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Abstract The past few years have witnessed significant progress in emerging disease detection techniques for
accurately and rapidly tracking rice diseases and predicting potential solutions. In this review we focus
on image processing techniques using machine learning (ML) and deep learning (DL) models related to
multi-scale rice diseases. Furthermore, we summarize applications of different detection techniques,
including genomic, physiological, and biochemical approaches. In addition, we also present the state-of-
the-art in contemporary optical sensing applications of pathogen–plant interaction phenotypes. This
review serves as a valuable resource for researchers seeking effective solutions to address the chal-
lenges of high-throughput data and model recognition for early detection of issues affecting rice crops
through ML and DL models.
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INTRODUCTION

Rice (Oryza sativa L.) is globally recognized as the pri-
mary staple food (FAO 2023, Matsumoto et al. 2022).
However, its global production is severely threatened by
plant diseases, endangering food security in many
Asian, African, and European countries (Liu et al. 2023a;
Wang et al. 2022; Zhan et al. 2023). Thus, early detec-
tion and identification of rice infections are crucial to
preventing crop damage and improving yield quality

and quantity. Rice disease detection has long been a
significant challenge in plant disease management, and
there is a pressing need to develop accurate and effi-
cient methods for this purpose within the realm of
agriculture.

The conventional method for in situ detection of rice
diseases relies on the observations of experienced
farmers. While convenient, this approach necessitates
highly skilled inspectors to identify the phenotypic
expression of different diseases. Alternatively, bio-
chemical technologies offer more precise means of
obtaining crop disease information by analyzing sus-
ceptible rice tissues based on their chemical and& Correspondence: wmctz@zju.edu.cn (M. Wang), yufeil-

iu@zju.edu.cn (Y. Liu)

� The Author(s) 2023

aBIOTECH (2023) 4:359–371
https://doi.org/10.1007/s42994-023-00126-4 aBIOTECH

http://crossmark.crossref.org/dialog/?doi=10.1007/s42994-023-00126-4&amp;domain=pdf
https://doi.org/10.1007/s42994-023-00126-4


genomic codes (Jansen et al. 2011; Patel et al. 2023).
However, these methods are time-consuming, expensive,
reliant on laboratories, and require skilled profession-
als, rendering them unaffordable for most farmers
(Wani et al. 2022). Addressing the limitations of these
approaches calls for the development of a more accurate
and rapid in situ methods for identifying rice diseases
and controlling their spread.

The demand for advanced technologies in rice dis-
ease detection has significantly increased from 2000 to
2020, as evidenced by the surge in related research and
publications (Fig. 1).

Optical sensing-based phenotyping (OSP) has become
a common approach in nondestructive rice disease
detection, with methods like charge-coupled device
(CCD) cameras being employed to analyze various fea-
tures of rice diseases, such as color (Shrivastava and
Pradhan 2021), shape (Lu et al. 2022), texture (Ahmad
et al. 2021), and spectral reflectance (Tian et al. 2021).
However, these technologies have limitations in han-
dling large sample sizes, limited extraction features,
inaccurate segmentation, and noise suppression,

affecting their accuracy in complex backgrounds and
unknown samples (Hamuda et al. 2017).

In recent years, the advent of nondestructive detec-
tion technologies has led to the application of new
methods for identifying rice seed variety and vigor,
including near-infrared (NIR) spectroscopy (Fabiyi et al.
2020), nuclear magnetic resonance (NMR) spectroscopy
(Song et al. 2018), Fourier-transform infrared (FTIR)
spectroscopy (Kusumaningrum et al. 2018), Raman
spectroscopy (Ambrose et al. 2016), terahertz spec-
troscopy (THz) (Wei et al. 2016), and X-ray imaging
(Costa et al. 2014; Ramakrishna 2023). Following the
unprecedented progress achieved in computer and
electronic technologies, machine learning (ML) and
deep learning (DL) have significantly improved image
analysis techniques and expedited large data processing
(Mahlein et al. 2018; Singh et al. 2018). These methods
can provide multidimensional information from rice
crop images, including color, near-infrared spectra,
three-dimensional (3D), and thermal radiation (Sun
et al. 2020). ML and DL have proven effective in plant
disease detection through images compared to tradi-
tional methods (Gill et al. 2022; Hai et al. 2022), making
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them invaluable for predicting complex and uncertain
rice infections. These techniques hold great promise and
widespread application in the realm of rice disease
detection.

This review summarizes the recent major findings of
ML and DL in rice disease detection, at multiple scales
(Matthews and Marshall-Colón 2021), spanning gene,
seed, seedling, and canopy scales. We discuss four key
areas: nondestructive seed detection, crop phenotype
identification, disease identification using rice physio-
logical indices, and ML and DL applied to plant–microbe
interactions (Fig. 2). Our review also underscores the
challenges and future perspectives in the field of plant
disease detection.

NONDESTRUCTIVE DETECTION OF RICE SEEDS

Rice seeds serve as the backbone of the rice industry (Li
et al. 2022a), and selecting high-quality seeds with
robust varieties and vitality is crucial for ensuring
optimal rice production (Matsumoto et al. 2021). For
instance, bacterial diseases in rice have emerged as a
significant concern in major rice-producing regions due
to their numerous means of transmission, swift out-
breaks, and frequent re-infestations (Jung et al. 2018).
Moreover, these issues continue to grow annually, pos-
ing a serious threat to the safety of rice production.
Common rice diseases include rice blast, bakanae

disease, bacterial blight, and bacterial leaf streak (Wang
et al. 2018; Xu and Chen 2011). The heterogeneity in
rice seed genetics and vitality significantly influences
their nutrition and disease resistance. However, chal-
lenges like biological hybridization during breeding,
mechanical processing during harvesting, and illegal
trading in the market hinder the promotion of high-
quality rice seeds. Traditional detection methods fall
short of the requirements for rice seed detection. Hence,
various advanced technologies have emerged to enable
rapid, non-destructive, and targeted identification of
rice seed variety, vitality, and pathogenic
microorganisms.

SEED DISEASE DETECTION

It is now understood that many pathogens can spread,
via seeds, through spores or mycelium and become the
primary source of field infections (Fan et al. 2019a;
Marcel et al. 2010). Distinguishing pathogen-infected
seeds from healthy ones through visual observation is
challenging. Spectral imaging offers a nondestructive
method for diagnosing diseased seeds. In this respect, a
recent study (Baek et al. 2019) used various ML models
to characterize visible near-infrared spectra bands,
enabling the differentiation of infected rice seeds with
bacterial cereal blight from healthy ones. Meanwhile,
Zhang et al. (2020) employed hyperspectral imaging

Fig. 2 Major rice disease detection methods by advanced technology at different scales (Created with BioRender.com)
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(HSI) combined with DL to classify rice seed vigor
classes at various frost levels. When using spectral
preprocessing and feature extraction algorithms, the
accuracy of the deep forest (DF) model reached 99.33%,
achieving precise classification of rice seeds with dif-
ferent frost levels. Optical instruments, while not inex-
pensive, have gained recognition for their high accuracy
and efficiency.

To address the cost of hyperspectral imaging tech-
nology, scholars have developed feature filtering pro-
cesses to select the optimal features, corresponding to
chlorophyll, anthocyanin, fat, and water content in seeds
(Chadha 2021; Cheng and Ying 2004; Cheng et al. 2006).
This filtering process has the potential for use in the
development of cost-effective narrow-channel sensors.
Weng et al. (2020) designed a low-cost multispectral
imaging system to detect the disease status of rice
seeds. Based on spectral single-band features, the least
squares support vector machine (LS-SVM) model
achieved over 90.3% accuracy in detecting different rice
strains and varieties. These advances in spectral meth-
ods promise increased efficiency and accuracy in
detection and offer valuable guidance for germplasm
resource breeding and storage.

SEED VARIETY IDENTIFICATION AND VIABILITY
DETECTION

Cultivating high-quality rice germplasm resources relies
on identifying seed varieties and assessing their vitality.
Several key factors contribute to predicting viability
of rice seed varieties. Germination rate, measured by
the percentage of seeds successfully germinating under
controlled conditions, is a major determining factor.
Additionally, seed moisture content (optimal range:
12–14%) and post-germination growth rates, influ-
enced by stem and root length, weight, and biomass,
play essential roles (Zhang et al. 2005). The electrical
conductivity of the seed membrane can negatively
impact viability by damaging the membrane (Duan et al.
2010). Physical attributes, including color, shape, and
weight, serve as indicators of viability. Taken together,
these criteria offer a comprehensive assessment of seed
viability, aiding in predicting successful cultivation
(Wang 2019).

Hyperspectral imaging represents a safer and more
cost-effective technique for identifying rice seed vari-
eties compared to other methods like X-ray imaging and
magnetic resonance imaging (MRI). It has gained sig-
nificant popularity in recent years for the quality and
variety detection of seeds for various crop (Chu et al.
2022). Non-destructive identification methods for rice

seed varieties include computer vision techniques, near-
infrared spectroscopy, and hyperspectral imaging. Dif-
ferent rice varieties exhibit unique genetic expressions
that manifest in specific external characteristics, such as
color, texture, and shape. These attributes can be cap-
tured using computer vision techniques to differentiate
between seed varieties.

In addition, differences in organic matter content
within each variety, such as starch and protein, can be
observed in the obtained spectra. NIR spectroscopy and
hyperspectral imaging effectively identify seed varieties.
For instance, Ansari et al. (2021) used an RGB camera to
capture images of three rice seed varieties and extracted
shape, texture, and color features. Their support vector
machine (SVM) model achieved a classification accuracy
of 93.9%, outperforming other classification models.
Methods like partial least squares discriminant analysis
(PLS-DA), SVM, and K-nearest neighbor (KNN) have
proven effective in spectral discrimination, differentiat-
ing rice seed varieties.

Joshi et al. (2021) proposed a DL-assisted optical
coherence tomography (OCT) technique for subsurface
imaging to differentiate between various seed species.
After extensive training, the network demonstrated
excellent accuracy with test datasets. These techniques
can accurately classify seed varieties, even those with
morphological similarities, helping to remove variety
duplication and assess seed purity. Additionally, non-
destructive methods for seed viability detection include
oxygen sensor technology, infrared thermography, near-
infrared spectroscopy, and hyperspectral imaging. Seeds
undergo metabolism during storage, consuming oxygen,
protein, and fatty substances, while emitting heat. The
metabolic rate varies among vigorous seeds, affecting
the amount of oxygen consumed and heat generated.
Oxygen sensor technology can efficiently determine
seed vigor by detecting oxygen consumption (Rol-
letschek et al. 2009; Zhao et al. 2013), whereas infrared
thermography detects seed vigor by measuring heat
generation (Men et al. 2017). For instance, Fang et al.
(2016) used infrared thermal imaging to capture images
of rice seeds with different vigor levels and established
a generalized regression neural network (GRNN) model,
achieving a correlation coefficient of 0.9003. Fan et al.
(2019b) employed NIR spectroscopy to obtain spectral
data for two rice seed types, yielding PLS-DA models
with an accuracy of 91.67% for classifying these seeds.
The above methods provide the foothold for rapid, non-
destructive measurements of rice seed vitality on an
industrial or large-scale level. They enhance detection
efficiency and accuracy, while providing valuable guid-
ance for germplasm resource breeding and storage.

� The Author(s) 2023

362 aBIOTECH (2023) 4:359–371



Although nondestructive seed testing methods offer
rapid, cost-effective, pollution-free, repeatable, and
easily measurable benefits, there are still challenges to
overcome in this research stage. For instance, NIR
spectroscopy must address interference from water,
temperature, and sample variations. Hyperspectral
imaging techniques require the selection of character-
istic wavelengths and noise reduction.

MULTI-SCALE RICE DISEASE DETECTION

Leaves serve as essential organs for nutrient production
in plants, playing a critical role in photosynthesis and
respiration (Krishnamurthy et al. 2015; Zhan et al.
2022). Generally, leaves are the first site for identifying
plant diseases, as most disease symptoms initially
manifest on leaves (Ebrahimi et al. 2017; Garcı́a et al.
2017). Detecting rice leaf diseases primarily relies on
human experience and symptom comparison or chem-
ical detection techniques. Changes in leaf appearance,
such as yellowing, browning, curling, wilting, or the
presence of spots or stripes, may indicate disease.
Lesions or damaged areas on leaves often signify dis-
ease presence, with their size, shape, color, and pattern
assisting in disease identification. Traditional laboratory
testing plays a pivotal role in identifying diseases and
determining the type of pathogens affecting rice leaves.
In our technologically advanced era, tools, such as drone
imaging and spectral analysis, offer the potential to
detect early signs of disease, even before they become
visible to the naked eye. Collectively, these criteria form
a robust system for predicting rice leaf diseases. Tra-
ditional methods struggle to accurately, instantly, and
easily identify pests and diseases, affecting early pest
and disease control, which can decrease rice yields.

Researchers have extensively examined plant disease
phenotypes, at the leaf and other scales, using spectral
imaging technology and ML algorithms. Most studies on
plant disease phenotypes have employed RGB imaging
technology, in combination with image processing
algorithms, to distinguish and diagnose plant disease
species and disease status. In addition to plant disease
phenotypes at the leaf scale, there are unique phenotype
characteristics at larger scales, such as the canopy.

RICE LEAF DISEASE DISCRIMINATION BY MODEL
ALGORITHM COMBINED TECHNIQUES

The past few years have witnessed a burgeoning inter-
est in research on image recognition and employed
specific classifiers to categorize images as healthy or

diseased (Jiang et al. 2020; Singh et al. 2021; Zhao et al.
2022). Over the past decades, popular disease identifi-
cation techniques included K-nearest neighbors (KNN)
(Guettari et al. 2016), SVM (Deepa 2017), Fisher Linear
Discriminant (FLD) (Ramezani and Ghaemmaghami
2010), ANN (Sheikhan et al. 2012), and Random Forest
(Kodovsky et al. 2012). Furthermore, the success of
classical methods in disease recognition have relied on
lesion segmentation and manually engineered features,
with algorithms like scale-invariant feature transform
(SIFT), Gabor transform, seven invariant moments, glo-
bal–local singular values, and sparse representation
proving effective (Guo et al. 2007; Zhang and Wang
2016).

The performance of disease recognition algorithms
hinges on numerous variables, including preprocessing
and segmentation techniques, feature extraction meth-
ods, and the choice of a learning algorithm for classifi-
cation modeling. Under complex background conditions,
many methods struggle to effectively segment the plant
and corresponding lesion image from the background,
leading to unreliable disease recognition outcomes. As a
result, automatic recognition of plant disease images
remains challenging due to the complexity of disease
images. DL techniques, particularly convolutional neural
networks (CNNs), have recently gained popularity to
overcome some of these challenges.

In this context, Albattah et al. (2022) enhanced the
central network of the target recognition model and
identified rice leaf diseases by substituting the back-
bone network. This approach reduced the number of
candidate frames during target recognition, accelerating
model inference times. Accuracy and recall rates were
approximately 99% during validation tests using pub-
licly available datasets. In DL-based plant disease iden-
tification research, model application is crucial in
promoting intelligent crop disease management. With
the development of Internet of Things (IoT)-based crop
monitoring sensor networks and the need for IoT-based
intelligent early warning systems for plant disease
recognition, many researchers have integrated their
own DL algorithm models to create expert systems for
plant leaf disease recognition (Jamal and Judith 2023).
These systems can accurately and effectively identify
plant leaf diseases in real-time and offer comprehensive
prevention and control recommendations.

CANOPY-SCALE DISEASE DETECTION

In crop plants, the canopy, which is responsible for
photosynthesis, plays a crucial role in determining the
efficient utilization of light energy and photosynthetic
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nitrogen use efficiency. Remote sensing technologies,
using satellites, aircraft, unmanned aerial vehicles
(UAVs), and ground mobile platforms, have become
valuable tools for efficient disease identification and
early diagnosis within plant populations, particularly at
the canopy scale (Li et al. 2022b). The primary plat-
forms for monitoring canopy health include satellites,
ground-based platforms, and UAVs. These platforms
offer different advantages for monitoring rice crop dis-
ease at various scales.

Satellite-based platforms are ideal for large-scale
monitoring due to their capacity to capture extensive
area data at fixed intervals. Advances in satellite tech-
nology have improved spatial and temporal resolution,
enhancing the accuracy of models based on satellite
data. However, challenges like regression cycles,
weather interference, and cloud cover can make con-
tinuous data acquisition challenging for early disease
monitoring.

The UAV platform, situated between ground and
satellite scales, offers flexible and cost-effective data
acquisition, compensating for satellite platform limita-
tions (Ge et al. 2023; Liu et al. 2023b). Flying at a cer-
tain altitude allows wide-range image acquisition, ideal
for medium-scale plots like farms and experimental
fields. However, canopy-scale imagery poses challenges
due to complex backgrounds, textures, occlusions, and
reflections, making traditional image processing and ML
methods less effective in identifying and detecting
issues.

By comparison, DL techniques, with their deep layers
for feature abstraction, excel in handling complex
models and are increasingly applied in rice canopy
disease detection (Azadbakht et al. 2019). With the
rapid development of DL and UAV platforms, Wang et al.
(2018) utilized a UAV remote sensing platform to
develop an Adaboost white spike classifier based on
Harr-like features extracted from RGB images of rice
spikes, achieving 93.62% accurate recognition of white
spikes in rice diseases. Complementing the UAV plat-
form, ground platforms, and portable instruments pro-
vide more comprehensive and real-time data, offering
enhanced accuracy (Wang et al. 2018). The rapid
development of hyperspectral remote sensing technol-
ogy and the advancements in UAV and satellite scale
disease remote sensing suggest that large-scale air-
ground disease monitoring will gradually become
achievable.

ADVANCED PHYSIOLOGICAL AND BIOCHEMICAL
DISEASE DETECTION OF DIFFERENT RICE TRAITS

Rapid acquisition of physiological and biochemical
phenotypic information of crops, such as pigment con-
tent, water content, and photosynthetic rate, is crucial
for describing key crop traits and providing decision
support for predicting crop yield and monitoring
growth and stress response (Rebetzke et al. 2019; Yang
et al. 2019a). In recent years, high-throughput pheno-
type technologies have emerged, employing spectral
and imaging technology for the nondestructive acquisi-
tion of crop physiological and biochemical parameters,
contributing significantly to the digitization and intelli-
gent management of agriculture operations (Feng et al.
2020; Yang et al. 2020a). These technologies signifi-
cantly contribute to achieving agricultural precision,
digitization, information and intelligent management
operations.

ML- AND DL-FACILITATED IMPROVEMENT IN RICE
CHLOROPHYLL MEASUREMENT

Chlorophyll is a crucial parameter in crop biology, pro-
viding insights into plant nutrient stress, pest and dis-
ease detection, and growth and senescence (Kalaji et al.
2016; Shah et al. 2017). Traditionally, the quantification
of chlorophyll involves a chemical and destructive pro-
cess, which is time-consuming and impractical in the
field (Croft et al. 2017). However, chlorophyll content is
closely related to rice photosynthetic capacity and
growth, making accurate detection essential for moni-
toring vegetative growth and diagnosing fertilization
(Evans and Clarke 2019). As an alternative, Stavrak-
oudis et al. (2019) introduced a vegetation index for rice
chlorophyll using multispectral imaging, allowing for
precise fertilization. Changes in chlorophyll content in
rice leaves, due to pathogen infections, can also be
assessed using non-invasive chlorophyll fluorescence
measurements. Zhou et al. (2014) analyzed chlorophyll
fluorescence spectra of rice leaves at different disease
stages, providing valuable insights.

Furthermore, Zhu et al. (2019) conducted research
using rice seedlings infected with Phytophthora blight,
combining hyperspectral imaging technology to predict
chlorophyll content regression in rice leaves under rice
blight stress. This approach enables the early identifi-
cation of rice sheath blight. Integrating spectral and
fluorescence data facilitates the characterization of
physiological and biochemical information in plants.
Moreover, the intrinsic relationship between biochemi-
cal components within leaves and photosynthetic
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physiology enhances our understanding of responses to
various diseases and their impact on rice production.
This knowledge provides valuable insights and theo-
retical guidance for optimizing canopy photosynthesis
and increasing crop yields.

OTHER PHYSIOLOGICAL AND BIOCHEMICAL
INDICATORS

Other physiological and biochemical indicators have been
studied for their potential to differentiate between suscep-
tible and normal rice samples, based on ML and DL, con-
tributing to early judgments of rice infections (Kutubuddin
et al. 2020). However, few studies have been conducted on
the physiological and biochemical indicators that under-
go changes in rice specimens. Most studies have used
infrared thermography (Gao et al. 2013), electron micro-
scopy (Elshayb et al. 2022) and tunable diode laser
absorption spectroscopy (Yang et al. 2020b) to detect
changes in the internal material composition or physiolog-
ical and biochemical status of the objects, enabling early
diagnosis of minor changes brought about by diseases.

When rice crops are affected by disease stress, sig-
nificant changes in photosynthesis and transpiration
occur in the affected sites, leading to significant differ-
ences between infected and healthy leaves. Wang et al.
(2019) summarized the progress in infrared thermal
imaging technology combined with DL algorithms for
early diagnosis of crop diseases. They highlighted how DL
can detect diseases by recognizing infrared thermal
images, improving the shortcomings of these images, and
enhancing the speed and accuracy of disease identifica-
tion. Hamada et al. (2020) emphasized the use of infrared
thermal imaging to monitor abnormal temperature
changes in infected areas, providing the basis for early
disease diagnosis. Miyazaki et al. (2016) determined the
complete viroid structure of rice dwarf virus (RDV)
containing the P2 protein by cryo-electron microscopy,
observing the partial structure of P2 and position in the
capsid. They also examined the 3D structure of RDV at
different stages of virus entry into cells by electron
tomography, providing insights into the cellular attach-
ment and entry of RDV. Further amalgamation of various
techniques, particularly through computer technology, is
anticipated to enhance these methods further and
assume a more prominent role in plant disease research.

ML AND DL AT THE GENOMIC SCALE

ML has gained an important role in genomics research
following advancements in high-throughput data

generation technologies (Marx 2013). This review
focuses on how the genomics data can interact with the
other types of data like chemical and images analyses
(Dias and Torkamani 2019; Libbrecht and Noble 2015;
Wu et al. 2014). ML identifies these interactions and
extracts essential information from complex datasets
(Jankovic and Gojobori 2022; Yip et al. 2013). This
processing model algorithm has been successful in
numerous large-scale data analysis domains, such as
genomics, transcriptomics, proteomics, and systems
biology, enabling the identification of promoters,
enhancers, splicing patterns, transcription factors, and
RNA-binding proteins. However, ML development has
been predominantly in the biomedical field, with rela-
tively few applications targeting plant or plant pathogen
genomics.

Balancing the utilization of ML in genomics requires
finding the right equilibrium between the model data
and the training data. Simple models may struggle to
describe data with highly complex distributions, neces-
sitating harmony between the predicted and training
models. A significant challenge in applying ML to
genomics is the scarcity of real data, with the training
dataset often vastly outnumbering the test dataset
(Sperschneider 2020). Furthermore, genomic data can
be high-dimensional, while the number of observations
remains limited (Reel et al. 2021). For example, whole-
genome sequencing data typically contain tens of
thousands of genetic information, yet only a small
fraction of observational data can be annotated.

In terms of plant–pathogen interactions from a
genomic perspective, the principal application areas of
ML encompass the prediction of gene regulatory net-
works, genomic selection for disease resistance, and the
prediction of pathogen effector proteins (Singh et al.
2016; Sperschneider 2020) (Fig. 3). Large-scale plant-
based transcriptome sequencing datasets can be lever-
aged to infer gene regulatory networks and identify
genes involved in plant–pathogen interactions (Li et al.
2021; Yang et al. 2019b). For instance, Das et al. (2022)
conducted a comparative time-series RNA-Seq analysis
of a widely grown rice variety (BPT-5204) and
employed an integrated ML and network-based
approach to construct a rice transcriptional regulatory
network (TRN) at three different time points. This
approach enabled the identification of regulatory hubs
critical to the early and late responses of rice to Rhi-
zoctonia solani. Besides, Shaik and Ramakrishna (2014)
used stress response genes to distinguish various stress
conditions and identify candidate genes for extensive
resistance in rice. SVM models were also utilized to
classify stress responses as biotic or abiotic differen-
tially expressed genes from 559 microarray samples
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under 13 stress conditions. Cernadas et al. (2014)
applied Naive Bayes (NB) and Logistic Regression (LR)
algorithms to discover the effector targets of the bac-
terial leaf streak pathogen, Xanthomonas oryzae pv.
Oryzicola (Xoc), in rice, based on transcriptomics data.

Recently, DL has gained prominence in genomics due
to its high learning capacity, wide applicability, and
excellent portability (Eraslan et al. 2019). The primary
areas of DL application in plant–pathogen interactions
include gene expression regulation, anomaly detection,
and functional genomics. Kumar et al. (2022) developed
a DL-based rice network model (DLNet) to quantita-
tively explore differences and reveal distinct adaptive
strategies rice plants employ to evade pathogen effec-
tors. Although DL displays significant potential in this
field, challenges remain, such as the mechanistic
exploration of rice interactions with various pathogens,
hindered by the lack of extensive datasets involving
rice’s interactions with different pathogens. However,
these challenges could diminish with the accumulation
of more data and advancements in DL.

It is widely thought that future advancements in
dissecting plant–pathogen interactions will be driven by
integrating diverse genomic data sources, with ML and
DL playing pivotal roles in their advanced applications
(Cheifet 2019; Mochida et al. 2018). As the quality of
interactome datasets continues to improve, ML and DL
are expected to find broader applications in genomics,
serving as facilitating tools for analyzing plant–patho-
gen interaction data with high resolution.

CONCLUSION AND FUTURE PERSPECTIVES

In summary and looking ahead, the application of rice
disease detection technology in disease detection is a
crucial area of research. The utilization and advance-
ment of advanced detection technologies like hyper-
spectral imaging and infrared thermal imaging have
made it possible to effectively monitor numerous early-
stage diseases that were previously undetectable. The
multidimensional sample data obtained from data cubes
collected through hyperspectral images provide valu-
able insights. There is a growing trend in employing
advanced model algorithms for rice disease detection
and recognition. Combining these model algorithms
ensures both the reliability of rice yield and quality and
the timely and precise availability of disease-related
information. This paper offers a comprehensive review
of monitoring rice diseases using these advanced tech-
niques across various scales. The application of emerg-
ing disease detection technology has the potential to
significantly improve the identification rate of rice dis-
eases, leading to precise solutions for crop growers and
reduce economic losses related to disease detection.
Furthermore, this research lays a solid foundation for
the prompt detection of rice diseases and holds signif-
icant reference value in terms of safeguarding the eco-
nomic losses associated with essential national food
security crops, including rice. Additionally, this paper
explores the application of high-throughput data from
microbial genomes in conjunction with model algo-
rithms for predicting rice diseases. Machine learning
and deep learning have produced remarkable results in
detecting and classifying high-throughput microbiome

Fig. 3 Application of ML and DL in plant–pathogen interactions (Created with BioRender.com)
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data (Zhan et al. 2022). Leveraging advanced model
algorithms allows valuable information within microbial
genomes to be efficiently extracted and translated into
phenotype links, enabling experimental modeling and
multi-scale computational simulations using biometric
approaches. As a result, integrating microbiome and
artificial intelligence technology promises even greater
potential in future.

In future crop disease detection research, several key
considerations are expected. First, there is a pressing
need to address the limited transferability of specific
model algorithms. For example, deep neural networks
display varying capabilities to transfer abstract features
learned at different layers. Shallow layers tend to exhibit
relatively stronger transferability compared to deeper
layers. However, as the network’s depth increases, the
learned features become more specialized and lose their
transferability. Additionally, in practical applications, it
is often of utmost importance to scrutinize why the
model predicts a particular data point to have a specific
value, a concept known as local interpretability. Random
forest models inherently possess this local inter-
pretability, as one can trace the decision path through
the branches to comprehend the prediction. On the
other hand, achieving such local interpretability repre-
sents a formidable challenge for deep learning models.
While running data through the model and observing
activated neurons can offer some insights, the inter-
pretation of individual neurons or neuron clusters
remains uncertain. Even minor alterations in a feature’s
value in the data frequently lead to substantially dif-
ferent model predictions. This situation renders the
application of counterfactual analysis, which entails
studying how changes in input data affect model pre-
dictions, impractical for achieving local explainability.
Therefore, future efforts should focus on enhancing the
stability and interpretability of various models. More-
over, optimizing and amalgamating different models can
contribute to the more precise detection of rice diseases
across diverse regions and categories.
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