact with PGR5
and PGRL1 and negatively regulates the stability of
PGR5 (Rühle et al. 2021).

NDH is a very large thylakoid membrane protein
complex with multiple subunits. The NDH complex
contains at least 29 protein subunits and associates
with PSI to form an NDH–PSI supercomplex, which
helps stabilize the NDH complex and facilitates CET
(Shen et al. 2022; Su et al. 2022). NDH-dependent CET
is involved in plant responses to various types of envi-
ronmental stresses, including high light, low humidity,
drought, and abnormal temperatures (Yamori and Shi-
kanai 2016). The NDH complex alleviates oxidative
stress in chloroplasts under excess-light conditions.
Tobacco (Nicotiana tabacum) ndhB mutants lack qE and
exhibit hypersensitivity to high light (Endo et al. 1999;
Horváth et al. 2000). NDH-dependent CET around PSI
also plays important roles in efficient electron transport
at low light intensities and photoprotection of PSI under
fluctuating light conditions in rice (Yamori and Shikanai

2016). NDH-defective mutants show a concomitant
decrease in CO2 assimilation rate and plant biomass
under low light intensities, as well as PSI photoinhibi-
tion and diminished plant growth under fluctuating
light conditions (Yamori et al. 2016).

Photorespiration

Photorespiration is a complex light-dependent set of
reactions during which plants take up O2, accompanied
by the release of CO2. Ribulose-1,5-bisphosphate car-
boxylase/oxygenase (Rubisco) has dual activities: car-
boxylation and oxygenation. At relatively high CO2

concentrations, Rubisco catalyzes the carboxylation of
ribulose-1,5-bisphosphate (RuBP) to produce two
molecules of 3-phosphoglyceric acid (3-PGA) that are
integrated into the Calvin-Benson-Bassham cycle. When
CO2 is limited, Rubisco catalyzes the oxygenation of
RuBP to produce one molecule of 3-PGA and one
molecule of 2-phosphoglycolate (2-PG). The phosphate
group is removed from 2-PG to generate glycolate,
which is then metabolized to glycine in the peroxisome
and to serine in the mitochondrion along with CO2

release. Serine is subsequently converted back to 3-PGA
in the photorespiratory cycle (Bauwe et al. 2010; Hou
et al. 2019; Peterhansel et al. 2010).

During photorespiration, ATP and reducing
(NAD(P)H) equivalents are consumed, and ammonia
(NH3) and CO2 are released. This metabolic pathway is
often viewed as wasteful (Shi and Bloom 2021; Wingler
et al. 2000). However, suppressing or disrupting pho-
torespiration does not improve plant net photosynthetic
efficiency, and photorespiration mutants exhibit severe
growth inhibition or a conditional lethal phenotype
(Pick et al. 2013; Timm and Bauwe 2013; Voll et al.
2006). Photorespiration acts as a safety valve when the
energy pressure on the photosynthetic apparatus
increases, preventing overreduction of the photosyn-
thetic electron transport chain and photoinhibition
(Peterhansel et al. 2010; Wingler et al. 2000). Impair-
ment of the photorespiratory pathway accelerates the
photoinhibition of PSII by suppressing repair but not
accelerating damage in Arabidopsis (Takahashi et al.
2007). Photorespiration limits CO2 fixation and reduces
photosynthetic efficiency; the estimated loss due to
photorespiration can reach 20–50% in C3 plants (South
et al. 2019). Therefore, photorespiration has long been a
core target for enhancing crop productivity through
biotechnology (Fernie and Bauwe 2020; Walker et al.
2016). Engineering a photorespiration bypass with
lower energy costs to recycle the toxic intermediate
metabolite glycolate, rather than inhibiting photorespi-
ration, has been successfully applied in plants,
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significantly increasing their photosynthetic efficiency
and productivity (Eisenhut et al. 2019; Shen et al. 2019;
South et al. 2019).

ROS scavenging

In addition to being harmful by-products of aerobic
metabolism that are continuously produced in plants,
ROS are regulatory molecules that play important roles
in signal transduction under high-light conditions
(Exposito-Rodriguez et al. 2017; Foyer and Hanke 2022;
Foyer and Noctor 2003). In thylakoids, the PSI and PSII
reaction centers are the major sites of ROS generation.
The ROS produced by chloroplasts include superoxide
anion radical (O2

-), hydrogen peroxide (H2O2), hydroxyl
radicals (�OH), and singlet oxygen (1O2) (Gururani et al.
2015). Under excessive light irradiation, overexcitation
of PSII promotes the formation of chlorophyll in the
triplet excited state, which excites oxygen to generate
1O2. In PSI, oxygen receives electrons to generate O2

-

and further generates H2O2 and �OH (Asada 2006; Li
et al. 2009). Under normal light and physiological
metabolic conditions, the production and elimination of
ROS are in a steady-state equilibrium, while under high-
light conditions, the production of ROS at PSII and PSI in
chloroplasts increases substantially. ROS are highly
active substances that can cause photoinhibition by
directly damaging chloroplast membrane systems. ROS
can also accelerate photoinhibition by disrupting the
repair of photodamaged PSII (Takahashi and Badger
2011). ROS accumulation in chloroplasts causes irre-
versible damage to the PSII core protein D1 and inhibits
de novo biosynthesis of new D1 (Nishiyama et al.
2004, 2001). The inhibition of de novo D1 protein
biosynthesis occurs at the translational level, revealing
that ROS affects the activity of translation elongation
factors (Kojima et al. 2007).

To avoid excessive ROS accumulation, a complex ROS-
scavenging antioxidant network degrades ROS in
chloroplasts, thereby minimizing photooxidative dam-
age. ROS scavenging occurs via enzymatic and non-en-
zymatic antioxidant defense pathways. Antioxidant
enzymes include superoxide dismutase (SOD), catalase
(CAT), peroxidases, ascorbate peroxidase (APX), glu-
tathione peroxidase, glutathione reductase (GR), mon-
odehydroascorbate reductase (MDHAR),
dehydroascorbate reductase (DHAR), and guaiacol per-
oxidase (GPX). SODs decompose O2

- to H2O2, while
CATs catalyze the dismutation of H2O2 to H2O and O2,
which is predominantly produced during
photorespiration.

Non-enzymatic antioxidant metabolites, such as
ascorbate, glutathione, tocopherols, and carotenoids, are

also important for ROS scavenging (Bassi and Dall’Osto
2021; Takahashi and Badger 2011). The ascorbate–
glutathione cycle helps maintain the balance of cellular
H2O2 levels. APX reduces H2O2 to H2O and monodehy-
droascorbate (MDHA) using ascorbate as a reducing
agent. MDHA can be reversibly reduced by MDHAR back
to ascorbate. Dehydroascorbate (DHA) is reduced to
ascorbate by DHAR using glutathione (GSH) as an
electron donor. Glutathione disulfide (GSSG) is then
reduced to GSH by GR using NADPH as a reductant
(Chapman et al. 2019; Das and Roychoudhury 2014;
Dvořák et al. 2021).

THIRD LINE OF DEFENSE: REPAIR OF DAMAGED PSII

When the synergistic effects of the above photoprotec-
tion pathways are not sufficient to avoid photodamage
to PSII, plants activate the PSII repair system to quickly
restore damaged PSII. Rapid repair of PSII also protects
PSI from irreversible damage (Tikkanen et al. 2014).
There are two major aspects of PSII repair: disassembly
and reassembly of PSII complexes (Mulo et al. 2008).

PSII is a multi-subunit pigment–protein complex
composed of dozens of protein subunits and hundreds
of cofactors. The PSII core complex is composed of
reaction center proteins and peripheral proteins
arranged loosely around PSII (including oxygen-releas-
ing complexes located in the thylakoid lumen). PSII
reaction center proteins include the chloroplast gen-
ome–encoded D1, D2, CP43, and CP47, which play
crucial roles in maintaining PSII function. PSII core
complexes typically exist as dimers and combine with
LHCII antennae to form the PSII supercomplex, a large
supramolecular complex mainly localized in strictly
stacked grana thylakoid regions. In these regions, only a
very small stromal gap remains, where bulky proteases
and ribosomes cannot enter (Kirchhoff 2014). There-
fore, the photodamaged PSII needs to be exposed in the
stroma lamellae. To allow photodamaged photosyn-
thetic proteins in the PSII supercomplex to have access
to the repair machinery, the supercomplex must first
disassemble and release PSII monomers into the stroma
lamellae (Järvi et al. 2015; Johnson and Pakrasi 2022;
Nixon et al. 2010; Su et al. 2023; Theis and Schroda
2016).

Disassembly of PSII complexes

After high-light-induced photodamage, the kinase STN7
phosphorylates LHCII, mediating its dissociation from
PSII and binding to PSI, thereby balancing the energy
distribution between PSII and PSI (Pesaresi et al. 2009).
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In contrast to STN7, Phosphatase1 (PPH1, also named
Thylakoid-associated phosphatase38 [TAP38]) is
responsible for the dephosphorylation of LHCII (Pribil
et al. 2010; Shapiguzov et al. 2010). Phosphorylation of
core PSII proteins is mainly achieved through the kinase
STN8, and the phosphorylated PSII monomers migrate
from grana stacks to stroma membranes (repair sites).
The PSII core monomer is then dephosphorylated by
PSII core phosphatase (PBCP) (Samol et al. 2012) and
partially disassembles, releasing CP43 and the oxygen-
evolving complex (OEC) to generate a CP43-free PSII
monomer (Theis and Schroda 2016).

Subsequently, the PSII core proteins that were dam-
aged by photooxidative stress are rapidly degraded. Two
types of chloroplast proteases synergistically degrade
the photodamaged D1 protein: members of the Deg
family of serine-type ATP-independent proteases and
the FtsH family of ATP-dependent zinc metalloproteases
(Su et al. 2023; Theis and Schroda 2016; Yoshioka-
Nishimura 2016). Thylakoid Lumen Protein of 18.3 kDa
(TLP18.3), which interacts with Deg1, functions as an
auxiliary protein that assists in D1 degradation and the
dimerization of PSII complexes (Sirpiö et al. 2007;
Zienkiewicz et al. 2012).

In addition, high light induces the partial unstacking
and bending of stacked thylakoid membranes, accom-
panied by thylakoid swelling, which promotes contact of
Deg proteases with damaged PSII core proteins and
helps FtsH access the D1 protein in the grana region
(Kirchhoff 2014; Yoshioka-Nishimura 2016). The
dynamic structural changes in the thylakoid membrane
are crucial for initiating efficient PSII repair. Plants that
lack Curvature thylakoid1 (CURT1) show less adjust-
ment of grana diameter and impaired membrane cur-
vature at the grana margins compared with wild-type
plants, resulting in a compromised PSII repair cycle
(Pribil et al. 2018). Atomic force microscopy and scan-
ning electron microscopy studies have also revealed
that the thylakoid membrane system can undergo
massive structural reorganization (Chuartzman et al.
2008; Kirchhoff 2014).

Reassembly of PSII complexes

After the damaged D1 protein is degraded, a new
functional copy is de novo synthesized and inserted into
PSII reaction centers using the chloroplast translation
machinery. Light-induced degradation of D1 relieves the
repressive interaction between D1 and the translation
activator in the complex, triggering the recruitment of
ribosomes to psbA mRNA, encoding the D1 protein. This
process provides nascent D1 for PSII repair and coor-
dinates D1 biosynthesis with the need for nascent D1

during PSII biogenesis and repair (Chotewutmontri and
Barkan 2020).

PSII assembly follows a series of highly ordered
steps. First, D2 and cytochrome b559 form a D2–Cyt b559
subcomplex, recruiting another pre-D1 complex con-
sisting of D1 precursor (pD1) and PsbI as well as
numerous translation and assembly chaperones to form
a transient intermediate subcomplex called the reaction
center (RC) complex (Komenda et al. 2004). During the
formation of the RC complex, carboxyl terminal pepti-
dase (CtpA) processes the C terminus of the D1 pre-
cursor protein to yield mature D1. The RC complex is
then converted into an RC47 complex, which is formed
by the RC complex and the inner antenna protein CP47
pre-complex containing low molecular mass (LMM) PSII
subunits such as PsbH, PsbT, and PsbM. RC47 is bound
by Psb28. Subsequently, RC47 sequentially incorporates
the inner antenna protein CP43 pre-complex containing
the assembly factor Psb27 (also named low PSII accu-
mulation 19 [LPA19]) and LMM subunits, such as PsbK
and Psb30, to form a monomeric PSII (Johnson and
Pakrasi 2022; Nickelsen and Rengstl 2013). Following
the assembly of CP43, the OEC and additional LMM
subunits, such as PsbW, bind to monomeric PSII, gen-
erating a new monomeric PSII complex. Finally, the
repaired PSII monomer migrates back into the stacked
membrane, dimerizes with the help of LMM subunits,
such as PsbI and PsbM, and combines with LHCII to
form a functional PSII–LHCII supercomplex (Johnson
and Pakrasi 2022; Nickelsen and Rengstl 2013; Nixon
et al. 2010).

Numerous auxiliary nuclear factors are involved in
the assembly of the PSII complex (Lu 2016). The plas-
tid-localized PSII assembly factors high chlorophyll flu-
orescence244 (HCF244), one helix protein1 (OHP1), and
OHP2 are thought to form a transient complex that
functions in PSII assembly and the translational activa-
tion of psbA (Chotewutmontri et al. 2020; Hey and
Grimm 2018; Li et al. 2019). The chloroplast pentatri-
copeptide repeat (PPR) protein low photosynthetic
efficiency1 (LPE1) interacts with HCF173 and partici-
pates in the translational regulation of psbA mRNA in a
redox-dependent manner (Jin et al. 2018). cyclophilin38
(CYP38) is thought to play a critical role in the correct
folding of D1 and the successful assembly of PSII
supercomplexes in Arabidopsis. cyp38 mutants are
highly susceptible to photoinhibition (Fu et al. 2007;
Sirpiö et al. 2008). HCF243 acts as a cofactor to main-
tain D1 protein stability and to promote the assembly of
the PSII complex (Zhang et al. 2011). photosynthesis
affected mutant68 (PAM68), an integral thylakoid pro-
tein, affects the maturation and stability of newly syn-
thesized D1 and promotes the transition from the RC
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assembly state to larger PSII assembly complexes
(Armbruster et al. 2010). HCF136/YCF48 also mediates
the stabilization of D1 and assembly of PSII RC com-
plexes (Chotewutmontri and Barkan 2020; Chotewut-
montri et al. 2020; Komenda et al. 2008). A recent study
revealed that decreased electron transport at PSII
(DEAP2) works in concert with PAM68 to regulate the
rapid progression from the RC to RC47 (Keller et al.
2023). LPA2 is required for PSII assembly and proper
function (Cecchin et al. 2021). lumen thiol oxidoreduc-
tase1 (LTO1), a membrane-embedded disulfide bond–
forming catalyst, mediates the assembly of the OEC into
PSII (Karamoko et al. 2011). FK-506 binding protein
20-2 (FKBP20-2) functions in the accumulation of the
PSII supercomplex, as fkbp-20 mutants in Arabidopsis
are more susceptible to photodamage under high-light
conditions and accumulate more PSII monomer/dimers
than the wild type (Lima et al. 2006). Another protein
involved in the formation of the PSII supercomplex,
Psb33, is thought to mediate the interaction between
the PSII core complexes and LHCII (Fristedt et al. 2015).
TROL2 forms an assembly cofactor complex with LPA2
and interacts with small PSII subunits to facilitate PSII
complex assembly (Li et al. 2023). Recently, cryo-elec-
tron microscopy has been used to analyze PSII structure
and revealed the location and binding properties of
assembly factors as well as the induced structural
changes that protect the not-fully-assembled PSII from
photodamage, providing a structural basis for under-
standing PSII assembly (Huang et al. 2021; Johnson and
Pakrasi 2022; Xiao et al. 2021; Zabret et al. 2021).

Regulation of gene expression

Regulation of gene expression is another important
aspect of plant responses and acclimation to high light
(Huang et al. 2019; Suzuki et al. 2015) and several
photoreceptors have been implicated in sensing high
light and initiating transcriptional responses. The blue
light photoreceptor CRYPTOCHROME1 (CRY1) is
hypothesized as a high light receptor to mediate the
perception of high light (Allorent and Petroutsos 2017;
Li et al. 2009; Liu et al. 2022; Shaikhali et al. 2012).
Transcription factors, such as elongated hypocotyl5
(HY5), ABA insensitive4 (ABI4), MYBs, and basic helix-
loop-helix (bHLH), further synergistically regulate the
expression of photoprotective genes (Jiang et al. 2020;
Li et al. 2009; Shi et al. 2022). In response to high light,
plant cells inhibit the transcription of genes encoding
antenna proteins while activating the transcription of
genes encoding ROS-scavenging enzymes and antho-
cyanin biosynthetic genes (Huang et al. 2019; Jung et al.
2013; Rossel et al. 2002). The transcriptional response

of Arabidopsis to high light can be triggered within
seconds or minutes of exposure (Suzuki et al. 2015;
Vogel et al. 2014). Many photoprotection-related genes
are activated at the transcriptional and/or post-tran-
scriptional level to protect the photosynthetic apparatus
from high light (Li et al. 2009; Pinnola and Bassi 2018).
The abundance of PSII subunits is also increased to
promote the rapid biosynthesis and renewal of PSII
subunit proteins (Zhang et al. 2021). Alternative nuclear
expression of psbA can enhance the repair of PSII and
improve stress tolerance in plants (Chen et al. 2020).
Regulation of genes encoding factors related to the
maintenance of PSII function is also critical for main-
taining photosynthetic efficiency and protecting PSII
under high-light conditions (Li et al. 2020).

Epigenetic regulation also plays an important role in
regulating gene expression. High light induces signifi-
cant changes in the N6-methyladenosine (m6A) modifi-
cation of transcripts for chloroplast/photosynthetic
genes in plant (Vicente et al. 2023). The m6A modifi-
cation of photoprotection-related transcripts mediated
by VIRILIZER (VIR) was shown to regulate the expres-
sion of these genes via multiple post-transcriptional
steps, such as affecting their stability or translational
efficiency (Zhang et al. 2022b). Furthermore, the
expression levels of certain genes in plants are altered
via DNA methylation. Redox signals arising in chloro-
plasts regulate DNA methylation levels, which play a
major role in the transgenerational embedding of stress
tolerance memory in plants (Foyer 2018).

CONCLUSION AND FUTURE PERSPECTIVES

Plants have developed three main lines of defense that
allow them to respond to excess light in a constantly
changing environment: limiting exposure, photoprotec-
tion, and PSII repair. Limiting exposure includes leaf and
chloroplast movement and the filtering of harmful
radiation via secondary metabolites. Photoprotection
involves ROS scavenging, the timely dissipation of
excessive energy mediated by NPQ, CET, and photores-
piration. The last line of defense, PSII repair, repairs the
damage caused by high light. These photoprotective
mechanisms function together to maintain a relatively
stable photosynthetic activity under high-light condi-
tions (Fig. 1).

Although we have gained a basic understanding of
the strategies plants employ to adapt to high light, more
detailed regulatory mechanisms still need to be eluci-
dated. How do plants transduce signals between the
nucleus and various organelles after sensing changes in
light intensity? How do numerous auxiliary factors in
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plants work together to precisely regulate the assembly
of the photosystem? In addition to transcriptional and
post-transcriptional regulation, does post-translational
modification of photosynthesis-related proteins partici-
pate in the response to high light, and what is its reg-
ulatory mechanism? Future research will reveal these
answers and deepen our understanding of the mecha-
nisms of plant responses to high light.

The global population is predicted to increase to
approximately 10 billion people in the next 30 years.
Producing enough food to meet the needs of this pop-
ulation is one of the greatest challenges of this century.
With a more extreme global climate, plants are suffering
from more and more environmental stresses, which
have a major impact on crop production. To avoid
reductions in crop yield caused by high light, genetic
engineering approaches can be used to optimize the
photoprotection capabilities of crops and improve light-
use efficiency under light stress conditions. It is also
possible to expand the planting area by genetically
engineering shade commercial crops or medicinal
plants. It will be necessary to weigh the possible
imbalance between the beneficial effects of genetic
manipulation for improving plant growth in suboptimal
environments and the limited carbon gain under opti-
mal conditions, as well as the complexity of plant
growth environments. Therefore, more rigorous mea-
surements and analysis under natural conditions are
necessary.
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